1
|
Shen J, Gao C, Lou X, Pan T, Wang S, Xu Z, Wu L, Xu M. The association between emphysema detected on computed tomography and increased risk of lung cancer: a systematic review and meta-analysis. Quant Imaging Med Surg 2025; 15:2193-2208. [PMID: 40160601 PMCID: PMC11948427 DOI: 10.21037/qims-24-1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 04/02/2025]
Abstract
Background Lung cancer, chronic obstructive pulmonary disease (COPD), and emphysema share common pathophysiological mechanisms, including diffuse chronic inflammation within lung tissue, oxidative stress, and lung destruction. This study aimed to evaluate the effectiveness of computed tomography (CT) imaging in predicting the risk of lung cancer development in patients with emphysema and COPD. Methods The databases of PubMed, Embase, Web of Science, and Cochrane Library were searched to identify studies examining the relationship between CT-detected emphysema, COPD, and the risk of developing lung malignancy. The severity of emphysema (from trace to severe) was assessed visually and quantitatively on CT. COPD severity was classified from Global Initiative for Chronic Obstructive Lung Disease (GOLD) I to GOLD IV. Quality Assessment of Diagnostic Accuracy Studies, version 2 (QUADAS-2) was used to assess risk of bias in the included studies. Pooled odds ratios (ORs) with their corresponding 95% confidence intervals (CIs) were calculated for overall and stratified analyses. Results Of the 6,114 studies screened, 12 (22,190 patients) were included. The overall pooled OR for lung cancer associated with CT-defined emphysema was 2.45 (95% CI: 2.01-2.99). In studies employing CT-based evaluation methods, the pooled OR for lung cancer was comparable between visual assessment (2.37; 95% CI: 1.93-2.80) and quantitative assessment (2.38; 95% CI: 1.85-3.05). The risk of lung cancer demonstrated a positive correlation with disease severity in both emphysema and COPD cases. Conclusions CT-defined emphysema was linked to an elevated risk of lung cancer, which was observed across various assessments. Moreover, the severity of COPD was found also to be a risk factor for the development of lung cancer.
Collapse
Affiliation(s)
- Jiahao Shen
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinjing Lou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Pan
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shenghan Wang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengnan Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Yazdani R, Fallah H, Yazdani S, Shahouzehi B, Danesh B. Effect of plasma free fatty acids on lung function in male COPD patients. Sci Rep 2025; 15:3377. [PMID: 39870734 PMCID: PMC11772598 DOI: 10.1038/s41598-025-86628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammation and oxidative stress play a pivotal role in COPD pathogenesis. Free fatty acids (FFA) as signaling molecules through a series of G-proteins coupled receptors, play an important role in regulation of the immune system and oxidative stress. For this reason, we decided to investigate the profile of FFA in the plasma in the COPD patients. This is a case-control study comparing 40 male patients with COPD and 40 healthy controls. Biochemical plasma parameters were measured by Autoanalyzer, Malondialdehyde by TBA, total antioxidant capacity via FRAP method and the concentration of free fatty acids were measured by gas chromatography. Then the relationship between the data and the spirometric findings of the patients was determined. In male COPD patients, fasting glucose, myristic acid, palmitic acid, stearic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid and total FFA showed a significant difference with the control group. Also, a positive correlation between the medium chain FFA and lung function was observed. The results of the present study showed that the concentration of different free fatty acids is different in healthy people and male COPD patients, and these differences, especially in the case of medium and long chain fatty acids, can be related to the lung function.
Collapse
Affiliation(s)
- Rostam Yazdani
- Department of Internal Medicine, Afzalipour Faculty of Medicine, Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Fallah
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shirin Yazdani
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, Canada
| | - Beydolah Shahouzehi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnaz Danesh
- Department of Internal Medicine, Afzalipour Faculty of Medicine, Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Zhang H, Wu J, Gan J, Wang W, Liu Y, Song T, Yang Y, Ji G, Li W. Proteomic Analysis of Plasma Exosomes Enables the Identification of Lung Cancer in Patients With Chronic Obstructive Pulmonary Disease. Thorac Cancer 2025; 16:e15517. [PMID: 39778061 PMCID: PMC11717053 DOI: 10.1111/1759-7714.15517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is confirmed as an independent risk factor for the development of lung cancer. Although low-dose CT screening significantly reduces the mortality rate of lung cancer, the misdiagnosis and missed diagnosis rates remain high in the COPD population. Additionally, several COPD patients are unable to undergo invasive histological examinations. Therefore, there is an urgent need for minimally invasive biomarkers to screen or diagnose lung cancer in COPD patients. In this study, peripheral blood samples were collected from COPD patients with and without lung cancer. Plasma exosomes (EVs) were extracted for proteomic analysis. Sixteen differentially expressed proteins (DEPs) were preliminarily selected via label-free quantification (LFQ) proteomic technology and comprehensive bioinformatics analysis. Parallel reaction monitoring (PRM) targeted validation identified five candidate proteins associated with COPD with lung cancer. Compared to the COPD group, KRT1, KRT9, and KRT10 were significantly upregulated in the COPD with lung cancer group, while GPLD1 and TF were downregulated. The biomarkers identified in our study provide a foundation for non-invasive screening and diagnosis of lung cancer in COPD patients and exploration of the mechanisms shared between COPD and lung cancer.
Collapse
Affiliation(s)
- Huohuo Zhang
- Department of Pulmonary and Critical Care Medicine, West China HospitalSichuan UniversityChengduSichuanChina
- Institute of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Jiaxuan Wu
- Department of Pulmonary and Critical Care Medicine, West China HospitalSichuan UniversityChengduSichuanChina
- Institute of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Jiadi Gan
- Department of Pulmonary and Critical Care Medicine, West China HospitalSichuan UniversityChengduSichuanChina
- Institute of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Wei Wang
- Health Management Center, General Practice Medical Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, West China HospitalSichuan UniversityChengduSichuanChina
- Institute of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Tingting Song
- Institute of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yongfeng Yang
- Institute of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduSichuanChina
| | - Guiyi Ji
- Health Management Center, General Practice Medical Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, West China HospitalSichuan UniversityChengduSichuanChina
- Institute of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
- State Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalChengduSichuanChina
| |
Collapse
|
4
|
Cronin E, Cushen B. Diagnosis and management of comorbid disease in COPD. Breathe (Sheff) 2025; 21:240099. [PMID: 40007528 PMCID: PMC11851148 DOI: 10.1183/20734735.0099-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/24/2024] [Indexed: 02/27/2025] Open
Abstract
COPD is one of the most common chronic respiratory conditions and is associated with high healthcare use, morbidity and mortality. Multimorbidity in COPD is common and confers a worse prognosis. Despite this, there is delayed and often under-diagnosis of comorbid diseases in COPD. Knowledge of the respiratory and non-respiratory pathologies that can coexist with COPD is essential to ensure early detection and appropriate management. This review provides an overview of the comorbidities that have been described in COPD. We discuss their pathogenesis, pitfalls in their diagnosis, and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Eleanor Cronin
- Department of Respiratory Medicine, St Vincents University Hospital, Dublin, Ireland
| | - Breda Cushen
- Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
- RSCI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
5
|
Gu Z, Sun J, Wang L. mRNA expression insights: Unraveling the relationship between COPD and lung cancer. J Gene Med 2024; 26:e3728. [PMID: 39183385 DOI: 10.1002/jgm.3728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/09/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Lung cancer is a prevalent form of cancer worldwide. A possible link between lung cancer and chronic obstructive pulmonary disease (COPD) has been suggested by recent studies. The objective of our research was to analyze the mRNA expression patterns in both situations, with a specific emphasis on their biological functions and the pathways they are linked to. METHOD Data on COPD mRNA expression was collected from the NCBI-GEO database, while information regarding lung cancer mRNA was acquired from The Cancer Genome Atlas database. To examine the association of COPD-related scores in lung cancer patients, we utilized the ssGSEA algorithm for single sample gene set enrichment analysis. The possible routes were examined through the utilization of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Risk models were developed using Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Moreover, a GSEA was performed to investigate significant pathways among various risk groups. RESULT After identifying 17 genes that were differentially expressed and linked to COPD, we found that they met the criteria of having a false discovery rate < 0.05 and an absolute log2 fold change > 0.585. By utilizing the ssGSEA algorithm, it became possible to classify individuals with lung cancer into two distinct groups based on their COPD status. Consequently, a seven-gene risk model was developed specifically for these patients. The risk score was determined by applying the given formula: risk score = AC022784.1 × 0.0423737993775888 + CRISP3 × 0.0415322046890524 + MELTF × 0.0661848418476596 + MT2P1 × 0.111843227536117 + FAM83A-AS1 × 0.045295939710361 + ZNF506 × -0.309489953363417 + ITGA6 × 0.01813978449589. The risk model associated with COPD showed a notable connection with different immune cells found in the lung cancer sample, including macrophages of M0/M1/M2 types, hematopoietic stem cells, mast cells, NK T cells and regulatory T cells. Overexpression of crucial genes was seen to enhance cell proliferation and invasive potential in the lung cancer sample. In the lung cancer sample, it was observed that an increase in ZNF506 expression enhanced both cell proliferation and invasion. CONCLUSION In conclusion, this study effectively examines the potential correlation between COPD and lung cancer. A prognostic model based on seven COPD-associated genes demonstrated robust predictive potential in the lung cancer sample. Our analysis offers comprehensive insights for lung cancer patients.
Collapse
Affiliation(s)
- Zhan Gu
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jijia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Wang
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Zhu L, Liu J, Zeng L, Moonindranath S, An P, Chen H, Xiang Q, Wang Z. Thoracic high resolution computed tomography evaluation of imaging abnormalities of 108 lung cancer patients with different pulmonary function. Cancer Imaging 2024; 24:78. [PMID: 38910260 PMCID: PMC11194896 DOI: 10.1186/s40644-024-00720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
PURPOSE Preserved ratio impaired spirometry (PRISm) and chronic obstructive pulmonary disease (COPD) belong to lung function injury. PRISm is a precursor to COPD. We compared and evaluated the different basic information, imaging findings and survival curves of 108 lung cancer patients with different pulmonary function based on high resolution computed tomography (HRCT). METHODS This retrospective study was performed on 108 lung cancer patients who did pulmonary function test (PFT) and thoracic HRCT. The basic information was evaluated: gender, age, body mass index (BMI), smoke, smoking index (SI). The following pulmonary function findings were evaluated: forced expiratory volume in 1s (FEV1), forced vital capacity (FVC), FEV1/FVC ratio. The following computed tomography (CT) findings were evaluated: appearance (bronchiectasis, pneumonectasis, atelectasis, ground-glass opacities [GGO], interstitial inflammation, thickened bronchial wall), diameter (aortic diameter, pulmonary artery diameter, MPAD/AD ratio, inferior vena cava diameter [IVCD]), tumor (volume, classification, distribution, staging [I, II, III, IV]). Mortality rates were calculated and survival curves were estimated using the Kaplan-Meier method. RESULTS Compared with normal pulmonary function group, PRISm group and COPD group were predominantly male, older, smoked more, poorer lung function and had shorter survival time after diagnosis. There were more abnormal images in PRISm group and COPD group than in normal lung function group (N-C group). In PRISm group and COPD group, lung cancer was found late, and the tumor volume was larger, mainly central squamous carcinoma. But the opposite was true for the N-C group. The PRISm group and COPD group had significant poor survival probability compared with the normal lung function group. CONCLUSIONS Considerable differences regarding basic information, pulmonary function, imaging findings and survival curves are found between normal lung function group and lung function injury group. Lung function injury (PRISm and COPD) should be taken into account in future lung cancer screening studies.
Collapse
Affiliation(s)
- Li Zhu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jiali Liu
- School of Public Health, Southeast University, No. 2 Sipai Lou, Nanjing, 210096, China
| | - Liang Zeng
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | | | - Peng An
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Hu Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Quanyong Xiang
- School of Public Health, Southeast University, No. 2 Sipai Lou, Nanjing, 210096, China.
- Department of Chronic Non-communicable Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, 210009, China.
