1
|
Marmitt M, Cauduro GP, Sbruzzi RC, Valiati VH. Evaluation of Differentially Expressed Candidate Genes in Benzo[a]pyrene Degradation by Burkholderia vietnamiensis G4. Mol Biotechnol 2024:10.1007/s12033-024-01284-6. [PMID: 39298104 DOI: 10.1007/s12033-024-01284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Bacteria-mediated bioremediation is widely employed for its environmental benefits. The genus Burkholderia can degrade persistent organic compounds, however, little is known about its mechanisms. To increase this knowledge, Burkholderia vietnamiensis G4 bacteria were exposed to benzo[a]pyrene, a recalcitrant compound, and the expression of twelve genes of interest was analyzed at 1, 12 and 24 h. In addition, benzo[a]pyrene degradation, evaluation of cell viability and fluorescence emission of assimilated benzo[a]pyrene was performed over 28 days. The up-regulated genes were xre, paaE, livG and pckA at the three times, ACAD, atoB, bmoA and proV at 1 h and AstB at 12 h. These genes are important for bacterial survival in stress situations, breakdown and metabolization of organic compounds, and nutrient transport and uptake. Furthermore, a 52% reduction of the pollutant was observed, there was no significant variation in the viability rate of the cells, and fluorescence indicated an accumulation of benzo[a]pyrene after 24 h. Our study demonstrates the bacteria adaptability and ability to modulate the expression of genes at different times and as needed. This increases our understanding of biodegradation processes and opens new possibilities for using this bacterial strain as a tool for the bioremediation of contaminated areas.
Collapse
Affiliation(s)
- Marcela Marmitt
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
| | - Guilherme Pinto Cauduro
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
| | - Renan César Sbruzzi
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
- Laboratory of Immunogenetics, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Victor Hugo Valiati
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil.
| |
Collapse
|
2
|
Kilic G, Matzaraki V, Bulut O, Baydemir I, Ferreira AV, Rabold K, Moorlag SJCFM, Koeken VACM, de Bree LCJ, Mourits VP, Joosten LAB, Domínguez-Andrés J, Netea MG. RORα negatively regulates BCG-induced trained immunity. Cell Immunol 2024; 403-404:104862. [PMID: 39159505 DOI: 10.1016/j.cellimm.2024.104862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Trained immunity is a long-lasting change in the responsiveness of innate immune cells, leading to a stronger response upon an unrelated secondary challenge. Epigenetic, transcriptional, and metabolic reprogramming contribute to the development of trained immunity. By investigating the impact of gene variants on trained immunity responses after Bacillus Calmette-Guérin (BCG) vaccination, we identified a strong association between polymorphisms in the RORA gene and BCG-induced trained immunity in PBMCs isolated from healthy human donors. RORα, encoded by the RORA gene in humans, is a nuclear receptor and a transcription factor, regulating genes involved in circadian rhythm, inflammation, cholesterol, and lipid metabolism. We found that natural RORα agonists in the circulation negatively correlate with the strength of trained immunity responses after BCG vaccination. Moreover, pharmacological inhibition of RORα in human PBMCs led to higher cytokine production capacity and boosted trained immunity induction by BCG. Blocking RORα activity also resulted in morphological changes and increased ROS and lactate production of BCG-trained cells. Blocking lactate dehydrogenase A (LDHA) and glycolysis with sodium oxamate reduced the cytokine production capacity of cells trained with a combination of BCG and the RORα agonist. In conclusion, this study highlights the potential role of RORα in trained immunity, and its impact on human vaccination and diseases should be further investigated.
