1
|
Moustaka K, Stergiopoulos A, Tenta R, Havaki S, Katsiougiannis S, Skopouli FN. Beta-adrenergic stimulation promotes an endoplasmic reticulum stress-dependent inflammatory program in salivary gland epithelial cells. Clin Exp Immunol 2024; 218:65-74. [PMID: 38912838 PMCID: PMC11404117 DOI: 10.1093/cei/uxae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
The effect of beta-adrenergic stimulation on human labial minor salivary gland epithelial cells (LMSGEC) on IL-6 production and its dependency on endoplasmic reticulum (ER) stress were investigated. Primary LMSGEC from Sjögren's syndrome (SS) patients and controls in culture were stimulated with epinephrine and IL-6 expression was evaluated by qPCR and ELISA. The expression of β-ARs in cultured LMSGEC was tested by qPCR, while adrenoceptors and cAMP levels were examined in LMSGs by immunofluorescence. ER evaluation was performed by transmission electron microscopy (TEM) and ER stress by western blot. Epinephrine-induced IL-6 production by cultured LMSGEC was evaluated after alleviation of the ER stress by applying tauroursodeoxycholic acid (TUDCA) and silencing of PKR-like ER kinase (PERK) and activating transcription factor 4 (ATF4) RNAs. Expression of IL-6 by LMSGEC was upregulated after β-adrenergic stimulation, while the silencing of adrenoreceptors downregulated IL-6. The amelioration of ER stress, as well as the silencing of PERK/ATF4, prevented epinephrine-induced upregulation of IL-6. Adrenergic stimulation led to higher and sustained IL-6 levels secreted by LMSGEC of SS patients compared to controls. Adrenergic signaling was endogenously enhanced in LMSGEC of SS patients (expression of β-ARs in situ, intracellular cAMP in cultured LMSGEC). In parallel, SS-LMSGEC expressed dilated ER (TEM) and higher levels of GRP78/BiP. PERK/ATF4 pathway of the ER stress emerged as a considerable mediator of adrenergic stimulation for IL-6 production by the LMSGEC. An enhanced endogenous adrenergic activation and a stressed ER observed in SS-LMSGEC may contribute to a sustained IL-6 production by these cells after adrenergic stimulation.
Collapse
Affiliation(s)
- Kalliopi Moustaka
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Athanasios Stergiopoulos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Roxane Tenta
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Sophia Havaki
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stergios Katsiougiannis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Laboratory of Autoimmunity, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Fotini N Skopouli
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Department of Internal Medicine and Autoimmune Diseases, Euroclinic of Athens, Athens, Greece
| |
Collapse
|
2
|
Arias-Colinas M, Gea A, Kwan J, Vassallo M, Allen SC, Khattab A. Cardiovascular Autonomic Dysfunction in Hospitalized Patients with a Bacterial Infection: A Longitudinal Observational Pilot Study in the UK. Biomedicines 2024; 12:1219. [PMID: 38927426 PMCID: PMC11201200 DOI: 10.3390/biomedicines12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE A temporal reduction in the cardiovascular autonomic responses predisposes patients to cardiovascular instability after a viral infection and therefore increases the risk of associated complications. These findings have not been replicated in a bacterial infection. This pilot study will explore the prevalence of cardiovascular autonomic dysfunction (CAD) in hospitalized patients with a bacterial infection. METHODS A longitudinal observational pilot study was conducted. Fifty participants were included: 13 and 37 participants in the infection group and healthy group, respectively. Recruitment and data collection were carried out during a two-year period. Participants were followed up for 6 weeks: all participants' cardiovascular function was assessed at baseline (week 1) and reassessed subsequently at week 6 so that the progression of the autonomic function could be evaluated over that period of time. The collected data were thereafter analyzed using STATA/SE version 16.1 (StataCorp). The Fisher Exact test, McNemar exact test, Mann-Whitney test and Wilcoxon test were used for data analysis. RESULTS 32.4% of the participants in the healthy group were males (n = 12) and 67.6% were females (n = 25). Participants' age ranged from 33 years old to 76 years old with the majority being 40-60 years of age (62.1%) (Mean age 52.4 SD = 11.4). Heart rate variability (HRV) in response to Valsalva Maneuver, metronome breathing, standing and sustained handgrip in the infection group was lower than in the healthy group throughout the weeks. Moreover, both the HRV in response to metronome breathing and standing up showed a statistically significant difference when the mean values were compared between both groups in week 1 (p = 0.03 and p = 0.013). The prevalence of CAD was significantly higher in the infection group compared to healthy volunteers, both at the beginning of the study (p = 0.018) and at the end of follow up (p = 0.057), when all patients had been discharged. CONCLUSIONS CAD, as assessed by the HRV, is a common finding during the recovery period of a bacterial infection, even after 6 weeks post-hospital admission. This may increase the risk of complications and cardiovascular instability. It may therefore be of value to conduct a wider scale study to further evaluate this aspect so recommendations can be made for the cardiovascular autonomic assessment of patients while they are recovering from a bacterial infectious process.
Collapse
Affiliation(s)
- Monica Arias-Colinas
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Alfredo Gea
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Biomedical Research Network Center for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Joseph Kwan
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| | - Michael Vassallo
- Department of Medicine for Older People, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK
| | - Stephen C. Allen
- Department of Medicine for Older People, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK
| | - Ahmed Khattab
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK
| |
Collapse
|
3
|
Kim MH, Suh HR, Han HC. The effects of the cholinergic system on carrageenan-induced arthritis. Neurosci Lett 2024; 823:137651. [PMID: 38262509 DOI: 10.1016/j.neulet.2024.137651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
The cholinergic system has been found to make an anti-inflammatory effect through the cholinergic anti-inflammatory pathway (CAIP), which suppresses the production of pro-inflammatory cytokines by secreting acetylcholine, a major neurotransmitter. However, no studies have been conducted on the effects of CAIP on joint pain and inflammation. In this study, we investigated the effects of muscarinic acetylcholine receptors (mAChRs) in knee arthritis. To examine pain behavioral changes, atropine (or saline for sham control) was pretreated in the joint cavity of rats at 1 % carrageenan + 5, 10, and 30 μL and the dynamic weight-bearing evaluation was performed. Synovial membranes were collected and cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β) were measured using a western blot. Hematoxylin and eosin staining was performed. Compared to that of the sham group, the weight-bearing of the affected knee joint significantly increased in the 1 % carrageenan + 10 μL atropine group (p < 0.05). However, no significant changes were observed in the 1 % carrageenan + 5 and 30 μL atropine groups. COX-2 and IL-1β and the number of inflammatory cells in synovial membrane significantly increased with 1 % carrageenan + 10 μL of atropine (p < 0.05). These results suggest that cholinergic system is involved in knee joint pain and inflammation and that mAChRs are potential therapeutic targets for knee joint arthritis.
Collapse
Affiliation(s)
- Min Ha Kim
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, Republic of Korea
| | - Hye Rim Suh
- Department of Physical Therapy, Baekseok University, Cheonan, Republic of Korea.
| | - Hee Chul Han
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Das S, Ghosh B, Sahoo RN, Nayak AK. Recent Advancements in Bioelectronic Medicine: A Review. Curr Drug Deliv 2024; 21:1445-1459. [PMID: 38173212 DOI: 10.2174/0115672018286832231218112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.
Collapse
Affiliation(s)
- Sudipta Das
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Baishali Ghosh
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
5
|
Hatik SH, Asrlan M, Demirbilek Ö, Özden AV. The effect of transcutaneous auricular vagus nerve stimulation on cycling ergometry and recovery in healthy young individuals. Brain Behav 2023; 13:e3332. [PMID: 37974551 PMCID: PMC10726880 DOI: 10.1002/brb3.3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND It is aimed to examine the potential benefits and effects of the use of transcutaneous auricular vagus nerve stimulation (VNS) for sporting purposes on recovery, fatigue, and sportive performance level. METHODS In this study, 90 people between the ages of 18-23 were participated. They were randomly divided into three groups as bilateral sham, unilateral left, and bilateral VNS. A 4-day protocol was applied to the participants. Cycling exercise was performed with maximum performance for 30 min under the same watt load. Pulse, systolic and diastolic blood pressure, distance, pain, fatigue, lactic acid level, and autonomic nervous system were evaluated. RESULTS Within the groups, there was a statistically significant difference between the data (p < .05) except for the distance covered parameter. When we compare the groups, in addition to the distance traveled in all groups, there is no statistically significant difference in the 1st day 1st measurement and 2nd measurement data of all parameters (p > .05 When we compared the data according to days, there was a statistically significant difference between bilateral stimulation (BS) and unilateral stimulation, only pain and fatigue levels (p < .05). CONCLUSION In our study, we saw that BS application gave positive results in reducing pain and fatigue due to cycling exercise compared to other applications. Similar results were obtained when we evaluated the data on a daily basis. We believe that VNS will be beneficial in reducing pain and fatigue, especially during and after the competition halftime.
