1
|
Mondal R, Pal P, Biswas S, Chattopadhyay A, Bandyopadhyay A, Mukhopadhyay A, Mukhopadhyay PK. Attenuation of sodium arsenite mediated ovarian DNA damage, follicular atresia, and oxidative injury by combined application of vitamin E and C in post pubertal Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2701-2720. [PMID: 37129605 DOI: 10.1007/s00210-023-02491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Arsenic being a toxic metalloid ubiquitously persists in environment and causes several health complications including female reproductive anomalies. Epidemiological studies documented birth anomalies due to arsenic exposure. Augmented reactive oxygen species (ROS) generation and quenched antioxidant pool are foremost consequences of arsenic threat. On the contrary, Vitamin E (VE) and C (VC) are persuasive antioxidants and conventionally used in toxicity management. Present study was designed to explore the extent of efficacy of combined VE and VC (VEC) against Sodium arsenite (NaAsO2) mediated ovarian damage. Thirty-six female Wistar rats were randomly divided into three groups (Grs) and treated for consecutive 30 days; Gr I (control) was vehicle fed, Gr II (treated) was gavaged with NaAsO2 (3 mg/kg/day), Gr III (supplement) was provided with VE (400 mg/kg/day) & VC (200 mg/kg/day) along with NaAsO2. Marked histological alterations were evidenced by disorganization in oocyte, granulosa cells and zona pellucida layers in treated group. Considerable reduction of different growing follicles along with increased atretic follicles was noted in treated group. Altered activities ofΔ5 3β-Hydroxysteroid dehydrogenase and 17β-Hydroxysteroid dehydrogenase accompanied by reduced luteinizing hormone, follicle-stimulating hormone and estradiol levels were observed in treated animals. Irregular estrous cyclicity pattern was also observed due to NaAsO2 threat. Surplus ROS production affected ovarian antioxidant strata as evidenced by altered oxidative stress markers. Provoked oxidative strain further affects DNA status of ovary. However, supplementation with VEC caused notable restoration from such disparaging effects of NaAsO2 toxicities. Antioxidant and antiapoptotic attributes of those vitamins might be liable for such restoration.
Collapse
Affiliation(s)
- Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Alok Chattopadhyay
- Department of Physiology, Harimohan Ghose College, Affiliated to University of Calcutta, Kolkata, India
| | - Amit Bandyopadhyay
- Sports and Exercise Physiology Laboratory, Department of Physiology, University Colleges of Science & Technology, University of Calcutta, Kolkata, India
| | | | | |
Collapse
|
2
|
Malin Igra A, Rahman A, Johansson AL, Pervin J, Svefors P, Arifeen SE, Vahter M, Persson LÅ, Kippler M. Early Life Environmental Exposure to Cadmium, Lead, and Arsenic and Age at Menarche: A Longitudinal Mother-Child Cohort Study in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27003. [PMID: 36729392 PMCID: PMC9894154 DOI: 10.1289/ehp11121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Several metals act as endocrine disruptors, but there are few large longitudinal studies about associations with puberty onset. OBJECTIVES We evaluated whether early life cadmium, lead, and arsenic exposure was associated with timing of menarche. METHODS In a mother-child cohort in rural Bangladesh (n=935), the exposure was assessed by concentrations in maternal erythrocytes in early pregnancy and in girls' urine at 5 and 10 years of age using inductively coupled plasma mass spectrometry. The girls were interviewed twice, at average ages 13.3 [standard deviation (SD)=0.43] and 13.8 (SD=0.43) y, and the date of menarche, if present, was recorded. Associations were assessed using Kaplan-Meier analysis and multivariable-adjusted Cox regression. RESULTS In total, 77% of the girls (n=717) had reached menarche by the second follow-up. The median age of menarche among all girls was 13.0 y (25th-75th percentiles: 12.4-13.7 y). At 10 years of age, median urinary cadmium was 0.25μg/L (5th-95th percentiles: 0.087-0.72μg/L), lead 1.6μg/L (0.70-4.2μg/L), and arsenic 54μg/L (19-395μg/L). Given the same age, girls in the highest quartile of urinary cadmium at 5 and 10 years of age had a lower rate of menarche than girls in the lowest quartile, with an adjusted hazard ratio of (HR) 0.80 (95% CI: 0.62, 1.01) at 5 years of age, and 0.77 (95% CI: 0.60, 0.98) at 10 years of age. This implies that girls in the highest cadmium exposure quartile during childhood had a higher age at menarche. Comparing girls in the highest to the lowest quartile of urinary lead at 10 years of age, the former had a higher rate of menarche [adjusted HR = 1.23 (95% CI: 0.97, 1.56)], implying lower age at menarche, whereas there was no association with urinary lead at 5 years of age. Girls born to mothers in the highest quartile of erythrocyte arsenic during pregnancy were less likely to have attained menarche than girls born to mothers in the lowest quartile [adjusted HR= 0.79 (95% CI: 0.62, 0.99)]. No association was found with girls' urinary arsenic exposure. DISCUSSION Long-term childhood cadmium exposure was associated with later menarche, whereas the associations with child lead exposure were inconclusive. Maternal exposure to arsenic, but not cadmium or lead, was associated with later menarche. https://doi.org/10.1289/EHP11121.
Collapse
Affiliation(s)
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anna L.V. Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Pernilla Svefors
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Shams El Arifeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Åke Persson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- London School of Hygiene and Tropical Medicine, London, UK
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Andrews FV, Branscum A, Hystad P, Smit E, Afroz S, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. Testing the Limit: Evaluating Drinking Water Arsenic Regulatory Levels Based on Adverse Pregnancy Outcomes in Bangladesh. TOXICS 2022; 10:600. [PMID: 36287880 PMCID: PMC9609177 DOI: 10.3390/toxics10100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/03/2023]
Abstract
(1) Background: Arsenic (As) is a common drinking water contaminant that is regulated as a carcinogen. Yet, As is a systemic toxicant and there is considerable epidemiological data showing As adversely impacts reproductive health. This study used data from a birth cohort in Bangladesh (2008−2011) to examine associations between drinking water As levels and reproductive outcomes. (2) Methods: Pregnant individuals (n = 1597) were enrolled at <16 weeks gestation and drinking water As was measured. Participants with live births (n = 1130) were propensity score matched to participants who experienced miscarriage (n = 132), stillbirth (n = 72), preterm birth (n = 243), and neonatal mortality (n = 20). Logistic regression was used to examine drinking water As recommendations of 50, 10, 5, 2.5, and 1 µg/L on the odds of adverse birth outcomes. (3) Results: The odds of miscarriage were higher for pregnant women exposed to drinking water ≥2.5 versus <2.5 µg As/L [adjusted odds ratio (OR) 1.90, 95% Confidence Interval (CI): 1.07−3.38)]. (4) Conclusions: These preliminary findings suggest a potential threshold where the odds of miscarriage increases when drinking water As is above 2.5 µg/L. This concentration is below the World Health Organizations and Bangladesh’s drinking water recommendations and supports the re-evaluation of drinking water regulations.
