1
|
Feng WL, Yang JL, Xu LG, Zhang GL. The spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil in the terrestrial ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175543. [PMID: 39153619 DOI: 10.1016/j.scitotenv.2024.175543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Carbon(C), nitrogen(N), and phosphorus(P) are crucial elements in the element cycling in the terrestrial ecosystems. In the past decades, the spatial patterns and driving mechanisms of plant and soil ecological stoichiometry have been hot topics in ecological geography. So far, many studies at different spatial and ecological scales have been conducted, but systematic review has not been reported to summarize the research status. In this paper, we tried to fill this gap by reviewing both the spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil at regional to large scale. Additionally, we synthesized researches on the relationships between plant and soil C, N and P stoichiometric characteristics. At the global scale, plant C, N, P stoichiometric characteristics exhibited some trends along latitude and temperature gradient. Plant taxonomic classification was the main factor controlling the spatial variations of plant C, N and P stoichiometric characteristics. Climate factor and soil properties showed varying impacts on the spatial variations of plant C, N, P stoichiometric characteristics across different spatial scales. Soil C, N, P stoichiometric characteristics also varied along climate gradient at large scale. Their spatial variations resulted from the combined effects of climate, topography, soil properties, and vegetation characteristics at regional scale. The spatial pattern of soil C, N, P stoichiometric characteristics and the driving effects from environmental factors could be notably different among different ecosystems and vegetation types. Plant C:N:P was obviously higher than that of soil, and there existed a positive correlation between plant and soil C:N:P. Their trends along longitude and latitude were similar, but this correlation varied significantly among different vegetation types. Finally, based on the issues identified in this paper, we highlighted eight potential research themes for the future studies.
Collapse
Affiliation(s)
- Wen-Lan Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jin-Ling Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Gang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Li G, Ma Z, Wei L, Wu C, Chen H, Guo B, Ge T, Wang J, Li J. Long-term agricultural cultivation decreases microbial nutrient limitation in coastal saline soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175005. [PMID: 39053542 DOI: 10.1016/j.scitotenv.2024.175005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Soil enzyme activities are pivotal for diverse biochemical processes and are sensitive to land use changes. They can indicate soil microbial nutrient limitations. Nonetheless, the mechanism governing the response of soil microbial nutrient limitation to land use alterations in coastal regions remains elusive. We assessed soil nutrients, microbial biomass, and extracellular enzyme activities across various land use types-natural (wasteland and woodland) and agricultural (farmland and orchard)-in the Hangzhou Bay area, China. All four land use types experience co-limitation by carbon (C) and phosphorus (P). However, the extent of microbial resource limitations varies among them. Long-term agricultural practices diminish microbial C and P limitations in farmland and orchard soils compared to natural soils, as evidenced by lower ecoenzymatic C:N ratios and vector lengths, alongside higher microbial carbon use efficiency (CUE). Soil nutrient stoichiometric ratios and CUE are primary factors influencing microbial C and P limitations. Thus, fostering appropriate land use and management practices proves imperative to regulate soil nutrient cycles and foster the sustainable management of coastal areas.
Collapse
Affiliation(s)
- Guanjun Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhi Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Liang Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Cuiyan Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
| | - Hao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bin Guo
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 311300, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Yin S, Wang C, Abalos D, Guo Y, Pang X, Tan C, Zhou Z. Seasonal response of soil microbial community structure and life history strategies to winter snow cover change in a temperate forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175066. [PMID: 39079633 DOI: 10.1016/j.scitotenv.2024.175066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Snow cover provides a thermally stable and humid soil environment and thereby regulates soil microbial communities and biogeochemical cycling. A warmer world with large reductions in snow cover and earlier spring snowmelt may disrupt this stability and associated ecosystem functioning. Yet, little is known about the response of soil microbial communities to decreased snowpack and potential carry-over effects beyond the snow cover period. Herein, we tested this response by conducting a snowpack manipulation experiment (control, addition, and removal) in a temperate forest. Our results showed that fungi were more sensitive to changes in snowpack. Thicker snowpack increased the diversity of fungi, but had weak effects on the diversity of bacteria in winter. Thickening snow cover promoted the ratio of fungi to bacteria abundance across the year, and such relative increase in fungi abundance was largely driven by Basidiomycota phyla (Agaricomycetes class). Increased snowpack decreased soil nitrate concentration, and produced carry-over biogeochemical effects evidenced by increased summer β-1,4-glucosidase and N-acetyl-β-glucosaminidase activities. On a seasonal scale, microbial biomass peaked at both winter and summer; winter microbial community was fungi dominated, while bacteria dominated in summer. The abundances of bacterial phyla had greater seasonal variation than fungal phyla. Specifically, Actinobacteria had greater dominance in winter than in summer, while Acidobacteria, Proteobacteria, and Verrucomicrobia had greater abundance in summer than in winter. Microbial high yield-resource acquisition-stress tolerance life history strategies showed significant seasonal tradeoffs, i.e., resource acquisition and stress tolerance strategies dominated in summer, while high yield strategy dominated in winter. Overall, our findings underline that climate-induced reductions in snow cover can disrupt soil biogeochemical cycling also beyond the snow cover period due to shifts in soil microbial community structure and life history strategies.
Collapse
Affiliation(s)
- Shuang Yin
- School of Ecology and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Chuankuan Wang
- School of Ecology and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Diego Abalos
- Department of Agroecology, iCLIMATE, Aarhus University, Tjele 8830, Denmark
| | - Yu Guo
- School of Ecology and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Xuesen Pang
- School of Ecology and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Chuanqiao Tan
- School of Ecology and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Zhenghu Zhou
- School of Ecology and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Ning S, He X, Ma T, Yan T. Attenuated asymmetry of above- versus belowground stoichiometry to a decadal nitrogen addition during stand development. Ecology 2024:e4458. [PMID: 39462766 DOI: 10.1002/ecy.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/07/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Deciphering the linkage between ecological stoichiometry and ecosystem functioning under anthropogenic nitrogen (N) deposition is critical for understanding the impact of afforestation on terrestrial carbon (C) sequestration. However, the specific changes in above- versus belowground stoichiometric asymmetry with stand age in response to long-term N addition remain poorly understood. In this study, we investigated changes in stoichiometry following a decadal addition of three levels of N (control, no N addition; low N addition, 20 kg N ha-1 year-1; high N addition, 50 kg N ha-1 year-1) in young, intermediate, and mature stands in three temperate larch plantations (Larix principis-rupprechtii) in North China. We found that low N addition had no impact on both above- (leaf and litter) and belowground (soil and microbe) stoichiometry. In contrast, high N addition resulted in significant asymmetry in above- versus belowground stoichiometry, which then diminished during stand development. Following 10 years of N inputs, the young and intermediate plantations transitioned from a state of relative N limitation to co-limitation by both N and phosphorus (P), whereas the mature plantation continued to experience relative N limitation. Conversely, soil microorganisms exhibited relative P limitation in all three plantations. Broader niche differentiation (N limitation for trees, but P limitation for microorganisms) under long-term N input may have been responsible for the faster attainment of stoichiometric homeostasis in mature plantations than in young plantations. Our findings provide stoichiometric-based insight into the operating mechanisms of large C sinks in young forests, particularly above- versus belowground C stock asymmetry, and highlight the need to consider the role of flexible stoichiometry when forecasting future forest C sinks.
Collapse
Affiliation(s)
- Shijie Ning
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xinru He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tian Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Ju W, Sardans J, Bing H, Wang J, Ma D, Cui Y, Duan C, Li X, Fan Q, Peñuelas J, Fang L. Diversified Vegetation Cover Alleviates Microbial Resource Limitations within Soil Aggregates in Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18744-18755. [PMID: 39389918 DOI: 10.1021/acs.est.4c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Resource demand by soil microorganisms critically influences microbial metabolism and then influences ecosystem resilience and multifunctionality. The ecological remediation of abandoned tailings is a topic of broad interest, yet our understanding of microbial metabolic status in restored soils, particularly at the aggregate scale, remains limited. This study investigated microbial resources within soil aggregates from revegetated tailings and applied a vector model of ecoenzymatic stoichiometry to examine how different vegetation patterns (grassland, forest, or bare land control) impact microbial resource limitation. Five-year vegetation restoration significantly elevated carbon (C) and nitrogen (N) concentrations and their stoichiometric ratios in soil aggregates (approximately 2-fold), although these increases were not translated to in the microbial biomass and its stoichiometry. The activities of C- and phosphorus (P)-acquiring extracellular enzymes in these aggregates increased substantially postvegetation, with the most pronounced escalation in macroaggregates (>0.25 mm). The vector model results indicated soil microbial metabolism was colimited by C and P, most acutely in microaggregates (<0.25 mm). This colimitation was exacerbated by monotypic vegetation cover but mitigated under diversified vegetation cover. Soil nutrient stoichiometric ratios in vegetation restoration controlled microbial resource limitation, overshadowing the impact of heavy metals. Our findings underscore that optimizing resource allocation within soil aggregates through strategic revegetation can enhance microbial metabolism in tailings, which advocates for the implementation of diverse vegetation covers as a viable strategy to improve the ecological development of degraded landscapes.
Collapse
Affiliation(s)
- Wenliang Ju
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia 08193, Spain
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Jie Wang
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Dengke Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Xiankun Li
- Department of Physical Geography, Stockholm University, Stockholm 106 91, Sweden
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia 08193, Spain
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
6
|
Wang Y, Ren Z, Wu Y, Li Y, Han S. Antibiotic resistance genes transfer risk: Contributions from soil erosion and sedimentation activities, agricultural cycles, and soil chemical contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136227. [PMID: 39454331 DOI: 10.1016/j.jhazmat.2024.136227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
The transfer of antibiotic resistance genes (ARGs) pose environmental risks that are influenced by soil activity and pollution. Soil erosion and sedimentation accelerate degradation and migration, thereby affecting soil distribution and contamination. This study quantified the vertical and horizontal transfer capabilities of ARGs and simulated soil environments under various scenarios, such as erosion, agricultural cycles, and chemical pollution. The results showed that slope, runoff, and sediment volume significantly affected soil erosion and ARG transfer risks. The response of environmental factors to the transfer risk of ARGs is as follows: the promotion effect of soil deposition (average: 21.41 %) is significantly greater than the inhibitory effect of soil erosion (average: -11.31 %); the planting period (average: -64.654) is greater than the harvest period (average: -56.225); the response to soil chemical pollution is: the impact of phosphate fertilizer residues, antibiotics, and pesticide pollution is more significant. This study constructed a vertical and horizontal transfer system of ARGs in soil erosion and sedimentation environments and proposed a response analysis method for the impact of factors, such as soil erosion and sedimentation activities, agricultural cycles, and soil chemical pollution, on ARGs transfer capabilities.
Collapse
Affiliation(s)
- Yingwei Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Jilin Emergency Management, Changchun Institute of Technology, Changchun 130012, China.
| | - Yuhan Wu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Yufei Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
7
|
Zhong Z, Wang X, Yang C, Wang Y, Yang G, Xu Y, Li C. Contrasting carbon cycle responses of semiarid abandoned farmland to simulated warmer-drier and warmer-wetter climates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174693. [PMID: 38992364 DOI: 10.1016/j.scitotenv.2024.174693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Rewilding abandoned farmlands provides a nature-based climate solution via carbon (C) offsetting; however, the C-cycle-climate feedback in such restored ecosystems is poorly understood. Therefore, we conducted a 2-year field experiment in Loess Plateau, China, to determine the impacts of warming (∼1.4 °C) and altered precipitation (±25 %, ±50 %, and ambient), alone or in concert on soil C pools and associated C fluxes. Experimental warming significantly enhanced soil respiration without affecting the ecosystem net C uptake and soil C storage; these variables tended to increase along the manipulated precipitation gradient. Their interactions increased ecosystem net C uptake (synergism) but decreased soil respiration and soil C accumulation (antagonism) compared with a single warming or altered precipitation. Additionally, most variables related to the C cycle tended to be more responsive to increased precipitation, but the ecosystem net C uptake responded intensely to warming and decreased precipitation. Overall, ecosystem net C uptake and soil C storage increased by 94.4 % and 8.2 %, respectively, under the warmer-wetter scenario; however, phosphorus deficiency restricted soil C accumulation under these climatic conditions. By contrast, ecosystem net C uptake and soil C storage decreased by 56.6 % and 13.6 %, respectively, when exposed to the warmer-drier climate, intensifying its tendency toward a C source. Therefore, the C sink function of semiarid abandoned farmland was unsustainable. Our findings emphasize the need for management of post-abandonment regeneration to sustain ecosystem C sequestration in the context of climate change, aiding policymakers in the development of C-neutral routes in abandoned regions.