Collapse
Affiliation(s)
- Sefa Haktan Hatik
- Department of Health Care Services, Türkeli Vocational SchoolSinop UniversitySinopTurkey
| | - Mesut Asrlan
- Physiotherapy and Rehabilitation Department, Health Sciences FacultyBitlis Eren UniversityBitlisTurkey
| | - Ömer Demirbilek
- Department of Emergency and Disaster Management, Türkeli Vocational SchoolSinop UniversitySinopTurkey
| | - Ali Veysel Özden
- Physiotherapy and Rehabilitation Department, Health Sciences FacultyBahçeşehir UniversityIstanbulTurkey
| |
Collapse
|
6
|
Brooke AK, Murrow DP, Caldwell KCN, Witt CE, Ross AE. Measuring neuron-regulated immune cell physiology via the alpha-2 adrenergic receptor in an ex vivo murine spleen model. Cell Mol Life Sci 2023; 80:354. [PMID: 37945921 PMCID: PMC11071927 DOI: 10.1007/s00018-023-05012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The communication between the nervous and immune systems plays a crucial role in regulating immune cell function and inflammatory responses. Sympathetic neurons, which innervate the spleen, have been implicated in modulating immune cell activity. The neurotransmitter norepinephrine (NE), released by sympathetic neurons, influences immune cell responses by binding to adrenergic receptors on their surface. The alpha-2 adrenergic receptor (α2AR), expressed predominantly on sympathetic neurons, has received attention due to its autoreceptor function and ability to modulate NE release. In this study, we used fast-scan cyclic voltammetry (FSCV) to provide the first subsecond measurements of NE released in the white pulp region of the spleen and validated it with yohimbine, a known antagonist of α2AR. For further application of FSCV in neuroimmunology, we investigated the extent to which subsecond NE from sympathetic neurons is important for immune cell physiology and cytokine production, focusing on tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and interleukin-6 (IL-6). Our findings provide insights into the regulatory mechanisms underlying sympathetic-immune interactions and show the significance of using FSCV, a traditional neurochemistry technique, to study these neuroimmune mechanisms.
Collapse
Affiliation(s)
- Alexandra K Brooke
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Daniel P Murrow
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Kaejaren C N Caldwell
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Colby E Witt
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA.
| |
Collapse
|
7
|
Erelund S, Södergren A, Wiklund U, Sundström N. Heart rate variability and cardiovascular risk factors in patients with rheumatoid arthritis: A longitudinal study. Auton Neurosci 2023; 249:103119. [PMID: 37703773 DOI: 10.1016/j.autneu.2023.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND It is established that the risk of cardiovascular disease (CVD) is increased in patients with Rheumatoid Arthritis (RA). Heart rate variability (HRV) is a method for evaluating the activity in the cardiac autonomic nervous system. Our aim was to assess the longitudinal development of HRV in patients with RA and compare with healthy controls. Furthermore, we wanted to investigate associations between HRV, inflammatory disease activity and cardiovascular complications in patients with RA over time. METHOD HRV was assessed with frequency-domain analysis at baseline and after five years in 50 patients with early RA, all being younger than 60 years. HRV indices were age-adjusted based on the estimated age-dependency in 100 age and sex matched healthy controls. Additionally, clinical data including serological markers, disease activity, and blood pressure were collected from the patients. Eleven years after inclusion CVD was assessed. RESULTS At baseline, patients with RA presented with lower HRV compared to controls during deep breathing (6 breaths/min), paced normal breathing (12 breaths/min) and after passive tilt to the upright position. No significant change in HRV was observed at the five-year follow-up. A significant negative correlation was found between HRV parameters and systolic blood pressure (SBP) at baseline. A significant positive correlation was found between heart rate and inflammatory markers at baseline but not after five years. Nine patients had developed CVD after 11 years, but no significant association was found with baseline HRV data. CONCLUSION This study showed that patients with RA have autonomic imbalance both at an early stage of the disease and after five years, despite anti-rheumatic medication, but no correlation between HRV and inflammation markers were observed. Reduced HRV was also significantly negatively correlated with increased SBP. Hypertension is a common finding in patients with RA. Thus, significant decline of HRV could be a useful early marker for development of hypertension in patients with RA.
Collapse
Affiliation(s)
- Sofia Erelund
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden.
| | - Anna Södergren
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Nina Sundström
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Ju S, Shin Y, Han S, Kwon J, Choi TG, Kang I, Kim SS. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023; 15:4391. [PMID: 37892465 PMCID: PMC10610543 DOI: 10.3390/nu15204391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
10
|
Irwin MR, Straub RH, Smith MT. Heat of the night: sleep disturbance activates inflammatory mechanisms and induces pain in rheumatoid arthritis. Nat Rev Rheumatol 2023; 19:545-559. [PMID: 37488298 DOI: 10.1038/s41584-023-00997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Sleep has a homeostatic role in the regulation of the immune system and serves to constrain activation of inflammatory signalling and expression of cellular inflammation. In patients with rheumatoid arthritis (RA), a misaligned inflammatory profile induces a dysregulation of sleep-wake activity, which leads to excessive inflammation and the induction of increased sensitivity to pain. Given that multiple biological mechanisms contribute to sleep disturbances (such as insomnia), and that the central nervous system communicates with the innate immune system via neuroendocrine and neural effector pathways, potential exists to develop prevention opportunities to mitigate the risk of insomnia in RA. Furthermore, understanding these risk mechanisms might inform additional insomnia treatment strategies directed towards steering and reducing the magnitude of the inflammatory response, which together could influence outcomes of pain and disease activity in RA.
Collapse
Affiliation(s)
- Michael R Irwin
- Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience and Human Behaviour, Los Angeles, CA, USA.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital, Regensburg, Germany
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Sohn R, Jenei-Lanzl Z. Role of the Sympathetic Nervous System in Mild Chronic Inflammatory Diseases: Focus on Osteoarthritis. Neuroimmunomodulation 2023; 30:143-166. [PMID: 37429263 PMCID: PMC10428144 DOI: 10.1159/000531798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
The sympathetic nervous system (SNS) is a major regulatory mediator connecting the brain and the immune system that influences accordingly inflammatory processes within the entire body. In the periphery, the SNS exerts its effects mainly via its neurotransmitters norepinephrine (NE) and epinephrine (E), which are released by peripheral nerve endings in lymphatic organs and other tissues. Depending on their concentration, NE and E bind to specific α- and β-adrenergic receptor subtypes and can cause both pro- and anti-inflammatory cellular responses. The co-transmitter neuropeptide Y, adenosine triphosphate, or its metabolite adenosine are also mediators of the SNS. Local pro-inflammatory processes due to injury or pathogens lead to an activation of the SNS, which in turn induces several immunoregulatory mechanisms with either pro- or anti-inflammatory effects depending on neurotransmitter concentration or pathological context. In chronic inflammatory diseases, the activity of the SNS is persistently elevated and can trigger detrimental pathological processes. Recently, the sympathetic contribution to mild chronic inflammatory diseases like osteoarthritis (OA) has attracted growing interest. OA is a whole-joint disease and is characterized by mild chronic inflammation in the joint. In this narrative article, we summarize the underlying mechanisms behind the sympathetic influence on inflammation during OA pathogenesis. In addition, OA comorbidities also accompanied by mild chronic inflammation, such as hypertension, obesity, diabetes, and depression, will be reviewed. Finally, the potential of SNS-based therapeutic options for the treatment of OA will be discussed.
Collapse
Affiliation(s)
- Rebecca Sohn
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Zsuzsa Jenei-Lanzl
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Jeanne R, Piton T, Minjoz S, Bassan N, Le Chenechal M, Semblat A, Hot P, Kibleur A, Pellissier S. Gut-Brain Coupling and Multilevel Physiological Response to Biofeedback Relaxation After a Stressful Task Under Virtual Reality Immersion: A Pilot Study. Appl Psychophysiol Biofeedback 2023; 48:109-125. [PMID: 36336770 DOI: 10.1007/s10484-022-09566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
Human physiological reactions to the environment are coordinated by the interactions between brain and viscera. In particular, the brain, heart, and gastrointestinal tract coordinate with each other to provide physiological equilibrium by involving the central, autonomic, and enteric nervous systems. Recent studies have demonstrated an electrophysiological coupling between the gastrointestinal tract and the brain (gut-brain axis) under resting-state conditions. As the gut-brain axis plays a key role in individual stress regulation, we aimed to examine modulation of gut-brain coupling through the use of an overwhelming and a relaxing module as a first step toward modeling of the underlying mechanisms. This study was performed in 12 participants who, under a virtual reality environment, performed a 9-min cognitive stressful task followed by a 9-min period of relaxation. Brain activity was captured by electroencephalography, autonomic activities by photoplethysmography, and electrodermal and gastric activities by electrogastrography. Results showed that compared with the stressful task, relaxation induced a significant decrease in both tonic and phasic sympathetic activity, with an increase in brain alpha power and a decrease in delta power. The intensity of gut-brain coupling, as assessed by the modulation index of the phase-amplitude coupling between the normogastric slow waves and the brain alpha waves, decreased under the relaxation relative to the stress condition. These results highlight the modulatory effect of biofeedback relaxation on gut-brain coupling and suggest noninvasive multilevel electrophysiology as a promising way to investigate the mechanisms underlying gut-brain coupling in physiological and pathological situations.