Collapse
Affiliation(s)
- Faye V. Andrews
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
- Oregon Clinical and Translational Research Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Adam Branscum
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Ellen Smit
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka 1217, Bangladesh
| | - Mostofa Golam
- Dhaka Community Hospital Trust, Dhaka 1217, Bangladesh
| | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka 1217, Bangladesh
| | | | | | - David C. Christiani
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, Boston, MA 02115, USA
| | - Molly L. Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Chen P, Luo Q, Lin Y, Jin J, Hu KL, Wang F, Sun J, Chen R, Wei J, Chen G, Zhang D. Arsenic exposure during juvenile and puberty significantly affected reproductive system development of female SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113857. [PMID: 35809398 DOI: 10.1016/j.ecoenv.2022.113857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Infertility affects about 10-15% couples over the world, among which a large number of cases the underlying causes are still unclear. Recent studies suggest that environmental factors may play an important role in these idiopathic infertilities. Arsenic is a heavy metal found in drinking water over the world. Its effect on the development of female reproductive system at the environmental-relevant levels is still largely unknown. To test the hypothesis that arsenic exposure during juvenile and puberty may affect sex maturation and female reproductive system development, SD rats of 3 weeks of age were exposed to arsenic with environmental-relevant levels (0, 0.02, 0.2, or 2 mg/L, n = 16/group) through drinking water for about 44 days until the rats reached adulthood (65 days of age). Arsenic exposure significantly reduced the weights of both ovary and uterus without affecting the body weight. Also, arsenic exposure disturbed estrus cycles and reduced the numbers of primordial follicles and corpora lutea while increased atretic follicles. In addition, arsenic reduced serum levels of estradiol, progesterone and testosterone but increased LH and FSH levels in dose-dependent manners. QPCR and Western blot experiments indicated arsenic selectively down-regulated ovarian steroidogenic-related proteins FSHR, STAR, CYP17A1, HSD3B1 and CYP19A1 and signaling molecules PKA-ERK-JNK-cJUN, without affecting AKT and CREB. As about reproductive capacity, arsenic-exposed dams had smaller pups, reduced litter size and lower number of male pups without a change in female pups. In conclusion, juvenile and pubertal arsenic exposures at environmental-relevant levels significantly reduced reproductive functions and capacity by adult. Since the lowest effective dose is very close to the government safety standards, the relevancy of arsenic over exposure to reproductive defects in human deserves further study.
Collapse
Affiliation(s)
- Panpan Chen
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Luo
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifeng Lin
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiani Jin
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai-Lun Hu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feixia Wang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiwei Sun
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruixue Chen
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Wei
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Arsenic, Oxidative Stress and Reproductive System. J Xenobiot 2022; 12:214-222. [PMID: 35893266 PMCID: PMC9326564 DOI: 10.3390/jox12030016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Infertility is a severe medical problem and is considered a serious global public health issue affecting a large proportion of humanity. Oxidative stress is one of the most crucial factors involved in infertility. Recent studies indicate that the overproduction of reactive oxygen species (ROS) or reactive nitrogen species (RNS) may cause damage to the male and female reproductive systems leading to infertility. Low amounts of ROS and RNS are essential for the normal functioning of the male and female reproductive systems, such as sperm motility, acrosome reaction, interactions with oocytes, ovulation, and the maturation of follicles. Environmental factors such as heavy metals can cause reproductive dysfunction in men and women through the overproduction of ROS and RNS. It is suggested that oxidative stress caused by arsenic is associated with male and female reproductive disorders such as through the alteration in sperm counts and motility, decreased sex hormones, dysfunction of the testis and ovary, as well as damage to the processes of spermatogenesis and oogenesis. This review paper highlights the relationship between arsenic-induced oxidative stress and the prevalence of infertility, with detailed explanations of potential underlying mechanisms.
Collapse
|
6
|
Rahman A, Kippler M, Pervin J, Tarafder C, Lucy IJ, Svefors P, Arifeen SE, Persson LÅ. A cohort study of the association between prenatal arsenic exposure and age at menarche in a rural area, Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 154:106562. [PMID: 33866057 DOI: 10.1016/j.envint.2021.106562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Millions of individuals worldwide, particularly in Bangladesh, are exposed to arsenic, mainly through drinking water from tube wells. Arsenic is a reproductive toxicant, but there is limited knowledge of whether it influences pubertal development. OBJECTIVES We evaluated the association between prenatal arsenic exposure and age at menarche. METHODS This prospective study was based on data from two studies conducted in Matlab, Bangladesh-the Maternal and Infant Nutrition Interventions in Matlab (MINIMat) trial and the Health Consequences of Arsenic in Matlab (AsMat) study. We included 809 MINIMat girls who participated in assessing age at menarche from July 2016 to June 2017 and had prenatal arsenic exposure data through the AsMat study via measurements in tube well water used by the mothers during pregnancy. The exposure was categorized into <10, 10-49, 50-99, 100-199, and ≥200 µg/L. We used Kaplan-Meier and Cox proportional hazards analyses with adjustment for potential confounders to evaluate the association between arsenic exposure and age at menarche. The results were presented by adjusted hazards ratio (aHR) with a 95% confidence interval (CI). RESULTS The median arsenic concentration in tube well water consumed by pregnant women was 80 µg/L (interquartile range 2-262 µg/L), and 55% drank water with concentrations above Bangladesh's acceptable value of 50 µg/L. The median age at menarche was 13.0 years. The unadjusted analysis revealed 3.2 months delay in menarche for girls exposed to arsenic concentrations ≥200 µg/L compared with the girl exposed to arsenic concentrations <10 µg/L. Girls exposed to the same higher arsenic concentrations were 23% (aHR 0.77, 95% CI: 0.63-0.95) less likely to have reached menarche than girls exposed to low arsenic concentrations. CONCLUSIONS Increased levels of prenatal arsenic exposure were associated with older age at menarche. This delay may indicate endocrine disruptions that could potentially result in adverse health consequences in later life. This finding, along with other severe adverse health reinforces the need for arsenic mitigation at the population level.
Collapse
Affiliation(s)
- Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh; Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Chandan Tarafder
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Ishrat Javeen Lucy
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Pernilla Svefors
- Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Shams El Arifeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Lars Åke Persson
- Women's and Children's Health, Uppsala University, Uppsala, Sweden; London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
7
|
Resveratrol attenuates arsenic-induced cognitive deficits via modulation of Estrogen-NMDAR-BDNF signalling pathway in female mouse hippocampus. Psychopharmacology (Berl) 2021; 238:2485-2502. [PMID: 34050381 DOI: 10.1007/s00213-021-05871-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic inorganic arsenic (iAs) exposure induces deleterious effects on CNS including oxidative stress, cognitive deficits and altered brain neurochemistry. Little is known about the association between iAs and estrogen receptor expression in brain regions. AIMS AND OBJECTIVES Owing to the neuroprotective and estrogenic activities of resveratrol (RES), we examined the combined effects of arsenic trioxide (As2O3) and RES on neurobehavioural functions, estrogen signalling and associated neurochemical changes in mouse hippocampus. MATERIALS AND METHODS As2O3 alone (2 and 4 mg/kg bw) or along with RES (40 mg/kg bw) was administered orally for 45 days to adult female mice. From days 33 to 45, open field, elevated plus maze and Morris water maze tests were conducted to evaluate locomotion, anxiety and learning and memory. On day 46, animals were euthanized and brain tissue and hippocampi obtained therefrom were processed for atomic absorption spectrophotometry and western blotting respectively. RESULTS As2O3 alone exposure resulted in enhanced anxiety levels, reduced locomotion and impaired learning and memory. As2O3-induced behavioural deficits were accompanied by downregulation of estrogen receptor (ERα) expression with a concomitant reduction of BDNF and NMDAR 2B levels in the hippocampus. However, the behavioural alterations and expression of these markers were restored in RES-supplemented mice. Moreover, a dose-dependent iAs accumulation was observed in serum and brain tissues of mice receiving As2O3 alone whereas simultaneous administration of As2O3 with RES facilitated iAs efflux. CONCLUSIONS These results suggest that reduced ERα expression with associated downregulation of BDNF and NMDAR 2B levels could be a mechanism by which iAs induces cognitive impairment; hence, the modulation of estrogen-NMDAR-BDNF pathway by RES represents a potential avenue to recover behavioural deficits induced by this neurotoxin.
Collapse
|
8
|
Pal P, Biswas S, Mukhopadhyay PK. Molecular perspective concerning fluoride and arsenic mediated disorders on epididymal maturation of spermatozoa: A concise review. Hum Exp Toxicol 2021; 40:2025-2038. [PMID: 34085563 DOI: 10.1177/09603271211021474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epididymis is a complex tubular structure of male reproductive system where spermatozoa undergo maturation and gain the fertilizing ability. Epididymal pseudostratified columnar epithelium with different cell types play imperative role by their secretory properties and enrich the luminal microenvironment necessary for achieving spermatozoal motility. During epididymal transit several secretory proteins like P26h, SPAG11, HSPD1 and many others are deposited on spermatozoal surface. At the same time spermatozoal proteins are also modified in this intraluminal milieu, which include cyritestin, fertilin, CE9 and others. Natural and anthropogenic activities disclose various environmental pollutants which affect different physiological systems of animals and human being. Likewise, reproductive system is also being affected. Fluoride causes structural alterations of caput and cauda segments of epididymis. Redox homeostasis and functional integrity are also altered due to diminished activities of SOD1, GR, Crisp2, Lrp2 and other important proteins. On the contrary arsenic affects mostly on cauda segment. Redox imbalance and functional amendment in epididymis have been observed with arsenic revelation as evidenced by altered genomic appearance of SOD, GST, catalase, Ddx3Y, VEGF and VEGFR2. This review is dealt with structure-function interplay in normal epididymal spermatozoal maturation along with subsequent complications developed under fluoride and arsenic toxicities.