Collapse
Affiliation(s)
- Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilayda Baydemir
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anaisa V Ferreira
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrin Rabold
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, The Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Rajkhowa S, Sonowal J, Sengar GS, Pegu SR, Deb R, Das PJ, Doley J, Paul S, Gupta VK. Assessment of reference genes for qRT-PCR normalization to elucidate host response to African swine fever infection. Braz J Microbiol 2024; 55:2943-2952. [PMID: 38963474 PMCID: PMC11405621 DOI: 10.1007/s42770-024-01439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Viral infection disrupts the normal regulation of the host gene's expression. In order to normalise the expression of dysregulated host genes upon virus infection, analysis of stable reference housekeeping genes using quantitative real-time-PCR (qRT-PCR) is necessary. In the present study, healthy and African swine fever virus (ASFV) infected porcine tissues were assessed for the expression stability of five widely used housekeeping genes (HPRT1, B2M, 18 S rRNA, PGK1 and H3F3A) as reference genes using standard algorithm. Total RNA from each tissue sample (lymph node, spleen, kidney, heart and liver) from healthy and ASFV-infected pigs was extracted and subsequently cDNA was synthesized, and subjected to qRT-PCR. Stability analysis of reference genes expression was performed using the Comparative delta CT, geNorm, BestKeeper and NormFinder algorithm available at RefFinder for the different groups. Direct Cycle threshold (CT) values of samples were used as an input for the web-based tool RefFinder. HPRT1 in spleen, 18 S rRNA in liver and kidney and H3F3A in heart and lymph nodes were found to be stable in the individual healthy tissue group (group A). The majority of the ASFV-infected organs (liver, kidney, heart, lymph node) exhibited H3F3A as stable reference gene with the exception of the ASFV-infected spleen, where HPRT1 was found to be the stable gene (group B). HPRT1 was found to be stable in all combinations of all CT values of both healthy and ASFV-infected porcine tissues (group C). Of five different reference genes investigated for their stability in qPCR analysis, the present study revealed that the 18 S rRNA, H3F3A and HPRT1 genes were optimal reference genes in healthy and ASFV-infected different porcine tissue samples. The study revealed the stable reference genes found in healthy as well as ASF-infected pigs and these reference genes identified through this study will form the baseline data which will be very useful in future investigations on gene expression in ASFV-infected pigs.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
- Krishi Vigyan Kendra Karimganj, Assam Agricultural University, Jorhat, Assam, 788712, India
| | | | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Juwar Doley
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Souvik Paul
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| |
Collapse
|
4
|
Zhan S, Zhang L, Zhong T, Wang L, Guo J, Cao J, Li L, Zhang H. Evaluation of Reference Gene Stability in Goat Skeletal Muscle Satellite Cells during Proliferation and Differentiation Phases. Animals (Basel) 2024; 14:2479. [PMID: 39272264 PMCID: PMC11394193 DOI: 10.3390/ani14172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The process of skeletal muscle development is intricate and involves the regulation of a diverse array of genes. Accurate gene expression profiles are crucial for studying muscle development, making it essential to choose the right reference genes for real-time quantitative PCR (RT-qPCR). In the present study, eight candidate reference genes were identified from our previous transcriptome sequencing analysis of caprine skeletal muscle satellite cells (MuSCs), and two traditional reference genes (ACTB and GAPDH) were assessed. The quantitative levels of the candidate reference genes were determined through the RT-qPCR technique, while the stability of their expression was evaluated utilizing the GeNorm, NormFinder, BestKeeper, and RefFinder programs. Furthermore, the chosen reference genes were utilized for the normalization of the gene expression levels of PCNA and Myf5. It was determined that conventional reference genes, including ACTB and GAPDH, were not appropriate for normalizing target gene expression. Conversely, RPL14 and RPS15A, identified through RNA sequencing analysis, exhibited minimal variability and were identified as the optimal reference genes for normalizing gene expression during the proliferation and differentiation of goat MuSCs. Our research offers a validated panel of optimal reference genes for the detection of differentially expressed genes in goat muscle satellite cells using RT-qPCR.
Collapse
Affiliation(s)
- Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lufei Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Liu Y, Shi W, Zhang D. Development and evaluation of suitable reference genes for qRT-PCR normalization of hybrids derived from Lycium barbarum and Lycium ruthenicum. Mol Biol Rep 2024; 51:922. [PMID: 39162931 DOI: 10.1007/s11033-024-09848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND A correct and stably expressing reference gene is prerequisite for successful quantitative real-time PCR (qRT-PCR). Investigating gene expression profiling during flower development could enhance our understanding of the molecular mechanisms of flower formation and fertility in Lycium. METHODS AND RESULTS In this study, 11 candidate reference genes in Lycium flower development were selected from transcriptome sequence data and evaluated with five traditional housekeeping genes from previous studies based on qRT-PCR amplification. Comparing the expression stability result of 16 candidate genes using GeNorm, NormFinder, BestKeeper, and Delta Ct algorithms, Lba04g01649 and Lba12g02820 were validated as the optimal reference genes for the flower development of Lycium. CONCLUSIONS The reference genes identified in this study would improve the accuracy of qRT-PCR quantification of target gene expression in Lycium flower development and facilitate future functional genomics studies on flower development. This research could lay the foundation for the study of the reproduction and development of the Lycium flower.
Collapse
Affiliation(s)
- Yu Liu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Wenjun Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Germplasm Resources on the Qinghai-Tibet Plateau, Xining, 810016, China
- Key Laboratory of Tree Genetics and Breeding of Qinghai Plateau, National Forestry and Grassland Administration, Xining, 810016, China
| | - Defang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China.
- Laboratory for Research and Utilization of Germplasm Resources on the Qinghai-Tibet Plateau, Xining, 810016, China.