Collapse
Affiliation(s)
- Rudy Jeanne
- LIP/PC2S, Université Savoie Mont Blanc, Université Grenoble Alpes, 73000, Chambéry, France. .,LPNC, Université Grenoble Alpes, Université Savoie Mont Blanc, 73000, Chambéry, France.
| | - Timothy Piton
- Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Open Mind Innovation, 75008, Paris, France
| | - Séphora Minjoz
- LIP/PC2S, Université Savoie Mont Blanc, Université Grenoble Alpes, 73000, Chambéry, France.,LPNC, Université Grenoble Alpes, Université Savoie Mont Blanc, 73000, Chambéry, France
| | | | | | | | - Pascal Hot
- LPNC, Université Grenoble Alpes, Université Savoie Mont Blanc, 73000, Chambéry, France.,Institut Universitaire de France, Paris, France
| | | | - Sonia Pellissier
- LIP/PC2S, Université Savoie Mont Blanc, Université Grenoble Alpes, 73000, Chambéry, France
| |
Collapse
|
13
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
14
|
Kumar P, Das AK, Halder S. Statistical heart rate variability analysis for healthy person: Influence of gender and body posture. J Electrocardiol 2023; 79:81-88. [PMID: 37003104 DOI: 10.1016/j.jelectrocard.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Short-term ECG-derived heart rate variability can assess autonomic function non-invasively. The purpose of this study is to investigate the influence of body posture and gender on parasympathetic-sympathetic balance by utilising electrocardiogram (ECG). A total of sixty participants including thirty males (95% CI: 23.34-26.32 years old) and thirty females (95% CI: 23.33-26.07 years old) voluntarily executed three sets of 5-min ECG recordings in supine, sitting and standing posture. A nonparametric Friedman test followed by Bonferroni post-hoc test was carried out to find the statistical differences between the group. A significant difference was observed for RR mean, low frequency (LF), high frequency (HF), ratio LF/HF and the ratio long term variability to short term variability (SD2/SD1) for p < 0.01 while respiration rate (Resp Rate), standard deviation of heart rate (STD_HR), long term variability (SD2), approximate entropy (ApEn), correlation dimension (CD) are non-significant (p > 0.01) for supine, sitting and standing. HRV indices such as standard deviation of NN (SDNN), HRV triangular index (HRVi), and triangular interpolation of NN interval (TINN) are statistically not significant for males but there are significant differences for females at a significance level 1%. Relative reliability and relatedness were evaluated through the interclass coefficient (ICC) and spearman correlation coefficient. The experimental results advocate that there is a posture-specific difference in HRV indices while the correlational studies suggest no such significant differences.
Collapse
|
15
|
Liu N, Yan W, Su R, Zhang L, Wang X, Li Z, Qin D, Peng J. Research progress on rheumatoid arthritis-associated depression. Front Behav Neurosci 2023; 16:992223. [PMID: 36755665 PMCID: PMC9899853 DOI: 10.3389/fnbeh.2022.992223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Depression is an independent mood disorder and one of the most common comorbidities of rheumatoid arthritis (RA). Growing evidence suggests that there is two-way regulation between RA and depression, resulting in a vicious cycle of RA, depression, poor outcomes, and disease burden. The rising prevalence of RA-associated depression warrants a re-examination of the relationships between them. Here we provide an overview of the etiology and pathological mechanisms of RA-associated depression, and recent advances in treatment with biologics, which will facilitate the development of new and effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Nian Liu
- First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Weitian Yan
- First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Rong Su
- Rheumatism Center, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Lin Zhang
- First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Xingqiang Wang
- Rheumatism Center, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Zhaofu Li Dongdong Qin Jiangyun Peng
| | - Dongdong Qin
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Zhaofu Li Dongdong Qin Jiangyun Peng
| | - Jiangyun Peng
- Rheumatism Center, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China,*Correspondence: Zhaofu Li Dongdong Qin Jiangyun Peng
| |
Collapse
|
16
|
Autoimmune autonomic nervous system imbalance and conditions: Chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Clin Exp Rheumatol 2023; 22:103230. [PMID: 36347462 DOI: 10.1016/j.autrev.2022.103230] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic fatigue syndrome (CFS), fibromyalgia, silicone breast implants syndrome (SBIs), COVID and post-COVID syndrome (PCS), sick building syndrome (SBS), post-orthostatic tachycardia syndrome (POTS), autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants (ASIA) are frequently accompanied by clinical symptoms characteristic for dysautonomia: severe fatigue, dizziness, fogginess, memory loss, dry mouth and eyes, hearing dysfunction, tachycardia etc. The recent discovery of an imbalance of autoantibodies against G protein-coupled receptors (GPCR) in some autoimmune diseases, post-COVID syndrome, SBIs allowed researchers to assume the novel mechanism in these conditions - autoimmune autonomic nervous system imbalance. In this review, all data published on an imbalance of autoantibodies against GPCR, clinical symptoms and pathogenic mechanisms in CFS, Fibromyalgia, SBIs, COVID and PCS, SBS, POTS, and some autoimmune diseases were analyzed. Possible criteria to diagnose the autoimmune autonomic nervous system imbalance were created.
Collapse
|
17
|
Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA, De Luca C, Kaniusas E, Papa M, Panetsos F. Vagus Nerve Stimulation: A Personalized Therapeutic Approach for Crohn's and Other Inflammatory Bowel Diseases. Cells 2022; 11:cells11244103. [PMID: 36552867 PMCID: PMC9776705 DOI: 10.3390/cells11244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Flor Negrete-Diaz
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
| | - Daniela Yucuma
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Andalusian School of Public Health, University of Granada, 18011 Granada, Spain
| | - Assunta Virtuoso
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Sohaib Ali Korai
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Ciro De Luca
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Michele Papa
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence: (M.P.); (F.P.)
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Correspondence: (M.P.); (F.P.)
| |
Collapse
|
18
|
Malkova AM, Shoenfeld Y. WITHDRAWN: Autoimmune autonomic nervous system imbalance and conditions: Chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Autoimmun Rev 2022:103231. [PMID: 36356798 DOI: 10.1016/j.autrev.2022.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.autrev.2022.103230. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- A M Malkova
- Zabludowicz Center of autoimmunity, Sheba Medical Center, Tel Hashomer, Israel.
| | - Y Shoenfeld
- Zabludowicz Center of autoimmunity, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
19
|
Luengas-Martinez A, Paus R, Iqbal M, Bailey L, Ray DW, Young HS. Circadian rhythms in psoriasis and the potential of chronotherapy in psoriasis management. Exp Dermatol 2022; 31:1800-1809. [PMID: 35851722 DOI: 10.1111/exd.14649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023]
Abstract
The physiology and pathology of the skin are influenced by daily oscillations driven by a master clock located in the brain, and peripheral clocks in individual cells. The pathogenesis of psoriasis is circadian-rhythmic, with flares of disease and symptoms such as itch typically being worse in the evening/night-time. Patients with psoriasis have changes in circadian oscillations of blood pressure and heart rate, supporting wider circadian disruption. In addition, shift work, a circadian misalignment challenge, is associated with psoriasis. These features may be due to underlying circadian control of key effector elements known to be relevant in psoriasis such as cell cycle, proliferation, apoptosis and inflammation. Indeed, peripheral clock pathology may lead to hyperproliferation of keratinocytes in the basal layers, insufficient apoptosis of differentiating keratinocytes in psoriatic epidermis, dysregulation of skin-resident and migratory immune cells and modulation of angiogenesis through circadian oscillation of vascular endothelial growth factor A (VEGF-A) in epidermal keratinocytes. Chronotherapeutic effects of topical steroids and topical vitamin D analogues have been reported, suggesting that knowledge of circadian phase may improve the efficacy, and therapeutic index of treatments for psoriasis. In this viewpoint essay, we review the current literature on circadian disruption in psoriasis. We explore the hypothesis that psoriasis is circadian-driven. We also suggest that investigation of the circadian components specific to psoriasis and that the in vitro investigation of circadian regulation of psoriasis will contribute to the development of a novel chronotherapeutic treatment strategy for personalised psoriasis management. We also propose that circadian oscillations of VEGF-A offer an opportunity to enhance the efficacy and tolerability of a novel anti-VEGF-A therapeutic approach, through the timed delivery of anti-VEGF-A drugs.
Collapse
Affiliation(s)
- Andrea Luengas-Martinez
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Muenster, Germany
- CUTANEON, Hamburg, Germany
| | - Mudassar Iqbal
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Laura Bailey
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Helen S Young
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Maharjan A, Khwaounjoo P, Peng M, Cakmak YO. Non-contact neuromodulation of the human autonomic nervous system function via different odors: Sex, menstrual cycle, and odor dose- and duration-specific effects. Front Neurosci 2022; 16:950282. [PMID: 36312014 PMCID: PMC9596915 DOI: 10.3389/fnins.2022.950282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, it has been uncovered that the autonomic nervous system (ANS) can be influenced using non-contact neuromodulation via odor stimulation. Increasing parasympathetic-vagal activation of the ANS is integral to improving the sympathovagal balance between the sympathetic- and parasympathetic nervous systems, which is often imbalanced in several chronic inflammatory disorders, such as rheumatoid arthritis and inflammatory bowel diseases. Although research into olfactory stimulation has been observed on the ANS, it is still lacking in the exploration of odor concentration and odor-specific effects. This is particularly the case as research has not utilized specified tools, such as the olfactometer to provide precise odor delivery. Furthermore, no research has compared the results in separate sex cohorts to investigate the role of sex or the menstrual stage on the subsequent interactions. In this study, we investigated the olfactory stimulation effects of four natural odors (mushroom, lavender, jasmine, and rose) in three concentrations (low, moderate, and high) on the ANS. To observe activity from the ANS, we used an electrocardiogram (ECG) based heart rate variability (HRV) and eye-tracker technology (pupil diameter). We found for the first time in literature that there were acute dose- and duration-specific odor effects of odors on the ANS. We also found sex and menstrual cycle effects in this interaction. Furthermore, there were stark distinctions in sympathovagal activity dependent ANS activation (HRV) in comparison to the oculomotor nerve-parasympathetic/cervical sympathetic nerves dependent ANS responses (pupil diameter). Sympathovagal activity dependent HRV showed odor, sex, and menstrual-stage interactions in both divisions of the ANS while the pupil responses only indicated increased sympathetic activation. These results shed light on the use of odor-specific stimulation to modulate the ANS activity in the context of sex and the menstrual stage. Future studies should be performed using a chronic odor delivery design to investigate the long-term effects of odors on the ANS. Clinical trial registration Australian New Zealand Clinical Trials Registry, identifier [ACTRN12622000415707].