Collapse
Affiliation(s)
- Priyankar Pal
- 568916Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sagnik Biswas
- 568916Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | | |
Collapse
|
9
|
Ommati MM, Heidari R, Zamiri MJ, Sabouri S, Zaker L, Farshad O, Jamshidzadeh A, Mousapour S. The Footprints of Oxidative Stress and Mitochondrial Impairment in Arsenic Trioxide-Induced Testosterone Release Suppression in Pubertal and Mature F1-Male Balb/c Mice via the Downregulation of 3β-HSD, 17β-HSD, and CYP11a Expression. Biol Trace Elem Res 2020; 195:125-134. [PMID: 31313246 DOI: 10.1007/s12011-019-01815-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Exposure to arsenic (AS) causes abnormalities in the reproductive system; however, the precise cellular pathway of AS toxicity on steroidogenesis in developing F1-male mice has not been clearly defined. In this study, paternal mice were treated with arsenic trioxide (As2O3; 0, 0.2, 2, and 20 ppm in drinking water) from 5 weeks before mating until weaning and continued for male offspring from weaning until maturity (in vivo). Additionally, Leydig cells (LCs) were isolated from the testes of sacrificed F1-intact mature male mice and incubated with As2O3 (0, 1, 10, and 100 μM) for 48 h (in vitro). Biomarkers of mitochondrial impairment, oxidative stress, and several steroidogenic genes, including the steroidogenic acute regulatory (StAR) protein, cytochrome P450 side-chain cleaving enzyme (P450scc; Cyp11a), 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β-hydroxysteroid dehydrogenase (17β-HSD), were evaluated. High doses of As2O3 interrupted testosterone (T) biosynthesis and T-related gene expression in these experimental models. Altogether, overconsumption of As2O3 can cause testicular and LC toxicity through mitochondrial-related pathways and oxidative stress indices as well as downregulation of androgenic-related genes in mice and isolated LCs. These results could lead to the development of preventive/therapeutic procedures against As2O3-induced reproductive toxicity. Graphical Abstract Mohammad Mehdi Ommati and Reza Heidari contributed equally to this study.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, 158371345, Iran
| | - Mohammad Javad Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Samira Sabouri
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Ladan Zaker
- Department of Hematology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, 158371345, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, 158371345, Iran
| | - Saeed Mousapour
- Department of Embryo Technology Research Institute, Shahr-e Kord University, Shahr-e Kord, Iran
| |
Collapse
|
10
|
Nath Barbhuiya S, Barhoi D, Giri A, Giri S. Arsenic and smokeless tobacco exposure induces DNA damage and oxidative stress in reproductive organs of female Swiss albino mice. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:384-408. [PMID: 33382011 DOI: 10.1080/26896583.2020.1860400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic contamination in the groundwater of Southern Assam, India is well-documented. A specific type of smokeless tobacco (sadagura, SG) is highly prevalent among the local population. Thus, the present study is aimed to evaluate the toxicological implications of arsenic and smokeless tobacco co-exposure on the reproductive health of female mice. The estrous cycle of experimental animals was monitored for 30 days. Histopathological studies and comet assay of ovarian and uterine tissues were performed after 30 days of exposure to SG and arsenic (sodium arsenite, SA). Oxidative stress was estimated biochemically by taking tissue glutathione, lipid peroxidation (LPO), and superoxide dismutase activity as endpoints. Our findings indicated a prolonged diestrus phase in the SG + L + SA group (p < 0.001). Histopathological study revealed abnormal tissue architecture in treated groups. Comet assay study showed that SG + SA exposure significantly induced DNA damage in test animals. The elevated LPO level in the SG + SA group indicated oxidative stress generation in the reproductive tissues. The present study suggests that female reproductive organs are vulnerable to SA and SG and oxidative stress generation may be the possible mechanism behind DNA damage, impaired follicular growth, atresia, and altered estrous cycle in the mice test system.
Collapse
Affiliation(s)
- Sweety Nath Barbhuiya
- Laboratory of Cell and Molecular Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Dharmeswar Barhoi
- Laboratory of Cell and Molecular Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anirudha Giri
- Environment and Human Toxicology, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Sarbani Giri
- Laboratory of Cell and Molecular Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
11
|
Biswas P, Mukhopadhyay A, Kabir SN, Mukhopadhyay PK. High-Protein Diet Ameliorates Arsenic-Induced Oxidative Stress and Antagonizes Uterine Apoptosis in Rats. Biol Trace Elem Res 2019; 192:222-233. [PMID: 30723882 DOI: 10.1007/s12011-019-1657-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/29/2019] [Indexed: 01/30/2023]
Abstract
Arsenic toxicity purportedly threats a broad spectrum of female reproductive functions. We investigated the remedial role of a casein- and pea protein-enriched high-protein diet (HPD) in combating the arsenic insult. Cyclic female rats maintained on standard diet (n = 6) or an isocaloric HPD (n = 6) were gavaged with As2O3 at 3 mg/kg BW/rat/day (n = 12) for 28 days. Vehicle-fed rats (n = 6) maintained on the standard diet served as the control. We monitored the estrus cycles and performed the histomorphometric analyses of the uterus and ovary. Uterine luminal epithelial (ULE) ultrastructure was appraised by scanning electron microscopy. Uterine oxidative stress was evaluated in the forms of ROS generation and activities of the ROS scavengers. The uterine apoptotic manifestation was blueprinted by Western blot analysis of caspase-3 and Bax expression. Arsenic treatment arrested the follicular maturation and disrupted the estrus cycles with a typical increase in the diestrus index. Shrunken endometrial glands and thinned microvilli density of the ULE reflected loss of cell polarity and mislaid uterine homeostasis. Increased ROS generation and attenuated activities of the ROS scavengers marked a state of uterine oxidative imbalance and loss of redox regulation. Superfluous expression of procaspase-3, cleaved caspase-3, and Bax mirrored an inflated state of uterine apoptosis. HPD supplementation, by and large, counteracted these arsenic impacts and maintained the frameworks close to the control levels. In conclusion, arsenic mediates its reproductive toxicity, at least in part, by upsetting the uterine ROS homeostasis and redox regulation. Pea proteins and casein-supplemented HPD can counteract the arsenic effects and maintain the reproductive functions.
Collapse
Affiliation(s)
- Prerona Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Aparna Mukhopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Syed Nazrul Kabir
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India
| | | |
Collapse
|
12
|
Lipid Metabolism Alterations in a Rat Model of Chronic and Intergenerational Exposure to Arsenic. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4978018. [PMID: 31737665 PMCID: PMC6815581 DOI: 10.1155/2019/4978018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Chronic exposure to arsenic (As), whether directly through the consumption of contaminated drinking water or indirectly through the daily intake of As-contaminated food, is a health threat for more than 150 million people worldwide. Epidemiological studies found an association between chronic consumption of As and several pathologies, the most common being cancer-related disorders. However, As consumption has also been associated with metabolic disorders that could lead to diverse pathologies, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and obesity. Here, we used ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization/quadrupole time-of-flight mass spectrometry (ESI-QToF) to assess the effect of chronic intergenerational As exposure on the lipid metabolism profiles of serum from 4-month-old Wistar rats exposed to As prenatally and also during early life in drinking water (3 ppm). Significant differences in the levels of certain identified lysophospholipids, phosphatidylcholines, and triglycerides were found between the exposed rats and the control groups, as well as between the sexes. Significantly increased lipid oxidation determined by the malondialdehyde (MDA) method was found in exposed rats compared with controls. Chronic intergenerational As exposure alters the rat lipidome, increases lipid oxidation, and dysregulates metabolic pathways, the factors associated with the chronic inflammation present in different diseases associated with chronic exposure to As (i.e., keratosis, Bowen's disease, and kidney, liver, bladder, and lung cancer).
