1
|
Singh K, Kaur N, Prabhu A. Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review. Curr Top Med Chem 2024; 24:737-753. [PMID: 38318824 DOI: 10.2174/0115680266282179240124072121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND SARS-CoV-2, the unique coronavirus that causes COVID-19, has wreaked damage around the globe, with victims displaying a wide range of difficulties that have encouraged medical professionals to look for innovative technical solutions and therapeutic approaches. Artificial intelligence-based methods have contributed a significant part in tackling complicated issues, and some institutions have been quick to embrace and tailor these solutions in response to the COVID-19 pandemic's obstacles. Here, in this review article, we have covered a few DL techniques for COVID-19 detection and diagnosis, as well as ML techniques for COVID-19 identification, severity classification, vaccine and drug development, mortality rate prediction, contact tracing, risk assessment, and public distancing. This review illustrates the overall impact of AI/ML tools on tackling and managing the outbreak. PURPOSE The focus of this research was to undertake a thorough evaluation of the literature on the part of Artificial Intelligence (AI) as a complete and efficient solution in the battle against the COVID-19 epidemic in the domains of detection and diagnostics of disease, mortality prediction and vaccine as well as drug development. METHODS A comprehensive exploration of PubMed, Web of Science, and Science Direct was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) regulations to find all possibly suitable papers conducted and made publicly available between December 1, 2019, and August 2023. COVID-19, along with AI-specific words, was used to create the query syntax. RESULTS During the period covered by the search strategy, 961 articles were published and released online. Out of these, a total of 135 papers were chosen for additional investigation. Mortality rate prediction, early detection and diagnosis, vaccine as well as drug development, and lastly, incorporation of AI for supervising and controlling the COVID-19 pandemic were the four main topics focused entirely on AI applications used to tackle the COVID-19 crisis. Out of 135, 60 research papers focused on the detection and diagnosis of the COVID-19 pandemic. Next, 19 of the 135 studies applied a machine-learning approach for mortality rate prediction. Another 22 research publications emphasized the vaccine as well as drug development. Finally, the remaining studies were concentrated on controlling the COVID-19 pandemic by applying AI AI-based approach to it. CONCLUSION We compiled papers from the available COVID-19 literature that used AI-based methodologies to impart insights into various COVID-19 topics in this comprehensive study. Our results suggest crucial characteristics, data types, and COVID-19 tools that can aid in medical and translational research facilitation.
Collapse
Affiliation(s)
- Kavya Singh
- Department of Biotechnology, Banasthali University, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Navjeet Kaur
- Department of Chemistry & Division of Research and Development, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Ashish Prabhu
- Biotechnology Department, NIT Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
2
|
Zahedi Nasab R, Mohseni H, Montazeri M, Ghasemian F, Amin S. AFEX-Net: Adaptive feature extraction convolutional neural network for classifying computerized tomography images. Digit Health 2024; 10:20552076241232882. [PMID: 38406769 PMCID: PMC10894540 DOI: 10.1177/20552076241232882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose Deep convolutional neural networks are favored methods that are widely used in medical image processing due to their demonstrated performance in this area. Recently, the emergence of new lung diseases, such as COVID-19, and the possibility of early detection of their symptoms from chest computerized tomography images has attracted many researchers to classify diseases by training deep convolutional neural networks on lung computerized tomography images. The trained networks are expected to distinguish between different lung indications in various diseases, especially at the early stages. The purpose of this study is to introduce and assess an efficient deep convolutional neural network, called AFEX-Net, that can classify different lung diseases from chest computerized tomography images. Methods We designed a lightweight convolutional neural network called AFEX-Net with adaptive feature extraction layers, adaptive pooling layers, and adaptive activation functions. We trained and tested AFEX-Net on a dataset of more than 10,000 chest computerized tomography slices from different lung diseases (CC dataset), using an effective pre-processing method to remove bias. We also applied AFEX-Net to the public COVID-CTset dataset to assess its generalizability. The study was mainly conducted based on data collected over approximately six months during the pandemic outbreak in Afzalipour Hospital, Iran, which is the largest hospital in Southeast Iran. Results AFEX-Net achieved high accuracy and fast training on both datasets, outperforming several state-of-the-art convolutional neural networks. It has an accuracy of 99.7 % and 98.8 % on the CC and COVID-CTset datasets, respectively, with a learning speed that is 3 times faster compared to similar methods due to its lightweight structure. AFEX-Net was able to extract distinguishing features and classify chest computerized tomography images, especially at the early stages of lung diseases. Conclusion The AFEX-Net is a high-performing convolutional neural network for classifying lung diseases from chest CT images. It is efficient, adaptable, and compatible with input data, making it a reliable tool for early detection and diagnosis of lung diseases.
Collapse
Affiliation(s)
- Roxana Zahedi Nasab
- Department of Computer Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadis Mohseni
- Department of Computer Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahdieh Montazeri
- Health Information Sciences Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Ghasemian
- Department of Computer Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sobhan Amin
- Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
3
|
Zhang M, He G, Pan C, Yun B, Shen D, Meng M. Discrimination of benign and malignant breast lesions on dynamic contrast-enhanced magnetic resonance imaging using deep learning. J Cancer Res Ther 2023; 19:1589-1596. [PMID: 38156926 DOI: 10.4103/jcrt.jcrt_325_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To evaluate the capability of deep transfer learning (DTL) and fine-tuning methods in differentiating malignant from benign lesions in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS The diagnostic efficiencies of the VGG19, ResNet50, and DenseNet201 models were tested under the same dataset. The model with the highest performance was selected and modified utilizing three fine-tuning strategies (S1-3). Fifty additional lesions were selected to form the validation set to verify the generalization abilities of these models. The accuracy (Ac) of the different models in the training and test sets, as well as the precision (Pr), recall rate (Rc), F1 score (), and area under the receiver operating characteristic curve (AUC), were primary performance indicators. Finally, the kappa test was used to compare the degree of agreement between the DTL models and pathological diagnosis in differentiating malignant from benign breast lesions. RESULTS The Pr, Rc, f1, and AUC of VGG19 (86.0%, 0.81, 0.81, and 0.81, respectively) were higher than those of DenseNet201 (70.0%, 0.61, 0.63, and 0.61, respectively) and ResNet50 (61.0%, 0.59, 0.59, and 0.59). After fine-tuning, the Pr, Rc, f1, and AUC of S1 (87.0%, 0.86, 0.86, and 0.86, respectively) were higher than those of VGG19. Notably, the degree of agreement between S1 and pathological diagnosis in differentiating malignant from benign breast lesions was 0.720 (κ = 0.720), which was higher than that of DenseNet201 (κ = 0.440), VGG19 (κ = 0.640), and ResNet50 (κ = 0.280). CONCLUSION The VGG19 model is an effective method for identifying benign and malignant breast lesions on DCE-MRI, and its performance can be further improved via fine-tuning. Overall, our findings insinuate that this technique holds potential clinical application value.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| | - Guangyuan He
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| | - Changjie Pan
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| | - Bing Yun
- Teaching and Research Department of English, Nanjing Forestry University Nanjing 210037, Jiangsu Province, P.R. China
| | - Dong Shen
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| | - Mingzhu Meng
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| |
Collapse
|
4
|
Shoaib M, Sayed N, Shah B, Hussain T, AlZubi AA, AlZubi SA, Ali F. Exploring transfer learning in chest radiographic images within the interplay between COVID-19 and diabetes. Front Public Health 2023; 11:1297909. [PMID: 37920574 PMCID: PMC10619728 DOI: 10.3389/fpubh.2023.1297909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
The intricate relationship between COVID-19 and diabetes has garnered increasing attention within the medical community. Emerging evidence suggests that individuals with diabetes may experience heightened vulnerability to COVID-19 and, in some cases, develop diabetes as a post-complication following the viral infection. Additionally, it has been observed that patients taking cough medicine containing steroids may face an elevated risk of developing diabetes, further underscoring the complex interplay between these health factors. Based on previous research, we implemented deep-learning models to diagnose the infection via chest x-ray images in coronavirus patients. Three Thousand (3000) x-rays of the chest are collected through freely available resources. A council-certified radiologist discovered images demonstrating the presence of COVID-19 disease. Inception-v3, ShuffleNet, Inception-ResNet-v2, and NASNet-Large, four standard convoluted neural networks, were trained by applying transfer learning on 2,440 chest x-rays from the dataset for examining COVID-19 disease in the pulmonary radiographic images examined. The results depicted a sensitivity rate of 98 % (98%) and a specificity rate of almost nightly percent (90%) while testing those models with the remaining 2080 images. In addition to the ratios of model sensitivity and specificity, in the receptor operating characteristics (ROC) graph, we have visually shown the precision vs. recall curve, the confusion metrics of each classification model, and a detailed quantitative analysis for COVID-19 detection. An automatic approach is also implemented to reconstruct the thermal maps and overlay them on the lung areas that might be affected by COVID-19. The same was proven true when interpreted by our accredited radiologist. Although the findings are encouraging, more research on a broader range of COVID-19 images must be carried out to achieve higher accuracy values. The data collection, concept implementations (in MATLAB 2021a), and assessments are accessible to the testing group.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Department of Computer Science, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Nasir Sayed
- Department of Computer Science, Islamia College Peshawar, Peshawar, Pakistan
| | - Babar Shah
- College of Technological Innovation, Zayed University, Dubai, United Arab Emirates
| | - Tariq Hussain
- School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou, China
| | - Ahmad Ali AlZubi
- Department of Computer Science, Community College, King Saud University, Riyadh, Saudi Arabia
| | - Sufian Ahmad AlZubi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Farman Ali
- Department of Computer Science and Engineering, School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ebong U, Büttner SM, Schmidt SA, Flack F, Korf P, Peters L, Grüner B, Stenger S, Stamminger T, Kestler H, Beer M, Kloth C. Quantitative Evaluation of COVID-19 Pneumonia CT Using AI Analysis-Feasibility and Differentiation from Other Common Pneumonia Forms. Diagnostics (Basel) 2023; 13:2129. [PMID: 37371024 DOI: 10.3390/diagnostics13122129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE: To implement the technical feasibility of an AI-based software prototype optimized for the detection of COVID-19 pneumonia in CT datasets of the lung and the differentiation between other etiologies of pneumonia. METHODS: This single-center retrospective case-control-study consecutively yielded 144 patients (58 female, mean age 57.72 ± 18.25 y) with CT datasets of the lung. Subgroups including confirmed bacterial (n = 24, 16.6%), viral (n = 52, 36.1%), or fungal (n = 25, 16.6%) pneumonia and (n = 43, 30.7%) patients without detected pneumonia (comparison group) were evaluated using the AI-based Pneumonia Analysis prototype. Scoring (extent, etiology) was compared to reader assessment. RESULTS: The software achieved an optimal sensitivity of 80.8% with a specificity of 50% for the detection of COVID-19; however, the human radiologist achieved optimal sensitivity of 80.8% and a specificity of 97.2%. The mean postprocessing time was 7.61 ± 4.22 min. The use of a contrast agent did not influence the results of the software (p = 0.81). The mean evaluated COVID-19 probability is 0.80 ± 0.36 significantly higher in COVID-19 patients than in patients with fungal pneumonia (p < 0.05) and bacterial pneumonia (p < 0.001). The mean percentage of opacity (PO) and percentage of high opacity (PHO ≥ -200 HU) were significantly higher in COVID-19 patients than in healthy patients. However, the total mean HU in COVID-19 patients was -679.57 ± 112.72, which is significantly higher than in the healthy control group (p < 0.001). CONCLUSION: The detection and quantification of pneumonia beyond the primarily trained COVID-19 datasets is possible and shows comparable results for COVID-19 pneumonia to an experienced reader. The advantages are the fast, automated segmentation and quantification of the pneumonia foci.