Collapse
Affiliation(s)
- Ashim Maharjan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Prashanna Khwaounjoo
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mei Peng
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Yusuf Ozgur Cakmak
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
- Centre for Bioengineering and Nanotechnology, Point of Care Technologies, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Pappas DA, Brittle C, Concoff A, Holman AJ, Takasugi D, Kremer JM. Perspectives on applying immuno-autonomics to rheumatoid arthritis: results from an online rheumatologist survey. Rheumatol Int 2022; 42:1555-1564. [PMID: 35449236 PMCID: PMC9349152 DOI: 10.1007/s00296-022-05122-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022]
Abstract
The term "immuno-autonomics" has been coined to describe an emerging field evaluating the interaction between stress, autonomic nervous system (ANS), and inflammation. The field remains largely unknown among practicing rheumatologists. Our objective was to evaluate the perspectives of rheumatologists regarding the role of stress in the activity and management of rheumatoid arthritis (RA). A 31-item survey was conducted with 231 rheumatologists. Rheumatologists were asked to assess the role of stress in rheumatoid arthritis (RA) disease activity and were provided with information regarding immuno-autonomics. They were asked to consider how immuno-autonomics resonated with their patient management needs. The majority of rheumatologists are eager to better understand non-response, believe that stress biology and ANS dysfunction interfere with disease activity, and embrace the theory that measurement of ANS via next-generation HRV may be able to evaluate autonomic dysfunction and the biology of stress. Rheumatologists are open to the idea that quantitative measurement of ANS function using next-generation HRV can be a helpful tool to RA practice. The majority agree that ANS state influences RA disease control and that quantitative measures of ANS state are helpful to RA practice. Rheumatologists also agree that patients with poor ANS function may be at risk for not responding adequately to conventional, biologic, or targeted synthetic DMARDs. Almost all would use an in-office test to quantitatively measure ANS using next-generation HRV. This study shows that rheumatologists are open to embracing evaluation of ANS function as a possible tool in the management and treatment of RA.
Collapse
Affiliation(s)
| | | | | | - Andrew J. Holman
- Inmedix Inc., Normandy Park, WA USA
- Pacific Rheumatology Associates, Inc. PS, Seattle, WA USA
| | | | | |
Collapse
|
22
|
Reichel T, Hacker S, Palmowski J, Boßlau TK, Frech T, Tirekoglou P, Weyh C, Bothur E, Samel S, Walscheid R, Krüger K. Neurophysiological Markers for Monitoring Exercise and Recovery Cycles in Endurance Sports. J Sports Sci Med 2022; 21:446-457. [PMID: 36157384 PMCID: PMC9459760 DOI: 10.52082/jssm.2022.446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The current study analyzes the suitability and reliability of selected neurophysiological and vegetative nervous system markers as biomarkers for exercise and recovery in endurance sport. Sixty-two healthy men and women, endurance trained and moderately trained, performed two identical acute endurance tests (running trial 1 and running trial 2) followed by a washout period of four weeks. Exercise protocol consisted of an acute running trial lasting 60 minutes. An intensity corresponding to 95% of the heart rate at individual anaerobic threshold for 40 minutes was followed by 20 minutes at 110%. At pre-exercise, post-exercise, three hours post-exercise and 24 hours post-exercise, experimental diagnostics on Brain-derived neurotrophic factor (BDNF), heart rate variability (HRV), Stroop Color and Word Test (SCWT), and Short-Form McGill Pain Questionnaire (SF-MPQ) were performed. Significant changes over time were found for all parameters (p < .05). Furthermore, there was an approached statistical significance in the interaction between gender and training status in BDNF regulation (F(3) = 2.43; p = 0.06), while gender differences were found only for LF/HF-ratio (3hPoEx, F(3) = 3.40; p = 0.002). Regarding the reliability, poor ICC-values (< 0.5) were found for BDNF, Stroop sensitivity and pNN50, while all other parameters showed moderate ICC-values (0.5-0.75). Plasma-BDNF, SCWT performance, pain perception and all HRV parameters are suitable exercise-sensitive markers after an acute endurance exercise. Moreover, pain perception, SCWT reaction time and all HRV parameters show a moderate reliability, others rather poor. In summary, a selected neurophysiological and vegetative marker panel can be used to determine exercise load and recovery in endurance sports, but its repeatability is limited due to its vaguely reliability.
Collapse
Affiliation(s)
- Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Sebastian Hacker
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Jana Palmowski
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Tim Konstantin Boßlau
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Torsten Frech
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Paulos Tirekoglou
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Evita Bothur
- Medical Center for Laboratory Medicine and Microbiology, Koblenz-Mittelrhein, Germany
| | - Stefan Samel
- Medical Center for Laboratory Medicine and Microbiology, Koblenz-Mittelrhein, Germany
| | - Rüdiger Walscheid
- Medical Center for Laboratory Medicine and Microbiology, Koblenz-Mittelrhein, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
23
|
An update on novel therapeutic intervention in Rheumatoid arthritis. Int Immunopharmacol 2022; 109:108794. [DOI: 10.1016/j.intimp.2022.108794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
|
24
|
Balthazaar SJ, Sengeløv M, Bartholdy K, Malmqvist L, Ballegaard M, Hansen B, Svendsen JH, Kruse A, Welling KL, Krassioukov AV, Biering-Sørensen F, Biering-Sørensen T. Cardiac arrhythmias six months following traumatic spinal cord injury. J Spinal Cord Med 2022; 45:631-637. [PMID: 34292114 PMCID: PMC9246248 DOI: 10.1080/10790268.2021.1950453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To investigate the incidence of cardiac arrhythmias at six months following traumatic spinal cord injury (SCI) and to compare the prevalence of arrhythmias between participants with cervical and thoracic SCI. DESIGN A prospective observational study using continuous twenty-four-hour Holter monitoring. SETTING Inpatient rehabilitation unit of a university research hospital and patient home setting. PARTICIPANTS Fifty-five participants with acute traumatic SCI were prospectively included. For each participant, the SCI was characterized according to the International Standards for Neurological Classification of SCI by the neurological level and severity according to the American Spinal Injury Association Impairment Scale. OUTCOME MEASURES Comparisons between demographic characteristics and arrhythmogenic occurrences as early as possible after SCI (4 ± 2 days) followed by 1, 2, 3, 4 weeks and 6 month time points of Holter monitoring. RESULTS Bradycardia (heart rate [HR] <50 bpm) was present in 29% and 33% of the participants with cervical (C1-C8) and thoracic (T1-T12) SCI six months after SCI, respectively. The differences in episodes of bradycardia between the two groups were not significant (P < 0.54). The mean maximum HR increased significantly from 4 weeks to 6 months post-SCI (P < 0.001), however mean minimum and maximum HR were not significantly different between the groups at the six-month time point. There were no differences in many arrhythmias between recording periods or between groups at six months. CONCLUSIONS At the six-month timepoint following traumatic SCI, there were no significant differences in occurrences of arrhythmias between participants with cervical and thoracic SCI compared to the findings observed in the first month following SCI.
Collapse
Affiliation(s)
- Shane J.T. Balthazaar
- Department of Cardiology, Vancouver General Hospital, Vancouver Coastal Health, Vancouver, British Columbia (BC), Canada
| | - Morten Sengeløv
- Clinic for Spinal Cord Injuries, Rigshospitalet, Copenhagen, Denmark,Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Bartholdy
- Clinic for Spinal Cord Injuries, Rigshospitalet, Copenhagen, Denmark
| | - Lasse Malmqvist
- Clinic for Spinal Cord Injuries, Rigshospitalet, Copenhagen, Denmark,Department of Clinical Neurophysiology, Rigshopitalet, Copenhagen, Denmark
| | - Martin Ballegaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Neurophysiology, Rigshopitalet, Copenhagen, Denmark,Department of Neurology, Zealand University Hospital at Roskilde, Roskilde, Denmark
| | - Birgitte Hansen
- Clinic for Spinal Cord Injuries, Rigshospitalet, Copenhagen, Denmark
| | - Jesper Hastrup Svendsen
- Clinic for Spinal Cord Injuries, Rigshospitalet, Copenhagen, Denmark,Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Kruse
- Spine Unit, Department of Orthopedic Surgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, BC, Canada,Department of Medicine, Division of Physical Medicine and Rehabilitation, Vancouver, BC, Canada,Spinal Cord Program, GF Strong Rehabilitation Centre, University of British Columbia, Vancouver, BC, Canada
| | - Fin Biering-Sørensen
- Clinic for Spinal Cord Injuries, Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tor Biering-Sørensen
- Clinic for Spinal Cord Injuries, Rigshospitalet, Copenhagen, Denmark,Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Correspondence to: Tor Biering-Sørensen, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Cardiovascular Non-Invasive Imaging Research Laboratory Department of Cardiology, Herlev & Gentofte Hospital, Niels Andersensvej 65, DK-2900, Post 835, Copenhagen, Denmark.
| |
Collapse
|
25
|
The cholinergic anti-inflammatory pathway in humans: State-of-the-art review and future directions. Neurosci Biobehav Rev 2022; 136:104622. [PMID: 35300992 DOI: 10.1016/j.neubiorev.2022.104622] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
The parasympathetic nervous system modulates inflammation through efferent vagus nerve signaling. Tracey (2002) termed this process as the cholinergic anti-inflammatory pathway (CAP). Interest in the potential practical use of this immune-modulatory process is increasing alongside increasing appreciation for the role of systemic inflammation in the etiology of somatic and psychological disease. A diverse literature exists providing expansive correlational evidence and some preliminary experimental evidence of the CAP in humans. However, so far this literature has not been well integrated and critically evaluated. This review describes the current state-of-the-art of research into vagus nerve driven parasympathetic control of inflammation in humans. Substantial limitations and gaps in the literature are identified, and promising directions for future research are highlighted.