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
8
|
Meng FT, Jhuang JR, Peng YT, Chiang CJ, Yang YW, Huang CY, Huang KP, Lee WC. Predicting Lung Cancer Survival to the Future: Population-Based Cancer Survival Modeling Study. JMIR Public Health Surveill 2024; 10:e46737. [PMID: 38819904 PMCID: PMC11179019 DOI: 10.2196/46737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer-related mortality globally, with late diagnoses often resulting in poor prognosis. In response, the Lung Ambition Alliance aims to double the 5-year survival rate by 2025. OBJECTIVE Using the Taiwan Cancer Registry, this study uses the survivorship-period-cohort model to assess the feasibility of achieving this goal by predicting future survival rates of patients with lung cancer in Taiwan. METHODS This retrospective study analyzed data from 205,104 patients with lung cancer registered between 1997 and 2018. Survival rates were calculated using the survivorship-period-cohort model, focusing on 1-year interval survival rates and extrapolating to predict 5-year outcomes for diagnoses up to 2020, as viewed from 2025. Model validation involved comparing predicted rates with actual data using symmetric mean absolute percentage error. RESULTS The study identified notable improvements in survival rates beginning in 2004, with the predicted 5-year survival rate for 2020 reaching 38.7%, marking a considerable increase from the most recent available data of 23.8% for patients diagnosed in 2013. Subgroup analysis revealed varied survival improvements across different demographics and histological types. Predictions based on current trends indicate that achieving the Lung Ambition Alliance's goal could be within reach. CONCLUSIONS The analysis demonstrates notable improvements in lung cancer survival rates in Taiwan, driven by the adoption of low-dose computed tomography screening, alongside advances in diagnostic technologies and treatment strategies. While the ambitious target set by the Lung Ambition Alliance appears achievable, ongoing advancements in medical technology and health policies will be crucial. The study underscores the potential impact of continued enhancements in lung cancer management and the importance of strategic health interventions to further improve survival outcomes.
Collapse
Affiliation(s)
- Fan-Tsui Meng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Parexel International Company Limited, Taipei, Taiwan
| | - Jing-Rong Jhuang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yan-Teng Peng
- Parexel International Company Limited, Taipei, Taiwan
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
| | - Ya-Wen Yang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
| | - Chi-Yen Huang
- Health Promotion Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Kuo-Ping Huang
- Health Promotion Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Kyaw TW, Tsai MK, Wen CP, Shu CC, Su TC, Wu X, Gao W. Impaired lung function and lung cancer risk in 461 183 healthy individuals: a cohort study. BMJ Open Respir Res 2024; 11:e001936. [PMID: 38719501 PMCID: PMC11086288 DOI: 10.1136/bmjresp-2023-001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND It has been known that smoking and various lung diseases including lung cancer can cause lung function impairment. However, the impact of different types of lung function impairments, such as preserved ratio impaired spirometry (PRISm) and airflow obstruction (AO), on the incidence and mortality of lung cancer in both general and never-smoker populations remains unclear. We wished to examine the effect of lung function impairments on lung cancer risks. METHODS This was a retrospective cohort study (1 January 1994 to 31 December 2017) of individuals from a health surveillance programme in Taiwan who underwent baseline spirometry tests at the entry point. PRISm was defined as an FEV1/FVC (forced expiratory volume in 1 s/forced vital capacity) ratio >0.7 and FEV1 <0.8, while AO was defined as an FEV1/FVC ratio <0.7. Cox proportional hazards models and cubic spline curves were used to examine the associations between lung function impairments and lung cancer risks. RESULTS The study included 461,183 individuals, of whom 14.3% had PRISm and 7.9% had AO. A total of 4038 cases of lung cancer and 3314 lung cancer-related deaths were identified during the 23 years of follow-up. Individuals with PRISm and AO exhibited a higher risk of lung cancer incidence and mortality compared with those with normal lung function. The adjusted HRs and 95% CIs were 1.14 (1.03 to 1.26) and 1.23 (1.10 to 1.37) in the overall cohort, and 1.08 (0.93 to 1.24), and 1.23 (1.05 to 1.45) in the never-smoker cohort. The risks of both developing and dying of lung cancer increased with the severity levels of lung function impairments and lower FEV1 values. CONCLUSION Impaired lung function is associated with increased risks of developing lung cancer and subsequent mortality. The study highlights the importance of considering lung function in lung cancer screening for better candidate selection.
Collapse
Affiliation(s)
- Thu Win Kyaw
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| | - Min-Kuang Tsai
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| | - Chi Pang Wen
- National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University, Taipei, Taiwan
| | - Ta-Chen Su
- Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Xifeng Wu
- School of Public Health, Zhejiang Medical University, Hangzhou, China
| | - Wayne Gao
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| |
Collapse
|
10
|
Antonicelli A, Muriana P, Favaro G, Mangiameli G, Lanza E, Profili M, Bianchi F, Fina E, Ferrante G, Ghislandi S, Pistillo D, Finocchiaro G, Condorelli G, Lembo R, Novellis P, Dieci E, De Santis S, Veronesi G. The Smokers Health Multiple ACtions (SMAC-1) Trial: Study Design and Results of the Baseline Round. Cancers (Basel) 2024; 16:417. [PMID: 38254906 PMCID: PMC10814085 DOI: 10.3390/cancers16020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Lung cancer screening with low-dose helical computed tomography (LDCT) reduces mortality in high-risk subjects. Cigarette smoking is linked to up to 90% of lung cancer deaths. Even more so, it is a key risk factor for many other cancers and cardiovascular and pulmonary diseases. The Smokers health Multiple ACtions (SMAC-1) trial aimed to demonstrate the feasibility and effectiveness of an integrated program based on the early detection of smoking-related thoraco-cardiovascular diseases in high-risk subjects, combined with primary prevention. A new multi-component screening design was utilized to strengthen the framework on conventional lung cancer screening programs. We report here the study design and the results from our baseline round, focusing on oncological findings. METHODS High-risk subjects were defined as being >55 years of age and active smokers or formers who had quit within 15 years (>30 pack/y). A PLCOm2012 threshold >2% was chosen. Subject outreach was streamlined through media campaign and general practitioners' engagement. Eligible subjects, upon written informed consent, underwent a psychology consultation, blood sample collection, self-evaluation questionnaire, spirometry, and LDCT scan. Blood samples were analyzed for pentraxin-3 protein levels, interleukins, microRNA, and circulating tumor cells. Cardiovascular risk assessment and coronary artery calcium (CAC) scoring were performed. Direct and indirect costs were analyzed focusing on the incremental cost-effectiveness ratio per quality-adjusted life years gained in different scenarios. Personalized screening time-intervals were determined using the "Maisonneuve risk re-calculation model", and a threshold <0.6% was chosen for the biennial round. RESULTS In total, 3228 subjects were willing to be enrolled. Out of 1654 eligible subjects, 1112 participated. The mean age was 64 years (M/F 62/38%), with a mean PLCOm2012 of 5.6%. Former and active smokers represented 23% and 77% of the subjects, respectively. At least one nodule was identified in 348 subjects. LDCTs showed no clinically significant findings in 762 subjects (69%); thus, they were referred for annual/biennial LDCTs based on the Maisonneuve risk (mean value = 0.44%). Lung nodule active surveillance was indicated for 122 subjects (11%). Forty-four subjects with baseline suspicious nodules underwent a PET-FDG and twenty-seven a CT-guided lung biopsy. Finally, a total of 32 cancers were diagnosed, of which 30 were lung cancers (2.7%) and 2 were extrapulmonary cancers (malignant pleural mesothelioma and thymoma). Finally, 25 subjects underwent lung surgery (2.25%). Importantly, there were zero false positives and two false negatives with CT-guided biopsy, of which the patients were operated on with no stage shift. The final pathology included lung adenocarcinomas (69%), squamous cell carcinomas (10%), and others (21%). Pathological staging showed 14 stage I (47%) and 16 stage II-IV (53%) cancers. CONCLUSIONS LDCTs continue to confirm their efficacy in safely detecting early-stage lung cancer in high-risk subjects, with a negligible risk of false-positive results. Re-calculating the risk of developing lung cancer after baseline LDCTs with the Maisonneuve model allows us to optimize time intervals to subsequent screening. The Smokers health Multiple ACtions (SMAC-1) trial offers solid support for policy assessments by policymakers. We trust that this will help in developing guidelines for the large-scale implementation of lung cancer screening, paving the way for better outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Alberto Antonicelli
- Faculty of Medicine and Surgery, School of Thoracic Surgery, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (A.A.); (G.V.)
- Department of Thoracic Surgery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (P.N.); (E.D.); (S.D.S.)
| | - Piergiorgio Muriana
- Department of Thoracic Surgery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (P.N.); (E.D.); (S.D.S.)
| | - Giovanni Favaro
- Department of Anesthesia and Intensive Care, IRCCS Istituto Oncologico Veneto (IOV), 35128 Padua, Italy;
| | - Giuseppe Mangiameli
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (G.M.); (E.F.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (E.L.); (G.F.); (G.C.)
| | - Ezio Lanza
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (E.L.); (G.F.); (G.C.)
- Department of Interventional Radiology, IRCCS Humanitas Clinical and Research Center, 20089 Rozzano, Italy;
| | - Manuel Profili
- Department of Interventional Radiology, IRCCS Humanitas Clinical and Research Center, 20089 Rozzano, Italy;
| | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Emanuela Fina
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (G.M.); (E.F.)
| | - Giuseppe Ferrante
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (E.L.); (G.F.); (G.C.)
- Cardio Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Simone Ghislandi
- CERGAS and Department of Social and Political Sciences, Bocconi University, 20136 Milan, Italy;
| | - Daniela Pistillo
- Center for Biological Resources, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Giovanna Finocchiaro
- Department of Medical Oncology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy; (E.L.); (G.F.); (G.C.)
- Cardio Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Rosalba Lembo
- Department of Anesthesia and Intensive Care, Section of Biostatistics, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Pierluigi Novellis
- Department of Thoracic Surgery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (P.N.); (E.D.); (S.D.S.)
| | - Elisa Dieci
- Department of Thoracic Surgery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (P.N.); (E.D.); (S.D.S.)
| | - Simona De Santis
- Department of Thoracic Surgery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (P.N.); (E.D.); (S.D.S.)
| | - Giulia Veronesi
- Faculty of Medicine and Surgery, School of Thoracic Surgery, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (A.A.); (G.V.)
- Department of Thoracic Surgery, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (P.N.); (E.D.); (S.D.S.)
| |
Collapse
|
11
|
Wang X, Chen Y, Ai H, Li P, Zhu C, Yuan J. Study on the therapeutic effects and prognosis evaluation of non-invasive ventilation in patients with chronic obstructive pulmonary disease with lung cancer. Technol Health Care 2024; 32:1915-1923. [PMID: 37980585 PMCID: PMC11091655 DOI: 10.3233/thc-231063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/23/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory complication among the elderly, and its severity can escalate to respiratory failure as the disease progresses. OBJECTIVE To evaluate the application value of non-invasive ventilation in the clinical treatment of patients with COPD and lung cancer. This study assesses its therapeutic effects and its impact on patients' quality of life (QoL) as measured by the Functional Assessment of Cancer Therapy-Lung (FACT-L) scale. METHODS A retrospective analysis was conducted on clinical data from 102 patients with COPD and lung cancer. Patients were divided into two groups: the control group (n= 48), who received conventional treatment, and the observation group (n= 54), who received non-invasive positive pressure ventilation (NIPPV) in addition to conventional treatment. Relevant indicators of curative effect, including blood gas indices, incidence of dyspnoea, improvements in mental health and appetite, and FACT-L QoL scores, were analysed at 2 weeks, 1 month, and 6 months post-treatment. RESULTS At 2 weeks post-treatment, the observation group who had used NIPPV showed significant improvements in blood gas indices, dyspnoea, mental state and self-care ability compared with the control group (p< 0.05). At 1 month, these benefits persisted and included improved maintenance of body weight (p< 0.05). By 6 months, the observation group had a lower incidence of pulmonary encephalopathy (p< 0.05), and QoL, as measured by the FACT-L scale, improved significantly in the observation group but declined in the control group (p< 0.05). CONCLUSION NIPPV demonstrates significant efficacy in treating COPD patients with lung cancer, particularly in enhancing curative effects and improving patients' QoL.