Collapse
Affiliation(s)
- Zekun Zhong
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Eco-meteorology Joint Laboratory of Dingbian County, Yulin 719000, Shaanxi, PR China
| | - Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chenghui Yang
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yanbo Wang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yadong Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Chao Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Eco-meteorology Joint Laboratory of Dingbian County, Yulin 719000, Shaanxi, PR China.
| |
Collapse
|
8
|
McLeod AM, Leroux S, Little CL, Massol F, Vander Wal E, Wiersma YF, Gounand I, Loeuille N, Harvey E. Quantifying elemental diversity to study landscape ecosystem function. Trends Ecol Evol 2024:S0169-5347(24)00246-5. [PMID: 39419673 DOI: 10.1016/j.tree.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
The movement, distribution, and relative proportions of essential elements across the landscape should influence the structure and functioning of biological communities. Yet, our basic understanding of the spatial distribution of elements, particularly bioavailable elements, across landscapes is limited. Here, we propose a quantitative framework to study the causes and consequences of spatial patterns of elements. Specifically, we integrate distribution models, dissimilarity metrics, and spatial smoothing to predict how the distribution of bioavailable elements changes with spatial extent. Our community and landscape ecology perspective on elemental diversity highlights the characteristic relationships that emerge among elements in landscapes and that can be measured empirically to help us pinpoint ecosystem control points. This step forward provides a mechanistic link between community and ecosystem processes.
Collapse
Affiliation(s)
- Anne M McLeod
- IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries in the Forschungsverbund Berlin eV, 12587 Berlin, Germany; School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Shawn Leroux
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Chelsea L Little
- School of Environmental Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - François Massol
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Isabelle Gounand
- Sorbonne Université, Université Paris Cité, Université Paris Est Créteil, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR7618), 75005 Paris, France
| | - Nicolas Loeuille
- Sorbonne Université, Université Paris Cité, Université Paris Est Créteil, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR7618), 75005 Paris, France
| | - Eric Harvey
- Centre de Recherche sur les Interactions Bassins Versants - Écosystèmes Aquatiques (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7.
| |
Collapse
|
9
|
DeBruyn JM, Keenan SW, Taylor LS. From carrion to soil: microbial recycling of animal carcasses. Trends Microbiol 2024:S0966-842X(24)00229-4. [PMID: 39358066 DOI: 10.1016/j.tim.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Decomposer microbial communities are gatekeepers in the redistribution of carbon and nutrients from dead animals (carrion) to terrestrial ecosystems. The flush of decomposition products from a carcass creates a hot spot of microbial activity in the soil below, and the animal's microbiome is released into the environment, mixing with soil communities. Changes in soil physicochemistry, especially reduced oxygen, temporarily constrain microbial nutrient cycling, and influence the timing of these processes and the fate of carrion resources. Carcass-related factors, such as mass, tissue composition, or even microbiome composition may also influence the functional assembly and succession of decomposer communities. Understanding these local scale microbially mediated processes is important for predicting consequences of carrion decomposition beyond the hot spot and hot moment.
Collapse
Affiliation(s)
- Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA.
| | - Sarah W Keenan
- Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Lois S Taylor
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
10
|
Xu M, Xi J, Liu Y, Li S. Adaptation strategies of soil microorganisms in resource changes and stoichiometric imbalances induced by secondary succession on the loess plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122668. [PMID: 39332301 DOI: 10.1016/j.jenvman.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/11/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Sequestering farmland for secondary succession is an effective method of restoring ecosystem services to degraded farmland, but long-term secondary succession often alters ecosystem environments, resources, and substrate stoichiometry. Currently, it is not known how resource changes and stoichiometric imbalances due to secondary succession affect soil microbial community structure and function, hindering our understanding of the natural resilience for degraded ecosystems. Here, we assessed nutrient limitation elements, community structure, metabolic functions, co-occurrence network complexity, and community stability of soil microorganisms during secondary succession of abandoned farmlands on the Loess Plateau. Results showed that secondary succession significantly altered plant characteristics and soil properties, as well as causing stoichiometry imbalances in nutrient resources. Along the secondary succession chronosequence, microbial nutrient metabolism shifted from phosphorus (P) limitation to carbon (C) and nitrogen (N) co-limitation. Microbial diversity, eutrophic flora, plant growth-promoting bacteria, and metabolism functional groups increased significantly during the 20 years after the abandonment of the farmlands, but decreased significantly with long-term succession. However, oligotrophic flora and P-solubilizing bacteria became dominant after 30 years of secondary succession on abandoned farmlands. The topological features of microbial co-occurring networks, including nodes, degree, closeness, betweenness, and eigenvector complexity, natural connectivity, and community stability first increased and then decreased with secondary succession. Correlation and random forest analyses indicated that secondary succession-induced stoichiometry imbalances in C:N and N:P, as well as changes in soil organic C and lignin phenols, were the key factors influencing microbial community structure and function. Overall, these results enhance our understanding of the adaptation strategies of soil microbial communities in ecologically managed regions to changes in ecosystem resources and stoichiometric imbalances.
Collapse
Affiliation(s)
- Miaoping Xu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jiazhen Xi
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yushu Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shiqing Li
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070 Gansu, China.
| |
Collapse
|
11
|
Yue F, Li J, Li J, Shangguan Z, Deng L. Responses of plant and microbial C:N:P stoichiometry to livestock removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176474. [PMID: 39341236 DOI: 10.1016/j.scitotenv.2024.176474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Livestock removal (LR) is considered an effective strategy for recovering ecosystem functions in degraded grasslands. Carbon (C), nitrogen (N), and phosphorus (P), as well as their ratios in plants and microorganisms, act as key regulators of ecosystem stability and nutrient limitation during grassland succession. However, few studies have comprehensively evaluated plant and microbial nutrient limitations through C:N:P stoichiometry following LR over different durations. Here, our study explored the C, N, P contents, and C:N, C:P and N:P ratios of green and senescent leaves, microbial biomass and extracellular enzymes after 33 years of LR on the Loess Plateau, China. The results showed that LR increased the C, N, and P contents of plant and microbial communities. LR (>26 years) enhanced C, N, P contents of green leaves by 364.7 %, 232.2 %, 134.6 %, and C, N, P contents of senescent leaves by 164.8 %, 230.8 %, 86.3 %, respectively. LR also increased plant C:P and N:P ratios and the P reabsorption efficiency, indicating that the plant communities shifted from N to P-limitation during grassland restoration. Compared with the grazing sites, LR26 increased C, N, P contents, C:P and N:P ratios of soil microbial biomass, whereas reduced soil N-acquiring enzyme activity and enzymatic N:P ratio, indicating that the microbial community experienced higher P limitation than that of grazing sites. Plant and microbial communities showed strong plastic relationships with soil resource. Vegetation cover and productivity played strong roles in altering the plant and microbial C:N:P stoichiometry following LR. These findings indicate that long-term LR (>26 years) will exacerbate plant and microbial P limitation during grassland succession.
Collapse
Affiliation(s)
- Feixue Yue
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern China/Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianping Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern China/Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China; College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Jiwei Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern China/Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Zhou Y, Ma J, Ma J, Lu Q, Wang G, Shen Y, Ma H. Extending grazing time during the warm season can reduce P limitation and increase the N cycling rate in arid desert steppes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173664. [PMID: 38838998 DOI: 10.1016/j.scitotenv.2024.173664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Ecological stoichiometry serves as a valuable tool for comprehending biogeochemical cycles within grassland ecosystems. The impact of grazing time on the concentration and stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) in desert steppe ecosystems remains ambiguous. This research was carried out in a desert grassland utilizing a completely randomized experimental design. Four distinct grazing time treatments were implemented: fenced grassland (FG, control), delay to start and early to end grazing grassland (DEG), delay to start grazing grassland (DG), and traditional grazing grassland (TG). The patterns of C, N, and P concentrations and their stoichiometry in various components of the ecosystem, as well as their driving factors under different grazing times were examined. The results showed that grazing time positively influenced C and N concentrations in leaves, while negatively affecting N concentrations in roots. TG had a significant positive effect on soil P concentrations but a negative effect on soil C:P and N:P ratios. Plant C:N, C:P, and N: P ratios were mainly influenced by N and P. The soil C:N ratio was primarily influenced by soil N, the soil C:P ratio was affected by both soil C and P, and the soil N:P ratio was influenced by both soil N and P. The growth of plants in desert steppes is mainly limited by P; however, as grazing time increased, P limitation gradually decreased and the N cycling rate increased. C-N, C-P, and N-P in various plant organs and soils demonstrated significant anisotropic growth relationships at different grazing times. Soil organic carbon, pH, and soil total phosphorus were the main driving factors that affected changes in ecological C:N:P stoichiometry. These results will help improve grassland management and anticipate the response of grassland systems to external disturbances with greater accuracy.
Collapse
Affiliation(s)
- Yao Zhou
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, P.R. China, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, China
| | - Jingli Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, P.R. China, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China
| | - Jing Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, P.R. China, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China
| | - Qi Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, P.R. China, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China
| | - Guohui Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, P.R. China, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, China
| | - Yan Shen
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, P.R. China, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, China.
| | - Hongbin Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, P.R. China, Ningxia University, Yinchuan 750021, China; Grassland and Animal Husbandry Engineering Technology Research Center of Ningxia Province, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
13
|
Wang X, Zeng J, Chen F, Wang Z, Liu H, Zhang Q, Liu W, Wang W, Guo Y, Niu Y, Yuan L, Ren C, Yang G, Zhong Z, Han X. Aridity shapes distinct biogeographic and assembly patterns of forest soil bacterial and fungal communities at the regional scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174812. [PMID: 39019268 DOI: 10.1016/j.scitotenv.2024.174812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Climate change is exacerbating drought in arid and semi-arid forest ecosystems worldwide. Soil microorganisms play a key role in supporting forest ecosystem services, yet their response to changes in aridity remains poorly understood. We present results from a study of 84 forests at four south-to-north Loess Plateau sites to assess how increases in aridity level (1- precipitation/evapotranspiration) shapes soil bacterial and fungal diversity and community stability by influencing community assembly. We showed that soil bacterial diversity underwent a significant downward trend at aridity levels >0.39, while fungal diversity decreased significantly at aridity levels >0.62. In addition, the relative abundance of Actinobacteria and Ascomycota increased with higher aridity level, while the relative abundance of Acidobacteria and Basidiomycota showed the opposite trend. Bacterial communities also exhibited higher similarity-distance decay rates across geographic and environmental gradients than did fungal communities. Phylogenetic bin-based community assembly analysis revealed homogeneous selection and dispersal limitation as the two dominant processes in bacterial and fungal assembly. Dispersal limitation of bacterial communities monotonically increased with aridity levels, whereas homogeneous selection of fungal communities monotonically decreased. Importantly, aridity also increased the sensitivity of microbial communities to environmental disturbance and potentially decreased community stability, as evidenced by greater community similarity-environmental distance decay rates, narrower habitat niche breadth, and lower microbial network stability. Our study provides new insights into soil microbial drought response, with implications on the sustainability of ecosystems under environmental stress.