Collapse
|
13
|
Combined Dietary Action of Spirulina and Probiotics Mitigates Female Reproductive Ailments in Arsenicated Rats. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Yu H, Kuang M, Wang Y, Rodeni S, Wei Q, Wang W, Mao D. Sodium Arsenite Injection Induces Ovarian Oxidative Stress and Affects Steroidogenesis in Rats. Biol Trace Elem Res 2019; 189:186-193. [PMID: 30151564 DOI: 10.1007/s12011-018-1467-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
Oxidative stress is involved in the regulation of mammalian reproduction. The present study was conducted to detect the sodium arsenite-induced oxidative stress and alterations in the structure and steroidogenesis in rat ovary. Twenty female adult rats were injected i.p. with sodium arsenite (8 mg/kg BW, T) or 0.9% saline (C) for 16 days. The oxidative stress indexes and morphology of the liver, kidney, and ovary were detected using commercial kits and HE staining, respectively. The serum progesterone and estradiol were detected by RIA, and the ovarian steroidogenic gene expressions were detected by real-time PCR. Results showed that the ovarian activities of SOD and GSH-PX decreased (P < 0.05), while the ROS activity and MDA level increased (P < 0.05) in the T group. HE staining results showed that treatment with sodium arsenite damaged the ovarian morphology, resulting in reduced large and medium follicles and increased atretic follicles. Nonetheless, neither the liver nor kidney showed evident changes in the oxidative stress indexes or morphology after sodium arsenite treatment. The serum progesterone and estradiol levels decreased (P < 0.05) with the reduced expressions in the ovarian steroidogenic genes (StAR, P450scc, and 3β-HSD) (P < 0.05). In conclusion, sodium arsenite injection can induce ovarian oxidative stress in rats which set up an appropriate model for future studies of ovarian diseases as well as the toxic mechanism of arsenic in the reproduction.
Collapse
Affiliation(s)
- Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Meiqian Kuang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yalei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Saif Rodeni
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
15
|
Serag El Din OS, Abd El Azim BH, Lotfy RA. Fish diet and male reproductive hormones in albino rats. THE JOURNAL OF BASIC AND APPLIED ZOOLOGY 2018; 79:37. [DOI: 10.1186/s41936-018-0051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/04/2018] [Indexed: 09/02/2023]
|
16
|
Maity M, Perveen H, Dash M, Jana S, Khatun S, Dey A, Mandal AK, Chattopadhyay S. Arjunolic Acid Improves the Serum Level of Vitamin B 12 and Folate in the Process of the Attenuation of Arsenic Induced Uterine Oxidative Stress. Biol Trace Elem Res 2018; 182:78-90. [PMID: 28660490 DOI: 10.1007/s12011-017-1077-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/08/2017] [Indexed: 01/13/2023]
Abstract
Continuation of prolonged treatment against arsenicosis with conventional chelating therapy is a global challenge. The present study was intended to evaluate the defensive effect of arjunolic acid against arsenic-induced oxidative stress and female reproductive dysfunction. Wistar strain adult female rats were given sodium arsenite (10 mg/kg body weight) in combination with arjunolic acid (10 mg/kg body weight) orally for two estrous cycles. Electrozymographic analysis explored that arjunolic acid co-treatment counteracted As3+-induced ROS production in uterine tissue by stimulating the activities of endogenous enzymatic antioxidants. Arjunolic acid was able to enhance the protection against mutagenic uterine DNA breakage, necrosis, and ovarian-uterine tissue damages in arsenicated rats by improving the ovarian steroidogenesis. The mechanisms might be coupled with the augmentation of antioxidant defense system, partly through the elimination of arsenic with the involvement of S-adenosyl methionine pool where circulating levels of vitamin B12, folic acid, and homocysteine play critical roles as evidenced from our present investigation.
Collapse
Affiliation(s)
- Moulima Maity
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Moumita Dash
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Suryashis Jana
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Shamima Khatun
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Amit Kumar Mandal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Uttar Dinajpur, West Bengal, 733134, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
17
|
Dash M, Maity M, Dey A, Perveen H, Khatun S, Jana L, Chattopadhyay S. The consequence of NAC on sodium arsenite-induced uterine oxidative stress. Toxicol Rep 2018; 5:278-287. [PMID: 29511641 PMCID: PMC5835492 DOI: 10.1016/j.toxrep.2018.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 01/21/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023] Open
Abstract
Arsenic consumption through drinking water is a worldwide major health problem. Management of arsenic intoxication with invasive, painful therapy using metal chelators is usually used as a conventional treatment strategy in human. In this present study, we examined the efficacy of oral administration of N-acetyl l-cysteine (NAC) in limiting arsenic-mediated female reproductive disorders and oxidative stress in female Wistar rats. The treatment was continued for 8 days (2 estrus cycles) on rats with sodium arsenite (10 mg/Kg body weight) orally. We examined the electrozymographic imprint of three different enzymatic antioxidants in uterine tissue. Rats fed with sodium arsenite exhibited a significant lessening in the activities of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Uterine DNA breakage, necrosis, ovarian and uterine tissue damage, disruption in steroidogenesis were also found in arsenic treated rats. Co-administration of NAC at different doses (50 mg/kg body weight, 100 mg/kg body weight, respectively) significantly reversed the action of uterine oxidative stress markers like malondialdehyde (MDA), conjugated dienes (CD) and non protein soluble thiol (NPSH); and noticeably improved antioxidant status of the arsenic fed rats. This ultimately resulted in the uterine tissue repairing followed by improvement of ovarian steroidogenesis. However, this effective function of NAC might be crucial for the restoration of arsenic-induced female reproductive organ damage in rats.
Collapse
Affiliation(s)
- Moumita Dash
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Moulima Maity
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Shamima Khatun
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Lipirani Jana
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| |
Collapse
|
18
|
Hallauer J, Geng X, Yang HC, Shen J, Tsai KJ, Liu Z. The Effect of Chronic Arsenic Exposure in Zebrafish. Zebrafish 2016; 13:405-12. [PMID: 27140519 PMCID: PMC5035366 DOI: 10.1089/zeb.2016.1252] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Arsenic is a prevalent environmental toxin and a Group one human carcinogenic agent. Chronic arsenic exposure has been associated with many human diseases. The aim of this study is to evaluate zebrafish as an animal model to assess arsenic toxicity in elevated long-term arsenic exposure. With prolonged exposure (6 months) to various concentrations of arsenic from 50 ppb to 300 ppb, effects of arsenic accumulation in zebrafish tissues, and phenotypes were investigated. Results showed that there are no significant changes of arsenic retention in zebrafish tissues, and zebrafish did not exhibit any visible tumor formation under arsenic exposure conditions. However, the zebrafish demonstrate a dysfunction in their neurological system, which is reflected by a reduction of locomotive activity. Moreover, elevated levels of the superoxide dismutase (SOD2) protein were detected in the eye and liver, suggesting increased oxidative stress. In addition, the progenies of arsenic-treated parents displayed a smaller biomass (four-fold reduction in body weight) compared with those from their parental controls. This result indicates that arsenic may induce genetic or epigenetic changes that are then passed on to the next generation. Overall, this study demonstrates that zebrafish is a convenient vertebrate model with advantages in the evaluation of arsenic-associated neurological disorders as well as its influences on the offspring.
Collapse
Affiliation(s)
- Janell Hallauer
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Xiangrong Geng
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Hung-Chi Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jian Shen
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska
| | - Kan-Jen Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| |
Collapse
|
19
|
Sun HJ, Xiang P, Luo J, Hong H, Lin H, Li HB, Ma LQ. Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: A review. ENVIRONMENT INTERNATIONAL 2016; 95:61-68. [PMID: 27502899 DOI: 10.1016/j.envint.2016.07.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Due to its toxicity as a carcinogen and wide distribution in the environment, arsenic (As) exposure in humans is of public concern globally. Many studies have manifested that As exposure induces cancers besides pathological effects in humans. Animal studies showed that chronic As exposure induces serious neurological effects. Based on recent studies, researchers proposed that As, including arsenate (AsV) and arsenite (AsIII), is also an endocrine disruptor. This review discusses the mechanisms of As toxicity on three endocrine systems including gonadal, adrenal and thyroid endocrine systems. Arsenic methylation and oxidative stress are responsible for As-induced disorders of endocrine systems, however, strong binding of AsIII to thiols also play an important role. Some studies showed AsV toxicity on endocrine systems, but mechanistic investigation is lacking. Research is needed to look into their toxicity mechanisms to help cure the illnesses caused by As-induced endocrine system disorders.