Collapse
Affiliation(s)
- Xiangyun Wang
- Department of Respiratory Medicine, Kongjiang Hospital, Shanghai, China
| | - Yuanjing Chen
- Department of Respiratory Medicine, Kongjiang Hospital, Shanghai, China
| | - Hongjun Ai
- Department of Respiratory Medicine, Kongjiang Hospital, Shanghai, China
| | - Panpan Li
- Department of Respiratory Medicine, Kongjiang Hospital, Shanghai, China
| | - Chengjie Zhu
- Department of Respiratory Medicine, The First Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Jiaying Yuan
- Department of Respiratory Medicine, The First Hospital Affiliated to Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Susai CJ, Velotta JB, Sakoda LC. Clinical Adjuncts to Lung Cancer Screening: A Narrative Review. Thorac Surg Clin 2023; 33:421-432. [PMID: 37806744 PMCID: PMC10926946 DOI: 10.1016/j.thorsurg.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The updated US Preventive Services Task Force guidelines on lung cancer screening have significantly expanded the population of screening eligible adults, among whom the balance of benefits and harms associated with lung cancer screening vary considerably. Clinical adjuncts are additional information and tools that can guide decision-making to optimally screen individuals who are most likely to benefit. Proposed adjuncts include integration of clinical history, risk prediction models, shared-decision-making tools, and biomarker tests at key steps in the screening process. Although evidence regarding their clinical utility and implementation is still evolving, they carry significant promise in optimizing screening effectiveness and efficiency for lung cancer.
Collapse
Affiliation(s)
- Cynthia J Susai
- UCSF East Bay General Surgery, 1411 East 31st Street QIC 22134, Oakland, CA 94612, USA
| | - Jeffrey B Velotta
- Department of Thoracic Surgery, Kaiser Permanente Northern California, 3600 Broadway, Oakland, CA 94611, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, USA.
| |
Collapse
|
13
|
Labaki WW, Gu T, Murray S, Curtis JL, Wells JM, Bhatt SP, Bon J, Diaz AA, Hersh CP, Wan ES, Kim V, Beaty TH, Hokanson JE, Bowler RP, Arenberg DA, Kazerooni EA, Martinez FJ, Silverman EK, Crapo JD, Make BJ, Regan EA, Han MK. Causes of and Clinical Features Associated with Death in Tobacco Cigarette Users by Lung Function Impairment. Am J Respir Crit Care Med 2023; 208:451-460. [PMID: 37159910 PMCID: PMC10449063 DOI: 10.1164/rccm.202210-1887oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/08/2023] [Indexed: 05/11/2023] Open
Abstract
Rationale: Cigarette smoking contributes to the risk of death through different mechanisms. Objectives: To determine how causes of and clinical features associated with death vary in tobacco cigarette users by lung function impairment. Methods: We stratified current and former tobacco cigarette users enrolled in Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) into normal spirometry, PRISm (Preserved Ratio Impaired Spirometry), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 COPD, and GOLD 3-4 COPD. Deaths were identified via longitudinal follow-up and Social Security Death Index search. Causes of death were adjudicated after a review of death certificates, medical records, and next-of-kin interviews. We tested associations between baseline clinical variables and all-cause mortality using multivariable Cox proportional hazards models. Measurements and Main Results: Over a 10.1-year median follow-up, 2,200 deaths occurred among 10,132 participants (age 59.5 ± 9.0 yr; 46.6% women). Death from cardiovascular disease was most frequent in PRISm (31% of deaths). Lung cancer deaths were most frequent in GOLD 1-2 (18% of deaths vs. 9-11% in other groups). Respiratory deaths outpaced competing causes of death in GOLD 3-4, particularly when BODE index ⩾7. St. George's Respiratory Questionnaire score ⩾25 was associated with higher mortality in all groups: Hazard ratio (HR), 1.48 (1.20-1.84) normal spirometry; HR, 1.40 (1.05-1.87) PRISm; HR, 1.80 (1.49-2.17) GOLD 1-2; HR, 1.65 (1.26-2.17) GOLD 3-4. History of respiratory exacerbations was associated with higher mortality in GOLD 1-2 and GOLD 3-4, quantitative emphysema in GOLD 1-2, and airway wall thickness in PRISm and GOLD 3-4. Conclusions: Leading causes of death vary by lung function impairment in tobacco cigarette users. Worse respiratory-related quality of life is associated with all-cause mortality regardless of lung function.
Collapse
Affiliation(s)
| | - Tian Gu
- Department of Biostatistics, T.H. Chan School of Public Health
| | | | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine
- Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - J. Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Medical Service, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | | | - Craig P. Hersh
- Division of Pulmonary and Critical Care Medicine, and
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Emily S. Wan
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Victor Kim
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John E. Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Ella A. Kazerooni
- Division of Pulmonary and Critical Care Medicine
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Edwin K. Silverman
- Division of Pulmonary and Critical Care Medicine, and
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - James D. Crapo
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | - Barry J. Make
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | | | | |
Collapse
|
14
|
Wedzicha JA. Causes of Death in Smokers: Implications for Chronic Obstructive Pulmonary Disease Management across Disease Severity. Am J Respir Crit Care Med 2023; 208:354-356. [PMID: 37429287 PMCID: PMC10449074 DOI: 10.1164/rccm.202306-1065ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023] Open
Affiliation(s)
- Jadwiga A Wedzicha
- National Heart and Lung Institute Imperial College London London, United Kingdom
| |
Collapse
|
15
|
Zhuan B, Ma HH, Zhang BC, Li P, Wang X, Yuan Q, Yang Z, Xie J. Identification of non-small cell lung cancer with chronic obstructive pulmonary disease using clinical symptoms and routine examination: a retrospective study. Front Oncol 2023; 13:1158948. [PMID: 37576878 PMCID: PMC10419203 DOI: 10.3389/fonc.2023.1158948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Background Patients with non-small cell lung cancer (NSCLC) and patients with NSCLC combined with chronic obstructive pulmonary disease (COPD) have similar physiological conditions in early stages, and the latter have shorter survival times and higher mortality rates. The purpose of this study was to develop and compare machine learning models to identify future diagnoses of COPD combined with NSCLC patients based on the patient's disease and routine clinical data. Methods Data were obtained from 237 patients with COPD combined with NSCLC as well as NSCLC admitted to Ningxia Hui Autonomous Region People's Hospital from October 2013 to July 2022. Six machine learning algorithms (K-nearest neighbor, logistic regression, eXtreme gradient boosting, support vector machine, naïve Bayes, and artificial neural network) were used to develop prediction models for NSCLC combined with COPD. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy, F1 score, Mathews correlation coefficient (MCC), Kappa, area under the receiver operating characteristic curve (AUROC)and area under the precision-recall curve (AUPRC) were used as performance indicators to evaluate the performance of the models. Results 135 patients with NSCLC combined with COPD, 102 patients with NSCLC were included in the study. The results showed that pulmonary function and emphysema were important risk factors and that the support vector machine-based identification model showed optimal performance with accuracy:0.946, recall:0.940, specificity:0.955, precision:0.972, npv:0.920, F1 score:0.954, MCC:0.893, Kappa:0.888, AUROC:0.975, AUPRC:0.987. Conclusion The use of machine learning tools combining clinical symptoms and routine examination data features is suitable for identifying the risk of concurrent NSCLC in COPD patients.
Collapse
Affiliation(s)
- Bing Zhuan
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital, Yinchuan, Ningxia, China
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital Affiliated to Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong-Hong Ma
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital, Yinchuan, Ningxia, China
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital Affiliated to Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bo-Chao Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Ping Li
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital, Yinchuan, Ningxia, China
- Department of Respiratory Medicine, Ningxia Hui Autonomous Region People’s Hospital Affiliated to Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xi Wang
- Department of Respiratory Medicine, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qun Yuan
- Department of Respiratory Medicine, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhao Yang
- Department of Respiratory Medicine, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jun Xie
- Department of Thoracic Surgery, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Butler SJ, Louie AV, Sutradhar R, Paszat L, Brooks D, Gershon AS. Association between COPD and Stage of Lung Cancer Diagnosis: A Population-Based Study. Curr Oncol 2023; 30:6397-6410. [PMID: 37504331 PMCID: PMC10377848 DOI: 10.3390/curroncol30070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with an increased risk of lung cancer; however, the association between COPD and stage of lung cancer diagnosis is unclear. We conducted a population-based cross-sectional analysis of lung cancer patients (2008-2020) in Ontario, Canada. Using estimated propensity scores and inverse probability weighting, logistic regression models were developed to assess the association between COPD and lung cancer stage at diagnosis (early: I/II, advanced: III/IV), accounting for prior chest imaging. We further examined associations in subgroups with previously diagnosed and undiagnosed COPD. Over half (55%) of all lung cancer patients in Ontario had coexisting COPD (previously diagnosed: 45%, undiagnosed at time of cancer diagnosis: 10%). Compared to people without COPD, people with COPD had 30% lower odds of being diagnosed with lung cancer in the advanced stages (OR = 0.70, 95% CI: 0.68 to 0.72). Prior chest imaging only slightly attenuated this association (OR = 0.77, 95% CI: 0.75 to 0.80). The association with lower odds of advanced-stage diagnosis remained, regardless of whether COPD was previously diagnosed (OR = 0.68, 95% CI: 0.66 to 0.70) or undiagnosed (OR = 0.77, 95% CI: 0.73 to 0.82). Although most lung cancers are detected in the advanced stages, underlying COPD was associated with early-stage detection. Lung cancer diagnostics may benefit from enhanced partnership with COPD healthcare providers.
Collapse
Affiliation(s)
- Stacey J Butler
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- ICES, Toronto, ON M4N 3M5, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Alexander V Louie
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Rinku Sutradhar
- ICES, Toronto, ON M4N 3M5, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Lawrence Paszat
- ICES, Toronto, ON M4N 3M5, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | - Dina Brooks
- School of Rehabilitation Sciences, McMaster University, Hamilton, ON L8S 1C7, Canada
| | - Andrea S Gershon
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- ICES, Toronto, ON M4N 3M5, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| |
Collapse
|
17
|
Young RP, Scott RJ. Should we be screening for COPD? - looking through the lens of lung cancer screening. Expert Rev Respir Med 2023; 17:753-771. [PMID: 37728077 DOI: 10.1080/17476348.2023.2259800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION In May 2022, the US Preventive Services Task Force published their recommendation against screening for chronic obstructive pulmonary disease (COPD) in asymptomatic adults. However, we argue the routine use of spirometry in both asymptomatic and symptomatic high-risk smokers has utility. AREAS COVERED We provide published and unpublished observations from a secondary analyses of the American College of Radiology Imaging Network (ACRIN), arm of the National Lung Screening Trial, including 18,463 high-risk current or former smokers who underwent pre-bronchodilator spirometry at baseline. According to history alone, 20% reported a prior diagnosis of 'COPD,' although only 11% (about one half), actually had airflow limitation (Diagnosed COPD) and 9% had Global Initiative for Obstructive Pulmonary Disease GOLD 0 Pre-COPD. Of the remaining 80% of 'asymptomatic' screening participants, 23% had airflow limitation (Screen-detected COPD) and 13% had preserved ratio impaired spirometry (PRISm). This means 45% of this high-risk cohort were reclassified by spirometry, and together with comorbid disease, identified subgroups where lung cancer screening efficacy could be optimized by between 2-6 fold. EXPERT OPINION Our preliminary findings suggest lung cancer screening outcomes vary according to 'new' COPD-related spirometric-defined subgroups and that screening spirometry, together with comorbid disease, identifies those for whom lung cancer screening is mostly beneficial or potentially harmful.