Collapse
Affiliation(s)
- Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jia Zeng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Fang Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zhengchen Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Hanyu Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Qi Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Weichao Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Wenjie Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yang Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yanfeng Niu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Linshan Yuan
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zekun Zhong
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
14
|
Li X, Liu Y, Chen D, Ding C, Ma P, He J, Su D. Riparian plant-soil-microbial C:N:P stoichiometry: are they conserved at plant functional group level? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47275-47290. [PMID: 38990259 DOI: 10.1007/s11356-024-34153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
As a consequence of the tight linkages between plants, soil, and microorganisms, we hypothesized the variations in plant species would change soil and microbial stoichiometry. Here, we examined the plant leaf carbon (C):nitrogen (N):phosphorus (P) ratios of nine species coming from three plant functional groups (PFGs) in the riparian zones of Hulunbuir steppe during near-peak biomass. The soil C:N:P, microbial biomass carbon (MBC):microbial biomass nitrogen (MBN), and extracellular enzyme's C:N:P were also assessed using the soils from each species. We found that plant tissue, soil nutrient, microbial, and enzyme activity stoichiometry significantly differed among different PFGs. Plant leaf and soil nutrient ratios tended to be similar (p > 0.05) between different species within the same PFGs. The variations in leaf C:N:P significantly correlated with the changes in soil C:N:P and MBC:MBN ratios. The homeostatic coefficients (H) < 1 suggested the relationships between plants and their resources C:N:P ratios might be non-homeostatic in the examined riparian zone. By assessing plant tissue and its soil nutrient stoichiometry, this study provided a perspective to understand the linkages of plant community, soil nutrient, and microbial characteristics.
Collapse
Affiliation(s)
- Xingfu Li
- Industry Development and Planning Institute, National Forestry and Grassland Administration of P.R. China, Beijing, 100010, China
| | - Yu Liu
- Grassland Resources and Ecology Research Center, Beijing Forestry University, Haidian District, No. 35 E(ast) Tsinghua Road, Beijing, 100083, China
| | - Dan Chen
- Industry Development and Planning Institute, National Forestry and Grassland Administration of P.R. China, Beijing, 100010, China
| | - Chenxiang Ding
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, 810016, China
| | - Pu Ma
- Grassland Resources and Ecology Research Center, Beijing Forestry University, Haidian District, No. 35 E(ast) Tsinghua Road, Beijing, 100083, China
| | - Jing He
- Grassland Resources and Ecology Research Center, Beijing Forestry University, Haidian District, No. 35 E(ast) Tsinghua Road, Beijing, 100083, China
| | - Derong Su
- Grassland Resources and Ecology Research Center, Beijing Forestry University, Haidian District, No. 35 E(ast) Tsinghua Road, Beijing, 100083, China.
| |
Collapse
|
15
|
Zang Z, Li Y, Wang Y, Zhang Y, Deng S, Guo X, Yang K, Zhao W. Contrasting roles of plant, bacterial, and fungal diversity in soil organic carbon accrual during ecosystem restoration: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172767. [PMID: 38670358 DOI: 10.1016/j.scitotenv.2024.172767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Plant and microbial diversity plays vital roles in soil organic carbon (SOC) accumulation during ecosystem restoration. However, how soil microbial diversity mediates the positive effects of plant diversity on carbon accumulation during vegetation restoration remains unclear. We conducted a large-scale meta-analysis with 353 paired observations from 65 studies to examine how plant and microbial diversity changed over 0-160 years of natural restoration and its connection to SOC accrual in the topsoil (0-10 cm). Results showed that natural restoration significantly increased plant aboveground biomass (122.09 %), belowground biomass (153.05 %), and richness (21.99 %) and SOC accumulation (32.34 %) but had no significant impact on microbial diversity. Over time, bacterial and fungal richness increased and then decreased. The responses of major microbial phyla, in terms of relative abundance, varied across restoration and ecosystem types. Specifically, Ascomycota and Zygomycota decreased more under farmland abandonment than under grazing exclusion. In forest, Bacteroidetes, Ascomycota, and Zygomycota significantly decreased after natural restoration. The increase in SOC and Basidiomycota was higher in forest than in grassland. Based on standardized estimates, structural equation modeling showed that plant diversity had the highest positive effect (0.55) on SOC accrual, and while fungal diversity (0.15) also had a positive effective, bacterial diversity (-0.20) had a negative effect. Plant diversity promoted SOC accumulation by directly impacting biomass and soil moisture and total nitrogen and indirectly influencing soil microbial richness. This meta-analysis highlights the significant roles of plant diversity and microbial diversity in carbon accumulation during natural restoration and elucidates their relative contributions to carbon accumulation, thereby aiding in more precise predictions of soil carbon sequestration.
Collapse
Affiliation(s)
- Zhenfeng Zang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingxue Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Comprehensive Security Center of Hohhot Forestry and Grassland Bureau, Hohhot, Inner Mongolia 010010, China
| | - Yinan Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shujuan Deng
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ke Yang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Wei Zhao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Shen H, Dai Z, Zhang Q, Tong D, Su WQ, Dahlgren RA, Xu J. Postfire Phosphorus Enrichment Mitigates Nitrogen Loss in Boreal Forests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10611-10622. [PMID: 38836563 DOI: 10.1021/acs.est.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.
Collapse
Affiliation(s)
- Haojie Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Qianqian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Di Tong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wei-Qin Su
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
17
|
Feng Y, Xu T, Wang W, Sun S, Zhang M, Song F. Nitrogen addition changed soil fungal community structure and increased the biomass of functional fungi in Korean pine plantations in temperate northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172349. [PMID: 38615770 DOI: 10.1016/j.scitotenv.2024.172349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0-10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha-1 yr-1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g-1). Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.
Collapse
Affiliation(s)
- Yuhan Feng
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Tianle Xu
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Wang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Simiao Sun
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Heilongjiang Academy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Mengmeng Zhang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fuqiang Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
18
|
Yang S, Sun J, Wang C, Li S, Li Z, Luo W, Wei G, Chen W. Residue quality drives SOC sequestration by altering microbial taxonomic composition and ecophysiological function in desert ecosystem. ENVIRONMENTAL RESEARCH 2024; 250:118518. [PMID: 38382662 DOI: 10.1016/j.envres.2024.118518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Plant residues are important sources of soil organic carbon in terrestrial ecosystems. The degradation of plant residue by microbes can influence the soil carbon cycle and sequestration. However, little is known about the microbial composition and function, as well as the accumulation of soil organic carbon (SOC) in response to the inputs of different quality plant residues in the desert environment. The present study evaluated the effects of plant residue addition from Pinus sylvestris var. mongolica (Pi), Artemisia desertorum (Ar) and Amorpha fruticosa (Am) on desert soil microbial community composition and function in a field experiment in the Mu Us Desert. The results showed that the addition of the three plant residues with different C/N ratios induced significant variation in soil microbial communities. The Am treatment (low C/N ratio) improved microbial diversity compared with the Ar and Pi treatments (medium and high C/N ratios). The variations in the taxonomic and functional compositions of the dominant phyla Actinobacteria and Proteobacteria were higher than those of the other phyla among the different treatments. Moreover, the network links between Proteobacteria and other phyla and the CAZyme genes abundances from Proteobacteria increased with increasing residue C/N, whereas those decreased for Actinobacteria. The SOC content of the Am, Ar and Pi treatments increased by 45.73%, 66.54% and 107.99%, respectively, as compared to the original soil. The net SOC accumulation was positively correlated with Proteobacteria abundance and negatively correlated with Actinobacteria abundance. These findings showed that changing the initial quality of plant residue from low C/N to high C/N can result in shifts in taxonomic and functional composition from Actinobacteria to Proteobacteria, which favors SOC accumulation. This study elucidates the ecophysiological roles of Actinobacteria and Proteobacteria in the desert carbon cycle, expands our understanding of the potential microbial-mediated mechanisms by which plant residue inputs affect SOC sequestration in desert soils, and provides valuable guidance for species selection in desert vegetation reconstruction.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Jieyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Chang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Shuyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Zubing Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Wen Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
19
|
Tan C, Wang C, Zhou T, Pang X, Zhao K, Zhou Z. Mineral protection mediates soil carbon temperature sensitivity of nine old-growth temperate forests across the latitude transect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171754. [PMID: 38494010 DOI: 10.1016/j.scitotenv.2024.171754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Temperature sensitivity (Q10) of soil microbial respiration serves as a crucial indicator for assessing the response of soil organic carbon (SOC) to global warming. However, the biogeographic variation in Q10 remains inconsistent. In this study, we examined Q10 and its potential drivers in nine old-growth mixed broad-leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forests (the climax community of Asian temperate mixed forest) under a wide range of climatic conditions. We found that stand characteristics (arbuscular mycorrhizal tree basal area to ectomycorrhizal tree basal area ratio and root to shoot ratio) contributed to soil C sequestration by facilitating the accumulation of soil recalcitrant C components. Contrary to the C quality-temperature hypothesis, Q10 was not correlated with C quality (soil C to nitrogen ratio and recalcitrant C to labile C ratio). Soil mineral protection parameters (Fe/Al oxides) had negative effect on Q10 because they inhibited microbial activities by decreasing substrate accessibility. Additionally, soils with high microbial biomass C and microbial biomass C to soil organic C ratio had high Q10. Overall, understanding the complex relationships among Q10, mineral protection, and microbial attributes on a spatial scale is essential for accurately predicting soil C cycling in forest ecosystems.
Collapse
Affiliation(s)
- Chuanqiao Tan
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Chuankuan Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Tao Zhou
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Xuesen Pang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Kaige Zhao
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Zhenghu Zhou
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
20
|
Liao J, Dou Y, Wang B, Gunina A, Yang Y, An S, Chang SX. Soil stoichiometric imbalances constrain microbial-driven C and N dynamics in grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171655. [PMID: 38492605 DOI: 10.1016/j.scitotenv.2024.171655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Grassland restoration leads to excessive soils with carbon (C) and nitrogen (N) contents that are inadequate to fulfill the requirements of microorganisms. The differences in the stoichiometric ratios of these elements could limit the activity of microorganisms, which ultimately affects the microbial C, N use efficiencies (CUE, NUE) and the dynamics of soil C and N. The present study was aimed at quantifying the soil microbial nutrient limitation and exploring the mechanisms underlying microbial-induced C and N dynamics in chrono-sequence of restored grasslands. It was revealed that grassland restoration increased microbial C, N content, microbial C, N uptake, and microbial CUE and NUE, while the threshold elemental ratio (the C:N ratio) decreased, which is mainly due to the synergistic effect of the microbial biomass and enzymatic stoichiometry imbalance after grassland restoration. Finally, we present a framework for the nutrient limitation strategies that stoichiometric imbalances constrain microbial-driven C and N dynamics. These results are the direct evidence of causal relations between stoichiometric ratios, microbial responses, and soil C, N cycling.
Collapse
Affiliation(s)
- Jiaojiao Liao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Ministry of Water Resources, CAS, Yangling 712100, China
| | - Yanxing Dou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Ministry of Water Resources, CAS, Yangling 712100, China.
| | - Baorong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Ministry of Water Resources, CAS, Yangling 712100, China
| | - Anna Gunina
- Department of Environmental Chemistry, University of Kassel, Witzenhausen, Germany
| | - Yang Yang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; National Observation and Research Station of Earth Critical Zone on the Loess Plateau, Xi'an, Shaanxi 710061, China.
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Ministry of Water Resources, CAS, Yangling 712100, China.
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada.
| |
Collapse
|
21
|
Xin J, Yan L, Cai H. Response of soil organic carbon to straw return in farmland soil in China: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121051. [PMID: 38723507 DOI: 10.1016/j.jenvman.2024.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Straw return is an effective measure to promote sustainable agriculture by significantly improving soil fertility. At present, few studies have been conducted on the most effective carbon enhancing management measures for various crops. Therefore, we conducted a meta-analysis using data collected from 184 literature sources, comprising 3297 data sets to analyze the carbon increase effects of straw returning in three main crops (rice, maize, and wheat) in China and to explore the influence mechanism of natural factors, soil properties, straw return measures, and cropping systems on the carbon enhancement effect. The study showed that straw return significantly increased soil organic carbon and the rate of increase was higher for wheat at 15.88% (14.74%-17.03%) than for rice at 12.7% (11.5%-13.91%) and maize at 12.42% (11.42%-13.42%), with varying degrees of improvement in other soil physicochemical properties. Natural factors have the greatest impact on the carbon increasing effect of rice fields, reaching 28.8%, especially at temperature between 10 °C and 15 °C, less than 800 mm precipitation, low latitude, and short frost-free period. Maize and wheat are most affected by soil properties, reaching 41% and 34.5% respectively. Furthermore, field management practices also play a pivotal role, organic carbon increasing obviously was observed when the C/N ratio of exogenous nutrients is bigger than 20 with the low initial organic matter. Shallow tillage and less than 7.5 t hm-2 straw returning with 3-10 years to the field are ideal for rice and maize. Crop rotation, especially in drylands, increased soil organic carbon more significantly than continuous. The results of our analysis can provide valuable insights into the effect of straw return on carbon increase. In the future, the soil carbon can be improved by adopting rational cropping patterns and straw return measures with taking into account climate and soil characteristics for different crops.