- Key Laboratory of Tree Genetics and Breeding of Qinghai Plateau, National Forestry and Grassland Administration, Xining, 810016, China.
| |
Collapse
|
6
|
Ferreira DB, Gasparoni LM, Bronzeri CF, Paiva KBS. RPLP0/TBP are the most stable reference genes for human dental pulp stem cells under osteogenic differentiation. World J Stem Cells 2024; 16:656-669. [PMID: 38948092 PMCID: PMC11212553 DOI: 10.4252/wjsc.v16.i6.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and β-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches. AIM To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR. METHODS We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups. RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms' two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking. CONCLUSION For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
Collapse
Affiliation(s)
- Daniel B Ferreira
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Leticia M Gasparoni
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Cristiane F Bronzeri
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil.
| |
Collapse
|
7
|
Ferreira DB, Gasparoni LM, Bronzeri CF, Paiva KBS. RPLP0/TBP are the most stable reference genes for human dental pulp stem cells under osteogenic differentiation. World J Stem Cells 2024; 16:655-668. [DOI: 10.4252/wjsc.v16.i6.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and β-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches.
AIM To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR.
METHODS We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups.
RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms’ two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking.
CONCLUSION For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
Collapse
Affiliation(s)
- Daniel B Ferreira
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Leticia M Gasparoni
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Cristiane F Bronzeri
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| |
Collapse
|
8
|
Novotny MV, Xu W, Mulya A, Janocha AJ, Erzurum SC. Method for depletion of mitochondria DNA in human bronchial epithelial cells. MethodsX 2024; 12:102497. [PMID: 38089156 PMCID: PMC10711463 DOI: 10.1016/j.mex.2023.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
Mitochondria are increasingly recognized to play a role in the airway inflammation of asthma. Model systems to study the role of mitochondrial gene expression in bronchial epithelium are lacking. Here, we create custom bronchial epithelial cell lines that are depleted of mitochondrial DNA. One week of ethidium bromide (EtBr) treatment led to ∼95 % reduction of mtDNA copy number (mtDNA-CN) in cells, which was further reduced by addition of 25 µM 2',3'-dideoxycytidin (ddC). Treatment for up to three weeks with EtBr and ddC led to near complete loss of mtDNA. The basal oxygen consumption rate (OCR) of mtDNA-depleted BET-1A and BEAS-2B cells dropped to near zero. Glycolysis measured by extracellular acidification rate (ECAR) increased ∼two-fold in cells when mtDNA was eliminated. BET-1A ρ0 and BEAS-2B ρ0 cells were cultured for two months, frozen and thawed, cultured for two more months, and maintained near zero mtDNA-CN. Mitochondrial DNA-depleted BET-1A ρ0 and BEAS-2B ρ0 cell lines are viable, lack the capacity for aerobic respiration, and increase glycolysis.•BET-1A and BEAS-2B cells were treated with ethidium bromide (EtBr) with or without 2',3'-dideoxycytidine (ddC) to create cells lacking mitochondrial DNA (mtDNA).•Cells' mtDNA copy number relative to nuclear DNA (nDNA) were verified by quantitative polymerase chain reaction (qPCR).•Cells were also assessed for oxidative phosphorylation by measures of oxygen consumption using the Seahorse analyzer.
Collapse
Affiliation(s)
| | | | | | | | - Serpil C. Erzurum
- Lerner Research Institute, USA
- Respiratory Institute: Cleveland Clinic, 9500 Euclid Avenue, NB2-21, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Muhtadi R, Stewart S, Bunert F, Fatanmi OO, Wise SY, Gärtner C, Motzke S, Ruf C, Ostheim P, Schüle S, Schwanke D, Singh VK, Port M, Abend M. PUM1 and PGK1 are Favorable Housekeeping Genes over Established Biodosimetry-related Housekeeping Genes such as HPRT1, ITFG1, DPM1, MRPS5, 18S rRNA and Others after Radiation Exposure. Radiat Res 2024; 201:487-498. [PMID: 38471523 DOI: 10.1667/rade-23-00160.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 03/14/2024]
Abstract