Collapse
Affiliation(s)
- Robert P Young
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Raewyn J Scott
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Gene-Gene Interaction in Ever Smokers With Lung Cancer: Is There Confounding by Chronic Obstructive Pulmonary Disease in Genome-Wide Association Studies? J Thorac Oncol 2023; 18:e23-e24. [PMID: 36842813 DOI: 10.1016/j.jtho.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 02/26/2023]
|
19
|
Pang XL, Du HF, Nie F, Yang XG, Xu Y. Tubulin Alpha-1b as a Potential Biomarker for Lung Adenocarcinoma Diagnosis and Prognosis. Technol Cancer Res Treat 2023; 22:15330338231178391. [PMID: 37489256 PMCID: PMC10369087 DOI: 10.1177/15330338231178391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 07/26/2023] Open
Abstract
Background: Because lung cancer is the main cause of cancer deaths and lung adenocarcinoma (LUAD) accounts for more than 40% of all lung malignancies, it is essential to develop clinically useful biomarkers for the disease. The aim of this investigation is to assess the potential application of tubulin alpha-1b (TUBA1B) as a biomarker for diagnosing and monitoring the outcome of LUAD. Methods: The clinical data of the LUAD patients was retrospectively analyzed. Immunohistochemistry (IHC) analysis of a tissue microarray containing 90 LUAD cases was implemented to examine the expression of TUBA1B. The protein and mRNA levels of TUBA1B in serum were detected by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR) analysis respectively. UALCAN was employed to confirm the expression levels and survival probability of TUBA1B in LUAD patients. Results: Compared to adjacent non-cancerous tissues in the microarray, the expression of TUBA1B in LUAD tissues was much higher. The expression of TUBA1B in LUAD was statistically correlated with lymph node status (P = .031). Moreover, patients with higher TUBA1B expression had shorter overall survival (P < .0001). Furthermore, cox multi-factor analysis also suggested that TUBA1B may be an independent predictor for LUAD prognosis (P = .030). The results of TCGA data analysis by UALCAN were consistent with the microarray results, except for that TUBA1B was also significantly correlated with clinical tumor stages. Protein levels of TUBA1B in serum were obviously elevated in LUAD patients than control (P < .0001), and the area under the ROC curve was 0.99. TUBA1B also showed better sensitivity of 92.9% for LUAD than common clinical biomarkers. Conclusion: TUBA1B may be a non-invasive prognostic and diagnostic biomarker for LUAD patients.
Collapse
Affiliation(s)
- Xue-Li Pang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hong-Fei Du
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Nie
- Department of Clinical Laboratory, Second People's Hospital of Chengdu, Chengdu, China
| | - Xiang-Gui Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
20
|
Airflow limitation and mortality during cancer screening in the National Lung Screening Trial: why quantifying airflow limitation matters. Thorax 2022:thorax-2022-219334. [DOI: 10.1136/thorax-2022-219334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
ImportanceCurrent eligibility criteria for lung cancer (LC) screening are derived from randomised controlled trials and primarily based on age and smoking history. However, the individual benefits of screening are highly variable and potentially attenuated by co-morbidities such as advanced airflow limitation (AL).ObjectiveTo examine the relationship between the presence and severity of AL and screening outcomes.MethodsThis was a secondary analysis of 18 463 high-risk smokers, a substudy from the National Lung Screening Trial, who underwent pre-bronchodilator spirometry at baseline and median follow-up of 6.1 years. We used descriptive statistics and a competing risk proportional hazards model to examine differences in screening outcomes by chronic obstructive pulmonary disease severity group.ResultsThe risk of developing LC increased with worsening AL (effect size=0.34, p<0.0001), as did the risk of dying of LC (effect size=0.35, p<0.0001). While those with severe AL (Global Initiative for Obstructive Lung Disease, GOLD grade 3–4) had the highest risk of LC and the highest LC mortality, they also had fewer adenocarcinomas (effect size=−0.20, p=0.008) and a lower surgery rate (effect size=−0.16, p=0.014) despite comparable staging, and greater non-LC mortality relative to LC mortality (effect size=0.30, p<0.0001). In participants with no AL, screening with CT was associated with a significant reduction in LC deaths relative to chest X-ray (30.3%, 95% CI 4.5% to 49.2%, p<0.05). The clinically relevant but attenuated reduction in those with AL (18.5%, 95% CI −8.4% to 38.7%, p>0.05) could be attributed to GOLD 3–4, where no appreciable mortality reduction was observed.ConclusionDespite a greater risk of LC, severe AL was not associated with any apparent reduction in LC mortality following screening.
Collapse
|
21
|
Tisi S, Dickson JL, Horst C, Quaife SL, Hall H, Verghese P, Gyertson K, Bowyer V, Levermore C, Mullin AM, Teague J, Farrelly L, Nair A, Devaraj A, Hackshaw A, Hurst JR, Janes SM. Detection of COPD in the SUMMIT Study lung cancer screening cohort using symptoms and spirometry. Eur Respir J 2022; 60:2200795. [PMID: 35896207 PMCID: PMC10436757 DOI: 10.1183/13993003.00795-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND COPD is a major comorbidity in lung cancer screening (LCS) cohorts, with a high prevalence of undiagnosed COPD. Combining symptom assessment with spirometry in this setting may enable earlier diagnosis of clinically significant COPD and facilitate increased understanding of lung cancer risk in COPD. In this study, we wished to understand the prevalence, severity, clinical phenotype and lung cancer risk of individuals with symptomatic undiagnosed COPD in a LCS cohort. METHODS 16 010 current or former smokers aged 55-77 years attended a lung health check as part of the SUMMIT Study. A respiratory consultation and spirometry were performed alongside LCS eligibility assessment. Those with symptoms, no previous COPD diagnosis and airflow obstruction were labelled as undiagnosed COPD. Baseline low-dose computed tomography (LDCT) was performed in those at high risk of lung cancer (PLCOm2012 score ≥1.3% and/or meeting USPSTF 2013 criteria). RESULTS Nearly one in five (19.7%) met criteria for undiagnosed COPD. Compared with those previously diagnosed, those undiagnosed were more likely to be male (59.1% versus 53.2%; p<0.001), currently smoking (54.9% versus 47.6%; p<0.001) and from an ethnic minority group (p<0.001). Undiagnosed COPD was associated with less forced expiratory volume in 1 s impairment (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades 1 and 2: 85.3% versus 68.4%; p<0.001) and lower symptom/exacerbation burden (GOLD A and B groups: 95.6% versus 77.9%; p<0.001) than those with known COPD. Multivariate analysis demonstrated that airflow obstruction was an independent risk factor for lung cancer risk on baseline LDCT (adjusted OR 2.74, 95% CI 1.73-4.34; p<0.001), with a high risk seen in those with undiagnosed COPD (adjusted OR 2.79, 95% CI 1.67-4.64; p<0.001). CONCLUSIONS Targeted case-finding within LCS detects high rates of undiagnosed symptomatic COPD in those most at risk. Individuals with undiagnosed COPD are at high risk for lung cancer.
Collapse
Affiliation(s)
- Sophie Tisi
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Jennifer L Dickson
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Carolyn Horst
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Samantha L Quaife
- Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen Hall
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Priyam Verghese
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Kylie Gyertson
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Vicky Bowyer
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire Levermore
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Anne-Marie Mullin
- Cancer Research UK and UCL Cancer Trials Centre, University College London, London, UK
| | - Jonathan Teague
- Cancer Research UK and UCL Cancer Trials Centre, University College London, London, UK
| | - Laura Farrelly
- Cancer Research UK and UCL Cancer Trials Centre, University College London, London, UK
| | - Arjun Nair
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Anand Devaraj
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, University College London, London, UK
| | - John R Hurst
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| |
Collapse
|
22
|
Xu YR, Wang AL, Li YQ. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Front Oncol 2022; 12:984525. [PMID: 36338690 PMCID: PMC9634253 DOI: 10.3389/fonc.2022.984525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD), irrespective of their smoking history, are more likely to develop lung cancer than the general population. This is mainly because COPD is characterized by chronic persistent inflammation and hypoxia, which are the risk factors for lung cancer. However, the mechanisms underlying this observation are still unknown. Hypoxia-inducible factor 1-alpha (HIF-1α) plays an important role in the crosstalk that exists between inflammation and hypoxia. Furthermore, HIF-1α is the main regulator of somatic adaptation to hypoxia and is highly expressed in hypoxic environments. In this review, we discuss the molecular aspects of the crosstalk between hypoxia and inflammation, showing that HIF-1α is an important signaling pathway that drives COPD progression to lung cancer. Here, we also provide an overview of HIF-1α and its principal regulatory mechanisms, briefly describe HIF-1α-targeted therapy in lung cancer, and summarize substances that may be used to target HIF-1α at the level of COPD-induced inflammation.
Collapse
Affiliation(s)
- Yuan-rui Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - An-long Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ya-qing Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- *Correspondence: Ya-qing Li,
| |
Collapse
|
23
|
Qi C, Sun SW, Xiong XZ. From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis. Int J Chron Obstruct Pulmon Dis 2022; 17:2603-2621. [PMID: 36274992 PMCID: PMC9586171 DOI: 10.2147/copd.s380732] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Many studies have proved that the pathogenesis of the chronic obstructive pulmonary disease (COPD) and lung cancer is related, and may cause and affect each other to a certain extent. In fact, the change of chronic airway obstruction will continue to have an impact on the screening, treatment, and prognosis of lung cancer.In this comprehensive review, we outlined the links and heterogeneity between COPD and lung cancer and finds that factors such as gene expression and genetic susceptibility, epigenetics, smoking, epithelial mesenchymal transformation (EMT), chronic inflammation, and oxidative stress injury may all play a role in the process. Although the relationship between these two diseases have been largely determined, the methods to prevent lung cancer in COPD patients are still limited. Early diagnosis is still the key to a better prognosis. Thus, it is necessary to establish more intuitive screening evaluation criteria and find suitable biomarkers for lung cancer screening in high-risk populations with COPD. Some studies have indicated that COPD may change the efficacy of anti-tumor therapy by affecting the response of lung cancer patients to immune checkpoint inhibitors (ICIs). And for lung cancer patients with COPD, the standardized management of COPD can improve the prognosis. The treatment of lung cancer patients with COPD is an individualized, comprehensive, and precise process. The development of new targets and new strategies of molecular targeted therapy may be the breakthrough for disease treatment in the future.
Collapse
Affiliation(s)
- Chang Qi
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Sheng-Wen Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China,Correspondence: Xian-Zhi Xiong, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People’s Republic of China, Tel/Fax +86 27-85726705, Email
| |
Collapse
|
24
|
Young RP, Scott RJ, Gamble GD. Lung function impairment in lung cancer screening: discordance between risk and screening outcomes when looking through a PRISm. Transl Lung Cancer Res 2022; 11:1988-1994. [PMID: 36386460 PMCID: PMC9641039 DOI: 10.21037/tlcr-22-634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
|
25
|
Stolz D, Mkorombindo T, Schumann DM, Agusti A, Ash SY, Bafadhel M, Bai C, Chalmers JD, Criner GJ, Dharmage SC, Franssen FME, Frey U, Han M, Hansel NN, Hawkins NM, Kalhan R, Konigshoff M, Ko FW, Parekh TM, Powell P, Rutten-van Mölken M, Simpson J, Sin DD, Song Y, Suki B, Troosters T, Washko GR, Welte T, Dransfield MT. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 2022; 400:921-972. [PMID: 36075255 PMCID: PMC11260396 DOI: 10.1016/s0140-6736(22)01273-9] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 10/14/2022]
Abstract
Despite substantial progress in reducing the global impact of many non-communicable diseases, including heart disease and cancer, morbidity and mortality due to chronic respiratory disease continues to increase. This increase is driven primarily by the growing burden of chronic obstructive pulmonary disease (COPD), and has occurred despite the identification of cigarette smoking as the major risk factor for the disease more than 50 years ago. Many factors have contributed to what must now be considered a public health emergency: failure to limit the sale and consumption of tobacco products, unchecked exposure to environmental pollutants across the life course, and the ageing of the global population (partly as a result of improved outcomes for other conditions). Additionally, despite the heterogeneity of COPD, diagnostic approaches have not changed in decades and rely almost exclusively on post-bronchodilator spirometry, which is insensitive for early pathological changes, underused, often misinterpreted, and not predictive of symptoms. Furthermore, guidelines recommend only simplistic disease classification strategies, resulting in the same therapeutic approach for patients with widely differing conditions that are almost certainly driven by variable pathophysiological mechanisms. And, compared with other diseases with similar or less morbidity and mortality, the investment of financial and intellectual resources from both the public and private sector to advance understanding of COPD, reduce exposure to known risks, and develop new therapeutics has been woefully inadequate.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, Basel, Switzerland; Clinic of Respiratory Medicine and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takudzwa Mkorombindo
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Desiree M Schumann
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Alvar Agusti
- Respiratory Institute-Hospital Clinic, University of Barcelona IDIBAPS, CIBERES, Barcelona, Spain
| | - Samuel Y Ash
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mona Bafadhel
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Department of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chunxue Bai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global health, University of Melbourne, Melbourne, VIC, Australia
| | - Frits M E Franssen
- Department of Research and Education, CIRO, Horn, Netherlands; Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Urs Frey
- University Children's Hospital Basel, Basel, Switzerland
| | - MeiLan Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathaniel M Hawkins
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Ravi Kalhan
- Department of Preventive Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Melanie Konigshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fanny W Ko
- The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Trisha M Parekh
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Maureen Rutten-van Mölken
- Erasmus School of Health Policy & Management and Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Jodie Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, Department of Medicine, University of British Columbia, St Paul's Hospital, Vancouver, BC, Canada
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Respiratory Research Institute, Shanghai, China; Jinshan Hospital of Fudan University, Shanghai, China
| | - Bela Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Thierry Troosters
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | - Mark T Dransfield
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
26
|
Criner GJ, Agusti A, Borghaei H, Friedberg J, Martinez FJ, Miyamoto C, Vogelmeier CF, Celli BR. Chronic Obstructive Pulmonary Disease and Lung Cancer: A Review for Clinicians. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:454-476. [PMID: 35790131 PMCID: PMC9448004 DOI: 10.15326/jcopdf.2022.0296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are common global causes of morbidity and mortality. Because both diseases share several predisposing risks, the 2 diseases may occur concurrently in susceptible individuals. The diagnosis of COPD has important implications for the diagnostic approach and treatment options if lesions concerning for lung cancer are identified during screening. Importantly, the presence of COPD has significant implications on prognosis and management of patients with lung cancer. In this monograph, we review the mechanistic linkage between lung cancer and COPD, the impact of lung cancer screening on patients at risk, and the implications of the presence of COPD on the approach to the diagnosis and treatment of lung cancer. This manuscript succinctly reviews the epidemiology and common pathogenetic factors for the concurrence of COPD and lung cancer. Importantly for the clinician, it summarizes the indications, benefits, and complications of lung cancer screening in patients with COPD, and the assessment of risk factors for patients with COPD undergoing consideration of various treatment options for lung cancer.