Collapse
|
26
|
Abstract
The microbiota-gut-brain-axis (MGBA) is a bidirectional communication network between gut microbes and their host. Many environmental and host-related factors affect the gut microbiota. Dysbiosis is defined as compositional and functional alterations of the gut microbiota that contribute to the pathogenesis, progression and treatment responses to disease. Dysbiosis occurs when perturbations of microbiota composition and function exceed the ability of microbiota and its host to restore a symbiotic state. Dysbiosis leads to dysfunctional signaling of the MGBA, which regulates the development and the function of the host's immune, metabolic, and nervous systems. Dysbiosis-induced dysfunction of the MGBA is seen with aging and stroke, and is linked to the development of common stroke risk factors such as obesity, diabetes, and atherosclerosis. Changes in the gut microbiota are also seen in response to stroke, and may impair recovery after injury. This review will begin with an overview of the tools used to study the MGBA with a discussion on limitations and potential experimental confounders. Relevant MGBA components are introduced and summarized for a better understanding of age-related changes in MGBA signaling and its dysfunction after stroke. We will then focus on the relationship between the MGBA and aging, highlighting that all components of the MGBA undergo age-related alterations that can be influenced by or even driven by the gut microbiota. In the final section, the current clinical and preclinical evidence for the role of MGBA signaling in the development of stroke risk factors such as obesity, diabetes, hypertension, and frailty are summarized, as well as microbiota changes with stroke in experimental and clinical populations. We conclude by describing the current understanding of microbiota-based therapies for stroke including the use of pre-/pro-biotics and supplementations with bacterial metabolites. Ongoing progress in this new frontier of biomedical sciences will lead to an improved understanding of the MGBA's impact on human health and disease.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (R.M.B.)
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| |
Collapse
|
27
|
Yang A, Liu B, Inoue T. Role of autonomic system imbalance in neurogenic pulmonary oedema. Eur J Neurosci 2022; 55:1645-1657. [PMID: 35277906 DOI: 10.1111/ejn.15648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary oedema (NPE) is a life-threatening complication that develops rapidly and dramatically after an injury to the central nervous system (CNS). The autonomic system imbalance produced by severe brain damage may play an important role in the development of NPE. Activation of the sympathetic nervous system and inhibition of the vagus nerve system are essential prerequisites for autonomic system imbalance. The more severe the damage, the more pronounced the phenomenon. Sympathetic hyperactivity is associated with increased release of catecholamines from peripheral sympathetic nerve endings, which can cause dramatic changes in haemodynamics and cause pulmonary oedema. On the other hand, the abnormal inflammatory response caused by vagus nerve inhibition may also play an important role in the pathogenesis of NPE. The perspective of autonomic system imbalance seems to perfectly integrate the existing pathogenesis of NPE and can explain the entire development progression of NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
28
|
Nira Mat Isar NE, Zikri Abdul Halim MH, Ong MLY. Acute massage stimulates parasympathetic activation after a single exhaustive muscle contraction exercise. J Bodyw Mov Ther 2022; 30:105-111. [DOI: 10.1016/j.jbmt.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/04/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
|
29
|
Becker RC. Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor's page series. J Thromb Thrombolysis 2021; 52:692-707. [PMID: 34403043 PMCID: PMC8367772 DOI: 10.1007/s11239-021-02549-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Abstract The autonomic nervous system (ANS) is a complex network of nerves originating in the brain, brain stem, spinal cord, heart and extracardiac organs that regulates neural and physiological responses to internal and external environments and conditions. A common observation among patients with the 2019 Coronavirus (CoV) (SARS-severe acute respiratory syndrome CoV-2) (SARS-CoV-2) or COVID-19 [CO for corona, VI for virus, D for disease and 19 for when the outbreak was first identified (31 December 2019)] in the acute and chronic phases of the disease is tachycardia, labile blood pressure, muscular fatigue and shortness of breath. Because abnormalities in the ANS can contribute to each of these symptoms, herein a review of autonomic dysfunction in SARS-COV-2 infection is provided to guide diagnostic testing, patient care and research initiatives. Graphic abstract The autonomic nervous system is a complex network of nerves originating in the brain, brain stem, spinal cord, heart and extracardiac organs that regulates neural and physiological responses to internal and external environments and conditions. A common collection of signs and symptoms among patients with the 2019 Coronavirus (CoV) (SARS-severe acute respiratory syndrome CoV-2) (SARS-CoV-2) or COVID-19 [CO for corona, VI for virus, D for disease and 19 for when the outbreak was first identified (31 December 2019)] is tachycardia, labile blood pressure, muscular fatigue and shortness of breath. Abnormalities in the autonomic nervous system (ANS) can contribute to each of these identifiers, potentially offering a unifying pathobiology for acute, subacute and the long-term sequelae of SARS-CoV-2 infection (PASC) and a target for intervention.
Collapse
Affiliation(s)
- Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
30
|
Ahsan H, Irfan HM, Alamgeer, Jahan S, Shahzad M, Asim MH. Potential of ephedrine to suppress the gene expression of TNF-α, IL-1β, IL-6 and PGE2: A novel approach towards management of rheumatoid arthritis. Life Sci 2021; 282:119825. [PMID: 34274310 DOI: 10.1016/j.lfs.2021.119825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
AIMS Rheumatoid arthritis (RA) is a complicated perpetual auto-immune disorder allied with synovial hyperplasia, hyperalgesia, bone destruction, cartilage erosion and eventually physical impairment. Dysregulation of the sympathetic nervous system (SNS) is a reported hallmark of rheumatoid arthritis. Drugs targeting adrenergic receptors may be suitable to attenuate arthritis. MAIN METHODS This experimental work employed ephedrine (adrenergic agonist) for appraisal of its anti-arthritic potential by using CFA-provoked arthritic animal model. Physical parameters (Paw volume/diameter, arthritic index and weight) were assessed through whole study period. Blood sample was drawn by cardiac puncture for various tests like RF value, C-RP, ELISA, RFTs and LFTs. RNA was isolated from blood and expression of inflammatory cytokines was estimated through q-PCR. KEY FINDINGS Ephedrine alleviated swelling in paw and reinstated the body weight, hematological and biochemical indices of experimental animal. This drug (40 mg/kg PO) significantly (p < 0.001) reduced the expression (measured as percent expression) of tumor necrosis factor-α, interleukin-1β and interleukin-6 (54, 59 and 49% respectively) in arthritic animals. On the other side, cell derived anti-inflammatory mediators were expressed more in animals treated with same dose of ephedrine. Furthermore, inhibitory effect on expression of PGE2 was significantly (p < 0.001) observed in all treatment groups of ephedrine in comparison with standard treatment. SIGNIFICANCE This study ascertained the ephedrine as prospective therapeutic alternative candidate for treatment of RA but limited for clinical investigations.
Collapse
Affiliation(s)
- Haseeb Ahsan
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | | | - Alamgeer
- Department of Pharmacology, University college of Pharmacy, University of Punjab Lahore, Lahore, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences Lahore, Lahore, Pakistan.
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences Lahore, Lahore, Pakistan.
| | | |
Collapse
|
31
|
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology 2021; 29:975-986. [PMID: 34125373 DOI: 10.1007/s10787-021-00812-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Elham Adlravan
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Alen NV, Parenteau AM, Sloan RP, Hostinar CE. Heart Rate Variability and Circulating Inflammatory Markers in Midlife. Brain Behav Immun Health 2021; 15. [PMID: 34268499 PMCID: PMC8277115 DOI: 10.1016/j.bbih.2021.100273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Theoretical perspectives and empirical evidence suggest that the parasympathetic nervous system engages in active monitoring and moderating of inflammatory processes. A clearer understanding of the bidirectional communication between the parasympathetic nervous system and the immune system could lead to novel clinical interventions for inflammatory illnesses. The current study used a large (N = 836) nationally representative sample of adults in the United States to investigate the associations between resting parasympathetic modulation of the heart, indexed through both high frequency heart rate variability (HF-HRV) and low frequency heart rate variability (LF-HRV), and six circulating markers of inflammation. Statistical analyses revealed robust inverse associations of HF-HRV with interleukin-6 (IL6), C-reactive protein (CRP), and fibrinogen, with or without covariate adjustment. Similar inverse associations were observed between LF-HRV and IL6 and CRP. No significant associations were observed between HRV and either inflammatory adhesion molecules (E-selectin, intracellular adhesion molecule-1) or soluble IL6 receptor. Results are consistent with the cholinergic anti-inflammatory pathway and suggest that parasympathetic modulation of inflammation through the vagus nerve may act on specific inflammatory molecules more than others.
Collapse
|
33
|
Hwang JS, Shin YJ. Role of Choline in Ocular Diseases. Int J Mol Sci 2021; 22:4733. [PMID: 33946979 PMCID: PMC8124599 DOI: 10.3390/ijms22094733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Choline is essential for maintaining the structure and function of cells in humans. Choline plays an important role in eye health and disease. It is a precursor of acetylcholine, a neurotransmitter of the parasympathetic nervous system, and it is involved in the production and secretion of tears by the lacrimal glands. It also contributes to the stability of the cells and tears on the ocular surface and is involved in retinal development and differentiation. Choline deficiency is associated with retinal hemorrhage, glaucoma, and dry eye syndrome. Choline supplementation may be effective for treating these diseases.