Collapse
Affiliation(s)
- Jinjian Xin
- College of Resource and Environmental, Jilin Agricultural University, Changchun, 130118, China.
| | - Li Yan
- College of Resource and Environmental, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongguang Cai
- Institute of Agricultural Resource and Environmental, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
22
|
Li J, Liu Y, Cui X, Liu R, Du Z, Chai H, He Y, Chen H, Wu H, Zhou X. Mycorrhizal mediation of soil carbon in permafrost regions depends on soil nutrient stoichiometry and physical protection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170907. [PMID: 38350579 DOI: 10.1016/j.scitotenv.2024.170907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Mycorrhizal associations are considered as one of the key drivers for soil carbon (C) accumulation and stability. However, how mycorrhizal associations influence soil organic C (SOC) and its fractions (i.e., particulate organic C [POC] and mineral-associated organic C [MAOC]) remain unclear. In this study, we examined effects of plant mycorrhizal associations with arbuscular mycorrhiza (AM), ectomycorrhiza (ECM), and their mixture (Mixed) on SOC and its fractions as well as soil stoichiometric ratios across 800-km transect in permafrost regions. Our results showed that soil with only ECM-associated trees had significantly higher SOC and POC compared to only AM-associated tree species, while soil in Mixed plots with both AM- and ECM- associated trees tend to be somewhat in the middle. Using structural equation models, we found that mycorrhizal association significantly influenced SOC and its fraction (i.e., POC, MAOC) indirectly through soil stoichiometric ratios (C:N, C:P, and N:P). These results suggest that selecting ECM tree species, characterized by a "slow cycling" nutrient uptake strategy, can effectively enhance accumulation of SOC and its fractions in permafrost forest ecosystems. Our findings provide novel insights for quantitatively assessing the influence of mycorrhiza-associated tree species on the management of soil C pool and biogeochemical cycling.
Collapse
Affiliation(s)
- Jie Li
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuan Liu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, USA
| | - Xiaoyang Cui
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ruiqiang Liu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhenggang Du
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hua Chai
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanghui He
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hongyang Chen
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Han Wu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
23
|
Kou B, Yu T, Tang J, Zhu X, Yuan Y, Tan W. Kitchen compost-derived humic acid application promotes ryegrass growth and enhances the accumulation of Cd: An analysis of the soil microenvironment and rhizosphere functional microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170879. [PMID: 38354798 DOI: 10.1016/j.scitotenv.2024.170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Phytoremediation is an environmentally friendly and safe approach for remediating environments contaminated with heavy metals. Humic acid (HA) has high biological activity and can effectively complex with heavy metals. However, whether HA affects available Cd storage and the Cd accumulation ability of plants by altering the soil microenvironment and the distribution of special functional microorganisms remains unclear. Here, we investigated the effects of applying kitchen compost-derived HA on the growth and Cd enrichment capacity of ryegrass (Lolium perenne L.). Additionally, the key role of HA in regulating the structure of rhizosphere soil bacterial communities was identified. HA promoted the growth of perennial ryegrass and biomass accumulation and enhanced the Cd enrichment capacity of ryegrass. The positive effect of HA on the soil microenvironment and rhizosphere bacterial community was the main factor promoting the growth of ryegrass, and this was confirmed by the significant positive correlation between the ryegrass growth index and the content of SOM, AP, AK, and AN, as well as the abundance of rhizosphere growth-promoting bacteria such as Pseudomonas, Steroidobacter, Phenylobacterium, and Caulobacter. HA passivated Cd and inhibited the translocation capacity of ryegrass. The auxiliary effect of resistant bacteria on plants drove the absorption of Cd by ryegrass. In addition, HA enhanced the remediation of Cd-contaminated soil by ryegrass under different Cd levels, which indicated that kitchen compost-derived HA could be widely used for the phytoremediation of Cd-contaminated soil. Generally, our findings will aid the development of improved approaches for the use of kitchen compost-derived HA for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
24
|
Singh R, Pandey R. Underlying plant trait strategies for understanding the carbon sequestration in Banj oak Forest of Himalaya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170681. [PMID: 38325486 DOI: 10.1016/j.scitotenv.2024.170681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Plant functional attributes are subjected to environmental adjustments, which lead to modulations in forest processes under environmental changes. However, a comprehensive assessment of the relationships between plant traits and carbon stock remains subtle. The present study attempted to accomplish the gap of knowledge by examining the linkages between forest carbon with plant traits within the Banj Oak forest in the Garhwal Himalaya. Twelve individuals from three major species in the Banj Oak forest were randomly selected for trait measurements, and soil samples were collected randomly across the area for evaluation of soil nutrients and carbon. Forest biomass and soil carbon were estimated following standard protocols. A Structural Equation Model (SEM) was applied to establish the relationship between above ground carbon (AGC) and soil organic carbon (SOC) with leaf and stem traits, and soil nutrients. Stem traits were tree height and tree diameter; whereas leaf morphological traits were leaf area, specific leaf area, leaf dry matter content; leaf physiological traits were photosynthesis rate, stomatal conductance, and transpiration rate; and leaf biochemical traits were leaf carbon concentration, leaf nitrogen concentration, and leaf phosphorus concentration. Soil nutrients were available nitrogen, available phosphorus, and exchangeable potassium. Based on SEM results, AGC of the forest was positively correlated with stem traits and leaf physiological traits, while negatively correlated with leaf morphological traits. SOC was positively correlated with soil nutrients and leaf biochemical traits, whereas negatively correlated with stem traits. These findings may support for precise quantification of forest carbon and modeling of forest carbon stocks besides providing inputs to forest managers for devising effective forest management strategies.
Collapse
Affiliation(s)
| | - Rajiv Pandey
- Indian Council of Forestry Research and Education, Dehradun, India.
| |
Collapse
|
25
|
Zheng S, Cha X, Dong Q, Guo H, Sun L, Zhao Q, Gong Y. Effects of rainfall patterns in dry and rainy seasons on the biomass, ecostoichiometric characteristics, and NSC content of Fraxinus malacophylla seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1344717. [PMID: 38533402 PMCID: PMC10963558 DOI: 10.3389/fpls.2024.1344717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
With global climate change and rising temperatures, rainfall will change. The impact of global rainfall changes on ecosystems has prompted people to delve deeper into how changes in rainfall affect plant growth; Plant biomass, nutrient element content, and non-structural carbohydrate content are very sensitive to changes in precipitation. Therefore, understanding the impact of rainfall changes on seedlings is crucial. However, it is currently unclear how the seedlings of Fraxinus malacophylla Hemsl in rocky desertification areas respond to changes in rainfall. In this study, the response of biomass, nutrient accumulation, and NSC content of Fraxinus malacophylla Hemsl seedlings to different rainfall intervals and rainfall during the dry and rainy seasons was studied. Use natural rainfall duration of 5 days (T) and extended rainfall duration of 10 days(T+) as rainfall intervals; average monthly rainfall was used as the control (W), with a corresponding 40% increase in rainfall (W+) and a 40% decrease in rainfall (W-) as rainfall treatments. The research results indicate that the biomass of roots, stems, and leaves, as well as the accumulation of C, N, and P in Fraxinus malacophylla Hemsl seedlings increase with the increase of rainfall, while the soluble sugar and starch content show a pattern of first increasing and then decreasing. The biomass and nutrient accumulation of each organ showed root>leaf>stem. Except for the beginning of the dry season, prolonging the duration of rainfall in other periods inhibits the biomass accumulation of Fraxinus malacophylla Hemsl seedlings, and promotes the accumulation of C, N, and P nutrients and an increase in soluble sugar and starch content. There was a significant positive correlation (P<0.05) between the nutrient contents of C, N, and P in various organs, as well as between soluble sugar and starch content; And N: P>16, plant growth is limited by P element. These results indicate that changes in rainfall can affect the growth and development of Fraxinus malacophylla Hemsl seedlings, increasing rainfall can promote biomass and nutrient accumulation of Fraxinus malacophylla Hemsl seedlings, and prolonging rainfall intervals and reducing rainfall have inhibitory effects on them. The exploration of the adaptation of Fraxinus malacophylla Hemsl seedlings to rainfall patterns has promoted a basic understanding of the impact of rainfall changes on the growth of Fraxinus malacophylla Hemsl. This provides a theoretical basis for understanding how Fraxinus malacophylla Hemsl can grow better under rainfall changes and for future management of Fraxinus malacophylla Hemsl artificial forests in rocky desertification areas.
Collapse
Affiliation(s)
- Shaojie Zheng
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Xiaofei Cha
- Nujiang Prefecture Forestry and Grassland Bureau, Nujiang Yunnan, China
| | - Qiong Dong
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Huanxian Guo
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Lijuan Sun
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Qize Zhao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Yunqi Gong
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| |
Collapse
|
26
|
Song Z, Zuo X, Zhao X, Qiao J, Ya H, Li X, Yue P, Chen M, Wang S, Medina-Roldán E. Plant functional traits mediate the response magnitude of plant-litter-soil microbial C: N: P stoichiometry to nitrogen addition in a desert steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169915. [PMID: 38190901 DOI: 10.1016/j.scitotenv.2024.169915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Global nitrogen deposition is significantly altering the carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in terrestrial ecosystems, yet how N deposition simultaneously affects plant-litter-soil-soil microbial stoichiometry in arid grassland is still unclear. In a five-year experimental study conducted in a desert steppe in Northern China, we investigated the effects of N addition on the C:N:P stoichiometry of plants, litter, soil, and soil microbes. We also used structural equation modelling (SEM) exploring the direct or indirect effects of N addition, plant species diversity, functional traits and diversity, soil microbial diversity, soil pH, soil electrical conductivity (EC) and moisture on the stoichiometry in plant-soil system. The results showed that N addition increased the N, P concentrations and N:P in plants, the N concentration and N:P in litter, and the C, N concentrations, C:P and N:P in microbes. Conversely, it decreased the C:N and C:P in plants, and litter C:N. Functional traits, functional dispersion (FDis), soil pH and EC accounted for a substantial proportion of the observed variations in elemental concentrations (from 42 % to 69 %) and stoichiometry (from 9 % to 73 %) across different components. SEM results showed that N addition decreased C:N and C:P in plants and litter by increasing FDis and leaf N content, while increased plant and litter N:P by decreasing leaf C content and increasing specific leaf area, respectively. Furthermore, N addition increased microbial C:P by increasing leaf thickness. We also found the mediating effects of soil pH and EC on C:N, C:P of litter and microbial N:P. Overall, our research suggests that plant functional traits as key predictors of nutrient cycling responses in desert steppes under N addition. This study extends the application of plant functional traits, enhances our understanding of C and nutrient cycling and facilitates predicting the response of desert steppes to N deposition.
Collapse
Affiliation(s)
- Zhaobin Song
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China.
| | - Xueyong Zhao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Jingjuan Qiao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Hu Ya
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Eduardo Medina-Roldán
- Institute of BioEconomy-National Research Council (IBE-CNR), Sesto Fiorentino 50019, Italy
| |
Collapse
|
27
|
Cui H, He C, Zheng W, Jiang Z, Yang J. Effects of nitrogen addition on rhizosphere priming: The role of stoichiometric imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169731. [PMID: 38163589 DOI: 10.1016/j.scitotenv.2023.169731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Nitrogen (N) input has a significant impact on the availability of carbon (C), nitrogen (N), and phosphorus (P) in the rhizosphere, leading to an imbalanced stoichiometry in microbial demands. This imbalance can result in energy or nutrient limitations, which, in turn, affect C dynamics during plant growth. However, the precise influence of N addition on the C:N:P imbalance ratio and its subsequent effects on rhizosphere priming effects (RPEs) remain unclear. To address this gap, we conducted a 75-day microcosm experiment, varying N addition rates (0, 150, 300 kg N ha-1), to examine how microbes regulate RPE by adapting to stoichiometry and maintaining homeostasis in response to N addition, using the 13C natural method. Our result showed that N input induced a stoichiometric imbalance in C:N:P, leading to P or C limitation for microbes during plant growth. Microbes responded by adjusting enzymatic stoichiometry and functional taxa to preserve homeostasis, thereby modifying the threshold element ratios (TERs) to cope with the C:N:P imbalance. Microbes adapted to the stoichiometric imbalance by reducing TER, which was attributed to a reduction in carbon use efficiency. Consequently, we observed higher RPE under P limitation, whereas the opposite trend was observed under C or N limitation. These results offer novel insights into the microbial regulation of RPE variation under different soil nutrient conditions and contribute to a better understanding of soil C dynamics.