Collapse
Affiliation(s)
- Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Alvar Agusti
- Cátedra Salud Respiratoria, University of Barcelona; Respiratory Institute, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigacion Biomedica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Hossein Borghaei
- Department of Medical Oncology, Fox Chase Cancer Center at Temple University, Philadelphia, Pennsylvania, United States
| | - Joseph Friedberg
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | | | - Curtis Miyamoto
- Department of Radiation Oncology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Centre Giessen and Marburg, Philipps-University Marburg, German Centre for Lung Research, Marburg, Germany
| | - Bartolome R. Celli
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
27
|
Ma H, Zhang Q, Zhao Y, Zhang Y, Zhang J, Chen G, Tan Y, Zhang Q, Duan Q, Sun T, Qi C, Li F. Molecular and Clinicopathological Characteristics of Lung Cancer Concomitant Chronic Obstructive Pulmonary Disease (COPD). Int J Chron Obstruct Pulmon Dis 2022; 17:1601-1612. [PMID: 35860812 PMCID: PMC9293488 DOI: 10.2147/copd.s363482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) and lung cancer often coexist, but its pathophysiology and genomics features are still unclear. Methods In this study, we retrospectively collected lung cancer concomitant COPD (COPD-LC) and non-COPD lung cancer (non-COPD-LC) patients, who performed next generation sequencing (NGS) and had clinicopathological information simultaneously. The COPD-LC data from the TCGA cohort were collected to conduct further analysis. Results A total of 51 COPD-LC patients and 88 non-COPD-LC patients were included in the study. Clinicopathological analysis showed that proportion of male gender, older age, and smoking patients were all substantially higher in COPD-LC group than in non-COPD-LC group (all P<0.01). Comparing the genomic data of the two groups in our cohort, COPD-LC had higher mutation frequency of LRP1B (43% vs 9%, P = 0.001), EPHA5 (24% vs 1%, P = 0.002), PRKDC (14% vs 1%, P = 0.039), PREX2 (14% vs 0%, P = 0.012), and FAT1 (14% vs 0%, P = 0.012), which had a relationship with improved tumor immunity. Immunotherapy biomarker of PD-L1 positive expression (62.5% vs 52.0%, P = 0.397) and tumor mutation burden (TMB, median TMB: 7.09 vs 2.94, P = 0.004) also were higher in COPD-LC. In addition, RNA data from TCGA further indicated tumor immunity increased in COPD-LC. Whereas, COPD-LC had lower frequency of EGFR mutation (19% vs 50%, P = 0.013) and EGFR mutant COPD-LC treated with EGFR-TKI had worse progression-free survival (PFS) (HR = 3.52, 95% CI: 1.27–9.80, P = 0.01). Conclusion In this retrospective study, we first explored molecular features of COPD-LC in a Chinese population. Although COPD-LC had lower EGFR mutant frequency and worse PFS with target treatment, high PD-L1 expression and TMB indicated these patients may benefit from immunotherapy.
Collapse
Affiliation(s)
- Hongxia Ma
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Qian Zhang
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yanwen Zhao
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yaohui Zhang
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jingjing Zhang
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Guoqing Chen
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yuan Tan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Qin Zhang
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Qianqian Duan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Tingting Sun
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Chuang Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Fengsen Li
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| |
Collapse
|
28
|
Effect Analysis of Lung Rehabilitation Training in 5A Nursing Mode for Elderly Patients with COPD Based on X-Ray. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1963426. [PMID: 35734776 PMCID: PMC9208961 DOI: 10.1155/2022/1963426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
This study was aimed at evaluating the application effect of pulmonary rehabilitation training under 5A nursing mode based on X-ray in elderly patients with chronic obstructive pulmonary disease (COPD). Then, 84 elderly patients with chronic obstructive emphysema were selected as the research subjects. COPD knowledge level questionnaire, caregiver self-efficacy scale (CSES), COPD assessment test (CAT), and 6-minute walking experiment (6MWD) were adopted, and the clinical application effect of pulmonary rehabilitation training and conventional nursing under 5A nursing mode was comprehensively compared. The results show that after two and four months of intervention, the average score of COPD knowledge level questionnaire in the test group was 27.43 points and 30.08 points, respectively, higher than that in the control group (P < 0.05). After two and four months of intervention, the number of patients with good compliance in the test group was remarkably improved, and the severity of airflow restriction in the test group was slower than that in the control group. In short, pulmonary rehabilitation training under 5A nursing mode based on X-ray can effectively improve the disease knowledge level, self-efficacy, and pulmonary rehabilitation training compliance of elderly COPD patients, which played an important role in improving the quality of life of patients and alleviating the degree of dyspnea of patients.
Collapse
|
29
|
Braithwaite D, Karanth SD, Slatore CG, Zhang D, Bian J, Meza R, Jeon J, Tammemagi M, Schabath M, Wheeler M, Guo Y, Hochhegger B, Kaye FJ, Silvestri GA, Gould MK. Personalised Lung Cancer Screening (PLuS) study to assess the importance of coexisting chronic conditions to clinical practice and policy: protocol for a multicentre observational study. BMJ Open 2022; 12:e064142. [PMID: 35732383 PMCID: PMC9226937 DOI: 10.1136/bmjopen-2022-064142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer death in the USA and worldwide, and lung cancer screening (LCS) with low-dose CT (LDCT) has the potential to improve lung cancer outcomes. A critical question is whether the ratio of potential benefits to harms found in prior LCS trials applies to an older and potentially sicker population. The Personalised Lung Cancer Screening (PLuS) study will help close this knowledge gap by leveraging real-world data to fully characterise LCS recipients. The principal goal of the PLuS study is to characterise the comorbidity burden of individuals undergoing LCS and quantify the benefits and harms of LCS to enable informed decision-making. METHODS AND ANALYSIS PLuS is a multicentre observational study designed to assemble an LCS cohort from the electronic health records of ~40 000 individuals undergoing annual LCS with LDCT from 2016 to 2022. Data will be integrated into a unified repository to (1) examine the burden of multimorbidity by race/ethnicity, socioeconomic status and age; (2) quantify potential benefits and harms; and (3) use the observational data with validated simulation models in the Cancer Intervention and Surveillance Modeling Network (CISNET) to provide LCS outcomes in the real-world US population. We will fit a multivariable logistic regression model to estimate the adjusted ORs of comorbidity, functional limitations and impaired pulmonary function adjusted for relevant covariates. We will also estimate the cumulative risk of LCS outcomes using discrete-time survival models. To our knowledge, this is the first study to combine observational data and simulation models to estimate the long-term impact of LCS with LDCT. ETHICS AND DISSEMINATION The study was approved by the Kaiser Permanente Southern California Institutional Review Board and VA Portland Health Care System. The results will be disseminated through publications and presentations at national and international conferences. Safety considerations include protection of patient confidentiality.
Collapse
Affiliation(s)
- Dejana Braithwaite
- Department of Surgery, University of Florida, Gainesville, Florida, USA
- Cancer Center, UF Health, Gainesville, Florida, USA
| | - Shama D Karanth
- Cancer Center, UF Health, Gainesville, Florida, USA
- Institute on Aging, University of Florida, Gainesville, Florida, USA
| | - Christopher G Slatore
- Center to Improve Veteran Involvement in Care, Portland VA Medical Center, Portland, Oregon, USA
| | - Dongyu Zhang
- Cancer Center, UF Health, Gainesville, Florida, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Rafael Meza
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jihyoun Jeon
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Martin Tammemagi
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Mattthew Schabath
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Meghann Wheeler
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Yi Guo
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Bruno Hochhegger
- Department of Radiology, University of Florida, Gainesville, Florida, USA
| | - Frederic J Kaye
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Gerard A Silvestri
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael K Gould
- Department of Health Systems Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, California, USA
| |
Collapse
|
30
|
Bade B, Gwin M, Triplette M, Wiener RS, Crothers K. Comorbidity and life expectancy in shared decision making for lung cancer screening. Semin Oncol 2022; 49:220-231. [PMID: 35940959 DOI: 10.1053/j.seminoncol.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 11/11/2022]
Abstract
Shared decision making (SDM) is an important part of lung cancer screening (LCS) that includes discussing the risks and benefits of screening, potential outcomes, patient eligibility and willingness to participate, tobacco cessation, and tailoring a strategy to an individual patient. More than other cancer screening tests, eligibility for LCS is nuanced, incorporating the patient's age as well as tobacco use history and overall health status. Since comorbidities and multimorbidity (ie, 2 or more comorbidities) impact the risks and benefits of LCS, these topics are a fundamental part of decision-making. However, there is currently little evidence available to guide clinicians in addressing comorbidities and an individual's "appropriateness" for LCS during SDM visits. Therefore, this literature review investigates the impact of comorbidities and multimorbidity among patients undergoing LCS. Based on available evidence and guideline recommendations, we identify comorbidities that should be considered during SDM conversations and review best practices for navigating SDM conversations in the context of LCS. Three conditions are highlighted since they concomitantly portend higher risk of developing lung cancer, potentially increase risk of screening-related evaluation and treatment complications and can be associated with limited life expectancy: chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and human immunodeficiency virus infection.
Collapse
Affiliation(s)
- Brett Bade
- Veterans Affairs (VA) Connecticut Healthcare System, Section of Pulmonary, Critical Care, and Sleep Medicine, West Haven, CT, United States of America (USA); Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, New Haven, CT, USA.
| | - Mary Gwin
- University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew Triplette
- University of Washington School of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Seattle, WA, USA; Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, WA, USA
| | - Renda Soylemez Wiener
- Center for Healthcare Organization & Implementation Research and Medical Service, VA Boston Healthcare System, Boston, MA, USA; The Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Kristina Crothers
- University of Washington School of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Seattle, WA, USA; VA Puget Sound Health Care System, Section of Pulmonary, Critical Care and Sleep Medicine, Seattle, WA, USA
| |
Collapse
|
31
|
Zhang L, Jiang B, Wisselink HJ, Vliegenthart R, Xie X. COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images. Br J Radiol 2022; 95:20210637. [PMID: 35143286 PMCID: PMC10993953 DOI: 10.1259/bjr.20210637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Chest CT can display the main pathogenic factors of chronic obstructive pulmonary disease (COPD), emphysema and airway wall remodeling. This study aims to establish deep convolutional neural network (CNN) models using these two imaging markers to diagnose and grade COPD. METHODS Subjects who underwent chest CT and pulmonary function test (PFT) from one hospital (n = 373) were retrospectively included as the training cohort, and subjects from another hospital (n = 226) were used as the external test cohort. According to the PFT results, all subjects were labeled as Global Initiative for Chronic Obstructive Lung Disease (GOLD) Grade 1, 2, 3, 4 or normal. Two DenseNet-201 CNNs were trained using CT images of lung parenchyma and bronchial wall to generate two corresponding confidence levels to indicate the possibility of COPD, then combined with logistic regression analysis. Quantitative CT was used for comparison. RESULTS In the test cohort, CNN achieved an area under the curve of 0.899 (95%CI: 0.853-0.935) to determine the existence of COPD, and an accuracy of 81.7% (76.2-86.7%), which was significantly higher than the accuracy 68.1% (61.6%-74.2%) using quantitative CT method (p < 0.05). For three-way (normal, GOLD 1-2, and GOLD 3-4) and five-way (normal, GOLD 1, 2, 3, and 4) classifications, CNN reached accuracies of 77.4 and 67.9%, respectively. CONCLUSION CNN can identify emphysema and airway wall remodeling on CT images to infer lung function and determine the existence and severity of COPD. It provides an alternative way to detect COPD using the extensively available chest CT. ADVANCES IN KNOWLEDGE CNN can identify the main pathological changes of COPD (emphysema and airway wall remodeling) based on CT images, to infer lung function and determine the existence and severity of COPD. CNN reached an area under the curve of 0.853 to determine the existence of COPD in the external test cohort. The CNN approach provides an alternative and effective way for early detection of COPD using extensively used chest CT, as an important alternative to pulmonary function test.