Collapse
Affiliation(s)
| | - Young-Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea;
| |
Collapse
|
34
|
Crossan M, Ellis C, Crossan C. Towards a Model of Leader Character Development: Insights From Anatomy and Music Therapy. JOURNAL OF LEADERSHIP & ORGANIZATIONAL STUDIES 2021. [DOI: 10.1177/15480518211005455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leader character has emerged as a critical foundation for leadership. In spite of the view that leader character can be developed, there has been limited holistic attention to what it takes to develop character. Character requires conscious development, and that conscious development not only requires an understanding of what character is, but how the anatomy of character enables and inhibits character development and expression. By anatomy, we refer to the four underlying anatomical systems—physiology, affect, behavior, and cognition (PABC)—that function independently, and in an interrelated manner, to support the development of character. For illustration, we offer the practice of listening to music as a means to develop character, highlighting the links between the PABC systems and character development.
Collapse
Affiliation(s)
- Mary Crossan
- Ivey Business School, Western University, London, ON, Canada
| | - Cassandra Ellis
- Ivey Business School, Western University, London, ON, Canada
| | - Corey Crossan
- School of Kinesiology, Western University, London, ON, Canada
| |
Collapse
|
35
|
Neuroimmune interactions and osteoarthritis pain: focus on macrophages. Pain Rep 2021; 6:e892. [PMID: 33981927 PMCID: PMC8108586 DOI: 10.1097/pr9.0000000000000892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Bidirectional interactions between the immune system and the nervous system are increasingly appreciated as playing a pathogenic role in chronic pain. Unraveling the mechanisms by which inflammatory pain is mediated through communication between nerves and immune cells may lead to exciting new strategies for therapeutic intervention. In this narrative review, we focus on the role of macrophages in the pathogenesis of osteoarthritis (OA) pain. From regulating homeostasis to conducting phagocytosis, and from inducing inflammation to resolving it, macrophages are plastic cells that are highly adaptable to their environment. They rely on communicating with the environment through cytokines, growth factors, neuropeptides, and other signals to respond to inflammation or injury. The contribution of macrophages to OA joint damage has garnered much attention in recent years. Here, we discuss how macrophages may participate in the initiation and maintenance of pain in OA. We aim to summarize what is currently known about macrophages in OA pain and identify important gaps in the field to fuel future investigations.
Collapse
|
36
|
Ingegnoli F, Buoli M, Antonucci F, Coletto LA, Esposito CM, Caporali R. The Link Between Autonomic Nervous System and Rheumatoid Arthritis: From Bench to Bedside. Front Med (Lausanne) 2020; 7:589079. [PMID: 33365319 PMCID: PMC7750536 DOI: 10.3389/fmed.2020.589079] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
Neuronal stimulation is an emerging field of research focused on the management and treatment of various diseases through the reestablishment of physiological homeostasis. Electrical vagus nerve stimulation has recently been proposed as a revolutionary therapeutic option for rheumatoid arthritis (RA) in combination with or even as a replacement for conventional and biological drugs. In the past few years, disruption of the autonomic system has been linked to RA onset and activity. Novel research on the link between the autonomic nervous system and the immune system (immune-autonomics) has paved the way for the development of innovative RA management strategies. Clinical evidence supports this approach. Cardiovascular involvement, in terms of reduced baroreflex sensitivity and heart rate variability-derived indices, and mood disorders, common comorbidities in patients with RA, have been linked to autonomic nervous system dysfunction, which in turn is influenced by increased levels of circulating pro-inflammatory cytokines. This narrative review provides an overview of the autonomic nervous system and RA connection, discussing most of the common cardiac and mental health-related RA comorbidities and their potential relationships to systemic and joint inflammation.
Collapse
Affiliation(s)
- Francesca Ingegnoli
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Lavinia Agra Coletto
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Maria Esposito
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Yaghouby F, Jang K, Hoang U, Asgari S, Vasudevan S. Sex Differences in Vagus Nerve Stimulation Effects on Rat Cardiovascular and Immune Systems. Front Neurosci 2020; 14:560668. [PMID: 33240036 PMCID: PMC7677457 DOI: 10.3389/fnins.2020.560668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023] Open
Abstract
Background Investigations into the benefits of vagus nerve stimulation (VNS) through pre-clinical and clinical research have led to promising findings for treating several disorders. Despite proven effectiveness of VNS on conditions such as epilepsy and depression, understanding of off-target effects and contributing factors such as sex differences can be beneficial to optimize therapy design. New Methods In this article, we assessed longitudinal effects of VNS on cardiovascular and immune systems, and studied potential sex differences using a rat model of long-term VNS. Rats were implanted with cuff electrodes around the left cervical vagus nerve for VNS, and wireless physiological monitoring devices for continuous monitoring of cardiovascular system using electrocardiogram (ECG) signals. ECG morphology and heart rate variability (HRV) features were extracted to assess cardiovascular changes resulting from VNS in short-term and long-term timescales. We also assessed VNS effects on expression of inflammatory cytokines in blood during the course of the experiment. Statistical analysis was performed to compare results between Treatment and Sham groups, and between male and female animals from Treatment and Sham groups. Results Considerable differences between male and female rats in cardiovascular effects of VNS were observed in multiple cardiovascular features. However, the effects seemed to be transient with approximately 1-h recovery after VNS. While short-term cardiovascular effects were mainly observed in male rats, females in general showed more significant long-term effects even after VNS stopped. We did not observe notable changes or sex differences in systemic cytokine levels resulting from VNS. Comparison With Existing Methods Compared to existing methods, our study design incorporated wireless physiological monitoring and systemic blood cytokine level analysis, along with long-term VNS experiments in unanesthetized rats to study sex differences. Conclusion The contribution of sex differences for long-term VNS off-target effects on cardiovascular and immune systems was assessed using awake behaving rats. Although VNS did not change the concentration of inflammatory biomarkers in systemic circulation for male and female rats, we observed significant differences in cardiovascular effects of VNS characterized using ECG morphology and HRV analyses.
Collapse
Affiliation(s)
- Farid Yaghouby
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| | - Kee Jang
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| | - Uyen Hoang
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| | - Sepideh Asgari
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| | - Srikanth Vasudevan
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| |
Collapse
|
38
|
Xie W, Strong JA, Zhang JM. Localized sympathectomy reduces peripheral nerve regeneration and pain behaviors in 2 rat neuropathic pain models. Pain 2020; 161:1925-1936. [PMID: 32701850 PMCID: PMC7572566 DOI: 10.1097/j.pain.0000000000001887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that the peripheral nerve regeneration process is linked to pain in several neuropathic pain models. Other studies show that sympathetic blockade may relieve pain in some pain models and clinical conditions. This study examined reduction in peripheral nerve regeneration as one possible mechanism for relief of neuropathic pain by sympathetic blockade. A "microsympathectomy," consisting of cutting the gray rami containing sympathetic postganglionic axons where they enter the L4 and L5 spinal nerves, reduced mechanical hypersensitivity in 2 different rat neuropathic pain models. In the spinal nerve ligation model, in which some functional regeneration and reinnervation of the ligated spinal nerve can be observed, microsympathectomy reduced functional and anatomical measures of regeneration as well as expression of growth-associated protein 43 (GAP43), a regeneration-related protein. In the spared nerve injury model, in which functional reinnervation is not possible and the futile regeneration process results in formation of a neuroma, microsympathectomy reduced neuroma formation and GAP43 expression. In both models, microsympathectomy reduced macrophage density in the sensory ganglia and peripheral nerve. This corroborates previous work showing that sympathetic nerves may locally affect immune function. The results further highlight the challenge of improving pain in neuropathic conditions without inhibiting peripheral nerve regeneration that might otherwise be possible and desired.
Collapse
Affiliation(s)
- Wenrui Xie
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | | | |
Collapse
|
39
|
Veny M, Grases D, Kucharova K, Lin WW, Nguyen J, Huang S, Ware CF, Ranscht B, Šedý JR. Contactin-1 Is Required for Peripheral Innervation and Immune Homeostasis Within the Intestinal Mucosa. Front Immunol 2020; 11:1268. [PMID: 32676079 PMCID: PMC7333639 DOI: 10.3389/fimmu.2020.01268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023] Open
Abstract
Neuronal regulation of diverse physiological functions requires complex molecular interactions in innervated tissues to maintain proper organ function. Here we show that loss of the neuronal cell surface adhesion/recognition molecule Contactin-1 (Cntn1) directly impairs intestinal function causing wasting that subsequently results in global immune defects. Loss of Cntn1 results in hematologic alterations and changes in blood metabolites associated with malnourishment. We found thymus and spleen of Cntn1-deficient animals atrophied with severe reductions in lymphocyte populations. Elevated thymic Gilz expression indicated ongoing glucocorticoid signaling in Cntn1-deficient animals, consistent with the malnourishment phenotype. Intestinal Contactin-1 was localized to neurons in the villi and the submucosal/myenteric plexus that innervates smooth muscle. Loss of Cntn1 was associated with reduced intestinal Bdnf and Adrb2, indicating reduced neuromuscular crosstalk. Additionally, loss of Cntn1 resulted in reduced recruitment of CD3+ T cells to villi within the small intestine. Together, these data illustrate the critical role of Contactin-1 function within the gut, and how this is required for normal systemic immune functions.