Collapse
Affiliation(s)
- Una Ebong
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Susanne Martina Büttner
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Stefan A Schmidt
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Franziska Flack
- Scientific Collaborations Siemens Healthcare GmbH Erlangen, 91052 Erlangen, Germany
| | - Patrick Korf
- Scientific Collaborations Siemens Healthcare GmbH Erlangen, 91052 Erlangen, Germany
| | - Lynn Peters
- Division of Infectious Diseases, University Hospital and Medical Centre of Ulm, 89081 Ulm, Germany
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Centre of Ulm, 89081 Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081 Ulm, Germany
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Hans Kestler
- Institute for Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
6
|
Dabbagh R, Jamal A, Bhuiyan Masud JH, Titi MA, Amer YS, Khayat A, Alhazmi TS, Hneiny L, Baothman FA, Alkubeyyer M, Khan SA, Temsah MH. Harnessing Machine Learning in Early COVID-19 Detection and Prognosis: A Comprehensive Systematic Review. Cureus 2023; 15:e38373. [PMID: 37265897 PMCID: PMC10230599 DOI: 10.7759/cureus.38373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
During the early phase of the COVID-19 pandemic, reverse transcriptase-polymerase chain reaction (RT-PCR) testing faced limitations, prompting the exploration of machine learning (ML) alternatives for diagnosis and prognosis. Providing a comprehensive appraisal of such decision support systems and their use in COVID-19 management can aid the medical community in making informed decisions during the risk assessment of their patients, especially in low-resource settings. Therefore, the objective of this study was to systematically review the studies that predicted the diagnosis of COVID-19 or the severity of the disease using ML. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), we conducted a literature search of MEDLINE (OVID), Scopus, EMBASE, and IEEE Xplore from January 1 to June 31, 2020. The outcomes were COVID-19 diagnosis or prognostic measures such as death, need for mechanical ventilation, admission, and acute respiratory distress syndrome. We included peer-reviewed observational studies, clinical trials, research letters, case series, and reports. We extracted data about the study's country, setting, sample size, data source, dataset, diagnostic or prognostic outcomes, prediction measures, type of ML model, and measures of diagnostic accuracy. Bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO), with the number CRD42020197109. The final records included for data extraction were 66. Forty-three (64%) studies used secondary data. The majority of studies were from Chinese authors (30%). Most of the literature (79%) relied on chest imaging for prediction, while the remainder used various laboratory indicators, including hematological, biochemical, and immunological markers. Thirteen studies explored predicting COVID-19 severity, while the rest predicted diagnosis. Seventy percent of the articles used deep learning models, while 30% used traditional ML algorithms. Most studies reported high sensitivity, specificity, and accuracy for the ML models (exceeding 90%). The overall concern about the risk of bias was "unclear" in 56% of the studies. This was mainly due to concerns about selection bias. ML may help identify COVID-19 patients in the early phase of the pandemic, particularly in the context of chest imaging. Although these studies reflect that these ML models exhibit high accuracy, the novelty of these models and the biases in dataset selection make using them as a replacement for the clinicians' cognitive decision-making questionable. Continued research is needed to enhance the robustness and reliability of ML systems in COVID-19 diagnosis and prognosis.
Collapse
Affiliation(s)
- Rufaidah Dabbagh
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Amr Jamal
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | | | - Maher A Titi
- Quality Management Department, King Saud University Medical City, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Yasser S Amer
- Pediatrics, Quality Management Department, King Saud University Medical City, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Afnan Khayat
- Health Information Management Department, Prince Sultan Military College of Health Sciences, Al Dhahran, SAU
| | - Taha S Alhazmi
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Layal Hneiny
- Medicine, Wegner Health Sciences Library, University of South Dakota, Vermillion, USA
| | - Fatmah A Baothman
- Department of Information Systems, King Abdulaziz University, Jeddah, SAU
| | | | - Samina A Khan
- School of Computer Sciences, Universiti Sains Malaysia, Penang, MYS
| | - Mohamad-Hani Temsah
- Pediatric Intensive Care Unit, Department of Pediatrics, King Saud University, Riyadh, SAU
| |
Collapse
|
7
|
Roy S, Das AK. Deep‐CoV
: An integrated deep learning model to detect
COVID
‐19 using chest X‐ray and
CT
images. Comput Intell 2023. [DOI: 10.1111/coin.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Sanjib Roy
- Birla Institute of Technology Mesra (Patna campus) Patna India
| | - Ayan Kumar Das
- Birla Institute of Technology Mesra (Patna campus) Patna India
| |
Collapse
|
8
|
Meng M, Zhang M, Shen D, He G. Differentiation of breast lesions on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using deep transfer learning based on DenseNet201. Medicine (Baltimore) 2022; 101:e31214. [PMID: 36397422 PMCID: PMC9666147 DOI: 10.1097/md.0000000000031214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In order to achieve better performance, artificial intelligence is used in breast cancer diagnosis. In this study, we evaluated the efficacy of different fine-tuning strategies of deep transfer learning (DTL) based on the DenseNet201 model to differentiate malignant from benign lesions on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We collected 4260 images of benign lesions and 4140 images of malignant lesions of the breast pertaining to pathologically confirmed cases. The benign and malignant groups was randomly divided into a training set and a testing set at a ratio of 9:1. A DTL model based on the DenseNet201 model was established, and the effectiveness of 4 fine-tuning strategies (S0: strategy 0, S1: strategy; S2: strategy; and S3: strategy) was compared. Additionally, DCE-MRI images of 48 breast lesions were selected to verify the robustness of the model. Ten images were obtained for each lesion. The classification was considered correct if more than 5 images were correctly classified. The metrics for model performance evaluation included accuracy (Ac) in the training and testing sets, precision (Pr), recall rate (Rc), f1 score (f1), and area under the receiver operating characteristic curve (AUROC) in the validation set. The Ac of the 4 fine-tuning strategies reached 100.00% in the training set. The S2 strategy exhibited good convergence in the testing set. The Ac of S2 was 98.01% in the testing set, which was higher than those of S0 (93.10%), S1 (90.45%), and S3 (93.90%). The average classification Pr, Rc, f1, and AUROC of S2 in the validation set were (89.00%, 80.00%, 0.81, and 0.79, respectively) higher than those of S0 (76.00%, 67.00%, 0.69, and 0.65, respectively), S1 (60.00%, 60.00%, 0.60, 0.66, and respectively), and S3 (77.00%, 73.00%, 0.74, 0.72, respectively). The degree of coincidence between S2 and the histopathological method for differentiating between benign and malignant breast lesions was high (κ = 0.749). The S2 strategy can improve the robustness of the DenseNet201 model in relatively small breast DCE-MRI datasets, and this is a reliable method to increase the Ac of discriminating benign from malignant breast lesions on DCE-MRI.
Collapse
Affiliation(s)
- Mingzhu Meng
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Ming Zhang
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Dong Shen
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Guangyuan He
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- * Correspondence: Guangyuan He, Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, No.68 Gehuzhong Rd, Changzhou 213164, Jiangsu Province, China (e-mail: )
| |
Collapse
|
9
|
Jalali Moghaddam M, Ghavipour M. Towards smart diagnostic methods for COVID-19: Review of deep learning for medical imaging. IPEM-TRANSLATION 2022; 3:100008. [PMID: 36312890 PMCID: PMC9597575 DOI: 10.1016/j.ipemt.2022.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
The infectious disease known as COVID-19 has spread dramatically all over the world since December 2019. The fast diagnosis and isolation of infected patients are key factors in slowing down the spread of this virus and better management of the pandemic. Although the CT and X-ray modalities are commonly used for the diagnosis of COVID-19, identifying COVID-19 patients from medical images is a time-consuming and error-prone task. Artificial intelligence has shown to have great potential to speed up and optimize the prognosis and diagnosis process of COVID-19. Herein, we review publications on the application of deep learning (DL) techniques for diagnostics of patients with COVID-19 using CT and X-ray chest images for a period from January 2020 to October 2021. Our review focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive summary of the technical details of models developed in these articles and discusses the challenges in the smart diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the effectiveness of the developed models in clinical use needs to be further investigated. This review provides some recommendations to help researchers develop more accurate prediction models.
Collapse
Affiliation(s)
- Marjan Jalali Moghaddam
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mina Ghavipour
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Addo D, Zhou S, Jackson JK, Nneji GU, Monday HN, Sarpong K, Patamia RA, Ekong F, Owusu-Agyei CA. EVAE-Net: An Ensemble Variational Autoencoder Deep Learning Network for COVID-19 Classification Based on Chest X-ray Images. Diagnostics (Basel) 2022; 12:2569. [PMID: 36359413 PMCID: PMC9689048 DOI: 10.3390/diagnostics12112569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on many lives and the economies of many countries since late December 2019. Early detection with high accuracy is essential to help break the chain of transmission. Several radiological methodologies, such as CT scan and chest X-ray, have been employed in diagnosing and monitoring COVID-19 disease. Still, these methodologies are time-consuming and require trial and error. Machine learning techniques are currently being applied by several studies to deal with COVID-19. This study exploits the latent embeddings of variational autoencoders combined with ensemble techniques to propose three effective EVAE-Net models to detect COVID-19 disease. Two encoders are trained on chest X-ray images to generate two feature maps. The feature maps are concatenated and passed to either a combined or individual reparameterization phase to generate latent embeddings by sampling from a distribution. The latent embeddings are concatenated and passed to a classification head for classification. The COVID-19 Radiography Dataset from Kaggle is the source of chest X-ray images. The performances of the three models are evaluated. The proposed model shows satisfactory performance, with the best model achieving 99.19% and 98.66% accuracy on four classes and three classes, respectively.
Collapse
Affiliation(s)
- Daniel Addo
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Shijie Zhou
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Jehoiada Kofi Jackson
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Grace Ugochi Nneji
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Happy Nkanta Monday
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Kwabena Sarpong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Rutherford Agbeshi Patamia
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Favour Ekong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | | |
Collapse
|
11
|
Wang Q, Ma J, Zhang L, Xie L. Diagnostic performance of corona virus disease 2019 chest computer tomography image recognition based on deep learning: Systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e31346. [PMID: 36281129 PMCID: PMC9592148 DOI: 10.1097/md.0000000000031346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To analyze the diagnosis performance of deep learning model used in corona virus disease 2019 (COVID-19) computer tomography(CT) chest scans. The included sample contains healthy people, confirmed COVID-19 patients and unconfirmed suspected patients with corresponding symptoms. METHODS PubMed, Web of Science, Wiley, China National Knowledge Infrastructure, WAN FANG DATA, and Cochrane Library were searched for articles. Three researchers independently screened the literature, extracted the data. Any differences will be resolved by consulting the third author to ensure that a highly reliable and useful research paper is produced. Data were extracted from the final articles, including: authors, country of study, study type, sample size, participant demographics, type and name of AI software, results (accuracy, sensitivity, specificity, ROC, and predictive values), other outcome(s) if applicable. RESULTS Among the 3891 searched results, 32 articles describing 51,392 confirmed patients and 7686 non-infected individuals met the inclusion criteria. The pooled sensitivity, the pooled specificity, positive likelihood ratio, negative likelihood ratio and the pooled diagnostic odds ratio (OR) is 0.87(95%CI [confidence interval]: 0.85, 0.89), 0.85(95%CI: 0.82, 0.87), 6.7(95%CI: 5.7, 7.8), 0.14(95%CI: 0.12, 0.16), and 49(95%CI: 38, 65). Further, the AUROC (area under the receiver operating characteristic curve) is 0.94(95%CI: 0.91, 0.96). Secondary outcomes are specific sensitivity and specificity within subgroups defined by different models. Resnet has the best diagnostic performance, which has the highest sensitivity (0.91[95%CI: 0.87, 0.94]), specificity (0.90[95%CI: 0.86, 0.93]) and AUROC (0.96[95%CI: 0.94, 0.97]), according to the AUROC, we can get the rank Resnet > Densenet > VGG > Mobilenet > Inception > Effficient > Alexnet. CONCLUSIONS Our study findings show that deep learning models have immense potential in accurately stratifying COVID-19 patients and in correctly differentiating them from patients with other types of pneumonia and normal patients. Implementation of deep learning-based tools can assist radiologists in correctly and quickly detecting COVID-19 and, consequently, in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Qiaolan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jingxuan Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Luoning Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
- *Correspondence: Linshen Xie, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China (e-mail: )
| |
Collapse
|
12
|
Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing Rech Biomed 2022; 43:486-510. [PMID: 34336141 PMCID: PMC8312058 DOI: 10.1016/j.irbm.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Background and objective In recent years, Artificial Intelligence has had an evident impact on the way research addresses challenges in different domains. It has proven to be a huge asset, especially in the medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact of deep learning and machine learning models in the detection of COVID-19 from medical images. This is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in this field. Methods The main focus of this study is the recent developments of classification and segmentation approaches to image-based COVID-19 detection. The study reviews 140 research papers published in different academic research databases. These papers have been screened and filtered based on specified criteria, to acquire insights prudent to image-based COVID-19 detection. Results The methods discussed in this review include different types of imaging modality, predominantly X-rays and CT scans. These modalities are used for classification and segmentation tasks as well. This review seeks to categorize and discuss the different deep learning and machine learning architectures employed for these tasks, based on the imaging modality utilized. It also hints at other possible deep learning and machine learning architectures that can be proposed for better results towards COVID-19 detection. Along with that, a detailed overview of the emerging trends and breakthroughs in Artificial Intelligence-based COVID-19 detection has been discussed as well. Conclusion This work concludes by stipulating the technical and non-technical challenges faced by researchers and illustrates the advantages of image-based COVID-19 detection with Artificial Intelligence techniques.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- School of Computing Sciences and Engineering, Vellore Institute of Technology, Chennai, India
| | - G S Kathiresan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
13
|
Chen J, Li Y, Guo L, Zhou X, Zhu Y, He Q, Han H, Feng Q. Machine learning techniques for CT imaging diagnosis of novel coronavirus pneumonia: a review. Neural Comput Appl 2022; 36:1-19. [PMID: 36159188 PMCID: PMC9483435 DOI: 10.1007/s00521-022-07709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
Since 2020, novel coronavirus pneumonia has been spreading rapidly around the world, bringing tremendous pressure on medical diagnosis and treatment for hospitals. Medical imaging methods, such as computed tomography (CT), play a crucial role in diagnosing and treating COVID-19. A large number of CT images (with large volume) are produced during the CT-based medical diagnosis. In such a situation, the diagnostic judgement by human eyes on the thousands of CT images is inefficient and time-consuming. Recently, in order to improve diagnostic efficiency, the machine learning technology is being widely used in computer-aided diagnosis and treatment systems (i.e., CT Imaging) to help doctors perform accurate analysis and provide them with effective diagnostic decision support. In this paper, we comprehensively review these frequently used machine learning methods applied in the CT Imaging Diagnosis for the COVID-19, discuss the machine learning-based applications from the various kinds of aspects including the image acquisition and pre-processing, image segmentation, quantitative analysis and diagnosis, and disease follow-up and prognosis. Moreover, we also discuss the limitations of the up-to-date machine learning technology in the context of CT imaging computer-aided diagnosis.