Collapse
Affiliation(s)
- Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Ola-Davies O, Ajani OS. Semen characteristics and sperm morphology of Pistia stratiotes Linn. (Araceae) protected male albino rats (Wistar strain) exposed to sodium arsenite. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2016; 13:289-294. [PMID: 27101555 DOI: 10.1515/jcim-2015-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Sodium arsenite has been proven to be abundant in nature and released into the environment through human activities, including agricultural and industrial processes. The objective of our study was to investigate the sperm protective potential of Pistia stratiotes Linn. in arsenic-treated rats. METHODS The sperm protective potential of P. stratiotes Linn. (Araceae) was carried out in arsenic-exposed rats using 24 male albino rats (225 to 228 g) aged between 14 and 16 weeks old. They were grouped into 4 (A-D), each group containing 6 rats. Group A animals were orally treated with 100 mg/kg ethanol leaf extract of P. stratiotes Linn. daily for 14 days; group B (sodium arsenite at 2.5 mg/kg body weight; positive control); group C (P. stratiotes extract for 14 days and single dose of sodium arsenite on day 14; group D (0.1 mL propylene glycol; negative control/vehicle). RESULTS Group B had a significantly lower (p<0.05) percentage sperm motility (26.7±6.67 %) while group A had a significantly (p<0.05) higher mean value (63.3±3.33 %) when compared across the groups. The sperm motility of rats in group D was significantly higher (p<0.05) than groups B and C. This implies that P. stratiotes extract had no adverse effect on sperm motility. The presence of P. stratiotes with sodium arsenite alleviated its harmful effect on sperm motility. The mean value obtained for sperm viability, semen volume and sperm count followed a similar pattern although the difference was not significant (p>0.05) for semen volume and the sperm count of rats across the groups. Total sperm abnormality was 10.44 and 14.27 % with the sodium arsenite treated group having the highest value when compared with groups A treated with P. stratiotes extract and D treated with propylene, although the differences were not significant (p>0.05). CONCLUSIONS The study concluded that ethanol leaf extract of P. stratiotes has no negative effect on sperm motility, viability and morphology and also protected spermatozoa against arsenic-induced reproductive toxicity in Wistar strain albino rats. Therefore, it may play an important role in the protection of populations with chronic sodium arsenite exposure.
Collapse
|
21
|
Kim YJ, Kim JM. Arsenic Toxicity in Male Reproduction and Development. Dev Reprod 2015; 19:167-80. [PMID: 26973968 PMCID: PMC4786478 DOI: 10.12717/dr.2015.19.4.167] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 01/27/2023]
Abstract
Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children's health problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yoon-Jae Kim
- Dept. of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Jong-Min Kim
- Dept. of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
| |
Collapse
|
22
|
Rahman M, Sohel N, Hore SK, Yunus M, Bhuiya A, Streatfield PK. Prenatal arsenic exposure and drowning among children in Bangladesh. Glob Health Action 2015; 8:28702. [PMID: 26511679 PMCID: PMC4624574 DOI: 10.3402/gha.v8.28702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 01/10/2023] Open
Abstract
There is increasing concern regarding adverse effects of prenatal arsenic exposure on the neurodevelopment of children. We analyzed mortality data for children, who were born to 11,414 pregnant women between 2002 and 2004, with an average age of 5 years of follow-up. Individual drinking-water arsenic exposure during pregnancy was calculated using tubewell water arsenic concentration between last menstrual period and date of birth. There were 84 drowning deaths registered, with cause of death ascertained using verbal autopsy (International Classification of Diseases, 10th revision, codes X65–X70). The prenatal water arsenic exposure distribution was tertiled, and the risk of drowning mortality was estimated by Cox proportional hazard models, adjusted for potential confounders. We observed a significant association between prenatal arsenic exposure and drowning in children aged 1–5 years in the highest exposure tertile (HR=1.74, 95% CI: 1.03–2.94). This study showed that in utero arsenic exposure might be associated with excess mortality among children aged 1–5 years due to drowning.
Collapse
Affiliation(s)
| | - Nazmul Sohel
- Department of Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
Dezfouli MGZ, Eissazadeh S, Zade SMAS. Histological and histometrical study of the protective role of α-tocopherol against sodium arsenite toxicity in rat ovaries. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1167-1179. [PMID: 24735566 DOI: 10.1017/s1431927614000701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study examines histometrical changes induced by sodium arsenite (SA), as an environmental pollutant, and investigates the protective effect of α-tocopherol on ovaries of SA-treated rats during the prenatal stage until sexual maturity. Rats were classified into groups: control, SA (8 ppm/day), α-tocopherol (100 ppm/day), and SA+α-tocopherol. Treatment was performed from pregnancy until maturation when the rats and ovaries were weighed. The Cavalieri method was used to estimate volume of the ovaries, cortex, medulla, and corpus luteum. The mean diameter of oocytes, granulosa cells, and nuclei were measured and volume was estimated using the Nucleator method. The number of oocytes and thickness of the zona pellucida (ZP) were determined using an optical dissector and orthogonal intercept method, respectively. SA reduced the body and ovary weight, the number of secondary, antral and Graafian oocytes, volume of the ovaries, cortex, medulla and corpus luteum, mean diameter and volume of oocytes in primordial and primary follicles, mean diameter and volume of oocyte nuclei in all types of follicles, and mean thickness of the ZP in secondary and antral follicles. Also, the mean diameter and volume of granulosa cells and their nuclei in antral and Graafian follicles decreased significantly. Vacuolization and vascular congestion in the corpus luteum and an increase in the number of atretic oocytes were seen in the SA group. Most of these parameters were unchanged from the control level in the SA+α-tocopherol group. It was concluded that α-tocopherol supplementation reduced the toxic effects of SA exposure on ovarian tissue in rats.
Collapse
Affiliation(s)
- Maryam Ghandi Zadeh Dezfouli
- 1Department of Biology, Faculty of Basic Science,Arak University,Shahid Beheshti Street,Arak,Markazi Province,3945-5-38138Iran
| | - Samira Eissazadeh
- 2Department of Cellular and Molecular Biology, Faculty of Biotechnology and Biomolecular Science,Serding,Selangor,Darul Ehsan,43400Malaysia
| | - Sayed Mohammad Ali Shariat Zade
- 1Department of Biology, Faculty of Basic Science,Arak University,Shahid Beheshti Street,Arak,Markazi Province,3945-5-38138Iran
| |
Collapse
|
24
|
Mondal S, Mukherjee S, Chaudhuri K, Kabir SN, Kumar Mukhopadhyay P. Prevention of arsenic-mediated reproductive toxicity in adult female rats by high protein diet. PHARMACEUTICAL BIOLOGY 2013; 51:1363-71. [PMID: 23859609 DOI: 10.3109/13880209.2013.792846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
CONTEXT The detrimental effects of arsenic on female reproductive functions may involve overt oxidative stress. Casein and pea [Pisum sativum Linn. (Fabaceae)] proteins have antioxidant properties. OBJECTIVE To investigate the role of casein- and pea-supplemented high-protein diet (HPD) in utero-ovarian protection from arsenic toxicity. MATERIALS AND METHODS Adult female Wistar rats were orally gavaged with vehicle (Gr-I) or arsenic at 3 ppm/rat/d (Gr-II and Gr-III) for 30 consecutive days, when they were maintained on either regular diet containing 18% protein (Gr-I and Gr-II), or HPD containing 27% protein in the form of casein (20%) and pea (7%) (Gr-III). Reproductive functions were evaluated using a battery of biochemical and histological techniques. RESULTS As compared to Gr-I, the Gr-II rats suffered from loss of estrous cyclicity, reduction in weight (mg/100 g body weight) of ovary (Gr-I: 54.3 ± 4.2 versus Gr-II: 35.8 ± 1.6; p < 0.001) and uterus (Gr-I: 161.7 ± 24.6 versus Gr-II: 94.44 ± 13.2; p < 0.05), utero-ovarian degeneration, attenuated ovarian activities (unit/mg tissue/h) of Δ(5), 3β-hydroxysteroid dehydrogenase (Gr-I: 3.41 ± 0.12 versus Gr-II: 2.31 ± 0.09; p < 0.01) and 17β-hydroxysteroid dehydrogenase (Gr-I: 3.82 ± 0.57 versus Gr-II: 1.24 ± 0.19; p < 0.001), and decreased serum estradiol level (pg/ml) (Gr-I: 61.5 ± 2.06 versus 34.1 ± 2.34; p < 0.001). Ovarian DNA damage was preponderant with blatant generation of malondialdehyde (nM/mg tissue; Gr-I: 15.10 ± 2.45 versus Gr-II: 29.51 ± 3.44; p < 0.01) and attenuated superoxide dismutase activity (unit/mg tissue) (Gr-I: 2.18 ± 0.19 versus Gr-II: 1.33 ± 0.18; p < 0.05). The Gr-III rats were significantly protected from these ill effects of arsenic. DISCUSSION AND CONCLUSION HPD, by way of antioxidant properties, may find prospective role in the protection of reproductive damage caused by arsenic.