Collapse
Affiliation(s)
- Hao Cui
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weiwei Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenhui Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Jingping Yang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
28
|
Wang K, Bi B, Zhu K, Wen M, Han F. Responses of soil dissolved organic carbon properties to the desertification of desert wetlands in the Mu Us Sandy Land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120318. [PMID: 38387347 DOI: 10.1016/j.jenvman.2024.120318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
In desert wetlands, the decline in ground water table results in desertification, triggering soil carbon and nutrient loss. However, the impacts of desertification on soil dissolved organic carbon (DOC) properties which determine the turnover of soil carbon and nutrients are unclear. Here, the desertification gradient was represented by the distance from the wetland center (0∼240 m) traversing reed marshes, desert shrubs and bare sandy land in the Hongjian Nur Basin, north China. Soil DOC properties were determined by ultraviolet and fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). Results showed that soil DOC content decreased significantly from 107.23 mg kg-1 to 8.44 mg kg-1 by desertification (p < 0.05). However, the proportion of DOC to soil organic carbon (SOC) was gradually significantly increased. According to spectral parameters, microbial-derived DOC decreased from 0 to 120 m (reed marshes to desert shrubs) but increased from 120 to 240 m (desert shrubs to bare sandy lands), with a reverse hump-shaped distribution pattern. The molecular weight and aromaticity of DOC increased from 0 to 120 m but decreased from 120 to 240 m, with a hump-shaped distribution pattern. For the DOC composition, although the relative abundances of humic-acid components remained stable (p > 0.05), they were ultimately decreased by serious desertification and the amino acids became the dominant component. A similar change pattern was also found for humification index. Additionally, MBC and C:N were the two most important variables in determining the content and spectral properties, respectively. Together, these findings relationships between the soil DOC properties and desertification degree, especially the increase in DOC proportion and the decrease in humification degree, which may reduce soil C stabilization in the Hongjian Nur Basin.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Boyuan Bi
- Shannxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Kanghui Zhu
- Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi, China
| | - Miao Wen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China; Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi, China.
| |
Collapse
|
29
|
Yu Z, Zhang C, Liu X, Lei J, Zhang Q, Yuan Z, Peng C, Koerner SE, Xu J, Guo L. Responses of C:N:P stoichiometric correlations among plants, soils and microorganisms to warming: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168827. [PMID: 38030014 DOI: 10.1016/j.scitotenv.2023.168827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Plants, soils and microorganisms play important roles in maintaining stable terrestrial stoichiometry. Studying how nutrient balances of these biotic and abiotic players vary across temperature gradients is important when predicting ecosystem changes on a warming planet. The respective responses of plant, soil and microbial stoichiometric ratios to warming have been observed, however, whether and how the stoichiometric correlations among the three components shift under warming has not been clearly understood and identified. In the present study, we have performed a meta-analysis based on 600 case studies from 74 sites or locations to clarify whether and how warming affects plant, soil and microbial stoichiometry, respectively, and their correlations. Our results indicated that: (1) globally, plants had higher C:N and C:P values compared to soil and microbial pools, but their N:P distributions were similar; (2) warming did not significantly alter plant, soil and microbial C:N and C:P values, but had a noticeable effect on plant N:P ratios. When ecosystem types, duration and magnitude of warming were taken into account, there was an inconsistent and even inverse warming response in terms of the direction and magnitude of changes in the C:N:P ratios occurring among plants, soils and microorganisms; (3) despite various warming responses of the stoichiometric ratios detected separately for plants, soils and microorganisms, the stoichiometric correlations among all three parts remained constant even under different warming scenarios. Our study highlighted the complexity of the effect of warming on the C:N:P stoichiometry, as well as the absence and importance of simultaneous measurements of stoichiometric ratios across different components of terrestrial ecosystems, which should be urgently strengthened in future studies.
Collapse
Affiliation(s)
- Zongkai Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Xiaowei Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jichu Lei
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhiyou Yuan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Changhui Peng
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, China; Department of Biology Science, Institute of Environment Sciences, University of Quebec at Montreal, H3C 3P8, Canada
| | - Sally E Koerner
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27402, USA
| | - Jianchu Xu
- Center for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; World Agroforestry Center, Nairobi 00100, Kenya
| | - Liang Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China.
| |
Collapse
|
30
|
Zhao P, Gao G, Ding G, Zhang Y, Ren Y. Fungal complexity and stability across afforestation areas in changing desert environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169398. [PMID: 38114026 DOI: 10.1016/j.scitotenv.2023.169398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The great achievements in combating desertification are attributed to large-scale afforestation, yet we lack verification of how the stability of the fungal community changes in afforestation areas in desert environments. Here, we present the fungal network structure from different niches (root and bulk soil) of plantations of Mongolian pine, a crucial species for afforestation introduced widely in desertification regions. We assessed changes in community complexity and stability of root-associated fungi (RAF) and soil fungi (SF) among different introduction sites: the Hulunbuir Desert (HB), the Horqin Desert (HQ) and the Mu Us Desert (MU). To illuminate the complexity and stability of the fungal network, the differences in topological properties, fungal function, and vegetation and environmental factors between introduction sites were fully considered. We showed that (1) the SF networks had more nodes and edges than the RAF networks. There was a lower ratio of negative:positive cohesion of RAF networks in HB and MU. For SF but not for RAF, across the three introduction sites, a higher modularity and ratio of negative:positive cohesion indicated higher stability. (2) Ectomycorrhizal (EcM) fungi were the dominant functional group in the RAF network (especially in HQ), and were only significantly correlated with vegetation factor. There was a higher relative abundance and number of OTUs of saprophytic fungi in the SF network and they showed positive correlations with soil nutrients. (3) RAF and SF network complexity and stability showed different responses to environmental and vegetation variables. The key determinant of the complexity and stability of the SF networks in Mongolian pine plantations was soil nutrients, followed by climate conditions. The composition and structure of the RAF community was closely related to host plants. Therefore, clarifying the complexity and stability of fungal communities in afforestation areas in changing desert environments is helpful for understanding the interactions between the environment, plants and fungi.
Collapse
Affiliation(s)
- Peishan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Guanglei Gao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Guodong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yue Ren
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
31
|
Chen Y, Li Y, Wang L, Duan Y, Cao W, Wang X, Li Y. Heterogeneity of leaf stoichiometry of different life forms along environmental transects in typical ecologically fragile areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168495. [PMID: 37977372 DOI: 10.1016/j.scitotenv.2023.168495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The coupling between carbon (C):nitrogen (N):phosphorus (P) stoichiometry in plant leaves is closely related to ecological functions such as photosynthesis, growth, and biogeochemical cycling. To explore the biogeographic patterns, nutrient limitations, and the relationships between leaf and soil stoichiometry, as well as the factors influencing leaf stoichiometry, we quantified community-level leaf C:N:P stoichiometry in trees, shrubs, and herbs along transects with a total length of about 4300 km. The leaf C:N:P ratios of trees, shrubs, and herbs were approximately 349:13:1, 267:14:1, and 226:12:1, respectively. Leaf C:N:P stoichiometry differed significantly (p < 0.05) among the life forms. Compared with global and Chinese scales, the C, N, and P concentrations were higher and C:N, C:P, and N:P ratios were lower. The leaf C:N:P stoichiometry patterns along a latitude gradient differed among life forms. There was no significant correlation between leaf N and soil total N, whereas leaf P of all three life forms increased significantly with increasing soil total P. Those results suggested a community-level N limitation for trees, shrubs, and herbs growth. Environmental factors explained 43.9, 26.5, and 6.1 % of leaf stoichiometric variations for trees, shrubs, and herbs, respectively. However, the key environmental driving factors gradually changed from climatic factors for trees and shrubs to soil factors for herbs. The results provide new insights into community-level biogeographical patterns and potential factors of leaf stoichiometry among plant life forms.
Collapse
Affiliation(s)
- Yun Chen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Yuqiang Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730000, China.
| | - Lilong Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Yulong Duan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Wenjie Cao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyang Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| |
Collapse
|
32
|
Yang R, Hou B, Zhang L. Dissolved organic compounds in shale gas extraction flowback water as principal disturbance factors of soil nitrogen dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168197. [PMID: 37914118 DOI: 10.1016/j.scitotenv.2023.168197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Flowback water, a by-product of shale gas extraction, represents an extremely complex industrial wastewater characterized by high organic compounds content and high salinity. The prospect of flowback water entering the soil through various approaches concerns regarding its ecological risk. Nitrogen mineralization (Nmin), a key rate-limiting step in the soil N cycle, might be adversely affected by flowback water. Nonetheless, no previous studies have examined the effects of flowback water on soil Nmin rates, let alone quantified the relative contributions of the major components of flowback water to changes in Nmin rates. Therefore, this study investigated the effects of flowback water and sterile flowback water at two different concentrations on the Nmin rates of three distinct soil types. This study aimed to elucidate the predominant influence of the key constituents within flowback water on the changes in soil Nmin rates. The results showed that soil soluble salt content, dissolved organic carbon (DOC) and dissolved nitrogen (DN) content significantly increased by 8.37 times, 9.5 % and 26.4 %, respectively, in soils contaminated by flowback water. In comparison with the control group, the introduction of flowback water resulted in a significant 25.9 % reduction in Nmin rate in sandy soils. Conversely, in clay and loam soils, there was a significant increase in Nmin rates by 44.9 % and 131.8 % respectively. Throughout the incubation period, leucine-aminopeptidase activity exhibited irregular fluctuations. Analysis of microbial communities demonstrated that flowback water only significant impacted soil rare microbial taxa, inducing a significant increase in alpha diversity for sandy, clay, and loamy soils by -16.9 %, 10.12 %, and 1.63 %, respectively. Linear regression and random forest analyses indicated that alterations in soil DOC:DN ratio and salt content were responsible for changes in soil Nmin rates within flowback water-contaminated soils. In contrast, only salt content significantly contributed to shifts in alpha diversity among soil rare microbial taxa. Structural equation modeling highlighted that the total effect of dissolved organic compounds (DOC and DN, λ = 0.64) from flowback water was greater than the total effect of salinity (λ = 0.24) on soil Nmin rates. In conclusion, our findings imply that dissolved organic compounds within flowback water play pivotal roles in determining soil Nmin rates. To the best of our knowledge, this is the first study to reveal the effects of major components in the flowback water on soil N mineralization rates.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Bowen Hou
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
33
|
Wang C, Sun Y, Zou X, Chen HYH, Delgado-Baquerizo M, Yang J, Wang G, Liu Y, Ruan H. Increased fine root production coupled with reduced aboveground production of plantations under a three-year experimental drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168370. [PMID: 37952676 DOI: 10.1016/j.scitotenv.2023.168370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Climate change has led to more frequent and intense droughts. A better understanding of forest production under drought stress is critical for assessing the resilience of forests and their capacity to deliver ecosystem services under climate change. However, the direction and magnitude of drought effects on aboveground and belowground forest ecosystem components remain poorly understood. Here, we conducted a drought experiment including 30 % and 50 % throughfall reduction in a poplar plantation in the eastern coast of China to test how different drought intensities affected aboveground and fine root production. We further investigated the responses of soil physicochemical properties (e.g., soil moisture, soil pH, soil carbon, and soil nitrogen), and microbial properties (e.g., total microbial biomass, fungi:bacteria ratios, and Gram+:Gram- bacteria ratios) to drought. We found that the aboveground production decreased by 12.2 % and 19.3 % following 30 % and 50 % drought intensities, respectively. However, fine root production increased by 21.6 % and 35.1 % under 30 % and 50 % drought intensities, respectively. Moreover, all above- and belowground components exhibited stronger responses to 50 % compared with 30 % drought intensity. Our results provide some of the first direct evidence for simultaneous responses of forest above- and belowground production to moderate and intense droughts, by demonstrating that fine root production is more sensitive than aboveground production to both levels of drought stress.