In gene expression (GE) studies, housekeeping genes (HKGs) are required for normalization purposes. In large-scale inter-laboratory comparison studies, significant differences in dose estimates are reported and divergent HKGs are employed by the teams. Among them, the 18S rRNA HKG is known for its robustness. However, the high abundance of 18S rRNA copy numbers requires dilution, which is time-consuming and a possible source of errors. This study was conducted to identify the most promising HKGs showing the least radiation-induced GE variance after radiation exposure. In the screening stage of this study, 35 HKGs were analyzed. This included selected HKGs (ITFG1, MRPS5, and DPM1) used in large-scale biodosimetry studies which were not covered on an additionally employed pre-designed 96-well platform comprising another 32 HKGs used for different exposures. Altogether 41 samples were examined, including 27 ex vivo X-ray irradiated blood samples (0, 0.5, 4 Gy), six X-irradiated samples (0, 0.5, 5 Gy) from two cell lines (U118, A549), as well as eight non-irradiated tissue samples to encompass multiple biological entities. In the independent validation stage, the most suitable candidate genes were examined from another 257 blood samples, taking advantage of already stored material originating from three studies. These comprise 100 blood samples from ex vivo X-ray irradiated (0-4 Gy) healthy donors, 68 blood samples from 5.8 Gy irradiated (cobalt-60) Rhesus macaques (RM) (LD29/60) collected 0-60 days postirradiation, and 89 blood samples from chemotherapy-(CTx) treated breast tumor patients. CTx and radiation-induced GE changes in previous studies appeared comparable. RNA was isolated, converted into cDNA, and GE was quantified employing TaqMan assays and quantitative RT-PCR. We calculated the standard deviation (SD) and the interquartile range (IQR) as measures of GE variance using raw cycle threshold (Ct) values and ranked the HKGs accordingly. Dose, time, age, and sex-dependent GE changes were examined employing the parametrical t-test and non-parametrical Kruskal Wallis test, as well as linear regression analysis. Generally, similar ranking results evolved using either SD or IQR GE measures of variance, indicating a tight distribution of GE values. PUM1 and PGK1 showed the lowest variance among the first ten most suitable genes in the screening phase. MRPL19 revealed low variance among the first ten most suitable genes in the screening phase only for blood and cells, but certain comparisons indicated a weak association of MRPL19 with dose (P = 0.02-0.09). In the validation phase, these results could be confirmed. Here, IQR Ct values from, e.g., X-irradiated blood samples were 0.6 raw Ct values for PUM1 and PGK1, which is considered to represent GE differences as expected due to methodological variance. Overall, when compared, the GE variance of both genes was either comparable or lower compared to 18S rRNA. Compared with the IQR GE values of PUM1 and PGKI, twofold-fivefold increased values were calculated for the biodosimetry HKG HPRT1, and comparable values were calculated for biodosimetry HKGs ITFG1, MRPS5, and DPM1. Significant dose-dependent associations were found for ITFG1 and MRPS5 (P = 0.001-0.07) and widely absent or weak (P = 0.02-0.07) for HPRT1 and DPM1. In summary, PUM1 and PGK1 appeared most promising for radiation exposure studies among the 35 HKGs examined, considering GE variance and adverse associations of GE with dose.
Collapse
Affiliation(s)
- R Muhtadi
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Technical University Munich, Munich, Germany
| | - S Stewart
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Technical University Munich, Munich, Germany
| | - F Bunert
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Technical University Munich, Munich, Germany
| | - O O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - S Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - C Gärtner
- Microfluidic ChipShop GmbH, Jena, Germany
| | - S Motzke
- Microfluidic ChipShop GmbH, Jena, Germany
| | - C Ruf
- Department of Urology, Federal Armed Services Hospital Ulm, Ulm, Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - D Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - V K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
10
|
Bustin SA. Improving the quality of quantitative polymerase chain reaction experiments: 15 years of MIQE. Mol Aspects Med 2024; 96:101249. [PMID: 38290180 DOI: 10.1016/j.mam.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
The quantitative polymerase chain reaction (qPCR) is fundamental to molecular biology. It is not just a laboratory technique, qPCR is a bridge between research and clinical practice. Its theoretical foundations guide the design of experiments, while its practical implications extend to diagnostics, treatment, and research advancements in the life sciences, human and veterinary medicine, agriculture, and forensics. However, the accuracy, reliability and reproducibility of qPCR data face challenges arising from various factors associated with experimental design, execution, data analysis and inadequate reporting details. Addressing these concerns, the Minimum Information for the Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines have emerged as a cohesive framework offering a standardised set of recommendations that describe the essential information required for assessing qPCR experiments. By emphasising the importance of methodological rigour, the MIQE guidelines have made a major contribution to improving the trustworthiness, consistency, and transparency of many published qPCR results. However, major challenges related to awareness, resources, and publication pressures continue to affect their consistent application.
Collapse
Affiliation(s)
- Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, CM1 1SQ, UK.