Collapse
Affiliation(s)
- Srabanti Mondal
- Department of Physiology, Presidency University , Kolkata , India
| | | | | | | | | |
Collapse
|
25
|
Carlson P, Smalley DM, Van Beneden RJ. Proteomic Analysis of Arsenic-Exposed Zebrafish (Danio rerio) Identifies Altered Expression in Proteins Involved in Fibrosis and Lipid Uptake in a Gender-Specific Manner. Toxicol Sci 2013; 134:83-91. [DOI: 10.1093/toxsci/kft086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Bhattacharya P, Saha A. Evaluation of reversible contraceptive potential of Cordia dichotoma leaves extract. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013005000020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Adegunlola JG, Afolabi OK, Akhigbe RE, Adegunlola GA, Adewumi OM, Oyeyipo IP, Ige SF, Afolabi AO. Lipid peroxidation in brain tissue following administration of low and high doses of arsenite and L-ascorbate in wistar strain rats. Toxicol Int 2012; 19:47-50. [PMID: 22736903 PMCID: PMC3339245 DOI: 10.4103/0971-6580.94516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed at investigating the mechanism by which sodium arsenite induces brain injury and the role of L-ascorbate. Thirty adult (n=5) Wistar rats weighing between 140 and 160 g were used. Group 1 neither received sodium arsenite nor L-ascorbate (control), group 2 was administered low dose of arsenite only, group 3 received high dose of arsenite only, group 4 was administered L-ascorbate only, group 5 was administered low dose of arsenite and L-ascorbate, and group 6 received high dose of arsenite and L-ascorbate. M0 alon dialdehyde, MDA, levels were significantly increased in rats treated with high dose of arsenite when compared with those treated with low dose of arsenite. However, all treated groups except those treated with L-ascorbate only showed significant increase in MDA levels when compared with the control group. Rats treated with high dose of arsenite and L-ascorbate showed a significantly higher MDA level than those treated with low dose of arsenite and L-ascorbate. However, catalase activity, body weight gain, brain weight and mean food consumption were comparable across all groups. Brain tissue total protein was similar in all groups except in both groups treated with high dose of arsenite, where they were significantly reduced when compared with the control group. I0 n conclusion, sodium arsenite treatment induces brain injury via a mechanism associated with lipid peroxidation, but not catalase-dependent. However, L-ascorbate ameliorates arsenite-induced oxidative injury in the brain. L-ascorbate antioxidative potential in alleviating arsenite-induced brain injury is dependent on the concentration of arsenite.
Collapse
Affiliation(s)
- J G Adegunlola
- Department of Biochemistry, College of Health Sciences, Ogbomoso, Oyo State, Nigeria
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dávila-Esqueda ME, Jiménez-Capdeville ME, Delgado JM, De la Cruz E, Aradillas-García C, Jiménez-Suárez V, Escobedo RF, Llerenas JR. Effects of arsenic exposure during the pre- and postnatal development on the puberty of female offspring. ACTA ACUST UNITED AC 2012; 64:25-30. [DOI: 10.1016/j.etp.2010.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/20/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
29
|
Yuan XH, Lu CL, Yao N, An LS, Yang BQ, Zhang CL, Ma X. Arsenic induced progesterone production in a caspase-3-dependent manner and changed redox status in preovulatory granulosa cells. J Cell Physiol 2011; 227:194-203. [PMID: 21391215 DOI: 10.1002/jcp.22717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Arsenic contamination is a principal environmental health threat throughout the world. However, little is known about the effect of arsenic on steroidogenesis in granulosa cells (GCs). We found that the treatment of preovulatory GCs with arsenite stimulated progesterone production. A significant increase in serum level of progesterone was observed in female Sprague-Dawley rats following arsenite treatment at a dose of 10 mg/L/rat/day for 7 days. Further experiments demonstrated that arsenite treatment did not change the level of intracellular cyclic AMP (cAMP) or phosphorylated ERK1/2 in preovulatory GCs; however, progesterone production was significantly decreased when cAMP-dependent protein kinase (PKA) or ERK1/2 pathway was inhibited. This implied that the effect of arsenite on progesterone production may require cAMP/PKA and ERK1/2 signaling but not depend on them. Furthermore, we found that arsenite decreased intracellular reactive oxygen species (ROS) but increased the antioxidant glutathione (GSH) levels and mitochondrial membrane potential (ΔΨm) in parallel to the changes in progesterone production. Progesterone antagonist blocked the arsenic-stimulated increase of GSH levels. Arsenite treatment induced caspase-3 activation, although no apoptosis was observed. Inhibition of caspase-3 activity significantly decreased progesterone production stimulated by arsenite or follicle-stimulating hormone (FSH). GSH depletion with buthionine sulfoximine led to cell apoptosis in response to arsenite treatment. Collectively, this study demonstrated for the first time that arsenite stimulates progesterone production through cleaved/active caspase-3-dependent pathway, and the increase of GSH level promoted by progesterone production may protect GCs against apoptosis and maintain the steroidogenesis of GCs in response to arsenite treatment.
Collapse
Affiliation(s)
- Xiao-Hua Yuan
- Graduate School of Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Chattopadhyay S, Maiti S, Maji G, Deb B, Pan B, Ghosh D. Protective role of Moringa oleifera (Sajina) seed on arsenic-induced hepatocellular degeneration in female albino rats. Biol Trace Elem Res 2011; 142:200-12. [PMID: 20661662 DOI: 10.1007/s12011-010-8761-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 06/29/2010] [Indexed: 12/20/2022]
Abstract
In an attempt to develop new herbal therapy, an aqueous extract of the seed of Moringa oleifera was used to screen the effect on arsenic-induced hepatic toxicity in female rat of Wistar strain. Subchronic exposure to sodium arsenite (0.4 ppm/100 g body weight/day via drinking water for a period of 24 days) significantly increased activities of hepatic and lipid function markers such as alanine transaminase, aspartate transaminase, cholesterol, triglycerides, LDL along with a decrease in total protein and HDL. A notable distortion of hepatocellular histoarchitecture was prominent with a concomitant increase in DNA fragmentation following arsenic exposure. A marked elevation of lipid peroxidation in hepatic tissue was also evident from the hepatic accumulation of malondialdehyde and conjugated dienes along with suppressed activities in the antioxidant enzymes such as superoxide dismutase and catalase. However, co-administration of aqueous seed extract of M. oleifera (500 mg/100 g body weight/day for a period of 24 days) was found to significantly prevent the arsenic-induced alteration of hepatic function markers and lipid profile. Moreover, the degeneration of histoarchitecture of liver found in arsenic-treated rats was protected along with partial but definite prevention against DNA fragmentation induction. Similarly, generation of reactive oxygen species and free radicals were found to be significantly less along with restored activities of antioxidant enzymes in M. oleifera co-administered group with comparison to arsenic alone treatment group. The present investigation offers strong evidence for the hepato-protective and antioxidative efficiencies of M. oleifera seed extract against oxidative stress induced by arsenic.