Collapse
Affiliation(s)
- Marisol Veny
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Daniela Grases
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Karolina Kucharova
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Wai Wai Lin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Jennifer Nguyen
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sarah Huang
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Barbara Ranscht
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - John R Šedý
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
40
|
Zhang J, Huang Y, Li L, Dong J, Liao M, Sun M. Transcriptome Analysis Reveals the Neuro-Immune Interactions in Duck Tembusu Virus-Infected Brain. Int J Mol Sci 2020; 21:ijms21072402. [PMID: 32244328 PMCID: PMC7177238 DOI: 10.3390/ijms21072402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
The duck Tembusu virus (DTMUV) is a mosquito-borne flavivirus. It causes severe symptoms of egg-drop, as well as neurological symptoms and brain damage in ducks. However, the specific molecular mechanisms of DTMUV-induced neurovirulence and host responses in the brain remain obscure. To better understand the host-pathogen and neuro-immune interactions of DTMUV infection, we conducted high-throughput RNA-sequencing to reveal the transcriptome profiles of DTMUV-infected duck brain. Totals of 117, 212, and 150 differentially expressed genes (DEGs) were identified at 12, 24, and 48 h post infection (hpi). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses uncovered genes and pathways related to the nervous system and immune responses in duck brain. Neuro-related genes, including WNT3A, GATA3, and CHRNA6, were found to be significantly downregulated. RIG-I-like receptors (DHX58, IFIH1) and Toll-like receptors (TLR2 and TLR3) were activated, inducing the expression of 22 interferon stimulated genes (ISGs) and antigen-processing and -presenting genes (TAP1 and TAP2) in the brain. Our research provides comprehensive information for the molecular mechanisms of neuro-immune and host-pathogen interactions of DTMUV.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 3/genetics
- Animals
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- Brain/virology
- Ducks/genetics
- Ducks/immunology
- Flavivirus/immunology
- Flavivirus/pathogenicity
- Flavivirus Infections/immunology
- Flavivirus Infections/metabolism
- Flavivirus Infections/pathology
- Flavivirus Infections/veterinary
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/metabolism
- Gene Expression Profiling/veterinary
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Host-Pathogen Interactions/physiology
- Interferons/metabolism
- Neuroimmunomodulation/genetics
- Neuroimmunomodulation/immunology
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Toll-Like Receptors/genetics
- Toll-Like Receptors/metabolism
- Transcriptome
- Wnt3A Protein/genetics
- Wnt3A Protein/metabolism
Collapse
|
41
|
He Z. The control mechanisms of heart rate dynamics in a new heart rate nonlinear time series model. Sci Rep 2020; 10:4814. [PMID: 32179768 PMCID: PMC7075874 DOI: 10.1038/s41598-020-61562-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
The control mechanisms and implications of heart rate variability (HRV) under the sympathetic (SNS) and parasympathetic nervous system (PNS) modulation remain poorly understood. Here, we establish the HR model/HRV responder using a nonlinear process derived from Newton's second law in stochastic self-restoring systems through dynamic analysis of physiological properties. We conduct model validation by testing, predictions, simulations, and sensitivity and time-scale analysis. We confirm that the outputs of the HRV responder can be accepted as the real data-generating process. Empirical studies show that the dynamic control mechanism of heart rate is a stable fixed point, rather than a strange attractor or transitions between a fixed point and a limit cycle; HR slope (amplitude) may depend on the ratio of cardiac disturbance or metabolic demand mean (standard deviation) to myocardial electrical resistance (PNS-SNS activity). For example, when metabolic demands remain unchanged, HR amplitude depends on PNS to SNS activity; when autonomic activity remains unchanged, HR amplitude during resting reflects basal metabolism. HR parameter alterations suggest that age-related decreased HRV, ultrareduced HRV in heart failure, and ultraelevated HRV in ST segment alterations refer to age-related decreased basal metabolism, impaired myocardial metabolism, and SNS hyperactivity triggered by myocardial ischemia, respectively.
Collapse
Affiliation(s)
- Zonglu He
- Faculty of Management and Economics, Kaetsu University, 2-8-4 Minami-cho, Hanakoganei, Kodaira-shi, Tokyo, 187-8578, Japan.
| |
Collapse
|
42
|
Cox MA, Bassi C, Saunders ME, Nechanitzky R, Morgado-Palacin I, Zheng C, Mak TW. Beyond neurotransmission: acetylcholine in immunity and inflammation. J Intern Med 2020; 287:120-133. [PMID: 31710126 DOI: 10.1111/joim.13006] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/24/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Acetylcholine (ACh) is best known as a neurotransmitter and was the first such molecule identified. ACh signalling in the neuronal cholinergic system has long been known to regulate numerous biological processes (reviewed by Beckmann and Lips). In actuality, ACh is a ubiquitous signalling molecule that is produced by numerous non-neuronal cell types and even by some single-celled organisms. Within multicellular organisms, a non-neuronal cholinergic system that includes the immune system functions in parallel with the neuronal cholinergic system. Several immune cell types both respond to ACh signals and can directly produce ACh. Recent work from our laboratory has demonstrated that the capacity to produce ACh is an intrinsic property of T cells responding to viral infection, and that this ability to produce ACh is dependent upon IL-21 signalling to the T cells. Furthermore, during infection this immune-derived ACh is necessary for the T cells to migrate into infected tissues. In this review, we will discuss the various sources of ACh that are relevant during immune responses and describe how ACh acts on immune cells to influence their functions. We will also address the clinical implications of this fascinating aspect of immunity, focusing on ACh's role in the migration of T cells during infection and cancer.
Collapse
Affiliation(s)
- M A Cox
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - C Bassi
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - M E Saunders
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - R Nechanitzky
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - I Morgado-Palacin
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - C Zheng
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
43
|
Kang SW, Christensen KD, Aldridge D, Kuenzel WJ. Effects of light intensity and dual light intensity choice on plasma corticosterone, central serotonergic and dopaminergic activities in birds, Gallus gallus. Gen Comp Endocrinol 2020; 285:113289. [PMID: 31557469 DOI: 10.1016/j.ygcen.2019.113289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/21/2019] [Accepted: 09/22/2019] [Indexed: 01/01/2023]
Abstract
Light intensity plays an important role in the regulation of growth, behavior, reproduction, and welfare of avian species. Light intensity preference behavior has been suggested to be involved in welfare of birds. This study aims to investigate the effects of different light intensity and dual light intensity choice (DLIC) lighting program on plasma corticosterone (CORT), and tryptophan hydroxylase 2 (TPH2, the rate-limiting enzyme of serotonin biosynthesis) and tyrosine hydroxylase (TH, the rate-limiting enzyme of dopamine biosynthesis) gene expression in the brainstem of male chickens. Day old broilers were housed in two commercial houses, and placed in 24 pens. All the treatment groups were provided with 23 h light (L) /1 h dark (D) and 30 lx (lx) light intensity during the first week and then 18L:6D (10 lx) from day 7 to 14. Blood and brain were sampled at 14 days of age (10 lx) before the onset of light treatments. On day 15, four treatments (2, 10, 20, and 100 lx), and DLIC treatment (2/20 lx) were initiated. Samples were collected on days 15, 16, 17, 30 and 41. TPH2 expression in the dorsal raphe nucleus (DRN) and caudal raphe nucleus (CRN) of brainstem, and TPH2 and TH expression in ventral tegmental areas (VTN) of the midbrain were determined by qPCR. Results showed that bright light and DLIC lighting program temporarily attenuated plasma CORT, suggesting the short-term stress attenuating effect of bright light and DLIC lighting program. Differential TPH2 expression in the DRN and CRN observed in the DLIC birds indicate a significant effect of DLIC lighting program on the serotonergic activity in the avian brainstem. At the 41 days of age, the significant downregulation of TPH2 and TH expression occurred in the VTA of DLIC treated birds compared to the other group of birds. Taken together, temporal and spatial regulation of TPH2 and TH expression by DLIC lighting program indicate that compensatory regulation of serotonergic and dopaminergic activities might be involved in the light intensity preference behavior of birds, suggesting a possible beneficial effect of the DLIC lighting program on broiler welfare.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | - Douglas Aldridge
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wayne J Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
44
|
The Potential Influence of the Bacterial Microbiome on the Development and Progression of ADHD. Nutrients 2019; 11:nu11112805. [PMID: 31744191 PMCID: PMC6893446 DOI: 10.3390/nu11112805] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
The latest research cumulates staggering information about the correlation between the microbiota-gut-brain axis and neurodevelopmental disorders. This review aims to shed light on the potential influence of the microbiome on the development of the most prevalent neurodevelopmental disease, attention-deficit-hyperactive disorder (ADHD). As the etiology and pathophysiology of ADHD are still unclear, finding viable biomarkers and effective treatment still represent a challenge. Therefore, we focused on factors that have been associated with a higher risk of developing ADHD, while simultaneously influencing the microbial composition. We reviewed the effect of a differing microbial makeup on neurotransmitter concentrations important in the pathophysiology of ADHD. Additionally, we deduced factors that correlate with a high prevalence of ADHD, while simultaneously affecting the gut microbiome, such as emergency c-sections, and premature birth as the former leads to a decrease of the gut microbial diversity and the latter causes neuroprotective Lactobacillus levels to be reduced. Also, we assessed nutritional influences, such as breastfeeding, ingestion of short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs) on the host′s microbiome and development of ADHD. Finally, we discussed the potential significance of Bifidobacterium as a biomarker for ADHD, the importance of preventing premature birth as prophylaxis and nutrition as a prospective therapeutic measurement against ADHD.