Collapse
Affiliation(s)
- Cuiting Wang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuan Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China
| | - Xiaoming Zou
- Department of Environmental Science, University of Puerto Rico, P. O. Box 70377, San Juan, PR 00936-8377, USA
| | - Han Y H Chen
- Faculty of Natural Resource Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P78 5E1, Canada
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Jingyan Yang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guobing Wang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuwei Liu
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Honghua Ruan
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
34
|
Hu M, Zhou S, Xiong X, Wang X, Sun Y, Meng Z, Hui D, Li J, Zhang D, Deng Q. Dynamics of soil microbial communities involved in carbon cycling along three successional forests in southern China. Front Microbiol 2024; 14:1326057. [PMID: 38287955 PMCID: PMC10822976 DOI: 10.3389/fmicb.2023.1326057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Dynamics of plant communities during forest succession have been received great attention in the past decades, yet information about soil microbial communities that are involved in carbon cycling remains limited. Here we investigated soil microbial community composition and carbohydrate degradation potential using metagenomic analysis and examined their influencing factors in three successional subtropical forests in southern China. Results showed that the abundances of soil bacteria and fungi increased (p ≤ 0.05 for both) with forest succession in relation to both soil and litter characteristics, whereas the bacterial diversity did not change (p > 0.05) and the fungal diversity of Shannon-Wiener index even decreased (p ≤ 0.05). The abundances of microbial carbohydrate degradation functional genes of cellulase, hemicellulase, and pectinase also increased with forest succession (p ≤ 0.05 for all). However, the chitinase gene abundance did not change with forest succession (p > 0.05) and the amylase gene abundance decreased firstly in middle-succession forest and then increased in late-succession forest. Further analysis indicated that changes of functional gene abundance in cellulase, hemicellulase, and pectinase were primarily affected by soil organic carbon, soil total nitrogen, and soil moisture, whereas the variation of amylase gene abundance was well explained by soil phosphorus and litterfall. Overall, we created a metagenome profile of soil microbes in subtropical forest succession and fostered our understanding of microbially-mediated soil carbon cycling.
Collapse
Affiliation(s)
- Minghui Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyidan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| | - Xin Xiong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xuan Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| | - Yu Sun
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Jianling Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| | - Deqiang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Fu F, Li Y, Zhang B, Zhu S, Guo L, Li J, Zhang Y, Li J. Differences in soil microbial community structure and assembly processes under warming and cooling conditions in an alpine forest ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167809. [PMID: 37863238 DOI: 10.1016/j.scitotenv.2023.167809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Global climate change affects the soil microbial community assemblages of many ecosystems. However, little is known about the effects of climate warming on the structure of soil microbial communities or the underlying mechanisms that influence microbial community composition in alpine forest ecosystems. Thus, our ability to predict the future consequences of climate change is limited. In this study, with the use of PVC pipes, the in situ soils of the rush-tip long-bud Abies georgei var. smithii forest at 3500 and 4300 m above sea level (MASL) of the Sygera Mountains were incubated in pairs for 1 year to simulate climate cooling and warming. This shift corresponds to a change in soil temperature of ±4.7 °C. Findings showed that climate warming increased the complexity of bacterial networks but decreased the complexity of fungal networks. Climate cooling also increased the complexity of bacterial networks. However, in fungal communities, climate cooling increased the number of nodes but decreased the total number of edges. Stochastic processes acted as the drivers of bacterial community composition, with climate warming leading the shift from deterministic to stochastic drivers. Fungal communities were more sensitive to climate change than bacterial communities, with soil temperature (ST) and soil water content (SWC) acting as the main drivers of change. By contrast, soil bacterial communities were more closely related to soil conditions than fungal communities and remained stable after a year of soil transplantation. In conclusion, fungi and bacteria had different response patterns, and their responses to climate cooling and warming were asymmetric. This work is expected to contribute to our understanding of the response to climate change of soil microbial communities in alpine forests and our prediction of the functions of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Yueyao Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Simon E, Guseva K, Darcy S, Alteio L, Pjevac P, Schmidt H, Jenab K, Ranits C, Kaiser C. Distinct microbial communities are linked to organic matter properties in millimetre-sized soil aggregates. THE ISME JOURNAL 2024; 18:wrae156. [PMID: 39105276 PMCID: PMC11325450 DOI: 10.1093/ismejo/wrae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Soils provide essential ecosystem services and represent the most diverse habitat on Earth. It has been suggested that the presence of various physico-chemically heterogeneous microhabitats supports the enormous diversity of microbial communities in soil. However, little is known about the relationship between microbial communities and their immediate environment at the micro- to millimetre scale. In this study, we examined whether bacteria, archaea, and fungi organize into distinct communities in individual 2-mm-sized soil aggregates and compared them to communities of homogenized bulk soil samples. Furthermore, we investigated their relationship to their local environment by concomitantly determining microbial community structure and physico-chemical properties from the same individual aggregates. Aggregate communities displayed exceptionally high beta-diversity, with 3-4 aggregates collectively capturing more diversity than their homogenized parent soil core. Up to 20%-30% of ASVs (particularly rare ones) were unique to individual aggregates selected within a few centimetres. Aggregates and bulk soil samples showed partly different dominant phyla, indicating that taxa that are potentially driving biogeochemical processes at the small scale may not be recognized when analysing larger soil volumes. Microbial community composition and richness of individual aggregates were closely related to aggregate-specific carbon and nitrogen content, carbon stable-isotope composition, and soil moisture, indicating that aggregates provide a stable environment for sufficient time to allow co-development of communities and their environment. We conclude that the soil microbiome is a metacommunity of variable subcommunities. Our study highlights the necessity to study small, spatially coherent soil samples to better understand controls of community structure and community-mediated processes in soils.
Collapse
Affiliation(s)
- Eva Simon
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Ksenia Guseva
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Sean Darcy
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Lauren Alteio
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, 3430 Tulln, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Kian Jenab
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Christian Ranits
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
37
|
Ringeval B, Demay J, Goll DS, He X, Wang YP, Hou E, Matej S, Erb KH, Wang R, Augusto L, Lun F, Nesme T, Borrelli P, Helfenstein J, McDowell RW, Pletnyakov P, Pellerin S. A global dataset on phosphorus in agricultural soils. Sci Data 2024; 11:17. [PMID: 38167392 PMCID: PMC10762041 DOI: 10.1038/s41597-023-02751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Numerous drivers such as farming practices, erosion, land-use change, and soil biogeochemical background, determine the global spatial distribution of phosphorus (P) in agricultural soils. Here, we revised an approach published earlier (called here GPASOIL-v0), in which several global datasets describing these drivers were combined with a process model for soil P dynamics to reconstruct the past and current distribution of P in cropland and grassland soils. The objective of the present update, called GPASOIL-v1, is to incorporate recent advances in process understanding about soil inorganic P dynamics, in datasets to describe the different drivers, and in regional soil P measurements for benchmarking. We trace the impact of the update on the reconstructed soil P. After the update we estimate a global averaged inorganic labile P of 187 kgP ha-1 for cropland and 91 kgP ha-1 for grassland in 2018 for the top 0-0.3 m soil layer, but these values are sensitive to the mineralization rates chosen for the organic P pools. Uncertainty in the driver estimates lead to coefficients of variation of 0.22 and 0.54 for cropland and grassland, respectively. This work makes the methods for simulating the agricultural soil P maps more transparent and reproducible than previous estimates, and increases the confidence in the new estimates, while the evaluation against regional dataset still suggests rooms for further improvement.
Collapse
Affiliation(s)
- Bruno Ringeval
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France.
| | - Josephine Demay
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | - Daniel S Goll
- Université Paris Saclay, CEA-CNRS-UVSQ, LSCE/IPSL, Gif-sur-Yvette, France
| | - Xianjin He
- Université Paris Saclay, CEA-CNRS-UVSQ, LSCE/IPSL, Gif-sur-Yvette, France
| | | | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sarah Matej
- Institute of Social Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karl-Heinz Erb
- Institute of Social Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Laurent Augusto
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | - Fei Lun
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Thomas Nesme
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | - Pasquale Borrelli
- Department of Science, Roma Tre University, 00146, Rome, Italy
- Department of Biological Environment, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Julian Helfenstein
- Soil Geography and Landscape Group, University of Wageningen, Wageningen, 6700AA, The Netherlands
| | - Richard W McDowell
- AgResearch, Lincoln Science Centre, Private Bag 4749, Christchurch, 8140, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, PO Box 84, 7647, Christchurch, New Zealand
| | - Peter Pletnyakov
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, PO Box 84, 7647, Christchurch, New Zealand
| | - Sylvain Pellerin
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| |
Collapse
|
38
|
Muntwyler A, Panagos P, Pfister S, Lugato E. Assessing the phosphorus cycle in European agricultural soils: Looking beyond current national phosphorus budgets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167143. [PMID: 37730024 DOI: 10.1016/j.scitotenv.2023.167143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Phosphorus (P) is an essential nutrient for all crops, yet its excess negatively affects public health, the environment, and the economy. At the same time, rock P is a critical raw material due to its importance for food production, the finite geological deposits, and its unequal regional distribution. As a consequence, nutrient management is addressed by numerous environmental policies. Process-based biogeochemical models are valuable instruments to monitor the P cycle and predict the effect of agricultural management policies. In this study, we upscale the calibrated DayCent model at European level using data-derived soil properties, advanced input data sets, and representative management practices. Our results depicted a P budget with an average P surplus (0.11 kg P ha-1 year-1), a total soil P (2240.0 kg P ha-1), and available P content (77.4 kg P ha-1) consistent with literature and national statistics. Through agricultural management scenarios, we revealed a range of potential changes in the P budget by 2030 and 2050, influenced by the interlink of P with biogeochemical carbon and nitrogen cycles. Thus, we developed a powerful assessment tool capable of i) identifying areas with P surplus or deficit at high spatial resolution of 1 km2, (ii) pinpointing areas where a change in agricultural management would be most urgent to reach policy goals in terms of environmental pollution, food security and resource efficiency of a critical raw material, and iii) assessing the response of the P cycle to modifications in agricultural management.
Collapse
Affiliation(s)
- Anna Muntwyler
- European Commission, Joint Research Centre (JRC), Ispra, Italy; Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland.
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Stephan Pfister
- Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Emanuele Lugato
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
39
|
Xu X, Xiao C, Dong Y, Zhan L, Bi R, Song M, Pan J, Xiong Z. Machine learning algorithms realized soil stoichiometry prediction and its driver identification in intensive agroecosystems across a north-south transect of eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167488. [PMID: 37778551 DOI: 10.1016/j.scitotenv.2023.167488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Soil carbon (C), nitrogen (N), and phosphorus (P) are required components to maintain ecosystem structure, function, and services. Accurate soil nutrient stoichiometry assessments are crucial for precisely managing agricultural and natural ecosystems. However, direct measurement and evaluation of soil characteristics can be costly and time-consuming. The development of statistical and machine learning-based methods for predicting soil C:N:P stoichiometry and microbial dynamics is of great significance. The objective of this study is to compare the performance of four machine learning models, i.e., support vector machine, random forest, extreme gradient boosting, and gradient boosting decision tree, in predicting soil C:N:P stoichiometry and net N mineralization rate and to evaluate their applicability to different agricultural land use types and climate zones. Our results showed that extreme gradient boosting (average R2 > 0.81, RMSE <16.39, RPD > 2.67) and gradient boosting decision tree (average R2 > 0.77, RMSE <16.40, RPD > 2.32) models performed the best in predicting C:N:P stoichiometry, demonstrating high accuracy and stability. Machine learning models produced higher accuracy in the vegetable field (except for C:N) than in the rice paddy field with average accuracy improvement of 42.9 %. The prediction performance in warm temperate and subtropical regions was inferior to cold regions. Feature importance assessment suggests that electrical conductivity, total N, and water-filled pore space may have significant predictive roles in the rice paddy field, while mean annual precipitation, total P, and silt content could be important factors in the vegetable field. When predicting the net N mineralization rate, soil texture may emerge as a crucial factor in the rice paddy field, whereas moisture content may play a key role in the vegetable field. Thus, machine learning models can be recommended to predict soil C:N:P stoichiometry and net N mineralization rate for precise agricultural practices.