Collapse
Affiliation(s)
- Jingjing Chen
- Zhejiang University City College, Hangzhou, China
- Zhijiang College of Zhejiang University of Technology, Shaoxing, China
| | - Yixiao Li
- Faculty of Science, Zhejiang University of Technology, Hangzhou, China
| | - Lingling Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaokang Zhou
- Faculty of Data Science, Shiga University, Hikone, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Yihan Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qingfeng He
- School of Pharmacy, Fudan University, Shanghai, China
| | - Haijun Han
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qilong Feng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
14
|
Bhosale YH, Patnaik KS. Application of Deep Learning Techniques in Diagnosis of Covid-19 (Coronavirus): A Systematic Review. Neural Process Lett 2022; 55:1-53. [PMID: 36158520 PMCID: PMC9483290 DOI: 10.1007/s11063-022-11023-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
Abstract
Covid-19 is now one of the most incredibly intense and severe illnesses of the twentieth century. Covid-19 has already endangered the lives of millions of people worldwide due to its acute pulmonary effects. Image-based diagnostic techniques like X-ray, CT, and ultrasound are commonly employed to get a quick and reliable clinical condition. Covid-19 identification out of such clinical scans is exceedingly time-consuming, labor-intensive, and susceptible to silly intervention. As a result, radiography imaging approaches using Deep Learning (DL) are consistently employed to achieve great results. Various artificial intelligence-based systems have been developed for the early prediction of coronavirus using radiography pictures. Specific DL methods such as CNN and RNN noticeably extract extremely critical characteristics, primarily in diagnostic imaging. Recent coronavirus studies have used these techniques to utilize radiography image scans significantly. The disease, as well as the present pandemic, was studied using public and private data. A total of 64 pre-trained and custom DL models concerning imaging modality as taxonomies are selected from the studied articles. The constraints relevant to DL-based techniques are the sample selection, network architecture, training with minimal annotated database, and security issues. This includes evaluating causal agents, pathophysiology, immunological reactions, and epidemiological illness. DL-based Covid-19 detection systems are the key focus of this review article. Covid-19 work is intended to be accelerated as a result of this study.
Collapse
Affiliation(s)
- Yogesh H. Bhosale
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| | - K. Sridhar Patnaik
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| |
Collapse
|
15
|
Sarv Ahrabi S, Momenzadeh A, Baccarelli E, Scarpiniti M, Piazzo L. How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study. THE JOURNAL OF SUPERCOMPUTING 2022; 79:2850-2881. [PMID: 36042937 PMCID: PMC9411851 DOI: 10.1007/s11227-022-04775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these models are also equipped with encoding modules, which, after weakly supervised training, could be, in principle, exploited for the extraction of hidden features from the input data. At the present time, how these extracted features could be effectively exploited for classification tasks is still an unexplored field. Hence, motivated by this consideration, in this paper, we develop and numerically test the performance of a novel inference engine that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for the detection of COVID-19 disease from other lung diseases in computer tomography (CT) scans. In this respect, the main contributions of the paper are twofold. First, we develop a kernel density estimation (KDE)-based inference method, which, in the training phase, leverages the hidden features extracted by BiGANs and CycleGANs for estimating the (a priori unknown) probability density function (PDF) of the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a target COVID-PDF for the detection of COVID diseases. As a second major contribution, we numerically evaluate and compare the classification accuracies of the implemented BiGAN and CycleGAN models against the ones of some state-of-the-art methods, which rely on the unsupervised training of convolutional autoencoders (CAEs) for attaining feature extraction. The performance comparisons are carried out by considering a spectrum of different training loss functions and distance metrics. The obtained classification accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models outperform the corresponding ones of the considered benchmark CAE-based models of about 16% (resp., 14%).
Collapse
Affiliation(s)
- Sima Sarv Ahrabi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Alireza Momenzadeh
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Enzo Baccarelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Michele Scarpiniti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Lorenzo Piazzo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| |
Collapse
|
16
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
17
|
Li F, Lu X, Yuan J. MHA-CoroCapsule: Multi-Head Attention Routing-Based Capsule Network for COVID-19 Chest X-Ray Image Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1208-1218. [PMID: 34882550 DOI: 10.1109/tmi.2021.3134270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The principal challenge in the fight against this disease is the lack of efficient detection methods. AI-assisted diagnosis based on deep learning can detect COVID-19 cases for chest X-ray images automatically, and also improve the accuracy and efficiency of doctors' diagnosis. However, large scale annotation of chest X-ray images is difficult because of limited resources and heavy burden on the medical system. To meet the challenge, we propose a capsule network model with multi-head attention routing algorithm, called MHA-CoroCapsule, to provide fast and accurate diagnostics for COVID-19 diseases from chest X-ray images. The MHA-CoroCapsule consists of convolutional layers, two capsule layers, and a non-iterative, parameterized multi-head attention routing algorithm is used to quantify the relationship between the two capsule layers. The experiments are performed on a combined dataset constituted by two publicly available datasets including normal, non-COVID pneumonia and COVID-19 images. The model achieves the accuracy of 97.28%, recall of 97.36%, and precision of 97.38% even with a limited number of samples. The experimental results demonstrate that, contrary to the transfer learning and deep feature extraction approaches, the proposed MHA-CoroCapsule has an encouraging performance with fewer trainable parameters and does not require pretraining and plenty of training samples.
Collapse
|
18
|
Hassan H, Ren Z, Zhou C, Khan MA, Pan Y, Zhao J, Huang B. Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 218:106731. [PMID: 35286874 PMCID: PMC8897838 DOI: 10.1016/j.cmpb.2022.106731] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 05/05/2023]
Abstract
Artificial intelligence (AI) and computer vision (CV) methods become reliable to extract features from radiological images, aiding COVID-19 diagnosis ahead of the pathogenic tests and saving critical time for disease management and control. Thus, this review article focuses on cascading numerous deep learning-based COVID-19 computerized tomography (CT) imaging diagnosis research, providing a baseline for future research. Compared to previous review articles on the topic, this study pigeon-holes the collected literature very differently (i.e., its multi-level arrangement). For this purpose, 71 relevant studies were found using a variety of trustworthy databases and search engines, including Google Scholar, IEEE Xplore, Web of Science, PubMed, Science Direct, and Scopus. We classify the selected literature in multi-level machine learning groups, such as supervised and weakly supervised learning. Our review article reveals that weak supervision has been adopted extensively for COVID-19 CT diagnosis compared to supervised learning. Weakly supervised (conventional transfer learning) techniques can be utilized effectively for real-time clinical practices by reusing the sophisticated features rather than over-parameterizing the standard models. Few-shot and self-supervised learning are the recent trends to address data scarcity and model efficacy. The deep learning (artificial intelligence) based models are mainly utilized for disease management and control. Therefore, it is more appropriate for readers to comprehend the related perceptive of deep learning approaches for the in-progress COVID-19 CT diagnosis research.
Collapse
Affiliation(s)
- Haseeb Hassan
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China; College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
| | - Zhaoyu Ren
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chengmin Zhou
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Muazzam A Khan
- Department of Computer Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yi Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jian Zhao
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Bingding Huang
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
19
|
Laino ME, Ammirabile A, Lofino L, Lundon DJ, Chiti A, Francone M, Savevski V. Prognostic findings for ICU admission in patients with COVID-19 pneumonia: baseline and follow-up chest CT and the added value of artificial intelligence. Emerg Radiol 2022; 29:243-262. [PMID: 35048222 PMCID: PMC8769787 DOI: 10.1007/s10140-021-02008-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023]
Abstract
Infection with SARS-CoV-2 has dominated discussion and caused global healthcare and economic crisis over the past 18 months. Coronavirus disease 19 (COVID-19) causes mild-to-moderate symptoms in most individuals. However, rapid deterioration to severe disease with or without acute respiratory distress syndrome (ARDS) can occur within 1-2 weeks from the onset of symptoms in a proportion of patients. Early identification by risk stratifying such patients who are at risk of severe complications of COVID-19 is of great clinical importance. Computed tomography (CT) is widely available and offers the potential for fast triage, robust, rapid, and minimally invasive diagnosis: Ground glass opacities (GGO), crazy-paving pattern (GGO with superimposed septal thickening), and consolidation are the most common chest CT findings in COVID pneumonia. There is growing interest in the prognostic value of baseline chest CT since an early risk stratification of patients with COVID-19 would allow for better resource allocation and could help improve outcomes. Recent studies have demonstrated the utility of baseline chest CT to predict intensive care unit (ICU) admission in patients with COVID-19. Furthermore, developments and progress integrating artificial intelligence (AI) with computer-aided design (CAD) software for diagnostic imaging allow for objective, unbiased, and rapid assessment of CT images.
Collapse
Affiliation(s)
- Maria Elena Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Radiology, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Ludovica Lofino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Radiology, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Dara Joseph Lundon
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Radiology, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Victor Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
20
|
Clinical Characteristics of COVID-19 Patients and Application to an Artificial Intelligence System for Disease Surveillance. J Clin Med 2022; 11:jcm11051437. [PMID: 35268531 PMCID: PMC8911292 DOI: 10.3390/jcm11051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
During the coronavirus disease (COVID-19) pandemic, we admitted suspected or confirmed COVID-19 patients to our isolation wards between 2 March 2020 and 4 May 2020, following a well-designed and efficient assessment protocol. We included 217 patients suspected of COVID-19, of which 27 had confirmed COVID-19. The clinical characteristics of these patients were used to train artificial intelligence (AI) models such as support vector machine (SVM), decision tree, random forest, and artificial neural network for diagnosing COVID-19. When analyzing the performance of the models, SVM showed the highest sensitivity (SVM vs. decision tree vs. random forest vs. artificial neural network: 100% vs. 42.86% vs. 28.57% vs. 71.43%), while decision tree and random forest had the highest specificity (SVM vs. decision tree vs. random forest vs. artificial neural network: 88.37% vs. 100% vs. 100% vs. 94.74%) in the diagnosis of COVID-19. With the aid of AI models, physicians may identify COVID-19 patients earlier, even with few baseline data available, and segregate infected patients earlier to avoid hospital cluster infections and to ensure the safety of medical professionals and ordinary patients in the hospital.
Collapse
|
21
|
Sarv Ahrabi S, Piazzo L, Momenzadeh A, Scarpiniti M, Baccarelli E. Exploiting probability density function of deep convolutional autoencoders' latent space for reliable COVID-19 detection on CT scans. THE JOURNAL OF SUPERCOMPUTING 2022; 78:12024-12045. [PMID: 35228777 PMCID: PMC8867464 DOI: 10.1007/s11227-022-04349-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 05/04/2023]
Abstract
We present a probabilistic method for classifying chest computed tomography (CT) scans into COVID-19 and non-COVID-19. To this end, we design and train, in an unsupervised manner, a deep convolutional autoencoder (DCAE) on a selected training data set, which is composed only of COVID-19 CT scans. Once the model is trained, the encoder can generate the compact hidden representation (the hidden feature vectors) of the training data set. Afterwards, we exploit the obtained hidden representation to build up the target probability density function (PDF) of the training data set by means of kernel density estimation (KDE). Subsequently, in the test phase, we feed a test CT into the trained encoder to produce the corresponding hidden feature vector, and then, we utilise the target PDF to compute the corresponding PDF value of the test image. Finally, this obtained value is compared to a threshold to assign the COVID-19 label or non-COVID-19 to the test image. We numerically check our approach's performance (i.e. test accuracy and training times) by comparing it with those of some state-of-the-art methods.