| |
Collapse
|
11
|
Kubeczko M, Tudrej P, Tyszkiewicz T, Krzywon A, Oczko-Wojciechowska M, JarzĄb M. Liquid biopsy utilizing miRNA in patients with advanced breast cancer treated with cyclin‑dependent kinase 4/6 inhibitors. Oncol Lett 2024; 27:181. [PMID: 38464342 PMCID: PMC10921259 DOI: 10.3892/ol.2024.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) are the mainstay of treatment of hormone receptor+/human epidermal growth factor receptor 2-patients with advanced breast cancer (ABC). Despite improvements in overall survival, most patients experience disease progression. Biomarkers derived from a liquid biopsy are appealing for their potential to detect resistance to treatment earlier than computed tomography imaging. However, clinical data concerning microRNAs (miRNAs/miRs) in the context of CDK4/6is are lacking. Thus, the present study assessed the use of miRNAs in patients with ABC treated with CDK4/6is. Patients treated for ABC with CDK4/6is between June and August 2022 were eligible. miRNA expression analyses were performed using a TaqMan™ low-density miRNA array. A total of 80 consecutive patients with ABC treated with CDK4/6is at Maria Sklodowska-Curie National Research Institute of Oncology (Gliwice, Poland) were assessed, with 14 patients diagnosed with progressive disease at the time of sampling, 55 patients exhibited clinical benefit from CDK4/6i treatment and 11 patients were at the beginning of CDK4/6i treatment. Patients with disease progression had significantly higher levels of miR-21 (P=0.027), miR-34a (P=0.011), miR-193b (P=0.032), miR-200a (P=0.027) and miR-200b (P=0.003) compared with patients who benefitted from CDK4/6i treatment. Significantly higher levels of miR-34a expression were observed in patients with progressive disease than in patients beginning treatment (P=0.031). The present study demonstrated the potential innovative role of circulating miRNAs during CDK4/6i treatment. Plasma-based expression of miR-21, -34a, -193b, -200a and -200b effectively distinguished patients with ABC who responded to CDK4/6i treatment from patients who were resistant. However, longitudinal studies are required to verify the predictive and prognostic potential of miRNA.
Collapse
Affiliation(s)
- Marcin Kubeczko
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Patrycja Tudrej
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Tomasz Tyszkiewicz
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Aleksandra Krzywon
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MaŁgorzata Oczko-Wojciechowska
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MichaŁ JarzĄb
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| |
Collapse
|
12
|
Carrillo B, Fernandez-Garcia JM, García-Úbeda R, Grassi D, Primo U, Blanco N, Ballesta A, Arevalo MA, Collado P, Pinos H. Neonatal inhibition of androgen activity alters the programming of body weight and orexinergic peptides differentially in male and female rats. Brain Res Bull 2024; 208:110898. [PMID: 38360152 DOI: 10.1016/j.brainresbull.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The involvement of androgens in the regulation of energy metabolism has been demonstrated. The main objective of the present research was to study the involvement of androgens in both the programming of energy metabolism and the regulatory peptides associated with feeding. For this purpose, androgen receptors and the main metabolic pathways of testosterone were inhibited during the first five days of postnatal life in male and female Wistar rats. Pups received a daily s.c. injection from the day of birth, postnatal day (P) 1, to P5 of Flutamide (a competitive inhibitor of androgen receptors), Letrozole (an aromatase inhibitor), Finasteride (a 5-alpha-reductase inhibitor) or vehicle. Body weight, food intake and fat pads were measured. Moreover, hypothalamic Agouti-related peptide (AgRP), neuropeptide Y (NPY), orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay. The inhibition of androgenic activity during the first five days of life produced a significant decrease in body weight in females at P90 but did not affect this parameter in males. Moreover, the inhibition of aromatase decreased hypothalamic AgRP mRNA levels in males while the inhibition of 5α-reductase decreased hypothalamic AgRP and orexin mRNA levels in female rats. Finally, food intake and visceral fat, but not subcutaneous fat, were affected in both males and females depending on which testosterone metabolic pathway was inhibited. Our results highlight the differential involvement of androgens in the programming of energy metabolism as well as the AgRP and orexin systems during development in male and female rats.
Collapse
Affiliation(s)
- Beatriz Carrillo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Jose Manuel Fernandez-Garcia
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain; Faculty of Psychology, Universidad Villanueva Madrid, Madrid, Spain
| | - Rocío García-Úbeda
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, Spain
| | - Ulises Primo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Noemí Blanco
- Department of Psychobiology, National University of Distance Education, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Antonio Ballesta
- Department of Psychobiology, Centro de Enseñanza Superior Cardenal Cisneros, Spain
| | - Maria Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, National University of Distance Education, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, National University of Distance Education, Madrid, Spain; University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain.
| |
Collapse
|
13
|
Eritja À, Caus M, Belmonte T, de Gonzalo-Calvo D, García-Carrasco A, Martinez A, Martínez M, Bozic M. microRNA Expression Profile in Obesity-Induced Kidney Disease Driven by High-Fat Diet in Mice. Nutrients 2024; 16:691. [PMID: 38474819 DOI: 10.3390/nu16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.