Collapse
Affiliation(s)
- Sandip Chattopadhyay
- Department of Bio-Medical Laboratory Science and Management, UGC Innovative Department, Vidyasagar University, Midnapore, 721 102 West Bengal, India.
| | | | | | | | | | | |
Collapse
|
31
|
Akram Z, Jalali S, Shami SA, Ahmad L, Batool S, Kalsoom O. Adverse effects of arsenic exposure on uterine function and structure in female rat. ACTA ACUST UNITED AC 2010; 62:451-9. [DOI: 10.1016/j.etp.2009.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
|
32
|
Chattopadhyay S, Ghosh D. The involvement of hypophyseal-gonadal and hypophyseal-adrenal axes in arsenic-mediated ovarian and uterine toxicity: modulation by hCG. J Biochem Mol Toxicol 2010; 24:29-41. [PMID: 20146381 DOI: 10.1002/jbt.20309] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study evaluated the involvement of hypophyseal-gonadal and hypophyseal-adrenal axes as a possible mechanism of sodium arsenite toxicity in ovary and uterus by the coadministration of hCG. Subchronic treatment of 0.4 ppm of sodium arsenite/(100 g body weight day) via drinking water for seven estrous cycles significantly suppressed the plasma levels of leutinizing hormone, follicle-stimulating hormone, and estradiol along with sluggish ovarian activities of Delta(5),3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase followed by a reduction in gonadal tissue peroxidase activities in mature female rats at diestrous phase. Noticeable weight loss of the ovary and uterus along with prolonged diestrous phase and increased deposition of arsenic in the plasma and in these reproductive organs were also demonstrated following the ingestion of arsenic. Follicular atresia and thinning of the uterine luminal diameter were evident after sodium arsenite treatment. Effective protection of gonadal weight loss, suppressed ovarian steroidogenesis, and altered ovarian and uterine peroxidase activities were noticed when 1.0 IU hCG/(100 g body weight day) is given in arsenic-intoxicated rats. Normal estrous cyclicity was restored toward the control level after hCG coadministration, though the elimination of elementary arsenic from the plasma and gonadal tissues was impossible. A significant recovery in the restoration of ovarian and uterine histoarchitecture was prominent after hCG treatment. Adrenal hypertrophy and steroidogenic arrest of the adrenal gland along with altered level of brain monoamines in the midbrain and diencephalons following arsenic intoxication were also ameliorated after hCG coadministration.
Collapse
Affiliation(s)
- Sandip Chattopadhyay
- Department of Bio-Medical Laboratory Science and Management (UGC Innovative Department), Vidyasagar University, Midnapore 721 102, West Bengal, India.
| | | |
Collapse
|
33
|
Sze SCW, Tong Y, Zhang YB, Zhang ZJ, Lau ASL, Wong HK, Tsang KW, Ng TB. A novel mechanism: Erxian Decoction, a Chinese medicine formula, for relieving menopausal syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2009; 123:27-33. [PMID: 19429335 DOI: 10.1016/j.jep.2009.02.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/22/2009] [Accepted: 02/14/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many clinical and experimental reports demonstrated that Erxian Decoction (EXD) was effective in relieving menopausal syndrome. AIM OF THE STUDY The mechanisms of action of EXD were explored on the endocrine and antioxidant regimen. MATERIALS AND METHODS Menopause causes a decline in both endocrine function and activities of antioxidant enzymes. In this study, 12-month-old female Sprague-Dawley-rats (SD-rats) with a low serum estradiol level were employed. Their endocrine functions after treatment with EXD were assessed by the determination of their serum estradiol level and ovarian mRNA levels of aromatase, which is a key enzyme for biosynthesis of estradiol. Meanwhile, superoxide dismutase-1 (SOD), catalase (CAT) and glutathione peroxidase (GPx-1) in the liver were also determined to assess the effect of EXD on the antioxidant regimen. RESULTS Results revealed a significant elevation in serum estradiol level and the mRNA level of ovarian aromatase and liver CAT in the EXD-treated menopausal rat model. CONCLUSIONS The results obtained from mRNA and estradiol level of the present investigation revealed that the EXD relieves the menopausal syndrome involved an increase of endocrine and antioxidant function through, at least, the activation of aromatase and CAT detoxifying pathways.
Collapse
Affiliation(s)
- S C W Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 2009; 261:68-75. [PMID: 19409443 DOI: 10.1016/j.tox.2009.04.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 04/03/2009] [Accepted: 04/22/2009] [Indexed: 01/08/2023]
Abstract
Epidemiological studies demonstrate an association between chronic consumption of arsenic contaminated water and cognitive deficits, especially when the exposure takes place during childhood. This study documents structural changes and nitrergic deficits in the striatum of adult female Wistar rats exposed to arsenic in drinking water (3 ppm, approximately 0.4 mg/kg per day) from gestation, throughout lactation and development until the age of 4 months. Kainic acid injected animals (10mg/kg, i.p.) were also analyzed as positive controls of neural cell damage. Morphological characteristics of cells, fiber tracts and axons were analyzed by means of light microscopy as well as immunoreactivity to neuronal nitric oxide synthase (nNOS). As nitrergic markers, nitrite/nitrate concentrations, nNOS levels and expression of nNOS-mRNA were quantified in striatal tissue. Reactive oxygen species (ROS) and lipid peroxidation (LPx) were determined as oxidative stress markers. Arsenic exposure resulted in moderate to severe alterations of thickness, organization, surrounding space and shape of fiber tracts and axons, while cell bodies remained healthy. These anomalies were not accompanied by ROS and/or LPx increases. By contrast, except the expression of nNOS-mRNA, all nitrergic markers including striatal nNOS immunoreactivity presented a significant decrease. These results indicate that arsenic targets the central nitrergic system and disturbs brain structural organization at low exposure levels.
Collapse
|
35
|
Abstract
Inorganic arsenic is a potent human carcinogen and general toxicant. More than one hundred million people are exposed to elevated concentrations, mainly via drinking water, but also via industrial emissions. Arsenic is metabolized via methylation and reduction reactions, methylarsonic acid and dimethylarsinic acid being the main metabolites excreted in urine. Both inorganic arsenic and its methylated metabolites easily pass the placenta and both experimental and human studies have shown increased risk of impaired foetal growth and increased foetal loss. Recent studies indicate that prenatal arsenic exposure also increases the risk of adverse effects during early childhood. There is a growing body of evidence that the intrauterine or early childhood exposure to arsenic also induces changes that will become apparent much later in life. One epidemiological study indicated that exposure to arsenic in drinking water during early childhood or in utero was associated with an increased mortality in young adults from both malignant and non-malignant lung disease. Furthermore, a series of experimental animal studies provide strong support for late effects of arsenic, including various forms of cancer, following intrauterine arsenic exposure. The involved modes of action include epigenetic effects, mainly via DNA hypomethylation, endocrine effects (most classes of steroid hormones), immune suppression, neurotoxicity, and interaction with enzymes critical for foetal development and programming.