Collapse
Affiliation(s)
- Sima Sarv Ahrabi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Lorenzo Piazzo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Alireza Momenzadeh
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Michele Scarpiniti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Enzo Baccarelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
22
|
Liang H, Guo Y, Chen X, Ang KL, He Y, Jiang N, Du Q, Zeng Q, Lu L, Gao Z, Li L, Li Q, Nie F, Ding G, Huang G, Chen A, Li Y, Guan W, Sang L, Xu Y, Chen H, Chen Z, Li S, Zhang N, Chen Y, Huang D, Li R, Li J, Cheng B, Zhao Y, Li C, Xiong S, Wang R, Liu J, Wang W, Huang J, Cui F, Xu T, Lure FYM, Zhan M, Huang Y, Yang Q, Dai Q, Liang W, He J, Zhong N. Artificial intelligence for stepwise diagnosis and monitoring of COVID-19. Eur Radiol 2022; 32:2235-2245. [PMID: 34988656 PMCID: PMC8731211 DOI: 10.1007/s00330-021-08334-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 08/07/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Main challenges for COVID-19 include the lack of a rapid diagnostic test, a suitable tool to monitor and predict a patient's clinical course and an efficient way for data sharing among multicenters. We thus developed a novel artificial intelligence system based on deep learning (DL) and federated learning (FL) for the diagnosis, monitoring, and prediction of a patient's clinical course. METHODS CT imaging derived from 6 different multicenter cohorts were used for stepwise diagnostic algorithm to diagnose COVID-19, with or without clinical data. Patients with more than 3 consecutive CT images were trained for the monitoring algorithm. FL has been applied for decentralized refinement of independently built DL models. RESULTS A total of 1,552,988 CT slices from 4804 patients were used. The model can diagnose COVID-19 based on CT alone with the AUC being 0.98 (95% CI 0.97-0.99), and outperforms the radiologist's assessment. We have also successfully tested the incorporation of the DL diagnostic model with the FL framework. Its auto-segmentation analyses co-related well with those by radiologists and achieved a high Dice's coefficient of 0.77. It can produce a predictive curve of a patient's clinical course if serial CT assessments are available. INTERPRETATION The system has high consistency in diagnosing COVID-19 based on CT, with or without clinical data. Alternatively, it can be implemented on a FL platform, which would potentially encourage the data sharing in the future. It also can produce an objective predictive curve of a patient's clinical course for visualization. KEY POINTS • CoviDet could diagnose COVID-19 based on chest CT with high consistency; this outperformed the radiologist's assessment. Its auto-segmentation analyses co-related well with those by radiologists and could potentially monitor and predict a patient's clinical course if serial CT assessments are available. It can be integrated into the federated learning framework. • CoviDet can be used as an adjunct to aid clinicians with the CT diagnosis of COVID-19 and can potentially be used for disease monitoring; federated learning can potentially open opportunities for global collaboration.
Collapse
Affiliation(s)
- Hengrui Liang
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuchen Guo
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Xiangru Chen
- Beijing XiaoBaiShiJi Network Technical Co., Ltd, Beijing, 100084, China
| | - Keng-Leong Ang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Yuwei He
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.,School of Software, Tsinghua University, Beijing, 100084, China
| | - Na Jiang
- Department of Gastroenterology, Wuhan Hankou Hospital, Wuhan, 430000, China
| | - Qiang Du
- Beijing XiaoBaiShiJi Network Technical Co., Ltd, Beijing, 100084, China
| | - Qingsi Zeng
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Zebin Gao
- Beijing XiaoBaiShiJi Network Technical Co., Ltd, Beijing, 100084, China
| | - Linduo Li
- College of Engineering, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Quanzheng Li
- Department of Radiology, Massachusetts General Hospital, White-427 55 Fruit St, Boston, MA, 02114, USA
| | - Fangxing Nie
- Beijing XiaoBaiShiJi Network Technical Co., Ltd, Beijing, 100084, China
| | - Guiguang Ding
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.,School of Software, Tsinghua University, Beijing, 100084, China
| | - Gao Huang
- Beijing XiaoBaiShiJi Network Technical Co., Ltd, Beijing, 100084, China.,School of Software, Tsinghua University, Beijing, 100084, China
| | - Ailan Chen
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yimin Li
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Intensive Care Unit, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weijie Guan
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ling Sang
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Intensive Care Unit, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuanda Xu
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Intensive Care Unit, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huai Chen
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zisheng Chen
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shiyue Li
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Nuofu Zhang
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ying Chen
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Danxia Huang
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Run Li
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jianfu Li
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Bo Cheng
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Zhao
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Caichen Li
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shan Xiong
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Runchen Wang
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jun Liu
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei Wang
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jun Huang
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Fei Cui
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tao Xu
- Biomanufacturing Center Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | | | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Yuanyi Huang
- Department of Radiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| | - Qiang Yang
- Hong Kong University of Science and Technology and weBank, Hong Kong, China
| | - Qionghai Dai
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China. .,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
| | - Wenhua Liang
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jianxing He
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,South China Medical University, Guangzhou, 510000, China.
| | - Nanshan Zhong
- National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
23
|
Saeedi S, Rezayi S, Ghazisaeedi M, Kalhori SN. Artificial intelligence approaches on X-ray-oriented images process for early detection of COVID-19. JOURNAL OF MEDICAL SIGNALS & SENSORS 2022; 12:233-253. [PMID: 36120399 PMCID: PMC9480507 DOI: 10.4103/jmss.jmss_111_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022]
Abstract
Background: COVID-19 is a global public health problem that is crucially important to be diagnosed in the early stages. This study aimed to investigate the use of artificial intelligence (AI) to process X-ray-oriented images to diagnose COVID-19 disease. Methods: A systematic search was conducted in Medline (through PubMed), Scopus, ISI Web of Science, Cochrane Library, and IEEE Xplore Digital Library to identify relevant studies published until 21 September 2020. Results: We identified 208 papers after duplicate removal and filtered them into 60 citations based on inclusion and exclusion criteria. Direct results sufficiently indicated a noticeable increase in the number of published papers in July-2020. The most widely used datasets were, respectively, GitHub repository, hospital-oriented datasets, and Kaggle repository. The Keras library, Tensorflow, and Python had been also widely employed in articles. X-ray images were applied more in the selected articles. The most considerable value of accuracy, sensitivity, specificity, and Area under the ROC Curve was reported for ResNet18 in reviewed techniques; all the mentioned indicators for this mentioned network were equal to one (100%). Conclusion: This review revealed that the application of AI can accelerate the process of diagnosing COVID-19, and these methods are effective for the identification of COVID-19 cases exploiting Chest X-ray images.
Collapse
|
24
|
Yousef HA, Moussa EMM, Abdel-Razek MZM, El-Kholy MMSA, Hasan LHS, El-Sayed AEDAM, Saleh MAK, Omar MKM. Automated quantification of COVID-19 pneumonia severity in chest CT using histogram-based multi-level thresholding segmentation. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [PMCID: PMC8656142 DOI: 10.1186/s43055-021-00602-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Chest computed tomography (CT) has proven its critical importance in detection, grading, and follow-up of lung affection in COVID-19 pneumonia. There is a close relationship between clinical severity and the extent of lung CT findings in this potentially fatal disease. The extent of lung lesions in CT is an important indicator of risk stratification in COVID-19 pneumonia patients. This study aims to explore automated histogram-based quantification of lung affection in COVID-19 pneumonia in volumetric computed tomography (CT) images in comparison to conventional semi-quantitative severity scoring. This retrospective study enrolled 153 patients with proven COVID-19 pneumonia. Based on the severity of clinical presentation, the patients were divided into three groups: mild, moderate and severe. Based upon the need for oxygenation support, two groups were identified as follows: common group that incorporated mild and moderate severity patients who did not need intubation, and severe illness group that included patients who were intubated. An automated multi-level thresholding histogram-based quantitative analysis technique was used for evaluation of lung affection in CT scans together with the conventional semi-quantitative severity scoring performed by two expert radiologists. The quantitative assessment included volumes, percentages and densities of ground-glass opacities (GGOs) and consolidation in both lungs. The results of the two evaluation methods were compared, and the quantification metrics were correlated. Results The Spearman’s correlation coefficient between the semi-quantitative severity scoring and automated quantification methods was 0.934 (p < 0.0001). Conclusions The automated histogram-based quantification of COVID-19 pneumonia shows good correlation with conventional severity scoring. The quantitative imaging metrics show high correlation with the clinical severity of the disease.
Collapse
|
25
|
Kriza C, Amenta V, Zenié A, Panidis D, Chassaigne H, Urbán P, Holzwarth U, Sauer AV, Reina V, Griesinger CB. Artificial intelligence for imaging-based COVID-19 detection: Systematic review comparing added value of AI versus human readers. Eur J Radiol 2021; 145:110028. [PMID: 34839214 PMCID: PMC8594127 DOI: 10.1016/j.ejrad.2021.110028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE A growing number of studies have examined whether Artificial Intelligence (AI) systems can support imaging-based diagnosis of COVID-19-caused pneumonia, including both gains in diagnostic performance and speed. However, what is currently missing is a combined appreciation of studies comparing human readers and AI. METHODS We followed PRISMA-DTA guidelines for our systematic review, searching EMBASE, PUBMED and Scopus databases. To gain insights into the potential value of AI methods, we focused on studies comparing the performance of human readers versus AI models or versus AI-supported human readings. RESULTS Our search identified 1270 studies, of which 12 fulfilled specific selection criteria. Concerning diagnostic performance, in testing datasets reported sensitivity was 42-100% (human readers, n = 9 studies), 60-95% (AI systems, n = 10) and 81-98% (AI-supported readers, n = 3), whilst reported specificity was 26-100% (human readers, n = 8), 61-96% (AI systems, n = 10) and 78-99% (AI-supported readings, n = 2). One study highlighted the potential of AI-supported readings for the assessment of lung lesion burden changes, whilst two studies indicated potential time savings for detection with AI. CONCLUSIONS Our review indicates that AI systems or AI-supported human readings show less performance variability (interquartile range) in general, and may support the differentiation of COVID-19 pneumonia from other forms of pneumonia when used in high-prevalence and symptomatic populations. However, inconsistencies related to study design, reporting of data, areas of risk of bias, as well as limitations of statistical analyses complicate clear conclusions. We therefore support efforts for developing critical elements of study design when assessing the value of AI for diagnostic imaging.