Collapse
Affiliation(s)
- Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Maite Caus
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alicia García-Carrasco
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Montserrat Martínez
- Biostatistics Unit (Biostat), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| |
Collapse
|
14
|
E L, Lyu S, Wang Y, Xiao D, Liu T, Hou X, Li Y, Zhang C. Integrating Dynamic 3D Chromatin Architecture and Gene Expression Alterations Reveal Heterosis in Brassica rapa. Int J Mol Sci 2024; 25:2568. [PMID: 38473815 DOI: 10.3390/ijms25052568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Heterosis plays a significant role in enhancing variety, boosting yield, and raising economic value in crops, but the molecular mechanism is still unclear. We analyzed the transcriptomes and 3D genomes of a hybrid (F1) and its parents (w30 and 082). The analysis of the expression revealed a total of 485 specially expressed genes (SEGs), 173 differentially expressed genes (DEGs) above the parental expression level, more actively expressed genes, and up-regulated DEGs in the F1. Further study revealed that the DEGs detected in the F1 and its parents were mainly involved in the response to auxin, plant hormone signal transduction, DNA metabolic process, purine metabolism, starch, and sucrose metabolism, which suggested that these biological processes may play a crucial role in the heterosis of Brassica rapa. The analysis of 3D genome data revealed that hybrid F1 plants tend to contain more transcriptionally active A chromatin compartments after hybridization. Supplementaryly, the F1 had a smaller TAD (topologically associated domain) genome length, but the number was the highest, and the expression change in activated TAD was higher than that of repressed TAD. More specific TAD boundaries were detected between the parents and F1. Subsequently, 140 DEGs with genomic structural variants were selected as potential candidate genes. We found two DEGs with consistent expression changes in A/B compartments and TADs. Our findings suggested that genomic structural variants, such as TADs and A/B chromatin compartments, may affect gene expression and contribute to heterosis in Brassica rapa. This study provides further insight into the molecular mechanism of heterosis in Brassica rapa.
Collapse
Affiliation(s)
- Liu E
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanwu Lyu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yaolong Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Hose L, Schürmann M, Mennebröcker I, Kim R, Busche T, Goon P, Sudhoff H. Characterization of non-invasive oropharyngeal samples and nucleic acid isolation for molecular diagnostics. Sci Rep 2024; 14:4061. [PMID: 38374370 PMCID: PMC10876689 DOI: 10.1038/s41598-024-54179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Molecular diagnostics is an increasingly important clinical tool, especially in routine sampling. We evaluated two non-invasive methods (oral swabs and mouthwashes) for sampling nucleic acids from the oral/pharyngeal area. We created a workflow from sample collection (n = 59) to RT-qPCR based analysis. The samples were further characterized in terms of their cellular composition as well as the purity, degradation and microbial content of the derived DNA/RNA. We determined the optimal housekeeping genes applicable for these types of samples. The cellular composition indicated that mouthwashes contained more immune cells and bacteria. Even though the protocol was not specifically optimized to extract bacterial RNA it was possible to derive microbial RNA, from both sampling methods. Optimizing the protocol allowed us to generate stable quantities of DNA/RNA. DNA/RNA purity parameters were not significantly different between the two sampling methods. Even though integrity analysis demonstrated a high level of degradation of RNA, corresponding parameters confirmed their sequencing potential. RT-qPCR analysis determined TATA-Box Binding Protein as the most favorable housekeeping gene. In summary, we have developed a robust method suitable for multiple downstream diagnostic techniques. This protocol can be used as a foundation for further research endeavors focusing on developing molecular diagnostics for the oropharyngeal cavity.
Collapse
Affiliation(s)
- Leonie Hose
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| | - Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Inga Mennebröcker
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Rayoung Kim
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Peter Goon
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Teutoburger Str. 50, 33604, Bielefeld, Germany
| |
Collapse
|
16
|
Özdemir ÖÜ, Yurt K, Pektaş AN, Berk Ş. Evaluation and normalization of a set of reliable reference genes for quantitative sgk-1 gene expression analysis in Caenorhabditis elegans-focused cancer research. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-20. [PMID: 38359339 DOI: 10.1080/15257770.2024.2317413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Multiple signaling pathways have been discovered to play a role in aging and longevity, including the insulin/IGF-1 signaling system, AMPK pathway, TOR signaling, JNK pathway, and germline signaling. Mammalian serum and glucocorticoid-inducible kinase 1 (sgk-1), which has been associated with various disorders including hypertension, obesity, and tumor growth, limits survival in C. elegans by reducing DAF-16/FoxO activity while suppressing FoxO3 activity in human cell culture. C. elegans provides significant protection for a number of genes associated with human cancer. The best known of these are the lin-35/pRb (mammalian ortholog pRb) and CEP-1 (mammalian ortholog p53) genes. Therefore, in this study, we aimed to investigate the expression analyzes of sgk-1, which is overexpressed in many types of mammalian cancer, in mutant lin-35 and to demonstrate the validation of reference genes in wild-type N2 and mutant lin-35 for C. elegans-focused cancer research. To develop functional genomic studies in C. elegans, we evaluated the expression stability of five candidate reference genes (act-1, ama-1, cdc-42, pmp-3, iscu-1) by quantitative real-time PCR using five algorithms (geNorm, NormFinder, Delta Ct method, BestKeeper, RefFinder) in N2 and lin-35 worms. According to our findings, act-1 and cdc-42 were effective in accurately normalizing the levels of gene expression in N2 and lin-35. act-1 and cdc-42 also displayed the most consistent expression patterns, therefore they were utilized to standardize expression level of sgk-1. Furthermore, our results clearly showed that sgk-1 was upregulated in lin-35 worms compared to N2 worms. Our results highlight the importance of definitive validation using mostly expressed reference genes.