Collapse
Affiliation(s)
- Lin Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao
Tong University School of Medicine,
Shanghai, China
| | - Beibei Jiang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao
Tong University School of Medicine,
Shanghai, China
| | - Hendrik Joost Wisselink
- Radiology Department, University of Groningen, University
Medical Center Groningen,
Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- Radiology Department, University of Groningen, University
Medical Center Groningen,
Groningen, The Netherlands
| | - Xueqian Xie
- Radiology Department, Shanghai General Hospital, Shanghai Jiao
Tong University School of Medicine,
Shanghai, China
| |
Collapse
|
32
|
PERROTTA F, D’AGNANO V, SCIALÒ F, KOMICI K, ALLOCCA V, NUCERA F, SALVI R, STELLA GM, BIANCO A. Evolving concepts in COPD and lung cancer: a narrative review. Minerva Med 2022; 113:436-448. [DOI: 10.23736/s0026-4806.22.07962-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Huang CH, Peng TC, Cheng YT, Huang YT, Chang BS. Perioperative exercise intervention in patients with lung cancer: A systematic literature review of randomized controlled trials. Tzu Chi Med J 2021; 33:412-418. [PMID: 34760640 PMCID: PMC8532582 DOI: 10.4103/tcmj.tcmj_273_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/04/2021] [Accepted: 02/20/2021] [Indexed: 12/09/2022] Open
Abstract
Objectives: During perioperative, lung cancer (LC) patients are often left to experience debilitating disease-related symptoms, impaired physical activity and health-related quality of life (HRQoL), and social difficulties, despite the progress achieved in terms of treatment efficacy. Nonpharmacological intervention, such as exercise, has been identified as an effective strategy in LC patients before and after lung resection. Therefore, we aimed to assess evidence of the effect of perioperative exercise among patients with LC. Materials and Methods: Seven databases were searched from January 1998 to September 2020. All randomized controlled trials (RCTs) that evaluated the effect of exercise on the physical and psychological status of patients with LC during the perioperative period were reviewed. Two reviewers independently assessed the quality of all studies included here using the revised Cochrane risk of bias tool for RCTs. Results: Seventeen RCTs (1199 participants) published between 2011 and 2019 met for this literature review. The outcome measures that emerged from these studies included subjective outcomes, such as HRQoL, pain score, fatigue, and objective effects, such as cardiorespiratory fitness, pulmonary function, physical activity, and biological markers. Overall, these studies suggest that exercise should be an optimal option for LC; however, its efficacy and effectiveness regarding HRQoL should be investigated further. Conclusion: Perioperative exercise could be included in the rehabilitation program of patients with LC. More extensive, high-quality RCTs evidence is needed on the ideal exercise type, duration, intensity, and timing across the LC perioperative care.
Collapse
Affiliation(s)
- Chun-Hou Huang
- Department of Nursing, Tzu Chi University, Hualien, Taiwan
| | - Tai-Chu Peng
- Department of Nursing, Tzu Chi University, Hualien, Taiwan
| | - Yi-Tso Cheng
- Department of Cardiovascular Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Ta Huang
- Department of Surgery, National Cheng Kung University Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bee-Song Chang
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Thoracic Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
34
|
Byun J, Han Y, Ostrom QT, Edelson J, Walsh KM, Pettit RW, Bondy ML, Hung RJ, McKay JD, Amos CI. The Shared Genetic Architectures Between Lung Cancer and Multiple Polygenic Phenotypes in Genome-Wide Association Studies. Cancer Epidemiol Biomarkers Prev 2021; 30:1156-1164. [PMID: 33771847 PMCID: PMC9108090 DOI: 10.1158/1055-9965.epi-20-1635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Prior genome-wide association studies have identified numerous lung cancer risk loci and reveal substantial etiologic heterogeneity across histologic subtypes. Analyzing the shared genetic architecture underlying variation in complex traits can elucidate common genetic etiologies across phenotypes. Exploring pairwise genetic correlations between lung cancer and other polygenic traits can reveal the common genetic etiology of correlated phenotypes. METHODS Using cross-trait linkage disequilibrium score regression, we estimated the pairwise genetic correlation and heritability between lung cancer and multiple traits using publicly available summary statistics. Identified genetic relationships were also examined after excluding genomic regions known to be associated with smoking behaviors, a major risk factor for lung cancer. RESULTS We observed several traits showing moderate single nucleotide polymorphism-based heritability and significant genetic correlations with lung cancer. We observed highly significant correlations between the genetic architectures of lung cancer and emphysema/chronic bronchitis across all histologic subtypes, as well as among lung cancer occurring among smokers. Our analyses revealed highly significant positive correlations between lung cancer and paternal history of lung cancer. We also observed a strong negative correlation with parental longevity. We observed consistent directions in genetic patterns after excluding genomic regions associated with smoking behaviors. CONCLUSIONS This study identifies numerous phenotypic traits that share genomic architecture with lung carcinogenesis and are not fully accounted for by known smoking-associated genomic loci. IMPACT These findings provide new insights into the etiology of lung cancer by identifying traits that are genetically correlated with increased risk of lung cancer.
Collapse
Affiliation(s)
- Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Quinn T Ostrom
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jacob Edelson
- Department of Medicine, Center for Biomedical Informatics Research, Stanford University, Stanford, California
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Rowland W Pettit
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Melissa L Bondy
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | |
Collapse
|
35
|
Aloe C, Wang H, Vlahos R, Irving L, Steinfort D, Bozinovski S. Emerging and multifaceted role of neutrophils in lung cancer. Transl Lung Cancer Res 2021; 10:2806-2818. [PMID: 34295679 PMCID: PMC8264329 DOI: 10.21037/tlcr-20-760] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
It has long been recognized that cigarette smoking is a shared risk factor for lung cancer and the debilitating lung disease, chronic obstructive pulmonary disease (COPD). As the severity of COPD increases, so does the risk for developing lung cancer, independently of pack years smoked. Neutrophilic inflammation increases with COPD severity and anti-inflammatories such as non-steroidal anti-inflammatory drugs (NSAIDs) can modulate neutrophil function and cancer risk. This review discusses the biology of tumour associated neutrophils (TANs) in lung cancer, which increase in density with tumour progression, particularly in smokers with non-small cell lung cancer (NSCLC). It is now increasingly recognized that neutrophils are responsive to the tumour microenvironment (TME) and polarize into distinct phenotypes that operate in an anti- (N1) or pro-tumorigenic (N2) manner. Intriguingly, the emergence of the pro-tumorigenic N2 phenotype increases with tumour growth, to suggest that cancer cells and the surrounding stroma can re-educate neutrophils. The neutrophil itself is a potent source of reactive oxygen species (ROS), arginase, proteases and cytokines that paradoxically can exert a potent immunosuppressive effect on lymphocytes including cytotoxic T cells (CTLs). Indeed, the neutrophil to lymphocyte ratio (NLR) is a systemic biomarker that is elevated in lung cancer patients and prognostic for poor survival outcomes. Herein, we review the molecular mechanisms by which neutrophil derived mediators can suppress CTL function. Selective therapeutic strategies designed to suppress pathogenic neutrophils in NSCLC may cooperate with immune checkpoint inhibitors (ICI) to increase CTL killing of cancer cells in the TME.
Collapse
Affiliation(s)
- Christian Aloe
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
36
|
Lung Cancer Risk Among Patients with Asthma-Chronic Obstructive Pulmonary Disease Overlap. Ann Am Thorac Soc 2021; 18:1894-1900. [PMID: 34019783 DOI: 10.1513/annalsats.202010-1280oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is a well-established independent risk factor for lung cancer, while the literature on the association between asthma and lung cancer is mixed. Whether Asthma COPD Overlap (ACO) is associated with lung cancer has not been studied. OBJECTIVES We aimed to compare lung cancer risk among patients with ACO vs. COPD and other conditions associated with airway obstruction. METHODS We studied 13,939 smokers from the National Lung Cancer Screening Trial who had baseline spirometry, and utilized spirometric indices and history of childhood asthma to categorize participants into 5 specific airway disease subgroups. We used Poisson regression to compare unadjusted and adjusted lung cancer risk. RESULTS The incidence rate of lung cancer per 1,000 person-years was: ACO, 13.2 (95% confidence interval [CI]: 8.1-21.5); COPD, 11.7 (95% CI: 10.5-13.1); asthmatic smokers, 1.8 (95% CI: 0.6-5.4); Global Initiative for Chronic Obstructive Lung Disease-Unclassified, 7.7 (95% CI: 6.4-9.2); and normal-spirometry smokers, 4.1 (95% CI: 3.5-4.8). ACO patients had increased adjusted risk of lung cancer compared to patients with asthma (incidence rate ratio [IRR]: 4.5, 95% CI: 1.3-15.8) and normal spirometry smokers (IRR: 2.3, 95% CI: 1.3-4.2) in models adjusting for other risk factors. Adjusted lung cancer incidence in patients with ACO and COPD were not found to be different (IRR: 1.2, 95% CI 0.7 - 2.1). CONCLUSIONS Risk of lung cancer among patients with ACO is similar to those with COPD and higher than other groups of smokers. These results provide further evidence that COPD, with or without a history of childhood asthma, is an independent risk factor for lung cancer.
Collapse
|
37
|
Goudemant C, Durieux V, Grigoriu B, Berghmans T. [Lung cancer screening with low dose computed tomography : a systematic review]. Rev Mal Respir 2021; 38:489-505. [PMID: 33994043 DOI: 10.1016/j.rmr.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Bronchial cancer, often diagnosed at a late stage, is the leading cause of cancer death. As early detection could potentially lead to curative treatment, several studies have evaluated low-dose chest CT (LDCT) as a screening method. The main objective of this work is to determine the impact of LDCT screening on overall mortality of a smoking population. METHODS Systematic review of randomised controlled screening trials comparing LDCT with no screening or chest x-ray. RESULTS Thirteen randomised controlled trials were identified, seven of which reported mortality results. NSLT showed a significant reduction of 6.7% in overall mortality and 20% in lung cancer mortality after 6.5 years of follow-up. NELSON showed a significant reduction in lung cancer mortality of 24% at 10 years among men. LUSI and MILD showed a reduction in lung cancer mortality of 69% at 8 years among women and 39% at 10 years, respectively. CONCLUSION Screening for bronchial cancer is a complex issue. Clarification is needed regarding the selection of individuals, the definition of a positive result and the attitude towards a suspicious nodule.