Collapse
Affiliation(s)
- Christine Kriza
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy.
| | - Valeria Amenta
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy
| | - Alexandre Zenié
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy
| | - Dimitris Panidis
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy
| | - Hubert Chassaigne
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy
| | - Patricia Urbán
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy
| | - Uwe Holzwarth
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy
| | - Aisha Vanessa Sauer
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy
| | - Vittorio Reina
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (TP 281) Ispra, Lombardy, Italy
| | | |
Collapse
|
26
|
Suri JS, Agarwal S, Gupta SK, Puvvula A, Viskovic K, Suri N, Alizad A, El-Baz A, Saba L, Fatemi M, Naidu DS. Systematic Review of Artificial Intelligence in Acute Respiratory Distress Syndrome for COVID-19 Lung Patients: A Biomedical Imaging Perspective. IEEE J Biomed Health Inform 2021; 25:4128-4139. [PMID: 34379599 PMCID: PMC8843049 DOI: 10.1109/jbhi.2021.3103839] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 has infected over ∼165 million people worldwide causing Acute Respiratory Distress Syndrome (ARDS) and has killed ∼3.4 million people. Artificial Intelligence (AI) has shown to benefit in the biomedical image such as X-ray/Computed Tomography in diagnosis of ARDS, but there are limited AI-based systematic reviews (aiSR). The purpose of this study is to understand the Risk-of-Bias (RoB) in a non-randomized AI trial for handling ARDS using novel AtheroPoint-AI-Bias (AP(ai)Bias). Our hypothesis for acceptance of a study to be in low RoB must have a mean score of 80% in a study. Using the PRISMA model, 42 best AI studies were analyzed to understand the RoB. Using the AP(ai)Bias paradigm, the top 19 studies were then chosen using the raw-cutoff of 1.9. This was obtained using the intersection of the cumulative plot of "mean score vs. study" and score distribution. Finally, these studies were benchmarked against ROBINS-I and PROBAST paradigm. Our observation showed that AP(ai)Bias, ROBINS-I, and PROBAST had only 32%, 16%, and 26% studies, respectively in low-moderate RoB (cutoff>2.5), however none of them met the RoB hypothesis. Further, the aiSR analysis recommends six primary and six secondary recommendations for the non-randomized AI for ARDS. The primary recommendations for improvement in AI-based ARDS design inclusive of (i) comorbidity, (ii) inter-and intra-observer variability studies, (iii) large data size, (iv) clinical validation, (v) granularity of COVID-19 risk, and (vi) cross-modality scientific validation. The AI is an important component for diagnosis of ARDS and the recommendations must be followed to lower the RoB.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnosis and Monitoring DivisionAtheroPoint LLCRosevilleCA95661USA
| | - Sushant Agarwal
- Advanced Knowledge Engineering CentreGBTIRosevilleCA95661USA
- Department of Computer Science EngineeringPranveer Singh Institute of Technology (PSIT)Kanpur209305India
| | - Suneet K. Gupta
- Department of Computer Science EngineeringBennett UniversityNoida524101India
| | - Anudeep Puvvula
- Stroke Diagnosis and Monitoring DivisionAtheroPoint LLCRosevilleCA95661USA
- Annu's Hospitals for Skin and DiabetesNellore524101India
| | | | - Neha Suri
- Mira Loma High SchoolSacramentoCA95821USA
| | - Azra Alizad
- Department of RadiologyMayo Clinic College of Medicine and ScienceRochesterMN55905USA
| | - Ayman El-Baz
- Department of BioengineeringUniversity of LouisvilleLouisvilleKY40292USA
| | - Luca Saba
- Department of RadiologyAzienda Ospedaliero Universitaria (AOU)09124CagliariItaly
| | - Mostafa Fatemi
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMN55905USA
| | - D. Subbaram Naidu
- Electrical Engineering DepartmentUniversity of MinnesotaDuluthMN55812USA
| |
Collapse
|
27
|
Komolafe TE, Cao Y, Nguchu BA, Monkam P, Olaniyi EO, Sun H, Zheng J, Yang X. Diagnostic Test Accuracy of Deep Learning Detection of COVID-19: A Systematic Review and Meta-Analysis. Acad Radiol 2021; 28:1507-1523. [PMID: 34649779 PMCID: PMC8445811 DOI: 10.1016/j.acra.2021.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVE To perform a meta-analysis to compare the diagnostic test accuracy (DTA) of deep learning (DL) in detecting coronavirus disease 2019 (COVID-19), and to investigate how network architecture and type of datasets affect DL performance. MATERIALS AND METHODS We searched PubMed, Web of Science and Inspec from January 1, 2020, to December 3, 2020, for retrospective and prospective studies on deep learning detection with at least reported sensitivity and specificity. Pooled DTA was obtained using random-effect models. Sub-group analysis between studies was also carried out for data source and network architectures. RESULTS The pooled sensitivity and specificity were 91% (95% confidence interval [CI]: 88%, 93%; I2 = 69%) and 92% (95% CI: 88%, 94%; I2 = 88%), respectively for 19 studies. The pooled AUC and diagnostic odds ratio (DOR) were 0.95 (95% CI: 0.88, 0.92) and 112.5 (95% CI: 57.7, 219.3; I2 = 90%) respectively. The overall accuracy, recall, F1-score, LR+ and LR- are 89.5%, 89.5%, 89.7%, 23.13 and 0.13. Sub-group analysis shows that the sensitivity and DOR significantly vary with the type of network architectures and sources of data with low heterogeneity are (I2 = 0%) and (I2 = 18%) for ResNet architecture and single-source datasets, respectively. CONCLUSION The diagnosis of COVID-19 via deep learning has achieved incredible performance, and the source of datasets, as well as network architectures, strongly affect DL performance.
Collapse
Affiliation(s)
- Temitope Emmanuel Komolafe
- School of Biomedical Engineering (Suzhou) (T.E.K.,Y.C., H.S.), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging (T.E.K.,Y.C., H.S., J.Z., X.Y.), Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Hefei National Lab for Physical Sciences at the Microscale and Centres for Biomedical Engineering (B.A.N.), University of Science and Technology of China, Hefei, 230026, China; EasySignal Group, Department of Automation (P.M.), Tsinghua University, Beijing 100084, China; Department of Biomedical Engineering (E.O.O.), Shenzhen University, Shenzhen, 518060, China; Jinhua Laboratory (X.Y.), Foshan, 528000, China
| | - Yuzhu Cao
- School of Biomedical Engineering (Suzhou) (T.E.K.,Y.C., H.S.), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging (T.E.K.,Y.C., H.S., J.Z., X.Y.), Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Hefei National Lab for Physical Sciences at the Microscale and Centres for Biomedical Engineering (B.A.N.), University of Science and Technology of China, Hefei, 230026, China; EasySignal Group, Department of Automation (P.M.), Tsinghua University, Beijing 100084, China; Department of Biomedical Engineering (E.O.O.), Shenzhen University, Shenzhen, 518060, China; Jinhua Laboratory (X.Y.), Foshan, 528000, China
| | - Benedictor Alexander Nguchu
- School of Biomedical Engineering (Suzhou) (T.E.K.,Y.C., H.S.), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging (T.E.K.,Y.C., H.S., J.Z., X.Y.), Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Hefei National Lab for Physical Sciences at the Microscale and Centres for Biomedical Engineering (B.A.N.), University of Science and Technology of China, Hefei, 230026, China; EasySignal Group, Department of Automation (P.M.), Tsinghua University, Beijing 100084, China; Department of Biomedical Engineering (E.O.O.), Shenzhen University, Shenzhen, 518060, China; Jinhua Laboratory (X.Y.), Foshan, 528000, China
| | - Patrice Monkam
- School of Biomedical Engineering (Suzhou) (T.E.K.,Y.C., H.S.), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging (T.E.K.,Y.C., H.S., J.Z., X.Y.), Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Hefei National Lab for Physical Sciences at the Microscale and Centres for Biomedical Engineering (B.A.N.), University of Science and Technology of China, Hefei, 230026, China; EasySignal Group, Department of Automation (P.M.), Tsinghua University, Beijing 100084, China; Department of Biomedical Engineering (E.O.O.), Shenzhen University, Shenzhen, 518060, China; Jinhua Laboratory (X.Y.), Foshan, 528000, China
| | - Ebenezer Obaloluwa Olaniyi
- School of Biomedical Engineering (Suzhou) (T.E.K.,Y.C., H.S.), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging (T.E.K.,Y.C., H.S., J.Z., X.Y.), Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Hefei National Lab for Physical Sciences at the Microscale and Centres for Biomedical Engineering (B.A.N.), University of Science and Technology of China, Hefei, 230026, China; EasySignal Group, Department of Automation (P.M.), Tsinghua University, Beijing 100084, China; Department of Biomedical Engineering (E.O.O.), Shenzhen University, Shenzhen, 518060, China; Jinhua Laboratory (X.Y.), Foshan, 528000, China
| | - Haotian Sun
- School of Biomedical Engineering (Suzhou) (T.E.K.,Y.C., H.S.), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging (T.E.K.,Y.C., H.S., J.Z., X.Y.), Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Hefei National Lab for Physical Sciences at the Microscale and Centres for Biomedical Engineering (B.A.N.), University of Science and Technology of China, Hefei, 230026, China; EasySignal Group, Department of Automation (P.M.), Tsinghua University, Beijing 100084, China; Department of Biomedical Engineering (E.O.O.), Shenzhen University, Shenzhen, 518060, China; Jinhua Laboratory (X.Y.), Foshan, 528000, China
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou) (T.E.K.,Y.C., H.S.), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging (T.E.K.,Y.C., H.S., J.Z., X.Y.), Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Hefei National Lab for Physical Sciences at the Microscale and Centres for Biomedical Engineering (B.A.N.), University of Science and Technology of China, Hefei, 230026, China; EasySignal Group, Department of Automation (P.M.), Tsinghua University, Beijing 100084, China; Department of Biomedical Engineering (E.O.O.), Shenzhen University, Shenzhen, 518060, China; Jinhua Laboratory (X.Y.), Foshan, 528000, China
| | - Xiaodong Yang
- School of Biomedical Engineering (Suzhou) (T.E.K.,Y.C., H.S.), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Medical Imaging (T.E.K.,Y.C., H.S., J.Z., X.Y.), Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Hefei National Lab for Physical Sciences at the Microscale and Centres for Biomedical Engineering (B.A.N.), University of Science and Technology of China, Hefei, 230026, China; EasySignal Group, Department of Automation (P.M.), Tsinghua University, Beijing 100084, China; Department of Biomedical Engineering (E.O.O.), Shenzhen University, Shenzhen, 518060, China; Jinhua Laboratory (X.Y.), Foshan, 528000, China.
| |
Collapse
|
28
|
Wang L, Zhang Y, Wang D, Tong X, Liu T, Zhang S, Huang J, Zhang L, Chen L, Fan H, Clarke M. Artificial Intelligence for COVID-19: A Systematic Review. Front Med (Lausanne) 2021; 8:704256. [PMID: 34660623 PMCID: PMC8514781 DOI: 10.3389/fmed.2021.704256] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Recently, Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome virus 2 (SARS-CoV-2), has affected more than 200 countries and lead to enormous losses. This study systematically reviews the application of Artificial Intelligence (AI) techniques in COVID-19, especially for diagnosis, estimation of epidemic trends, prognosis, and exploration of effective and safe drugs and vaccines; and discusses the potential limitations. Methods: We report this systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched PubMed, Embase and the Cochrane Library from inception to 19 September 2020 for published studies of AI applications in COVID-19. We used PROBAST (prediction model risk of bias assessment tool) to assess the quality of literature related to the diagnosis and prognosis of COVID-19. We registered the protocol (PROSPERO CRD42020211555). Results: We included 78 studies: 46 articles discussed AI-assisted diagnosis for COVID-19 with total accuracy of 70.00 to 99.92%, sensitivity of 73.00 to 100.00%, specificity of 25 to 100.00%, and area under the curve of 0.732 to 1.000. Fourteen articles evaluated prognosis based on clinical characteristics at hospital admission, such as clinical, laboratory and radiological characteristics, reaching accuracy of 74.4 to 95.20%, sensitivity of 72.8 to 98.00%, specificity of 55 to 96.87% and AUC of 0.66 to 0.997 in predicting critical COVID-19. Nine articles used AI models to predict the epidemic of the COVID-19, such as epidemic peak, infection rate, number of infected cases, transmission laws, and development trend. Eight articles used AI to explore potential effective drugs, primarily through drug repurposing and drug development. Finally, 1 article predicted vaccine targets that have the potential to develop COVID-19 vaccines. Conclusions: In this review, we have shown that AI achieved high performance in diagnosis, prognosis evaluation, epidemic prediction and drug discovery for COVID-19. AI has the potential to enhance significantly existing medical and healthcare system efficiency during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lian Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Shijie Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Lingmin Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Mike Clarke
- Northern Ireland Methodology Hub, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
29
|
Yu Z, Abdel-Salam ASG, Sohail A, Alam F. Forecasting the impact of environmental stresses on the frequent waves of COVID19. NONLINEAR DYNAMICS 2021; 106:1509-1523. [PMID: 34376920 PMCID: PMC8339161 DOI: 10.1007/s11071-021-06777-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/23/2021] [Indexed: 05/19/2023]
Abstract
A novel approach to link the environmental stresses with the COVID-19 cases is adopted during this research. The time-dependent data are extracted from the online repositories that are freely available for knowledge and research. Since the time series data analysis is desired for the COVID-19 time-dependent frequent waves, here in this manuscript, we have developed a time series model with the aid of "nonlinear autoregressive network with exogenous inputs (NARX)" approach. The distribution of infectious agent-containing droplets from an infected person to an uninfected person is a common form of respiratory disease transmission. SARS-CoV-2 has mainly spread via short-range respiratory droplet transmission. Airborne transmission of SARS-CoV-2 seems to have occurred over long distances or times in unusual conditions; SARS-CoV-2 RNA was found in PM10 collected in Italy. This research shows that SARS-CoV-2 particles adsorbed to outdoor PM remained viable for a long time, given the epidemiology of COVID-19, outdoor air pollution is unlikely to be a significant route of transmission. In this research, ANN time series is used to analyze the data resulting from the COVID-19 first and second waves and the forecasted results show that air pollution affects people in different areas of Italy and make more people sick with covid-19. The model is developed based on the disease transmission data of Italy.