Collapse
Affiliation(s)
- Özgür Ülkü Özdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Kübra Yurt
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayşe Nur Pektaş
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| | - Şeyda Berk
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
17
|
Ivanova Z, Petrova V, Grigorova N, Vachkova E. Identification of the Reference Genes for Relative qRT-PCR Assay in Two Experimental Models of Rabbit and Horse Subcutaneous ASCs. Int J Mol Sci 2024; 25:2292. [PMID: 38396967 PMCID: PMC10889259 DOI: 10.3390/ijms25042292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Obtaining accurate and reliable gene expression results in real-time RT-PCR (qRT-PCR) data analysis requires appropriate normalization by carefully selected reference genes, either a single or a combination of multiple housekeeping genes (HKGs). The optimal reference gene/s for normalization should demonstrate stable expression across varying conditions to diminish potential influences on the results. Despite the extensive database available, research data are lacking regarding the most appropriate HKGs for qRT-PCR data analysis in rabbit and horse adipose-derived stem cells (ASCs). Therefore, in our study, we comprehensively assessed and compared the suitability of some widely used HKGs, employing RefFinder and NormFinder, two extensively acknowledged algorithms for robust data interpretation. The rabbit and horse ASCs were obtained from subcutaneous stromal vascular fraction. ASCs were induced into tri-lineage differentiation, followed by the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) treatment of the adipose-differentiated rabbit ASCs, while horse experimental groups were formed based on adipogenic, osteogenic, and chondrogenic differentiation. At the end of the experiment, the total mRNA was obtained and used for the gene expression evaluation of the observed factors. According to our findings, glyceraldehyde 3-phosphate dehydrogenase was identified as the most appropriate endogenous control gene for rabbit ASCs, while hypoxanthine phosphoribosyltransferase was deemed most suitable for horse ASCs. The obtained results underscore that these housekeeping genes exhibit robust stability across diverse experimental conditions, remaining unaltered by the treatments. In conclusion, the current research can serve as a valuable baseline reference for experiments evaluating gene expression in rabbit and horse ASCs. It highlights the critical consideration of housekeeping gene abundance and stability in qPCR experiments, emphasizing the need for an individualized approach tailored to the specific requirements of the study.
Collapse
Affiliation(s)
- Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (V.P.); (N.G.); (E.V.)
| | | | | | | |
Collapse
|
18
|
De Paoli M, Shah D, Zakharia A, Patel Z, Patel Z, Pakhi P, Werstuck GH. Investigating the Role of 17-Beta Estradiol in the Regulation of the Unfolded Protein Response (UPR) in Pancreatic Beta Cells. Int J Mol Sci 2024; 25:1816. [PMID: 38339098 PMCID: PMC10855194 DOI: 10.3390/ijms25031816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetes mellitus is clinically defined by chronic hyperglycemia. Sex differences in the presentation and outcome of diabetes exist with premenopausal women having a reduced risk of developing diabetes, relative to men, or women after menopause. Accumulating evidence shows a protective role of estrogens, specifically 17-beta estradiol, in the maintenance of pancreatic beta cell health; however, the mechanisms underlying this protection are still unknown. To elucidate these potential mechanisms, we used a pancreatic beta cell line (BTC6) and a mouse model of hyperglycemia-induced atherosclerosis, the ApoE-/-:Ins2+/Akita mouse, exhibiting sexual dimorphism in glucose regulation. In this study we hypothesize that 17-beta estradiol protects pancreatic beta cells by modulating the unfolded protein response (UPR) in response to endoplasmic reticulum (ER) stress. We observed that ovariectomized female and male ApoE-/-:Ins2+/Akita mice show significantly increased expression of apoptotic UPR markers. Sham operated female and ovariectomized female ApoE-/-:Ins2+/Akita mice supplemented with exogenous 17-beta estradiol increased the expression of adaptive UPR markers compared to non-supplemented ovariectomized female ApoE-/-:Ins2+/Akita mice. These findings were consistent to what was observed in cultured BTC6 cells, suggesting that 17-beta estradiol may protect pancreatic beta cells by repressing the apoptotic UPR and enhancing the adaptive UPR activation in response to pancreatic ER stress.