Collapse
Affiliation(s)
- C Goudemant
- Département des soins intensifs & urgences oncologiques et clinique d'oncologie thoracique, institut Jules-Bordet, Rue Héger-Bordet 1, 1000 Bruxelles, Belgique.
| | - V Durieux
- Bibliothèque des Sciences de la Santé, Université libre de Bruxelles
| | - B Grigoriu
- Département des soins intensifs & urgences oncologiques et clinique d'oncologie thoracique, institut Jules-Bordet, Rue Héger-Bordet 1, 1000 Bruxelles, Belgique
| | - T Berghmans
- Département des soins intensifs & urgences oncologiques et clinique d'oncologie thoracique, institut Jules-Bordet, Rue Héger-Bordet 1, 1000 Bruxelles, Belgique
| |
Collapse
|
38
|
Hopkins RJ, Duan F, Gamble GD, Chiles C, Cavadino A, Billings P, Aberle D, Young RP. Chr15q25 genetic variant (rs16969968) independently confers risk of lung cancer, COPD and smoking intensity in a prospective study of high-risk smokers. Thorax 2021; 76:272-280. [PMID: 33419953 DOI: 10.1136/thoraxjnl-2020-214839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
IMPORTANCE While cholinergic receptor nicotinic alpha 5 (CHRNA5) variants have been linked to lung cancer, chronic obstructive pulmonary disease (COPD) and smoking addiction in case-controls studies, their corelationship is not well understood and requires retesting in a cohort study. OBJECTIVE To re-examine the association between the CHRNA5 variant (rs16969968 AA genotype) and the development of lung cancer, relative to its association with COPD and smoking. METHODS In 9270 Non-Hispanic white subjects from the National Lung Screening Trial, a substudy of high-risk smokers were followed for an average of 6.4 years. We compared CHRNA5 genotype according to baseline smoking exposure, lung function and COPD status. We also compared the lung cancer incidence rate, and used multiple logistic regression and mediation analysis to examine the role of the AA genotype of the CHRNA5 variant in smoking exposure, COPD and lung cancer. RESULTS As previously reported, we found the AA high-risk genotype was associated with lower lung function (p=0.005), greater smoking intensity (p<0.001), the presence of COPD (OR 1.28 (95% CI 1.10 to 1.49) p=0.0015) and the development of lung cancer (HR 1.41, (95% CI 1.03 to 1.93) p=0.03). In a mediation analyses, the AA genotype was independently associated with smoking intensity (OR 1.42 (95% CI 1.25 to 1.60, p<0.0001), COPD (OR 1.25, (95% CI 1.66 to 2.53), p=0.0015) and developing lung cancer (OR 1.37, (95% CI 1.03 to 1.82) p=0.03). CONCLUSION In this large-prospective study, we found the CHRNA5 rs 16 969 968 AA genotype to be independently associated with smoking exposure, COPD and lung cancer (triple whammy effect).
Collapse
Affiliation(s)
- Raewyn J Hopkins
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Fenghai Duan
- Department of Biostatistics and Centre for Statistical Science, Brown University, Providence, Rhode Island, USA
| | - Greg D Gamble
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Caroline Chiles
- Department of Radiology, Wake Forest Baptist Medical Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - Alana Cavadino
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| | | | - Denise Aberle
- Department of Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Robert P Young
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| |
Collapse
|
39
|
Kalinke L, Thakrar R, Janes SM. The promises and challenges of early non-small cell lung cancer detection: patient perceptions, low-dose CT screening, bronchoscopy and biomarkers. Mol Oncol 2020; 15:2544-2564. [PMID: 33252175 PMCID: PMC8486568 DOI: 10.1002/1878-0261.12864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer survival statistics are sobering with survival ranking among the poorest of all cancers despite the addition of targeted therapies and immunotherapies. However, improvements in tools for early detection hold promise. The Nederlands–Leuvens Longkanker Screenings Onderzoek (NELSON) trial recently corroborated the findings from the previous National Lung Screening Trial low‐dose Computerised Tomography (NLST) screening trial in reducing lung cancer mortality. Biomarker research and development is increasing at pace as the molecular life histories of lung cancers become further unravelled. Low‐dose CT screening (LDCT) is effective but targets only those at the highest risk and is burdensome on healthcare. An optimally designed CT screening programme at best will only detect a low proportion of overall lung cancers as only those at very high‐risk meet screening criteria. Biomarkers that help risk stratify suitable patients for LDCT screening, and those that assist in determining which LDCT detected nodules are likely to represent malignant disease are needed. Some biomarkers have been proposed as standalone lung cancer diagnosis tools. Bronchoscopy technology is improving, with better capacity to identify and obtain samples from early lung cancers. Clinicians need to be aware of each early lung cancer detection method’s inherent limitations. We anticipate that the future of early lung cancer diagnosis will involve a synergistic, multimodal approach, combining several early detection methods.
Collapse
Affiliation(s)
- Lukas Kalinke
- Lungs for Living Research Centre, University College London, UK
| | - Ricky Thakrar
- Lungs for Living Research Centre, University College London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, University College London, UK
| |
Collapse
|
40
|
Gazourian L, Thedinger WB, Regis SM, Pagura EJ, Price LL, Gawlik M, Stefanescu CF, Lamb C, Rieger-Christ KM, Singh H, Casasola M, Walker AR, Rupal A, Patel AS, Come CE, Sanayei AM, Long WP, Rizzo GS, McKee AB, Washko GR, San Jose Estepar R, Wald C, McKee BJ, Thomson CC, Liesching TN. Qualitative emphysema and risk of COPD hospitalization in a multicenter CT lung cancer screening cohort study. Respir Med 2020; 176:106245. [PMID: 33253972 DOI: 10.1016/j.rmed.2020.106245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND In the United States, 9 to 10 million Americans are estimated to be eligible for computed tomographic lung cancer screening (CTLS). Those meeting criteria for CTLS are at high-risk for numerous cardio-pulmonary co-morbidities. The objective of this study was to determine the association between qualitative emphysema identified on screening CTs and risk for hospital admission. STUDY DESIGN AND METHODS We conducted a retrospective multicenter study from two CTLS cohorts: Lahey Hospital and Medical Center (LHMC) CTLS program, Burlington, MA and Mount Auburn Hospital (MAH) CTLS program, Cambridge, MA. CTLS exams were qualitatively scored by radiologists at time of screening for presence of emphysema. Multivariable Cox regression models were used to evaluate the association between CT qualitative emphysema and all-cause, COPD-related, and pneumonia-related hospital admission. RESULTS We included 4673 participants from the LHMC cohort and 915 from the MAH cohort. 57% and 51.9% of the LHMC and MAH cohorts had presence of CT emphysema, respectively. In the LHMC cohort, the presence of emphysema was associated with all-cause hospital admission (HR 1.15, CI 1.07-1.23; p < 0.001) and COPD-related admission (HR 1.64; 95% CI 1.14-2.36; p = 0.007), but not with pneumonia-related admission (HR 1.52; 95% CI 1.27-1.83; p < 0.001). In the MAH cohort, the presence of emphysema was only associated with COPD-related admission (HR 2.05; 95% CI 1.07-3.95; p = 0.031). CONCLUSION Qualitative CT assessment of emphysema is associated with COPD-related hospital admission in a CTLS population. Identification of emphysema on CLTS exams may provide an opportunity for prevention and early intervention to reduce admission risk.
Collapse
Affiliation(s)
- Lee Gazourian
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA.
| | | | - Shawn M Regis
- Department of Radiation Oncology, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | - Elizabeth J Pagura
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | - Lori Lyn Price
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, 02111, USA; Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA, 02111, USA
| | - Melissa Gawlik
- Quality and Safety, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | | | - Carla Lamb
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | | | - Harpreet Singh
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, 02138, USA
| | - Marcel Casasola
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, 02138, USA
| | - Alexander R Walker
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, 02138, USA
| | - Arashdeep Rupal
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, 02138, USA
| | - Avignat S Patel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | - Carolyn E Come
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | - Ava M Sanayei
- Tufts University School of Medicine, Boston, MA, 02111, USA
| | - William P Long
- Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Giulia S Rizzo
- Department of General Surgery, UMass Memorial Medical Center, Worcester, MA, 01655, USA
| | - Andrea B McKee
- Department of Radiation Oncology, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | - George R Washko
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Applied Chest Imaging Laboratories, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Raul San Jose Estepar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Department of Radiology, Brigham and Women's Hospital Boston, MA, 02115, USA
| | - Christoph Wald
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | - Brady J McKee
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| | - Carey C Thomson
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, 02138, USA; Harvard Medical School, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Mount Auburn Hospital, Cambridge, MA, 02138, USA
| | - Timothy N Liesching
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lahey Hospital & Medical Center, Burlington, MA, 01805, USA
| |
Collapse
|
41
|
Young RP, Hopkins RJ, Gamble GD, Silvestri GA. Incorporating Baseline Lung Function in Lung Cancer Screening: Does a "Lung Health Check" Help Predict Outcomes? Chest 2020; 159:1664-1669. [PMID: 33171161 DOI: 10.1016/j.chest.2020.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Robert P Young
- Faculty of Medical and Health Sciences University of Auckland,Auckland, New Zealand.
| | - Raewyn J Hopkins
- Faculty of Medical and Health Sciences University of Auckland,Auckland, New Zealand
| | - Greg D Gamble
- Faculty of Medical and Health Sciences University of Auckland,Auckland, New Zealand
| | - Gerard A Silvestri
- Thoracic Oncology Research Group (TORG), Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
42
|
Yang YY, Lin CJ, Wang CC, Chen CM, Kao WJ, Chen YH. Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOTCH1, MKI67, OCT4, and MUC5AC via HIF1A Upregulation in Human Bronchial Epithelial Cells. Front Cell Dev Biol 2020; 8:572276. [PMID: 33015064 PMCID: PMC7500169 DOI: 10.3389/fcell.2020.572276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown that the experimental models of hypoxia-reoxygenation (H/R) mimics the physiological conditions of ischemia-reperfusion and induce oxidative stress and injury in various types of organs, tissues, and cells, both in vivo and in vitro, including human lung adenocarcinoma epithelial cells. Nonetheless, it had not been reported whether H/R affected proliferation, apoptosis, and expression of stem/progenitor cell markers in the bronchial epithelial cells. In this study, we investigated differential effects of consecutive hypoxia and intermittent 24/24-h cycles of H/R on human bronchial epithelial (HBE) cells derived from the same-race and age-matched healthy subjects (i.e., NHBE) and subjects with chronic obstructive pulmonary disease (COPD) (i.e., DHBE). To analyze gene/protein expression during differentiation, both the NHBE and DHBE cells at the 2nd passage were cultured at the air-liquid interface (ALI) in the differentiation medium under normoxia for 3 days, followed by either culturing under hypoxia (1% O2) for consecutively 9 days and then returning to normoxia for another 9 days, or culturing under 24/24-h cycles of H/R (i.e., 24 h of 1% O2 followed by 24 h of 21% O2, repetitively) for 18 days in total, so that all differentiating HBE cells were exposed to hypoxia for a total of 9 days. In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. Inhibition of HIF1A or NKX2-1 expression by siRNA transfection respectively decreased BMP4/NOTCH1/MKI67/OCT4/MUC5AC and NOTCH3/HEY1/CC10/FOXJ1 expression in the HBE cells cultured under intermittent H/R to the same levels under normoxia. Overexpression of NKX2-1 via cDNA transfection caused more than 2.8-fold increases in NOTCH3, HEY1, and FOXJ1 mRNA levels in the HBE cells cultured under consecutive hypoxia compared to the levels under normoxia. Taken together, our results show for the first time that consecutive hypoxia decreased expression of the co-regulated gene module NOTCH3/HEY1/CC10 and the ciliogenesis-inducing transcription factor gene FOXJ1 via NKX2-1 mRNA downregulation, while intermittent H/R increased expression of the co-regulated gene module BMP4/NOTCH1/MKI67/OCT4 and the predominant airway mucin gene MUC5AC via HIF1A mRNA upregulation.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Ju Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Wang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Section of Respiratory Therapy, Rueifang Miner Hospital, New Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Jen Kao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
43
|
Strange Bedfellows: The Interaction between COPD and Lung Cancer in the Context of Lung Cancer Screening. Ann Am Thorac Soc 2020; 17:810-812. [PMID: 32609030 PMCID: PMC7328173 DOI: 10.1513/annalsats.202005-433ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
44
|
Ruparel M, Quaife SL, Dickson JL, Horst C, Tisi S, Hall H, Taylor MN, Ahmed A, Shaw PJ, Burke S, Soo MJ, Nair A, Devaraj A, Sennett K, Hurst JR, Duffy SW, Navani N, Bhowmik A, Baldwin DR, Janes SM. Prevalence, Symptom Burden, and Underdiagnosis of Chronic Obstructive Pulmonary Disease in a Lung Cancer Screening Cohort. Ann Am Thorac Soc 2020; 17:869-878. [PMID: 32164439 PMCID: PMC7328177 DOI: 10.1513/annalsats.201911-857oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Individuals eligible for lung cancer screening (LCS) by low-dose computed tomography (LDCT) are also at risk of chronic obstructive pulmonary disease (COPD) due to age and smoking exposure. Whether the LCS episode is useful for early detection of COPD is not well established.Objectives: To explore associations between symptoms, comorbidities, spirometry, and emphysema in participants enrolled in the Lung Screen Uptake Trial.Methods: This cross-sectional study was a prespecified analysis nested within Lung Screen Uptake Trial, which was a randomized study testing the impact of differing invitation materials on attendance of 60- to 75-year-old smokers and ex-smokers to a "lung health check" between November 2015 and July 2017. Participants with a smoking history ≥30 pack-years and who quit ≤15 years ago, or meeting a lung cancer risk of ≥1.51% via the Prostate Lung Colorectal Ovarian model or ≥2.5% via the Liverpool Lung Project model, were offered LDCT. COPD was defined and classified according to the GOLD (Global Initiative for Obstructive Lung Disease) criteria using prebronchodilator spirometry. Analyses included the use of descriptive statistics, chi-square tests to examine group differences, and univariable and multivariable logistic regression to explore associations between symptom prevalence, airflow limitation, and visually graded emphysema.Results: A total of 560 of 986 individuals included in the analysis (57%) had prebronchodilator spirometry consistent with COPD; 67% did not have a prior history of COPD and were termed "undiagnosed." Emphysema prevalence in those with known and "undiagnosed" COPD was 73% and 68%, respectively. A total of 32% of those with "undiagnosed COPD" had no emphysema on LDCT. Inhaler use and symptoms were more common in the "known" than the "undiagnosed" COPD group (63% vs. 33% with persistent cough [P < 0.001]; 73% vs. 33% with dyspnea [P < 0.001]). Comorbidities were common in all groups. Adjusted odds ratio (aOR) of respiratory symptoms were more significant for airflow obstruction (aOR GOLD 1 and 2, 1.57; confidence interval [CI], 1.14-2.17; aOR GOLD 3 and 4, 4.6; CI, 2.17-9.77) than emphysema (aOR mild, 1.12; CI, 0.81-1.55; aOR moderate, 1.33; CI, 0.85-2.09; aOR severe, 4.00; CI, 1.57-10.2).Conclusions: There is high burden of "undiagnosed COPD" and emphysema in LCS participants. Adding spirometry findings to the LDCT enhances identification of individuals with COPD.Clinical trial registered with www.clinicaltrials.gov (NCT02558101).