Collapse
Affiliation(s)
- Zhenhua Yu
- Institute of Systems Security and Control, College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an, 710054 China
| | - Abdel-Salam G. Abdel-Salam
- Department of Statistics, Mathematics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ayesha Sohail
- Department of Mathematics, Comsats University Islamabad, Lahore, 54000 Pakistan
| | - Fatima Alam
- Department of Mathematics, Comsats University Islamabad, Lahore, 54000 Pakistan
| |
Collapse
|
30
|
Laino ME, Ammirabile A, Posa A, Cancian P, Shalaby S, Savevski V, Neri E. The Applications of Artificial Intelligence in Chest Imaging of COVID-19 Patients: A Literature Review. Diagnostics (Basel) 2021; 11:1317. [PMID: 34441252 PMCID: PMC8394327 DOI: 10.3390/diagnostics11081317] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT.
Collapse
Affiliation(s)
- Maria Elena Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.C.); (V.S.)
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- Department of Radiology, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alessandro Posa
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, 00168 Rome, Italy;
| | - Pierandrea Cancian
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.C.); (V.S.)
| | - Sherif Shalaby
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (S.S.); (E.N.)
| | - Victor Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.C.); (V.S.)
| | - Emanuele Neri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (S.S.); (E.N.)
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, Via della Signora 2, 20122 Milano, Italy
| |
Collapse
|
31
|
Dogan O, Tiwari S, Jabbar MA, Guggari S. A systematic review on AI/ML approaches against COVID-19 outbreak. COMPLEX INTELL SYST 2021; 7:2655-2678. [PMID: 34777970 PMCID: PMC8256231 DOI: 10.1007/s40747-021-00424-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/05/2021] [Indexed: 12/24/2022]
Abstract
A pandemic disease, COVID-19, has caused trouble worldwide by infecting millions of people. The studies that apply artificial intelligence (AI) and machine learning (ML) methods for various purposes against the COVID-19 outbreak have increased because of their significant advantages. Although AI/ML applications provide satisfactory solutions to COVID-19 disease, these solutions can have a wide diversity. This increase in the number of AI/ML studies and diversity in solutions can confuse deciding which AI/ML technique is suitable for which COVID-19 purposes. Because there is no comprehensive review study, this study systematically analyzes and summarizes related studies. A research methodology has been proposed to conduct the systematic literature review for framing the research questions, searching criteria and relevant data extraction. Finally, 264 studies were taken into account after following inclusion and exclusion criteria. This research can be regarded as a key element for epidemic and transmission prediction, diagnosis and detection, and drug/vaccine development. Six research questions are explored with 50 AI/ML approaches in COVID-19, 8 AI/ML methods for patient outcome prediction, 14 AI/ML techniques in disease predictions, along with five AI/ML methods for risk assessment of COVID-19. It also covers AI/ML method in drug development, vaccines for COVID-19, models in COVID-19, datasets and their usage and dataset applications with AI/ML.
Collapse
Affiliation(s)
- Onur Dogan
- Department of Industrial Engineering, Izmir Bakircay University, 35665 Izmir, Turkey
- Research Center for Data Analytics and Spatial Data Modeling (RC-DAS), Izmir Bakircay University, 35665 Izmir, Turkey
| | - Sanju Tiwari
- Department of Computer Science, Universidad Autonoma de Tamaulipas, Ciudad Victoria, Mexico
| | - M. A. Jabbar
- Vardhaman College of Engineering, Kacharam, India
| | | |
Collapse
|
32
|
Heidarian S, Afshar P, Enshaei N, Naderkhani F, Rafiee MJ, Babaki Fard F, Samimi K, Atashzar SF, Oikonomou A, Plataniotis KN, Mohammadi A. COVID-FACT: A Fully-Automated Capsule Network-Based Framework for Identification of COVID-19 Cases from Chest CT Scans. Front Artif Intell 2021; 4:598932. [PMID: 34113843 PMCID: PMC8186443 DOI: 10.3389/frai.2021.598932] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/09/2021] [Indexed: 01/12/2023] Open
Abstract
The newly discovered Coronavirus Disease 2019 (COVID-19) has been globally spreading and causing hundreds of thousands of deaths around the world as of its first emergence in late 2019. The rapid outbreak of this disease has overwhelmed health care infrastructures and arises the need to allocate medical equipment and resources more efficiently. The early diagnosis of this disease will lead to the rapid separation of COVID-19 and non-COVID cases, which will be helpful for health care authorities to optimize resource allocation plans and early prevention of the disease. In this regard, a growing number of studies are investigating the capability of deep learning for early diagnosis of COVID-19. Computed tomography (CT) scans have shown distinctive features and higher sensitivity compared to other diagnostic tests, in particular the current gold standard, i.e., the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Current deep learning-based algorithms are mainly developed based on Convolutional Neural Networks (CNNs) to identify COVID-19 pneumonia cases. CNNs, however, require extensive data augmentation and large datasets to identify detailed spatial relations between image instances. Furthermore, existing algorithms utilizing CT scans, either extend slice-level predictions to patient-level ones using a simple thresholding mechanism or rely on a sophisticated infection segmentation to identify the disease. In this paper, we propose a two-stage fully automated CT-based framework for identification of COVID-19 positive cases referred to as the “COVID-FACT”. COVID-FACT utilizes Capsule Networks, as its main building blocks and is, therefore, capable of capturing spatial information. In particular, to make the proposed COVID-FACT independent from sophisticated segmentations of the area of infection, slices demonstrating infection are detected at the first stage and the second stage is responsible for classifying patients into COVID and non-COVID cases. COVID-FACT detects slices with infection, and identifies positive COVID-19 cases using an in-house CT scan dataset, containing COVID-19, community acquired pneumonia, and normal cases. Based on our experiments, COVID-FACT achieves an accuracy of 90.82%, a sensitivity of 94.55%, a specificity of 86.04%, and an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and annotation, in comparison to its counterparts.
Collapse
Affiliation(s)
- Shahin Heidarian
- Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
| | - Parnian Afshar
- Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC, Canada
| | - Nastaran Enshaei
- Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC, Canada
| | - Farnoosh Naderkhani
- Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC, Canada
| | - Moezedin Javad Rafiee
- Department of Medicine and Diagnostic Radiology, McGill University Health Center-Research Institute, Montreal, QC, Canada
| | - Faranak Babaki Fard
- Biomedical Sciences Department, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Kaveh Samimi
- Department of Radiology, Iran University of Medical Science, Tehran, Iran
| | - S Farokh Atashzar
- Department of Electrical and Computer Engineering, New York University, New York, NY, United States.,Department of Mechanical and Aerospace Engineering, New York University, New York, NY, United States
| | - Anastasia Oikonomou
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Arash Mohammadi
- Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC, Canada
| |
Collapse
|
33
|
Shahid O, Nasajpour M, Pouriyeh S, Parizi RM, Han M, Valero M, Li F, Aledhari M, Sheng QZ. Machine learning research towards combating COVID-19: Virus detection, spread prevention, and medical assistance. J Biomed Inform 2021; 117:103751. [PMID: 33771732 PMCID: PMC7987503 DOI: 10.1016/j.jbi.2021.103751] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 was first discovered in December 2019 and has continued to rapidly spread across countries worldwide infecting thousands and millions of people. The virus is deadly, and people who are suffering from prior illnesses or are older than the age of 60 are at a higher risk of mortality. Medicine and Healthcare industries have surged towards finding a cure, and different policies have been amended to mitigate the spread of the virus. While Machine Learning (ML) methods have been widely used in other domains, there is now a high demand for ML-aided diagnosis systems for screening, tracking, predicting the spread of COVID-19 and finding a cure against it. In this paper, we present a journey of what role ML has played so far in combating the virus, mainly looking at it from a screening, forecasting, and vaccine perspective. We present a comprehensive survey of the ML algorithms and models that can be used on this expedition and aid with battling the virus.
Collapse
Affiliation(s)
- Osama Shahid
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Mohammad Nasajpour
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Seyedamin Pouriyeh
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Reza M Parizi
- Department of Software Engineering and Game Development, Kennesaw State University, Marietta, GA, USA.
| | - Meng Han
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Maria Valero
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Fangyu Li
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Mohammed Aledhari
- Department of Computer Science, Kennesaw State University, Marietta, GA, USA.
| | - Quan Z Sheng
- Department of Computing, Macquarie University, Sydney, Australia.
| |
Collapse
|
34
|
Montazeri M, ZahediNasab R, Farahani A, Mohseni H, Ghasemian F. Machine Learning Models for Image-Based Diagnosis and Prognosis of COVID-19: Systematic Review. JMIR Med Inform 2021; 9:e25181. [PMID: 33735095 PMCID: PMC8074953 DOI: 10.2196/25181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/31/2020] [Accepted: 01/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Accurate and timely diagnosis and effective prognosis of the disease is important to provide the best possible care for patients with COVID-19 and reduce the burden on the health care system. Machine learning methods can play a vital role in the diagnosis of COVID-19 by processing chest x-ray images. OBJECTIVE The aim of this study is to summarize information on the use of intelligent models for the diagnosis and prognosis of COVID-19 to help with early and timely diagnosis, minimize prolonged diagnosis, and improve overall health care. METHODS A systematic search of databases, including PubMed, Web of Science, IEEE, ProQuest, Scopus, bioRxiv, and medRxiv, was performed for COVID-19-related studies published up to May 24, 2020. This study was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. All original research articles describing the application of image processing for the prediction and diagnosis of COVID-19 were considered in the analysis. Two reviewers independently assessed the published papers to determine eligibility for inclusion in the analysis. Risk of bias was evaluated using the Prediction Model Risk of Bias Assessment Tool. RESULTS Of the 629 articles retrieved, 44 articles were included. We identified 4 prognosis models for calculating prediction of disease severity and estimation of confinement time for individual patients, and 40 diagnostic models for detecting COVID-19 from normal or other pneumonias. Most included studies used deep learning methods based on convolutional neural networks, which have been widely used as a classification algorithm. The most frequently reported predictors of prognosis in patients with COVID-19 included age, computed tomography data, gender, comorbidities, symptoms, and laboratory findings. Deep convolutional neural networks obtained better results compared with non-neural network-based methods. Moreover, all of the models were found to be at high risk of bias due to the lack of information about the study population, intended groups, and inappropriate reporting. CONCLUSIONS Machine learning models used for the diagnosis and prognosis of COVID-19 showed excellent discriminative performance. However, these models were at high risk of bias, because of various reasons such as inadequate information about study participants, randomization process, and the lack of external validation, which may have resulted in the optimistic reporting of these models. Hence, our findings do not recommend any of the current models to be used in practice for the diagnosis and prognosis of COVID-19.
Collapse
Affiliation(s)
- Mahdieh Montazeri
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Roxana ZahediNasab
- Computer Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Farahani
- Computer Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadis Mohseni
- Computer Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fahimeh Ghasemian
- Computer Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
35
|
Homayounieh F, Bezerra Cavalcanti Rockenbach MA, Ebrahimian S, Doda Khera R, Bizzo BC, Buch V, Babaei R, Karimi Mobin H, Mohseni I, Mitschke M, Zimmermann M, Durlak F, Rauch F, Digumarthy SR, Kalra MK. Multicenter Assessment of CT Pneumonia Analysis Prototype for Predicting Disease Severity and Patient Outcome. J Digit Imaging 2021; 34:320-329. [PMID: 33634416 PMCID: PMC7906242 DOI: 10.1007/s10278-021-00430-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/08/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
To perform a multicenter assessment of the CT Pneumonia Analysis prototype for predicting disease severity and patient outcome in COVID-19 pneumonia both without and with integration of clinical information. Our IRB-approved observational study included consecutive 241 adult patients (> 18 years; 105 females; 136 males) with RT-PCR-positive COVID-19 pneumonia who underwent non-contrast chest CT at one of the two tertiary care hospitals (site A: Massachusetts General Hospital, USA; site B: Firoozgar Hospital Iran). We recorded patient age, gender, comorbid conditions, laboratory values, intensive care unit (ICU) admission, mechanical ventilation, and final outcome (recovery or death). Two thoracic radiologists reviewed all chest CTs to record type, extent of pulmonary opacities based on the percentage of lobe involved, and severity of respiratory motion artifacts. Thin-section CT images were processed with the prototype (Siemens Healthineers) to obtain quantitative features including lung volumes, volume and percentage of all-type and high-attenuation opacities (≥ -200 HU), and mean HU and standard deviation of opacities within a given lung region. These values are estimated for the total combined lung volume, and separately for each lung and each lung lobe. Multivariable analyses of variance (MANOVA) and multiple logistic regression were performed for data analyses. About 26% of chest CTs (62/241) had moderate to severe motion artifacts. There were no significant differences in the AUCs of quantitative features for predicting disease severity with and without motion artifacts (AUC 0.94-0.97) as well as for predicting patient outcome (AUC 0.7-0.77) (p > 0.5). Combination of the volume of all-attenuation opacities and the percentage of high-attenuation opacities (AUC 0.76-0.82, 95% confidence interval (CI) 0.73-0.82) had higher AUC for predicting ICU admission than the subjective severity scores (AUC 0.69-0.77, 95% CI 0.69-0.81). Despite a high frequency of motion artifacts, quantitative features of pulmonary opacities from chest CT can help differentiate patients with favorable and adverse outcomes.