Collapse
Affiliation(s)
- Xintong Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Department of Agricultural Sciences, Natural Resources Institute Finland (LUKE), 00790 Helsinki, Finland
| | - Chao Xiao
- Key Lab of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Yubing Dong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Huaian 223001, China
| | - Liping Zhan
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiyu Bi
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengxin Song
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Champiny RE, Bacon AR, Brush ID, McKenna AM, Colopietro DJ, Lin Y. Unraveling the persistence of deep podzolized carbon: Insights from organic matter characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167382. [PMID: 37774867 DOI: 10.1016/j.scitotenv.2023.167382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Over a billion tons of terrestrial carbon (C) is stored in deep soils from the Southeastern Coastal Plain of the United States. While the size and extent of this pool, known as deep podzolized carbon (DPC), have been reported in recent studies, the stabilization mechanisms responsible for its persistence are unclear. The main hypothesis of DPC stabilization is that hydrology, specifically water table fluctuations in the phreatic zone, slow microbial degradation and promote C accumulation. This accounts for the characteristic properties and distribution of DPC and provides a mechanistic distinction between DPC and shallow podzolized C in the region's soils, however it has yet to be tested. We characterized the organic matter composition of the bulk and dissolved fractions of DPC using elemental analysis, solvent extraction, infrared spectroscopy, and high-resolution mass spectrometry. Consistent with past work, the majority of DPC organic matter was extractable by sodium pyrophosphate solution; the influence of metal association was also observable in the water extractable fraction of DPC with large species being preferentially removed and a low compound diversity compared to those from other horizons overlying DPC. Only water extractable species with low molecular mass (m/z < 375 Da) showed significant change in average nominal oxidation state of carbon (NOSC) values, indicative of oxygen-limitation influence on the processing of these species. Infrared spectroscopy revealed an increase in abundance of aliphatic (C-H:C-O) bonds relative to polysaccharide bonds with depth whereas aromatic (C=C:C-O) bonds decreased with depth in DPC relative to other subsurface horizons. Our work shows that DPC is significantly more refractory than overlying surface soil C, and yet slightly more labile than the subsoils above DPC. Together our results suggest that the maintenance of low redox conditions via persistent water saturation contributes to the stabilization and persistence of DPC.
Collapse
Affiliation(s)
- Ryan E Champiny
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA.
| | - Allan R Bacon
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA
| | - Isabella D Brush
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA
| | - Amy M McKenna
- National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel J Colopietro
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA
| | - Yang Lin
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
41
|
Li L, Chen S, Xue X, Chen J, Tian J, Huo L, Zhang T, Zeng X, Su S. Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes. ISME COMMUNICATIONS 2024; 4:ycae106. [PMID: 39229495 PMCID: PMC11370035 DOI: 10.1093/ismeco/ycae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher acr3 (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher aoxA (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Songcan Chen
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Ximei Xue
- Institute of Urban Environment, Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Jieyin Chen
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, P.R. China
| | - Tuo Zhang
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, P.R. China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| |
Collapse
|
42
|
Cao W, Li Y, Chen Y, Wang X. Grazing exclusion is more beneficial for restoring soil organic carbon and nutrient balance than afforestation on degraded sandy land. FRONTIERS IN PLANT SCIENCE 2023; 14:1326244. [PMID: 38179485 PMCID: PMC10764600 DOI: 10.3389/fpls.2023.1326244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Introduction Vegetation restoration is an effective measure to improve the ecosystem service of degraded sandy land ecosystem. However, it is unclear how vegetation restoration on severely desertified land affect soil organic carbon (SOC) sequestration and nutrients balance. Therefore, this study was designed to clarify the response of SOC, total nitrogen (TN), total phosphorus (TP), and the resulting stoichiometric ratios (C:N:P) to afforestation and grazing exclusion, and to quantify their dynamics over time. Methods We conducted vegetation community investigation and soil sampling in natural sparse-forest grassland (the climax community stage), afforestation (Pinus sylvestris var. mongolica (40-year, 48-year), Caragana microphylla (20-year, 40-year)), and grazing exclusion (20-year, 40-year) in China's Horqin Sandy Land. Soil C:N:P stoichiometry and its driving factors under different restoration measures were then studied. Results Afforestation and grazing exclusion significantly (p < 0.05) increased SOC, TN, and TP concentrations. Vegetation restoration significantly increased C:N, C:P, and N:P ratios, indicating that nutrient limitations may occur in the later stages of restoration. The C:N, C:P, and N:P ratios after a 40-year grazing exclusion were closest to those of natural sparse-forest grassland. The N:P under grazing exclusion increased from 3.1 to 4.1 with increasing restoration age (from 20 to 40 years), which was close to the national mean values (4.2). Moreover, afforestation may lead to water deficit in the surface soil. Vegetation restoration is the main factor leading to changes in soil C:N:P stoichiometry, and indirectly affects soil C:N:P stoichiometry by altering soil structure and chemical properties. Conclusion In terms of ecological stoichiometry, grazing exclusion was more conducive to restore SOC and nutrient balance than afforestation on severely desertified land. Due to the poor soil nutrients, attentions should be paid to the soil nutrients and water conditions in the later stages of vegetation restoration. Those findings can provide valuable information for the restoration of degraded sandy land in semi-arid areas.
Collapse
Affiliation(s)
- Wenjie Cao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiang Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, China
| | - Yun Chen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Xuyang Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| |
Collapse
|
43
|
Cui H, Zhu H, Shutes B, Rousseau AN, Feng WD, Hou SN, Ou Y, Yan BX. Soil aggregate-driven changes in nutrient redistribution and microbial communities after 10-year organic fertilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119306. [PMID: 37839204 DOI: 10.1016/j.jenvman.2023.119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Research studies on nutrient content and microbial communities after the application of organic manure have been reported, while available information about multi-interaction mechanisms of nutrient stoichiometry and microbial succession in soil aggregates remains limited. This work conducted a 10-year field experiment amended with cow manure (1.5 t/ha), during which the application of organic manure stimulated the fragmentation of soil macro-aggregates (>5 mm) and the agglomeration of soil micro-aggregates (<0.25 mm). Hence, the proportion of medium-size aggregates (0.25-5 mm) was increased in bulk soil, and there was an insignificant difference in the stability of soil aggregates. Meanwhile, the application of organic manure increased soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP) in all soil aggregate fractions. SOC, TN and TP were higher in micro-aggregates (<0.25 mm) after the application of organic manure, thus the dominating phylum of bacteria and fungi was more abundance in micro-aggregates due to the increase in nutrient level. During the organic fertilization process, fungal communities significantly changed because the variation of carbon-to-nitrogen ratio (C:N) in soil aggregates. Cultivated farmland in Northeast China showed a considerable capacity to sequestrate SOC during the organic fertilization process, but nitrogen may be a primary macro-element limiting soil productivity. Theoretically, organic manure amended with nitrogen fertilizer could be an effective measure to maintain microbial diversity and crop productivity in agro-ecosystems in Northeast China.
Collapse
Affiliation(s)
- Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Alain N Rousseau
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS-ETE), 490 de la Couronne, Qu'ebec, Qc, G1K 9A9, Canada
| | - Wei-Dong Feng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Nan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Bai-Xing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
44
|
Han Y, Zhao W, Ding J, Ferreira CSS. Soil erodibility for water and wind erosion and its relationship to vegetation and soil properties in China's drylands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166639. [PMID: 37647966 DOI: 10.1016/j.scitotenv.2023.166639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Drylands with fragile socio-ecological systems are vulnerable to soil erosion. China's drylands face the dual threat of water (WAE) and wind erosion (WIE). To mitigate soil erosion in drylands, China has implemented numerous ecological restoration measures. However, whether vegetation and soil have different effects on soil erodibility for water erosion (soil erodibility, K) and wind erosion (soil erodible fraction, EF) in drylands is unclear, hindering decision makers to develop suitable ecological restoration strategies. Here, we conducted a large-scale belt transect survey to explore the spatial variation of K and EF in China's drylands, and examined the linear and nolinear effects of aridity (aridity index), vegetation (fractional vegetation cover and below-ground biomass), and soil properties (bulk density, total nitrogen, and total phosphorus) on K and EF. The results showed in China's drylands that the K ranges from 0.02 to 0.07, with high values recorded in the northern Loess Plateau and the eastern Inner Mongolia Plateau. The EF ranges from 0.26 to 0.98, and shows longitudinal zonation with higher values in the east and lower values in the west. Aridity has a negative linear effect on K and an inverse U-shaped nonlinear effect on EF. Aridity can affect K and EF by suppressing vegetation growth and disrupting soil properties. However, K and EF had different responses to some vegetation and soil variables. K and EF had opposite relationships with soil bulk density, and EF was significantly affected by fractional vegetation cover, while K was not. Overall, the effects of aridity and soil properties on soil erodibility were more pronounced than those from vegetation, whose effect on soil erodibility was limited. This study provides relevant information to support reducing soil water and wind erosion by highlighting the hotspot areas of soil erodibility, relevant for implementing vegetation restoration and soil conservation measures in drylands.
Collapse
Affiliation(s)
- Yi Han
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Jingyi Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Carla Sofia Santos Ferreira
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden; Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra Agrarian Technical School, Coimbra, Portugal
| |
Collapse
|
45
|
Butler OM, Manzoni S, Warren CR. Community composition and physiological plasticity control microbial carbon storage across natural and experimental soil fertility gradients. THE ISME JOURNAL 2023; 17:2259-2269. [PMID: 37853184 PMCID: PMC10689824 DOI: 10.1038/s41396-023-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Many microorganisms synthesise carbon (C)-rich compounds under resource deprivation. Such compounds likely serve as intracellular C-storage pools that sustain the activities of microorganisms growing on stoichiometrically imbalanced substrates, making them potentially vital to the function of ecosystems on infertile soils. We examined the dynamics and drivers of three putative C-storage compounds (neutral lipid fatty acids [NLFAs], polyhydroxybutyrate [PHB], and trehalose) across a natural gradient of soil fertility in eastern Australia. Together, NLFAs, PHB, and trehalose corresponded to 8.5-40% of microbial C and 0.06-0.6% of soil organic C. When scaled to "structural" microbial biomass (indexed by polar lipid fatty acids; PLFAs), NLFA and PHB allocation was 2-3-times greater in infertile soils derived from ironstone and sandstone than in comparatively fertile basalt- and shale-derived soils. PHB allocation was positively correlated with belowground biological phosphorus (P)-demand, while NLFA allocation was positively correlated with fungal PLFA : bacterial PLFA ratios. A complementary incubation revealed positive responses of respiration, storage, and fungal PLFAs to glucose, while bacterial PLFAs responded positively to PO43-. By comparing these results to a model of microbial C-allocation, we reason that NLFA primarily served the "reserve" storage mode for C-limited taxa (i.e., fungi), while the variable portion of PHB likely served as "surplus" C-storage for P-limited bacteria. Thus, our findings reveal a convergence of community-level processes (i.e., changes in taxonomic composition that underpin reserve-mode storage dynamics) and intracellular mechanisms (e.g., physiological plasticity of surplus-mode storage) that drives strong, predictable community-level microbial C-storage dynamics across gradients of soil fertility and substrate stoichiometry.