Collapse
Affiliation(s)
- Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Clark BJ, Cochrum RK. The steroidogenic acute regulatory protein as a target of endocrine disruption in male reproduction. Drug Metab Rev 2007; 39:353-70. [PMID: 17786626 DOI: 10.1080/03602530701519151] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of the adult male reproductive tract requires proper spatial-temporal expression of the sex hormones testosterone and estrogen during fetal developmental stages and at puberty. Exogenous agents that disrupt the production and/or actions of the testosterone and estrogen and cause aberrant reproductive tract development can be thought of as endocrine disruptors (ED). This review will focus on the impact of ED on testosterone production by Leydig cells during fetal development and in the adult. In particular, the genes encoding the steroidogenic acute regulatory protein (StAR) and cytochrome P450 17 alpha hydroxylase/17,20 lyase (CYP17A1) within the steroid hormone biosynthetic pathway are highlighted as ED targets. We begin with an overview of steroidogenesis and regulation of StAR then summarize the published literature on the effects of diethylstibesterol, phthalate esters, and arsenite on male reproduction with a focus on the expression and function of StAR.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|
37
|
Vahter M, Akesson A, Lidén C, Ceccatelli S, Berglund M. Gender differences in the disposition and toxicity of metals. ENVIRONMENTAL RESEARCH 2007; 104:85-95. [PMID: 16996054 DOI: 10.1016/j.envres.2006.08.003] [Citation(s) in RCA: 502] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/16/2006] [Accepted: 08/03/2006] [Indexed: 05/11/2023]
Abstract
There is increasing evidence that health effects of toxic metals differ in prevalence or are manifested differently in men and women. However, the database is small. The present work aims at evaluating gender differences in the health effects of cadmium, nickel, lead, mercury and arsenic. There is a markedly higher prevalence of nickel-induced allergy and hand eczema in women compared to men, mainly due to differences in exposure. Cadmium retention is generally higher in women than in men, and the severe cadmium-induced Itai-itai disease was mainly a woman's disease. Gender differences in susceptibility at lower exposure are uncertain, but recent data indicate that cadmium has estrogenic effects and affect female offspring. Men generally have higher blood lead levels than women. Lead accumulates in bone and increased endogenous lead exposure has been demonstrated during periods of increased bone turnover, particularly in women in pregnancy and menopause. Lead and mercury, in the form of mercury vapor and methylmercury, are easily transferred from the pregnant women to the fetus. Recent data indicate that boys are more susceptible to neurotoxic effects of lead and methylmercury following exposure early in life, while experimental data suggest that females are more susceptible to immunotoxic effects of lead. Certain gender differences in the biotransformation of arsenic by methylation have been reported, and men seem to be more affected by arsenic-related skin effect than women. Experimental studies indicate major gender differences in arsenic-induced cancer. Obviously, research on gender-related differences in health effects caused by metals needs considerable more focus in the future.
Collapse
Affiliation(s)
- Marie Vahter
- Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
38
|
. MSM, . MA, . MS, . MH. The Effects of Sodium Arsenite on the Biochemical Factors in the Blood of Vasectomised Rats. INT J PHARMACOL 2006. [DOI: 10.3923/ijp.2006.525.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Gonzalez HO, Roling JA, Baldwin WS, Bain LJ. Physiological changes and differential gene expression in mummichogs (Fundulus heteroclitus) exposed to arsenic. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 77:43-52. [PMID: 16356559 DOI: 10.1016/j.aquatox.2005.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 10/10/2005] [Accepted: 10/19/2005] [Indexed: 05/05/2023]
Abstract
Arsenic has been detected as a contaminant in water bodies around the world. Although a number of studies have shown toxicity to adult fish, little is known about its effects on the offspring. However, human epidemiological studies have shown that arsenic increases the number of stillbirths and prematurely born infants. We examined changes in the morphology and gene expression in juvenile mummichogs (Fundulus heteroclitus) whose parents were exposed to 230 ppb arsenic for 10 days immediately prior to spawning. The hatchlings of exposed fish had a 2.8-fold increased incidence of curved or stunted tails. Total RNA from 6-week-old hatchlings, reared in clean water, was used to construct a cDNA subtractive hybridization library. Using this library, we found 13 genes whose expression was altered in the hatchlings as a result of arsenic exposure. We confirmed differential expression by real-time PCR and found significant up-regulation of myosin light chain 2 (4.2-fold), type II keratin (1.5-fold), tropomyosin (3.1-fold) and parvalbumin (3.5-fold) in the hatchlings whose parents were exposed to arsenic. These genes are important during embryogenesis and their differential expression may be linked to the morphological changes observed in the hatchlings.
Collapse
Affiliation(s)
- Horacio O Gonzalez
- University of Texas at El Paso, Department of Biological Sciences, 500 W. University Avenue, El Paso, TX 79968, United States
| | | | | | | |
Collapse
|
40
|
Jana K, Jana S, Samanta PK. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol 2006; 4:9. [PMID: 16483355 PMCID: PMC1397838 DOI: 10.1186/1477-7827-4-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/16/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Inorganic arsenic is a major water pollutant and a known human carcinogen that has a suppressive influence on spermatogenesis and androgenesis in male reproductive system. However, the actual molecular events resulting in male reproductive dysfunctions from exposure to arsenic remain unclear. In this context, we evaluated the mode of action of chronic oral exposure of sodium arsenite on hypothalamo-pituitary- testicular activities in mature male albino rats. METHODS The effect of chronic oral exposure to sodium arsenite (5 mg/kg body weight/day) via drinking water without or with hCG (5 I.U./kg body weight/day) and oestradiol (25 micrograms oestradiol 3-benzoate suspended in 0.25 ml olive oil/rat/day) co-treatments for 6 days a week for 4 weeks (about the duration of two spermatogenic cycle) was evaluated in adult male rats. Changes in paired testicular weights, quantitative study of different varieties of germ cells at stage VII of spermatogenic cycle, epididymal sperm count, circulatory concentrations of hormones (LH, FSH, testosterone and corticosterone), testicular activities of delta 5, 3beta-hydroxysteroid dehydrogenase (delta 5, 3beta-HSD), 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD), sorbitol dehydrogenase (SDH), acid phosphatase (ACP), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), as well as the levels of biogenic amines (dopamine, noradrenaline and 5-hydroxytryptamine (5-HT)) in the hypothalamus and pituitary were monitored in this study. Hormones were assayed by radioimmuno- assay or enzyme- linked immunosorbent assay and the enzymes were estimated after spectrophotometry as well as the biogenic amines by HPLC electrochemistry. RESULTS Sodium arsenite treatment resulted in: decreased paired testicular weights; epididymal sperm count; plasma LH, FSH, testosterone and testicular testosterone concentrations; and increased plasma concentration of corticosterone. Testicular enzymes such as delta 5, 3 beta-HSD, 17 beta-HSD, and sorbitol dehydrogenase (SDH) were significantly decreased, but those of acid phosphatase (ACP), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were significantly increased. A decrease in dopamine or an increase in noradrenaline and 5-HT in hypothalamus and pituitary were also noted after arsenic exposure. Histological evaluation revealed extensive degeneration of different varieties of germ cells at stage VII of spermatogenic cycle in arsenic exposed rats. Administration of human chorionic gonadotrophin (hCG) along with sodium arsenite partially prevented the degeneration of germ cells and enhanced paired testicular weights, epididymal sperm count, plasma and intratesticular testosterone concentrations, activities of delta 5, 3beta-HSD, 17 beta-HSD and sorbitol dehydrogenase along with diminution in the activities of ACP, ALP and LDH. Since many of the observed arsenic effects could be enhanced by oestradiol, it is suggested that arsenic might somehow acts through an estrogenic mode of action. CONCLUSION The results indicate that arsenic causes testicular toxicity by germ cell degeneration and inhibits androgen production in adult male rats probably by affecting pituitary gonadotrophins. Estradiol treatment has been associated with similar effects on pituitary testicular axis supporting the hypothesis that arsenite might somehow act through an estrogenic mode of action.
Collapse
Affiliation(s)
- Kuladip Jana
- Department of veterinary Surgery and radiology, west Bengal University of Animal and Fishery Sciences, 37 and 68, K. B. Sarani, Calcutta- 700 037, West Bengal, India
- Institute of Molecular Medicine, Bengal Intelligent Park Ltd., Sector-V, Salt Lake Electronics Complex, Calcutta-700 091, India
| | - Subarna Jana
- Institute of Molecular Medicine, Bengal Intelligent Park Ltd., Sector-V, Salt Lake Electronics Complex, Calcutta-700 091, India
| | - Prabhat Kumar Samanta
- Department of veterinary Surgery and radiology, west Bengal University of Animal and Fishery Sciences, 37 and 68, K. B. Sarani, Calcutta- 700 037, West Bengal, India
| |
Collapse
|
41
|
Calderón J, Ortiz-Pérez D, Yáñez L, Díaz-Barriga F. Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2003; 56:93-103. [PMID: 12915143 DOI: 10.1016/s0147-6513(03)00053-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Jaqueline Calderón
- Laboratorio de Toxicología Ambiental, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Venustiano Carranza No. 2405, Col. Lomas los Filtros, CP 78210, San Luis Potosi, SLP, Mexico
| | | | | | | |
Collapse
|