Collapse
|
45
|
Cholinergic system is involved in the therapeutic effect of madecassoside on collagen-induced arthritis in rats. Int Immunopharmacol 2019; 75:105813. [PMID: 31404889 DOI: 10.1016/j.intimp.2019.105813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
Our previous studies demonstrated that oral administration of madecassoside could markedly attenuate collagen-induced arthritis in rats, a rodent model of rheumatoid arthritis. As the autonomic nervous system is critically involved in the modulation of peripheral inflammation and immune response, the present study aims to explore the possible involvement of adrenergic and cholinergic nerves in the effect of madecassoside on rheumatoid arthritis. Arthritis was induced by chicken collagen in rats, and madecassoside was orally administered daily for two weeks from day 14 after the primary immunization. The antagonists of adrenoceptor and cholinergic receptors were co-administered with madecassoside, respectively. Unilateral cervical vagotomy was performed four days before the arthritis induction. The results showed that madecassoside (30 mg/kg) treatment markedly ameliorated arthritis symptoms in rats, mainly evidenced by the reduction of paw swelling and arthritis index scores. Co-administration of madecassoside with atropine (an antagonist of the muscarinic acetylcholine receptor) or hexamethonium (an antagonist of the nicotinic acetylcholine receptor) markedly diminished the therapeutic effects of madecassoside in arthritis. However, co-administration with phentolamine (an antagonist of the α-adrenoceptor) or propranolol (an antagonist of the β-adrenoceptor) did not alter the effect of madecassoside on arthritis. Furthermore, unilateral cervical vagotomy significantly reduced the anti-arthritis efficacy of madecassoside, including the amelioration of clinical symptoms, as well as the inhibition of the production of pro-inflammatory cytokines except T lymphocytes-related cytokines. These findings suggest that madecassoside exerts inhibitory effects on collagen-induced arthritis through, at least partially, the peripheral cholinergic system.
Collapse
|
46
|
Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells 2019; 8:cells8070670. [PMID: 31269754 PMCID: PMC6679154 DOI: 10.3390/cells8070670] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby regulate the intestinal inflammatory processes. Although the autonomic nervous system is classically divided in a sympathetic and parasympathetic branch, both play a pivotal role in the crosstalk with the immune system, with the enteric nervous system acting as a potential interface. Pilot clinical trials that employ vagus nerve stimulation to reduce inflammation are met with promising results. In this paper, we review current knowledge on the innervation of the gut, the potential of cholinergic and adrenergic systems to modulate intestinal immunity, and comment on ongoing developments in clinical trials.
Collapse
|
47
|
Abstract
OBJECTIVE Women exhibit reduced ovarian sex hormones during the menopausal period that result in well-known physical and psychological symptoms. However, symptoms related to gastric motility (GM) have not been thoroughly investigated. We hypothesized that stress response gastric motility (SRGM) is lower in postmenopausal (PM) and perimenopausal (PERIM) women than in premenopausal (PREM) women. Estrogenic decline leads to neuroendocrine changes in different areas of the brain. These changes can result in hypothalamic vasomotor symptoms, disorders in eating behaviours, and altered blood pressure, in addition to psychological disorders such as stress, anxiety, depression, and irritability related to alterations in the limbic system. METHODS In this pilot study, 55 PREM, PERIM, and PM women were clinically evaluated using the Nowack stress profile (SP) and State-Trait Anxiety Inventory (STAI). GM was assessed via electrical bioimpedance using two psychological stress tests (Stroop and Raven tests). RESULTS Basal SP and STAI-anxiety test scores were similar among the three groups of women (P > 0.05). PERIM women had lower GM in the basal state (P < 0.05) than did other women. PREM and PM women had significantly decreased GM during the stress tests (P < 0.05). However, PERIM did not exhibit GM changes during stress tests (P > 0.05). CONCLUSION Changes in sex hormones during PERIM may affect GM and SRGM.
Collapse
|
48
|
Middleton KR, Haaz Moonaz S, Hasni SA, Magaña López M, Tataw-Ayuketah G, Farmer N, Wallen GR. Yoga for systemic lupus erythematosus (SLE): Clinician experiences and qualitative perspectives from students and yoga instructors living with SLE. Complement Ther Med 2018; 41:111-117. [PMID: 30477826 PMCID: PMC6279250 DOI: 10.1016/j.ctim.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with widespread inflammation and tissue damage. It is more common and severe among Blacks, Hispanics, and Asians; with higher incidence in women. While the goals of medical treatment are to prevent flares and reduce organ damage, up to 50% of patients perceive their health to be suboptimal with unaddressed needs including fatigue and pain. Recent SLE treatment guidelines focus on improving quality of life. Yoga has shown improvements in quality-of-life and fatigue in various diagnoses. While there is growing evidence that yoga therapy may help osteoarthritis and rheumatoid arthritis symptoms, there is only one reference in the literature related to SLE. METHODS/SETTING An adjunct study was undertaken to evaluate adapting the Yoga as Self Care for Arthritis in Minority Communities study for a bilingual population living with SLE in the Washington, DC area. Informants included 7 patients enrolled onto the study, and 3 yoga instructors living with SLE. Qualitative methods included journals and semi-structured interviews. RESULTS Enrolling patients clarified revisions for intake questionnaires, and symptoms that may impact class participation. Participants demonstrated increased balance, body awareness, and tolerated a faster-paced yoga class when compared to those in the parent study. Yoga instructors' recommendations included modifying yoga based on energy levels and frequent changes in physical ability. CONCLUSION This paper shares perspectives from various informants and affirms the feasibility of progressing to a larger study. It summarizes our findings and recommendations towards creating a randomized controlled trial, as there are currently none in the literature.
Collapse
Affiliation(s)
- Kimberly R Middleton
- National Institutes of Health (NIH), Clinical Center, Nursing Research and Translational Science, 10 Center Drive, Room 2B-01, Bethesda, MD 20892, United States.
| | | | - Sarfaraz A Hasni
- National Institute of Arthritis and Musculoskeletal and Skin, Disease (NIAMS), Bethesda, MD 20892, United States.
| | | | | | - Nicole Farmer
- National Institutes of Health (NIH), Clinical Center, Nursing Research and Translational Science, 10 Center Drive, Room 2B-01, Bethesda, MD 20892, United States.
| | - Gwenyth R Wallen
- National Institutes of Health (NIH), Clinical Center, Nursing Research and Translational Science, 10 Center Drive, Room 2B-01, Bethesda, MD 20892, United States.
| |
Collapse
|
49
|
Wu L, Tai Y, Hu S, Zhang M, Wang R, Zhou W, Tao J, Han Y, Wang Q, Wei W. Bidirectional Role of β2-Adrenergic Receptor in Autoimmune Diseases. Front Pharmacol 2018; 9:1313. [PMID: 30538630 PMCID: PMC6277539 DOI: 10.3389/fphar.2018.01313] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Disorder of the sympathetic nervous system (SNS) is closely related to the pathogenesis of various autoimmune diseases (ADs). Catecholamine triggered beta2-adrenergic receptor (β2-AR) signaling is important in creating a bidirectional response in the progression of ADs due to factors including diverse expression patterns, single nucleotide polymorphisms (SNPs), biased signals, and desensitization of β2-AR, as well as different subtypes of Gα binding to β2-AR. In this review, we summarize the actions of β2-AR signaling in regulating the functions of immunocytes and in the pathogenesis of ADs, and the application of β2-AR agonists or antagonists in treating major types of ADs is also discussed. We suggest that restoring the immune balance via a soft regulation of the expression or activation of β2-AR is one of the promising therapeutic strategies for systematic ADs.
Collapse
Affiliation(s)
- Li Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Shanshan Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Mei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Rui Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Juan Tao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
50
|
Role of miR-9-5p in preventing peripheral neuropathy in patients with rheumatoid arthritis by targeting REST/miR-132 pathway. In Vitro Cell Dev Biol Anim 2018; 55:52-61. [PMID: 30456455 DOI: 10.1007/s11626-018-0310-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) are found to play a key role in neural cell differentiation, peripheral nerve injury, and rheumatoid arthritis (RA). However, no study has yet been conducted highlighting their role in RA-induced peripheral neuropathy. Here, we investigated the role of miRNAs in RA-induced peripheral neuropathy. Levels of six miRNAs were detected in serum collected from 15 patients with RA and peripheral neuropathy and 16 patients with RA. In vitro, Schwann cells were treated with 0.1 ng/mL IL-6 and 20 ng/mL TNF-α. The expression level of miR-9-5p and its association with the repressor element-1 silencing transcription factor (REST) were investigated. The roles of miR-9-5p and REST in Schwann cell injury were examined after transfection of miR-9-5p mimics or REST siRNA. In patients with RA and peripheral neuropathy, serum miR-9-5p was significantly downregulated when compared with RA. In IL-6- and TNF-α-stimulated Schwann cells, apoptosis was induced, while the cell viability and level of miR-9-5p were inhibited. A significantly negative correlation was observed between miR-9-5p and REST. Transfection of miR-9-5p mimics and REST siRNA significantly reversed the inhibition of cell viability and induction of apoptosis caused by IL-6 and TNF-α. In addition, overexpression of miR-9-5p upregulated the expression of miR-132, miRNA targeting E1A binding protein EP300 (EEP300), phosphatase and tensin homolog (PTEN) and forkhead box O3 (FOXO3). These results showed that Schwann cells were protected by miR-9-5p from inflammatory damage by targeting REST/miR-132 pathway, which could provide new targets for treatment of RA-induced peripheral neuropathy.
Collapse
|