Collapse
Affiliation(s)
- Mamta Ruparel
- Lungs for Living Research Centre, University College London (UCL) Respiratory
| | | | - Jennifer L. Dickson
- Lungs for Living Research Centre, University College London (UCL) Respiratory
| | - Carolyn Horst
- Lungs for Living Research Centre, University College London (UCL) Respiratory
| | - Sophie Tisi
- Lungs for Living Research Centre, University College London (UCL) Respiratory
| | - Helen Hall
- Lungs for Living Research Centre, University College London (UCL) Respiratory
| | | | | | | | | | | | | | - Anand Devaraj
- Department of Radiology, Royal Brompton Hospital, London, United Kingdom
| | - Karen Sennett
- Killick Street Health Centre, London, United Kingdom
| | - John R. Hurst
- UCL Centre for Inflammation and Repair, University College London, London, United Kingdom
| | - Stephen W. Duffy
- Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University, London, United Kingdom; and
| | - Neal Navani
- Lungs for Living Research Centre, University College London (UCL) Respiratory
- Department of Thoracic Medicine, University College London Hospital, London, United Kingdom
| | - Angshu Bhowmik
- Department of Thoracic Medicine, Homerton University Hospital, London, United Kingdom
| | - David R. Baldwin
- Respiratory Medicine Unit, David Evans Research Centre, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, University College London (UCL) Respiratory
| |
Collapse
|
45
|
Young RP, Hopkins RJ. Cost-Effectiveness Analysis of Lung Cancer Screening in the United States. Ann Intern Med 2020; 172:705-706. [PMID: 32422090 DOI: 10.7326/l20-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Robert P Young
- University of Auckland, Auckland, New Zealand (R.P.Y., R.J.H.)
| | | |
Collapse
|
46
|
Forde PM, Bonomi P, Shaw A, Blumenthal GM, Ferris A, Patel C, Melemed A, Basu Roy U, Ramamoorthy A, Liu Q, Burns T, Gainor JF, Lovly C, Piotrowska Z, Lehman J, Selig W. Expanding Access to Lung Cancer Clinical Trials by Reducing the Use of Restrictive Exclusion Criteria: Perspectives of a Multistakeholder Working Group. Clin Lung Cancer 2020; 21:295-307. [PMID: 32201247 DOI: 10.1016/j.cllc.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Low rates of adult patient participation have been a persistent problem in cancer clinical trials and have continued to be a barrier to efficient drug development. The routine use of significant exclusion criteria has contributed to this problem by limiting participation in studies and creating significant clinical differences between the study cohorts and the real-world cancer patient populations. These routine exclusions also unnecessarily restrict opportunities for many patients to access potentially promising new therapies during clinical development. Multiple efforts are underway to broaden eligibility criteria, allowing more patients to enroll in studies and generating more robust data regarding the effect of novel therapies in the population at large. Focusing specifically on lung cancer as an example, a multistakeholder working group empaneled by the LUNGevity Foundation identified 14 restrictive and potentially outdated exclusion criteria that appear frequently in lung cancer clinical trials. As a part of the project, the group evaluated data from multiple recent lung cancer studies to ascertain the extent to which these 14 criteria appeared in study protocols and played a role in excluding patients (screen failures). The present report describes the working group's efforts to limit the use of these routine exclusions and presents clinical justifications for reducing the use of 14 criteria as routine exclusions in lung cancer studies, potentially expanding trial eligibility and improving the generalizability of the results from lung cancer trials.
Collapse
Affiliation(s)
- Patrick M Forde
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, MD
| | - Phil Bonomi
- Section of Medical Oncology, Rush Medical Center, Chicago, IL
| | - Alice Shaw
- Thoracic Cancer Program, Massachusetts General Hospital, Boston, MA
| | - Gideon M Blumenthal
- FDA's Oncology Center of Excellence, United Stated Food and Drug Administration, Silver Spring, MD
| | | | - Chirag Patel
- FDA's Oncology Center of Excellence, United Stated Food and Drug Administration, Silver Spring, MD
| | - Allen Melemed
- Clinical Research Department, Eli-Lilly and Company, Indianapolis, IN
| | | | - Anuradha Ramamoorthy
- Office of Clinical Pharmacology, United Stated Food and Drug Administration, Silver Spring, MD
| | - Qi Liu
- Office of Clinical Pharmacology, United Stated Food and Drug Administration, Silver Spring, MD
| | - Timothy Burns
- Division of Hematology/ Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Justin F Gainor
- Thoracic Cancer Program, Massachusetts General Hospital, Boston, MA
| | - Christine Lovly
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University, Nashville, TN
| | - Zofia Piotrowska
- Thoracic Cancer Program, Massachusetts General Hospital, Boston, MA
| | - Jonathan Lehman
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University, Nashville, TN
| | | |
Collapse
|
47
|
Advani S, Braithwaite D. Optimizing selection of candidates for lung cancer screening: role of comorbidity, frailty and life expectancy. Transl Lung Cancer Res 2019; 8:S454-S459. [PMID: 32038937 PMCID: PMC6987350 DOI: 10.21037/tlcr.2019.10.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Shailesh Advani
- Cancer Prevention and Control Program, Department of Oncology, Georgetown University School of Medicine, Washington, DC, USA
- Social Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dejana Braithwaite
- Cancer Prevention and Control Program, Department of Oncology, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
48
|
Zhao D, Feng JF. Efficacy of low molecular weight heparin for chronic obstructive pulmonary disease and respiratory failure: A protocol of systematic review of randomized controlled trials. Medicine (Baltimore) 2019; 98:e18051. [PMID: 31770219 PMCID: PMC6890332 DOI: 10.1097/md.0000000000018051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Evaluating the efficacy and safety of low molecular weight heparin (LMWH) for patients with chronic obstructive pulmonary disease (COPD) and respiratory failure (RF) is a major purpose of this study. METHODS The following electronic databases will be comprehensively retrieved from the inception to July 1, 2019: Cochrane Library, PUBMED, EMBASE, Google Scholar, Web of Science, Allied and Complementary Medicine Database, WANGFANG, and China National Knowledge Infrastructure without language restrictions. All randomized controlled trials related to LMWH for COPD and RF will be included. Two authors will carry out study selection, data collection, and risk of bias assessment independently. RESULTS This study will systematically explore the efficacy and safety of LMWH for COPD and RF. The primary outcome is lung function. The secondary outcomes are severity of dyspnea on exertion, quality of life, body mass index, airflow obstruction; and any expected and unexpected adverse events. CONCLUSION The findings of this study will provide evidence to judge whether LMWH is an effective treatment for patients with COPD and RF. PROSPERO REGISTRATION NUMBER PROSPERO CRD42019 139631.
Collapse
Affiliation(s)
- Dejun Zhao
- Department of Respiratory Medicine, People's Hospital of Fuyang, Hangzhou
| | - Jun-Fei Feng
- Department of Respiratory Medicine, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
49
|
Perilesional emphysema as a predictor of risk of complications from computed tomography-guided transthoracic lung biopsy. Jpn J Radiol 2019; 37:808-816. [PMID: 31541398 DOI: 10.1007/s11604-019-00880-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE This study evaluated whether or not patterns of emphysema and their qualitative and quantitative severity can predict the risk of complications with post-computed tomography (CT)-guided transthoracic lung biopsy (TTLB). MATERIALS AND METHODS Three hundred and ninety-seven patients who underwent CT-guided TTLB in 2010-2018 were retrospectively reviewed. The severity of emphysema and presence of perilesional emphysema were assessed visually using the Fleischner Society classification. Ninety seven of the 397 patients underwent quantitative analysis of emphysema. Complications, including pneumothorax, chest tube insertion, and hemorrhage, were assessed by post-TTLB CT and radiographic imaging. The grade of hemorrhage was categorized into three groups. Independent risk factors for pneumothorax and hemorrhage were assessed by univariate and multivariate logistic regression analyses. RESULTS Pneumothorax occurred in 48.6% of cases and hemorrhage in 70.5%. Perilesional emphysema was significantly associated with pneumothorax (odds ratio 6.720; 95% confidence interval 3.265-13.831, p < 0.001) and hemorrhage (odds ratio 3.877; 95% confidence interval 1.796-8.367; p = 0.001). The severity of visual and quantitative emphysema was not a significant risk factor for pneumothorax or hemorrhage (p > 0.05). Perilesional emphysema was significantly associated with the grade of hemorrhage (p < 0.001). CONCLUSION Perilesional emphysema can estimate the risk of iatrogenic complications from CT-guided TTLB.
Collapse
|
50
|
Gao H, Gao Y, Sun P, Shen J, Yao HJ, Fu SD, Meng C. Effect of physical therapy for chronic obstructive pulmonary disease: A protocol for an updated systematic review of randomized controlled trial. Medicine (Baltimore) 2019; 98:e17241. [PMID: 31567989 PMCID: PMC6756720 DOI: 10.1097/md.0000000000017241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have reported that physical therapy (PT) can be used for the treatment of chronic obstructive pulmonary disease (COPD). However, its effectiveness is still inconclusive. This systematic review will aim to assess its effectiveness and safety for the treatment of patients with COPD. METHODS All randomized controlled trials (RCTs) literatures of PT for COPD will be searched from the databases of Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, MEDILINE, Web of Science, Cumulative Index to Nursing and Allied Health Literature, Allied and Complementary Medicine Database, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, VIP Information, and Wanfang Data from inception to the present without any language restrictions. Two reviewers will independently perform the study selection, data extraction, and methodological quality assessment. A third reviewer will be invited to resolve any disagreements occurred between 2 reviewers. RESULTS The primary outcome is lung function. The secondary outcomes include symptoms, health-related quality of life, mortality, and adverse events. The outcome data will be pooled by using the models of random-effects or fixed-effects according to the detected heterogeneity. CONCLUSION The findings of this study will provide up-todated summary evidence for assessing the effectiveness and safety of PT for COPD.
Collapse
|