Collapse
Affiliation(s)
- Orpheus M Butler
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Stefano Manzoni
- Stockholm University and Bolin Centre for Climate Research, Stockholm, Sweden
| | - Charles R Warren
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Li J, Liu ZF, Jin MK, Zhang W, Lambers H, Hui D, Liang C, Zhang J, Wu D, Sardans J, Peñuelas J, Petticord DF, Frey DW, Zhu YG. Microbial controls over soil priming effects under chronic nitrogen and phosphorus additions in subtropical forests. THE ISME JOURNAL 2023; 17:2160-2168. [PMID: 37773438 PMCID: PMC10689846 DOI: 10.1038/s41396-023-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
The soil priming effect (PE), defined as the modification of soil organic matter decomposition by labile carbon (C) inputs, is known to influence C storage in terrestrial ecosystems. However, how chronic nutrient addition, particularly in leguminous and non-leguminous forests, will affect PE through interaction with nutrient (e.g., nitrogen and phosphorus) availability is still unclear. Therefore, we collected soils from leguminous and non-leguminous subtropical plantations across a suite of historical nutrient addition regimes. We added 13C-labeled glucose to investigate how background soil nutrient conditions and microbial communities affect priming and its potential microbial mechanisms. Glucose addition increased soil organic matter decomposition and prompted positive priming in all soils, regardless of dominant overstory tree species or fertilizer treatment. In non-leguminous soil, only combined nitrogen and phosphorus addition led to a higher positive priming than the control. Conversely, soils beneath N-fixing leguminous plants responded positively to P addition alone, as well as to joint NP addition compared to control. Using DNA stable-isotope probing, high-throughput quantitative PCR, enzyme assays and microbial C substrate utilization, we found that positive PE was associated with increased microbial C utilization, accompanied by an increase in microbial community activity, nutrient-related gene abundance, and enzyme activities. Our findings suggest that the balance between soil available N and P effects on the PE, was dependent on rhizosphere microbial community composition. Furthermore, these findings highlight the roles of the interaction between plants and their symbiotic microbial communities in affecting soil priming and improve our understanding of the potential microbial pathways underlying soil PEs.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Zhan-Feng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, 510650, China.
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Wei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, WA, WA6009, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plan-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, TN37209, USA
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jing Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, 510650, China
| | - Donghai Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, 510650, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Daniel F Petticord
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - David W Frey
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
47
|
Zhang Y, Mo C, Pan Y, Yang P, Ding X, Lei Q, Kang P. Responses of Soil Microbial Survival Strategies and Functional Changes to Wet-Dry Cycle Events. Microorganisms 2023; 11:2783. [PMID: 38004794 PMCID: PMC10672765 DOI: 10.3390/microorganisms11112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Soil microbial taxa have different functional ecological characteristics that influence the direction and intensity of plant-soil feedback responses to changes in the soil environment. However, the responses of soil microbial survival strategies to wet and dry events are poorly understood. In this study, soil physicochemical properties, enzyme activity, and high-throughput sequencing results were comprehensively anal0079zed in the irrigated cropland ecological zone of the northern plains of the Yellow River floodplain of China, where Oryza sativa was grown for a long period of time, converted to Zea mays after a year, and then Glycine max was planted. The results showed that different plant cultivations in a paddy-dryland rotation system affected soil physicochemical properties and enzyme activity, and G. max field cultivation resulted in higher total carbon, total nitrogen, soil total organic carbon, and available nitrogen content while significantly increasing α-glucosidase, β-glucosidase, and alkaline phosphatase activities in the soil. In addition, crop rotation altered the r/K-strategist bacteria, and the soil environment was the main factor affecting the community structure of r/K-strategist bacteria. The co-occurrence network revealed the inter-relationship between r/K-strategist bacteria and fungi, and with the succession of land rotation, the G. max sample plot exhibited more stable network relationships. Random forest analysis further indicated the importance of soil electrical conductivity, total carbon, total nitrogen, soil total organic carbon, available nitrogen, and α-glucosidase in the composition of soil microbial communities under wet-dry events and revealed significant correlations with r/K-strategist bacteria. Based on the functional predictions of microorganisms, wet-dry conversion altered the functions of bacteria and fungi and led to a more significant correlation between soil nutrient cycling taxa and environmental changes. This study contributes to a deeper understanding of microbial functional groups while helping to further our understanding of the potential functions of soil microbial functional groups in soil ecosystems.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Chunyi Mo
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco–Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Pengbin Yang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Xiaodong Ding
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Qian Lei
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| |
Collapse
|
48
|
Liu M, Wei Y, Lian L, Wei B, Bi Y, Liu N, Yang G, Zhang Y. Macrofungi promote SOC decomposition and weaken sequestration by modulating soil microbial function in temperate steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165556. [PMID: 37459997 DOI: 10.1016/j.scitotenv.2023.165556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
Soil organic carbon (SOC) sequestration is a key grassland ecosystem function, and the magnitude of SOC reservoirs depends on microbial involvement, especially that of fungi. Mycelia developed by macrofungi potentially influence carbon (C) fixation and decomposition; however, the mechanisms underlying their effects on SOC storage in grassland ecosystems remain poorly understood. The fairy rings formed by macrofungi in grasslands are natural platform for exploring macrofungal effects on SOC. In this study, we collected topsoil (0-10 cm) from four different fairy ring zones in a temperate steppe to reveal the macrofungal effects on SOC fractions, including particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), and the SOC storage microbial mechanism using metagenomic sequencing technology. Both POC and MAOC decreased after macrofungal passage, resulting in a 7.37 % reduction in SOC. Macrofungal presence reduced microbial biomass carbon (MBC), but significantly enhanced the β-1,4-glucosidase (BG) activity, which increased dissolved organic carbon (DOC). In addition, the abundance of copiotrophs (Proteobacteria and Bacteroidetes) with lower C metabolic rates increased, and that of oligotrophs (Actinobacteria, Acidobacteria, Chloroflexi, and Verrucomicrobia) with higher substrate utilization efficiency decreased in the presence of macrofungi. This may further promote SOC decomposition. Correspondingly, there was a lower abundance of C-fixation genes but more C-degradation genes (especially hemicellulosic degradation genes) during macrofungal passage. Our results indicate that the presence of macrofungi can modulate the soil microbial community and functional genes to reduce SOC storage by inhibiting microbial C sequestration while promoting C decomposition in grassland ecosystems. These findings refine our mechanistic understanding of SOC persistence through the interactions between macrofungi and other microbes.
Collapse
Affiliation(s)
- Mohan Liu
- College of Grassland Science and Technology, China Agricultural University, 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China
| | - Yuqi Wei
- College of Grassland Science and Technology, China Agricultural University, 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China
| | - Lu Lian
- College of Grassland Science and Technology, China Agricultural University, 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China
| | - Bin Wei
- College of Grassland Science and Technology, China Agricultural University, 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China
| | - Yixian Bi
- College of Grassland Science and Technology, China Agricultural University, 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China
| | - Nan Liu
- College of Grassland Science and Technology, China Agricultural University, 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China; Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture, Beijing 100193, China
| | - Gaowen Yang
- College of Grassland Science and Technology, China Agricultural University, 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China
| | - Yingjun Zhang
- College of Grassland Science and Technology, China Agricultural University, 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China; Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
49
|
Ba Y, Li X, Ma Y, Chai Y, Li C, Ma X, Yang Y. A Study on the C, N, and P Contents and Stoichiometric Characteristics of Forage Leaves Based on Fertilizer-Reconstructed Soil in an Alpine Mining Area. PLANTS (BASEL, SWITZERLAND) 2023; 12:3838. [PMID: 38005735 PMCID: PMC10674538 DOI: 10.3390/plants12223838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
In this study, we analyzed the C, N, and P contents and stoichiometric characteristics of forage leaves of five species (Elymus breviaristatus cv. Tongde, Poa crymophila cv. Qinghai, Puccinellia tenuiflora cv. Qinghai, Festuca sinensis cv. Qinghai, and Poa pratensis cv. Qinghai) in "fertilizer-reconstructed soil" through integrative soil amendment with parched sheep manure and granular organic fertilizer in an alpine mining area. A model is fitted in order to screen out the best forage species suitable for vegetation restoration in the alpine mining area and the most favorable fertilizer dosage to improve the nutrient content of forage leaves. The results showed that (1) increasing the dosages of granular organic fertilizer and sheep manure had little effect on the C content of the five types of forage grasses, but they could significantly increase the N and P contents and N/P of the manually restored grassland in the alpine mining area (p < 0.05). (2) The productivity and stability of the five species were ranked as follows: Elymus breviaristatus cv. Tongde > Puccinellia tenuiflora cv. Qinghai > Festuca sinensis cv. Qinghai > Poa pratensis cv. Qinghai > Poa crymophila cv. Qinghai. (3) According to the fitted least squares model and the willingness to maximize the C, N, and P contents of the leaves, the ranking of the five forage grasses was described by the Prediction Profiler as follows: Elymus breviaristatus cv. Tongde > Puccinellia tenuiflora cv. Qinghai > Festuca sinensis cv. Qinghai > Poa crymophila cv. Qinghai > Poa pratensis cv. Qinghai. (4) The predictive model suggested that the optimal contents of C, N, and P in Elymus breviaristatus cv. Tongde, Festuca sinensis cv. Qinghai, and Poa pratensis cv. Qinghai leaves could be achieved with the application of 3.6 kg/m2 of granular organic fertilizer and 45.0 kg/m2 of sheep manure. For Poa crymophila cv. Qinghai leaves, the ideal content was attained by applying 0 kg/m2 of granular organic fertilizer and 45.0 kg/m2 of sheep manure. Lastly, the optimal C, N, and P contents in Puccinellia tenuiflora cv. Qinghai leaves could be obtained through the application of 3.6 kg/m2 of granular organic fertilizer combined with 0 kg/m2 of sheep manure. In conclusion, the study's results highlight the significant practical value of the fertilizer-reconstructed soil for vegetation restoration in alpine mining regions.
Collapse
Affiliation(s)
- Yichen Ba
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.B.); (Y.M.); (Y.C.); (C.L.); (X.M.); (Y.Y.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Xilai Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.B.); (Y.M.); (Y.C.); (C.L.); (X.M.); (Y.Y.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yunqiao Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.B.); (Y.M.); (Y.C.); (C.L.); (X.M.); (Y.Y.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yu Chai
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.B.); (Y.M.); (Y.C.); (C.L.); (X.M.); (Y.Y.)
| | - Chengyi Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.B.); (Y.M.); (Y.C.); (C.L.); (X.M.); (Y.Y.)
| | - Xinyue Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.B.); (Y.M.); (Y.C.); (C.L.); (X.M.); (Y.Y.)
| | - Yongxiang Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.B.); (Y.M.); (Y.C.); (C.L.); (X.M.); (Y.Y.)
| |
Collapse
|
50
|
Qiu M, Wang Y, Sun C, Gao X. Dry-wet cycling area enhances soil ecosystem multifunctionality in the aquatic-terrestrial ecotones of the Caohai Lake in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116363-116375. [PMID: 37910349 DOI: 10.1007/s11356-023-30637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
The microbial need for nutrient resources can be assessed by soil extracellular enzymes and their stoichiometry. Changes in lake water levels affect land use and nutrient management in the aquatic-terrestrial ecotones of the lakeshore. However, the drivers of changes in microbial nutrient limitation under different inundation gradients in the lake's aquatic-terrestrial ecotones remain unclear. Here, based on vector analysis, we assessed microbial nutrient limitation by studying soil enzyme activities in four different inundation zones (heavy, moderate, mild, and non-inundation) in the aquatic-terrestrial ecotones of Caohai Lake. The findings indicate that inundation conditions significantly influenced the soil properties and enzyme activities. The mean nitrogen and phosphorus acquisition enzymes were higher in both moderate inundation (Mod-inu) and mild inundation (Mil-inu) zone soils, indicating rapid N and P turnover rates in these two zones. However, microorganisms had higher carbon requirements and higher enzyme C:N and vector lengths in heavily inundated compared to lightly inundated. Compared to the non-inundation zone, the microbial phosphorus limitation was found to be most severe in heavy inundation (Hea-inu) and Mod-inu zones. Decreased phosphorus limitation following the inundation weakens could be contributed to improving soil ecosystem multifunctionality. The alterations in the soil extracellular enzymes and stoichiometric characteristics in various inundation zones were primarily influenced by factors such as soil moisture content, available phosphorus, and nitrate nitrogen. Overall, the Mod-inu and Mil-inu zones can better maintain the multifunctionality of the aquatic and terrestrial ecosystems; special attention should be given to the microbial phosphorus limitation in the Hea-inu zone in order to effectively manage nutrients and restore soil ecosystems in the aquatic-terrestrial ecotones.
Collapse
Affiliation(s)
- Mosheng Qiu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yiwei Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Caili Sun
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Xiaoye Gao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| |
Collapse
|