Collapse
Affiliation(s)
- Fatemeh Homayounieh
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, MA USA
| | | | - Shadi Ebrahimian
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, MA USA
| | - Ruhani Doda Khera
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, MA USA
| | - Bernardo C. Bizzo
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, MA USA
- MGH & BWH Center for Clinical Data Science, Boston, MA USA
| | - Varun Buch
- MGH & BWH Center for Clinical Data Science, Boston, MA USA
| | - Rosa Babaei
- Department of Radiology, Firoozgar Hospital and Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Karimi Mobin
- Department of Radiology, Firoozgar Hospital and Iran University of Medical Sciences, Tehran, Iran
| | - Iman Mohseni
- Department of Radiology, Firoozgar Hospital and Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Felix Durlak
- Diagnostic Imaging, Siemens Healthcare GmbH, Erlangen, Germany
| | - Franziska Rauch
- Diagnostic Imaging, Siemens Healthcare GmbH, Erlangen, Germany
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, MA USA
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, MA USA
| |
Collapse
|
36
|
Mohammad-Rahimi H, Nadimi M, Ghalyanchi-Langeroudi A, Taheri M, Ghafouri-Fard S. Application of Machine Learning in Diagnosis of COVID-19 Through X-Ray and CT Images: A Scoping Review. Front Cardiovasc Med 2021; 8:638011. [PMID: 33842563 PMCID: PMC8027078 DOI: 10.3389/fcvm.2021.638011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease, first detected in late 2019 (COVID-19), has spread fast throughout the world, leading to high mortality. This condition can be diagnosed using RT-PCR technique on nasopharyngeal and throat swabs with sensitivity values ranging from 30 to 70%. However, chest CT scans and X-ray images have been reported to have sensitivity values of 98 and 69%, respectively. The application of machine learning methods on CT and X-ray images has facilitated the accurate diagnosis of COVID-19. In this study, we reviewed studies which used machine and deep learning methods on chest X-ray images and CT scans for COVID-19 diagnosis and compared their performance. The accuracy of these methods ranged from 76% to more than 99%, indicating the applicability of machine and deep learning methods in the clinical diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hossein Mohammad-Rahimi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Nadimi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| | - Azadeh Ghalyanchi-Langeroudi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Ghaderzadeh M, Asadi F. Deep Learning in the Detection and Diagnosis of COVID-19 Using Radiology Modalities: A Systematic Review. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6677314. [PMID: 33747419 PMCID: PMC7958142 DOI: 10.1155/2021/6677314] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Introduction The early detection and diagnosis of COVID-19 and the accurate separation of non-COVID-19 cases at the lowest cost and in the early stages of the disease are among the main challenges in the current COVID-19 pandemic. Concerning the novelty of the disease, diagnostic methods based on radiological images suffer from shortcomings despite their many applications in diagnostic centers. Accordingly, medical and computer researchers tend to use machine-learning models to analyze radiology images. Material and Methods. The present systematic review was conducted by searching the three databases of PubMed, Scopus, and Web of Science from November 1, 2019, to July 20, 2020, based on a search strategy. A total of 168 articles were extracted and, by applying the inclusion and exclusion criteria, 37 articles were selected as the research population. Result This review study provides an overview of the current state of all models for the detection and diagnosis of COVID-19 through radiology modalities and their processing based on deep learning. According to the findings, deep learning-based models have an extraordinary capacity to offer an accurate and efficient system for the detection and diagnosis of COVID-19, the use of which in the processing of modalities would lead to a significant increase in sensitivity and specificity values. Conclusion The application of deep learning in the field of COVID-19 radiologic image processing reduces false-positive and negative errors in the detection and diagnosis of this disease and offers a unique opportunity to provide fast, cheap, and safe diagnostic services to patients.
Collapse
Affiliation(s)
- Mustafa Ghaderzadeh
- Student Research Committee, Department and Faculty of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Suri JS, Agarwal S, Gupta SK, Puvvula A, Biswas M, Saba L, Bit A, Tandel GS, Agarwal M, Patrick A, Faa G, Singh IM, Oberleitner R, Turk M, Chadha PS, Johri AM, Miguel Sanches J, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Ahluwalia P, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Nicolaides A, Sharma A, Rathore V, Ajuluchukwu JNA, Fatemi M, Alizad A, Viswanathan V, Krishnan PK, Naidu S. A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence. Comput Biol Med 2021; 130:104210. [PMID: 33550068 PMCID: PMC7813499 DOI: 10.1016/j.compbiomed.2021.104210] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA.
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA, USA; Department of Computer Science Engineering, PSIT, Kanpur, India
| | - Suneet K Gupta
- Department of Computer Science Engineering, Bennett University, India
| | - Anudeep Puvvula
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Annu's Hospitals for Skin and Diabetes, Nellore, AP, India
| | - Mainak Biswas
- Department of Computer Science Engineering, JIS University, Kolkata, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Arindam Bit
- Department of Biomedical Engineering, NIT, Raipur, India
| | - Gopal S Tandel
- Department of Computer Science Engineering, VNIT, Nagpur, India
| | - Mohit Agarwal
- Department of Computer Science Engineering, Bennett University, India
| | | | - Gavino Faa
- Department of Pathology - AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Paramjit S Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Vikas Agarwal
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK; Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, New Delhi, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, Canada
| | | | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Rathore
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| | | | - Mostafa Fatemi
- Dept. of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN, USA
| | - Azra Alizad
- Dept. of Radiology, Mayo Clinic College of Medicine and Science, MN, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - P K Krishnan
- Neurology Department, Fortis Hospital, Bangalore, India
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| |
Collapse
|
39
|
Carvalho ARS, Guimarães A, Garcia TDSO, Madeira Werberich G, Ceotto VF, Bozza FA, Rodrigues RS, Pinto JSF, Schmitt WR, Zin WA, França M. Estimating COVID-19 Pneumonia Extent and Severity From Chest Computed Tomography. Front Physiol 2021; 12:617657. [PMID: 33658944 PMCID: PMC7917083 DOI: 10.3389/fphys.2021.617657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Background COVID-19 pneumonia extension is assessed by computed tomography (CT) with the ratio between the volume of abnormal pulmonary opacities (PO) and CT-estimated lung volume (CTLV). CT-estimated lung weight (CTLW) also correlates with pneumonia severity. However, both CTLV and CTLW depend on demographic and anthropometric variables. Purposes To estimate the extent and severity of COVID-19 pneumonia adjusting the volume and weight of abnormal PO to the predicted CTLV (pCTLV) and CTLW (pCTLW), respectively, and to evaluate their possible association with clinical and radiological outcomes. Methods Chest CT from 103 COVID-19 and 86 healthy subjects were examined retrospectively. In controls, predictive equations for estimating pCTLV and pCTLW were assessed. COVID-19 pneumonia extent and severity were then defined as the ratio between the volume and the weight of abnormal PO expressed as a percentage of the pCTLV and pCTLW, respectively. A ROC analysis was used to test differential diagnosis ability of the proposed method in COVID-19 and controls. The degree of pneumonia extent and severity was assessed with Z-scores relative to the average volume and weight of PO in controls. Accordingly, COVID-19 patients were classified as with limited, moderate and diffuse pneumonia extent and as with mild, moderate and severe pneumonia severity. Results In controls, CTLV could be predicted by sex and height (adjusted R 2 = 0.57; P < 0.001) while CTLW by age, sex, and height (adjusted R 2 = 0.6; P < 0.001). The cutoff of 20% (AUC = 0.91, 95%CI 0.88-0.93) for pneumonia extent and of 50% (AUC = 0.91, 95%CI 0.89-0.92) for pneumonia severity were obtained. Pneumonia extent were better correlated when expressed as a percentage of the pCTLV and pCTLW (r = 0.85, P < 0.001), respectively. COVID-19 patients with diffuse and severe pneumonia at admission presented significantly higher CRP concentration, intra-hospital mortality, ICU stay and ventilatory support necessity, than those with moderate and limited/mild pneumonia. Moreover, pneumonia severity, but not extent, was positively and moderately correlated with age (r = 0.46) and CRP concentration (r = 0.44). Conclusion The proposed estimation of COVID-19 pneumonia extent and severity might be useful for clinical and radiological patient stratification.
Collapse
Affiliation(s)
- Alysson Roncally Silva Carvalho
- Cardiovascular R&D Centre (UnIC), Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan Guimarães
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Fernando Augusto Bozza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil.,National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rosana Souza Rodrigues
- Department of Radiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Joana Sofia F Pinto
- Radiology Department, Complexo Hospitalar Universitário do Porto, Porto, Portugal
| | | | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manuela França
- Radiology Department, Complexo Hospitalar Universitário do Porto, Porto, Portugal.,Instituto de Ciências Biomeìdicas Abel Salazar, Porto University, Porto, Portugal
| |
Collapse
|
40
|
Agarwal M, Saba L, Gupta SK, Carriero A, Falaschi Z, Paschè A, Danna P, El-Baz A, Naidu S, Suri JS. A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort. J Med Syst 2021; 45:28. [PMID: 33496876 PMCID: PMC7835451 DOI: 10.1007/s10916-021-01707-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023]
Abstract
Computer Tomography (CT) is currently being adapted for visualization of COVID-19 lung damage. Manual classification and characterization of COVID-19 may be biased depending on the expert's opinion. Artificial Intelligence has recently penetrated COVID-19, especially deep learning paradigms. There are nine kinds of classification systems in this study, namely one deep learning-based CNN, five kinds of transfer learning (TL) systems namely VGG16, DenseNet121, DenseNet169, DenseNet201 and MobileNet, three kinds of machine-learning (ML) systems, namely artificial neural network (ANN), decision tree (DT), and random forest (RF) that have been designed for classification of COVID-19 segmented CT lung against Controls. Three kinds of characterization systems were developed namely (a) Block imaging for COVID-19 severity index (CSI); (b) Bispectrum analysis; and (c) Block Entropy. A cohort of Italian patients with 30 controls (990 slices) and 30 COVID-19 patients (705 slices) was used to test the performance of three types of classifiers. Using K10 protocol (90% training and 10% testing), the best accuracy and AUC was for DCNN and RF pairs were 99.41 ± 5.12%, 0.991 (p < 0.0001), and 99.41 ± 0.62%, 0.988 (p < 0.0001), respectively, followed by other ML and TL classifiers. We show that diagnostics odds ratio (DOR) was higher for DL compared to ML, and both, Bispecturm and Block Entropy shows higher values for COVID-19 patients. CSI shows an association with Ground Glass Opacities (0.9146, p < 0.0001). Our hypothesis holds true that deep learning shows superior performance compared to machine learning models. Block imaging is a powerful novel approach for pinpointing COVID-19 severity and is clinically validated.
Collapse
Affiliation(s)
- Mohit Agarwal
- CSE Department, Bennett University, Greater Noida, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Monserrato, Italy
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, India
| | - Alessandro Carriero
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Zeno Falaschi
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Alessio Paschè
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Pietro Danna
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Ayman El-Baz
- Biomedical Engineering Department, Louisville, KY, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| |
Collapse
|
41
|
Syeda HB, Syed M, Sexton KW, Syed S, Begum S, Syed F, Prior F, Yu F. Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review. JMIR Med Inform 2021; 9:e23811. [PMID: 33326405 PMCID: PMC7806275 DOI: 10.2196/23811] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. OBJECTIVE The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. METHODS A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. RESULTS The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. CONCLUSIONS In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
Collapse
Affiliation(s)
- Hafsa Bareen Syeda
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mahanazuddin Syed
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kevin Wayne Sexton
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Health Policy and Management, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shorabuddin Syed
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Salma Begum
- Department of Information Technology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Farhanuddin Syed
- College of Medicine, Shadan Institute of Medical Sciences, Hyderabad, India
| | - Fred Prior
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Feliciano Yu
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
42
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
43
|
Carvalho ARS, Guimarães A, Werberich GM, de Castro SN, Pinto JSF, Schmitt WR, França M, Bozza FA, Guimarães BLDS, Zin WA, Rodrigues RS. COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis. Front Med (Lausanne) 2020; 7:577609. [PMID: 33344471 PMCID: PMC7746855 DOI: 10.3389/fmed.2020.577609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: This work aims to develop a computer-aided diagnosis (CAD) to quantify the extent of pulmonary involvement (PI) in COVID-19 as well as the radiological patterns referred to as lung opacities in chest computer tomography (CT). Methods: One hundred thirty subjects with COVID-19 pneumonia who underwent chest CT at hospital admission were retrospectively studied (141 sets of CT scan images). Eighty-eight healthy individuals without radiological evidence of acute lung disease served as controls. Two radiologists selected up to four regions of interest (ROI) per patient (totaling 1,475 ROIs) visually regarded as well-aerated regions (472), ground-glass opacity (GGO, 413), crazy paving and linear opacities (CP/LO, 340), and consolidation (250). After balancing with 250 ROIs for each class, the density quantiles (2.5, 25, 50, 75, and 97.5%) of 1,000 ROIs were used to train (700), validate (150), and test (150 ROIs) an artificial neural network (ANN) classifier (60 neurons in a single-hidden-layer architecture). Pulmonary involvement was defined as the sum of GGO, CP/LO, and consolidation volumes divided by total lung volume (TLV), and the cutoff of normality between controls and COVID-19 patients was determined with a receiver operator characteristic (ROC) curve. The severity of pulmonary involvement in COVID-19 patients was also assessed by calculating Z scores relative to the average volume of parenchymal opacities in controls. Thus, COVID-19 cases were classified as mild (
Collapse
Affiliation(s)
- Alysson Roncally S. Carvalho
- UnIC, Faculty of Medicine, Cardiovascular R&D Center, Centro Hospitalar Universitário Do Porto (CHUP), Porto University, Porto, Portugal
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan Guimarães
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Stephane Nery de Castro
- Hospital Barra D'Or, Rio de Janeiro, Brazil
- National Institute of Infectious Disease, Oswaldo Cruz Foundation (INI/Fiocruz), Rio de Janeiro, Brazil
| | - Joana Sofia F. Pinto
- Radiology Department, Centro Hospitalar Complexo Universitário Do Porto (CHUP), Porto, Portugal
| | | | - Manuela França
- Radiology Department, Centro Hospitalar Complexo Universitário Do Porto (CHUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto University, Porto, Portugal
| | - Fernando Augusto Bozza
- National Institute of Infectious Disease, Oswaldo Cruz Foundation (INI/Fiocruz), Rio de Janeiro, Brazil
- IDOR - D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | | | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Souza Rodrigues
- Department of Radiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- IDOR - D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Qian X, Fu H, Shi W, Chen T, Fu Y, Shan F, Xue X. M 3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening From CT Imaging. IEEE J Biomed Health Inform 2020; 24:3539-3550. [PMID: 33048773 PMCID: PMC8545176 DOI: 10.1109/jbhi.2020.3030853] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/10/2022]
Abstract
To counter the outbreak of COVID-19, the accurate diagnosis of suspected cases plays a crucial role in timely quarantine, medical treatment, and preventing the spread of the pandemic. Considering the limited training cases and resources (e.g, time and budget), we propose a Multi-task Multi-slice Deep Learning System (M 3Lung-Sys) for multi-class lung pneumonia screening from CT imaging, which only consists of two 2D CNN networks, i.e., slice- and patient-level classification networks. The former aims to seek the feature representations from abundant CT slices instead of limited CT volumes, and for the overall pneumonia screening, the latter one could recover the temporal information by feature refinement and aggregation between different slices. In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3Lung-Sys also be able to locate the areas of relevant lesions, without any pixel-level annotation. To further demonstrate the effectiveness of our model, we conduct extensive experiments on a chest CT imaging dataset with a total of 734 patients (251 healthy people, 245 COVID-19 patients, 105 H1N1 patients, and 133 CAP patients). The quantitative results with plenty of metrics indicate the superiority of our proposed model on both slice- and patient-level classification tasks. More importantly, the generated lesion location maps make our system interpretable and more valuable to clinicians.
Collapse
Affiliation(s)
- Xuelin Qian
- Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghai200433China
| | - Huazhu Fu
- Inception Institute of Artificial IntelligenceAbu DhabiUAE
| | - Weiya Shi
- Department of Radiology, Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Tao Chen
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Yanwei Fu
- School of Data Science, MOE Frontiers Center for Brain Science, Shanghai Key Lab of Intelligent Information ProcessingFudan UniversityShanghai200433China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Xiangyang Xue
- Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghai200433China
| |
Collapse
|
45
|
Chiroma H, Ezugwu AE, Jauro F, Al-Garadi MA, Abdullahi IN, Shuib L. Early survey with bibliometric analysis on machine learning approaches in controlling COVID-19 outbreaks. PeerJ Comput Sci 2020; 6:e313. [PMID: 33816964 PMCID: PMC7924648 DOI: 10.7717/peerj-cs.313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/15/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The COVID-19 pandemic has caused severe mortality across the globe, with the USA as the current epicenter of the COVID-19 epidemic even though the initial outbreak was in Wuhan, China. Many studies successfully applied machine learning to fight COVID-19 pandemic from a different perspective. To the best of the authors' knowledge, no comprehensive survey with bibliometric analysis has been conducted yet on the adoption of machine learning to fight COVID-19. Therefore, the main goal of this study is to bridge this gap by carrying out an in-depth survey with bibliometric analysis on the adoption of machine learning-based technologies to fight COVID-19 pandemic from a different perspective, including an extensive systematic literature review and bibliometric analysis. METHODS We applied a literature survey methodology to retrieved data from academic databases and subsequently employed a bibliometric technique to analyze the accessed records. Besides, the concise summary, sources of COVID-19 datasets, taxonomy, synthesis and analysis are presented in this study. It was found that the Convolutional Neural Network (CNN) is mainly utilized in developing COVID-19 diagnosis and prognosis tools, mostly from chest X-ray and chest CT scan images. Similarly, in this study, we performed a bibliometric analysis of machine learning-based COVID-19 related publications in the Scopus and Web of Science citation indexes. Finally, we propose a new perspective for solving the challenges identified as direction for future research. We believe the survey with bibliometric analysis can help researchers easily detect areas that require further development and identify potential collaborators. RESULTS The findings of the analysis presented in this article reveal that machine learning-based COVID-19 diagnose tools received the most considerable attention from researchers. Specifically, the analyses of results show that energy and resources are more dispenses towards COVID-19 automated diagnose tools while COVID-19 drugs and vaccine development remains grossly underexploited. Besides, the machine learning-based algorithm that is predominantly utilized by researchers in developing the diagnostic tool is CNN mainly from X-rays and CT scan images. CONCLUSIONS The challenges hindering practical work on the application of machine learning-based technologies to fight COVID-19 and new perspective to solve the identified problems are presented in this article. Furthermore, we believed that the presented survey with bibliometric analysis could make it easier for researchers to identify areas that need further development and possibly identify potential collaborators at author, country and institutional level, with the overall aim of furthering research in the focused area of machine learning application to disease control.
Collapse
Affiliation(s)
- Haruna Chiroma
- Future Technology Research Center, National Yunlin University of Science and Technology, Yulin, Taiwan
| | - Absalom E. Ezugwu
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Fatsuma Jauro
- Department of Computer Science, Faculty of Science, Ahmadu Bello University, Zaria, Nigeria
| | | | - Idris N. Abdullahi
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Liyana Shuib
- Department of Information System, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Zheng L, Zhang L, Huang J, Nandakumar KS, Liu S, Cheng K. Potential treatment methods targeting 2019-nCoV infection. Eur J Med Chem 2020; 205:112687. [PMID: 32771797 PMCID: PMC7385720 DOI: 10.1016/j.ejmech.2020.112687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/08/2023]
Abstract
The novel coronavirus, 2019-nCoV, has quickly spread across the world and pose serious threat to public health because it can infect people very easily. The major clinical symptoms of 2019-nCoV infection include fever, dry cough, myalgia, fatigue, and diarrhea. The 2019-nCoV belongs to the betacoronavirus family, and gene sequencing results demonstrate that it is a single-stranded RNA virus, closely related to Severe Acute Respiratory Syndrome CoV (SARS-CoV) and Middle East Respiratory Syndrome CoV (MERS-CoV). It has been observed that the virus invades human body mainly through binding to angiotensin-converting enzyme 2 (ACE2) receptors similar to SARS-CoV and the main protease (Mpro) acts as a critical protease for digesting the polyprotein into functional polypeptides during the replication and transcription process of 2019-nCoV. In this review, we summarized the real-time information of 2019-nCoV treatment methods and mainly focused on the chemical drugs including lopinavir/ritonavir, chloroquine, hydroxychloroquine, arbidol, remdesivir, favipiravir and other potential innovative active molecules. Their potential targets, activity, clinical status and side effects are described. In addition, Traditional Chinese Medicine (TCM), Convalescent plasma therapy (CPT) and biological reagents available, as well as the promising vaccine candidates against 2019-nCoV are also discussed.
Collapse
Affiliation(s)
- Lu Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lina Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiamin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kutty Selva Nandakumar
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China.
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
47
|
Zheng B, Liu Y, Zhu Y, Yu F, Jiang T, Yang D, Xu T. MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:185786-185795. [PMID: 34812359 PMCID: PMC8545278 DOI: 10.1109/access.2020.3027738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 05/03/2023]
Abstract
Since the first patient reported in December 2019, 2019 novel coronavirus disease (COVID-19) has become global pandemic with more than 10 million total confirmed cases and 500 thousand related deaths. Using deep learning methods to quickly identify COVID-19 and accurately segment the infected area can help control the outbreak and assist in treatment. Computed tomography (CT) as a fast and easy clinical method, it is suitable for assisting in diagnosis and treatment of COVID-19. According to clinical manifestations, COVID-19 lung infection areas can be divided into three categories: ground-glass opacities, interstitial infiltrates and consolidation. We proposed a multi-scale discriminative network (MSD-Net) for multi-class segmentation of COVID-19 lung infection on CT. In the MSD-Net, we proposed pyramid convolution block (PCB), channel attention block (CAB) and residual refinement block (RRB). The PCB can increase the receptive field by using different numbers and different sizes of kernels, which strengthened the ability to segment the infected areas of different sizes. The CAB was used to fusion the input of the two stages and focus features on the area to be segmented. The role of RRB was to refine the feature maps. Experimental results showed that the dice similarity coefficient (DSC) of the three infection categories were 0.7422,0.7384,0.8769 respectively. For sensitivity and specificity, the results of three infection categories were (0.8593, 0.9742), (0.8268,0.9869) and (0.8645,0.9889) respectively. The experimental results demonstrated that the network proposed in this paper can effectively segment the COVID-19 infection on CT images. It can be adopted for assisting in diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Bingbing Zheng
- School of Information Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yaoqi Liu
- The Affiliated Hospital of Qingdao UniversityQingdao266000China
| | - Yu Zhu
- School of Information Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Fuli Yu
- School of Information Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tianjiao Jiang
- The Affiliated Hospital of Qingdao UniversityQingdao266000China
| | - Dawei Yang
- Department of Pulmonary MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Tao Xu
- The Affiliated Hospital of Qingdao UniversityQingdao266000China
| |
Collapse
|
48
|
Suri JS, Puvvula A, Biswas M, Majhail M, Saba L, Faa G, Singh IM, Oberleitner R, Turk M, Chadha PS, Johri AM, Sanches JM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Ahluwalia P, Kolluri R, Teji J, Maini MA, Agbakoba A, Dhanjil SK, Sockalingam M, Saxena A, Nicolaides A, Sharma A, Rathore V, Ajuluchukwu JNA, Fatemi M, Alizad A, Viswanathan V, Krishnan PR, Naidu S. COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review. Comput Biol Med 2020; 124:103960. [PMID: 32919186 PMCID: PMC7426723 DOI: 10.1016/j.compbiomed.2020.103960] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients-specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Annu's Hospitals for Skin and Diabetes, Nellore, AP, India
| | | | - Misha Majhail
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Oakmont High School and AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Gavino Faa
- Department of Pathology - AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Amer M Johri
- Department of Medicine, Division of Cardiology,Queen's University, Kingston, Ontario, Canada
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Vikas Agarwal
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK; Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, New Delhi, India
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Mustafa Al Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, Canada
| | | | | | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | | | - Mostafa Fatemi
- Dept. of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN, USA
| | - Azra Alizad
- Dept. of Radiology, Mayo Clinic College of Medicine and Science, MN, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| |
Collapse
|