Collapse
Affiliation(s)
- Monica De Paoli
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Deep Shah
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Alexander Zakharia
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Zil Patel
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Zinal Patel
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L8L 2X2, Canada
| | - Pakhi Pakhi
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Geoff H. Werstuck
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L8L 2X2, Canada
| |
Collapse
|
19
|
Pessoa FMCDP, Viana VBDJ, de Oliveira MB, Nogueira BMD, Ribeiro RM, Oliveira DDS, Lopes GS, Vieira RPG, de Moraes Filho MO, de Moraes MEA, Khayat AS, Moreira FC, Moreira-Nunes CA. Validation of Endogenous Control Genes by Real-Time Quantitative Reverse Transcriptase Polymerase Chain Reaction for Acute Leukemia Gene Expression Studies. Genes (Basel) 2024; 15:151. [PMID: 38397141 PMCID: PMC10887733 DOI: 10.3390/genes15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Reference genes are used as internal reaction controls for gene expression analysis, and for this reason, they are considered reliable and must meet several important criteria. In view of the absence of studies regarding the best reference gene for the analysis of acute leukemia patients, a panel of genes commonly used as endogenous controls was selected from the literature for stability analysis: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Abelson murine leukemia viral oncogene human homolog 1 (ABL), Hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Ribosomal protein lateral stalk subunit P0 (RPLP0), β-actin (ACTB) and TATA box binding protein (TBP). The stability of candidate reference genes was analyzed according to three statistical methods of assessment, namely, NormFinder, GeNorm and R software (version 4.0.3). From this study's analysis, it was possible to identify that the endogenous set composed of ACTB, ABL, TBP and RPLP0 demonstrated good performances and stable expressions between the analyzed groups. In addition to that, the GAPDH and HPRT genes could not be classified as good reference genes, considering that they presented a high standard deviation and great variability between groups, indicating low stability. Given these findings, this study suggests the main endogenous gene set for use as a control/reference for the gene expression in peripheral blood and bone marrow samples from patients with acute leukemias is composed of the ACTB, ABL, TBP and RPLP0 genes. Researchers may choose two to three of these housekeeping genes to perform data normalization.
Collapse
Affiliation(s)
- Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - Vitória Beatriz de Jesus Viana
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Marcelo Braga de Oliveira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Beatriz Maria Dias Nogueira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | | | - Deivide de Sousa Oliveira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
- Department of Hematology, Fortaleza General Hospital (HGF), Fortaleza 60150-160, CE, Brazil
| | - Germison Silva Lopes
- Department of Hematology, César Cals General Hospital, Fortaleza 60015-152, CE, Brazil;
| | | | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Fabiano Cordeiro Moreira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
- Central Unity, Molecular Biology Laboratory, Clementino Fraga Group, Fortaleza 60115-170, CE, Brazil
| |
Collapse
|
20
|
Peng S, Ali Sabir I, Hu X, Chen J, Qin Y. Advancements in Reference Gene Selection for Fruit Trees: A Comprehensive Review. Int J Mol Sci 2024; 25:1142. [PMID: 38256212 PMCID: PMC10816256 DOI: 10.3390/ijms25021142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Real-time quantitative polymerase chain reaction (qRT-PCR) has been widely used in gene expression analyses due to its advantages of sensitivity, accuracy and high throughput. The stability of internal reference genes has progressively emerged as a major factor affecting the precision of qRT-PCR results. However, the stability of the expression of the reference genes needs to be determined further in different cells or organs, physiological and experimental conditions. Methods for evaluating these candidate internal reference genes have also evolved from simple single software evaluation to more reliable and accurate internal reference gene evaluation by combining different software tools in a comprehensive analysis. This study intends to provide a definitive reference for upcoming research that will be conducted on fruit trees. The primary focus of this review is to summarize the research progress in recent years regarding the selection and stability analysis of candidate reference genes for different fruit trees.
Collapse
Affiliation(s)
- Shujun Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (S.P.); (X.H.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Irfan Ali Sabir
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Xinglong Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (S.P.); (X.H.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (S.P.); (X.H.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (S.P.); (X.H.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
21
|
Feng K, Yang ZY, Yan YJ, Sun N, Zhou ZQ, Liu JL, Zhao SP, Wu P, Li LJ. Selection of suitable reference genes for qPCR normalization in different developmental stages of Oenanthe javanica. FRONTIERS IN PLANT SCIENCE 2023; 14:1287589. [PMID: 38205019 PMCID: PMC10777208 DOI: 10.3389/fpls.2023.1287589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Gene expression analysis is widely used to unravel molecular regulatory mechanisms and identify key genes in plants. Appropriate reference gene is an important prerequisite to ensure the accuracy and reliability of qPCR analysis results. Water dropwort is a plant of the Oenanthe genus in the Apiaceae family, which has high economic benefits. However, the underlying molecular regulatory mechanisms in the growth and development of water dropwort have not been fully understood and the appropriate reference genes in different developmental stages of water dropwort not yet reported. In this study, 10 candidate reference genes (ACTIN, PP2A, SAND, EF-1α, GAPDH, UBQ, MIP, TBP, RPS-18, eIF-4α) were identified and cloned from Oenanthe javanica. The qPCR primers of candidate reference genes were designed and verified. Four statistical algorithms, geNorm, NormFinder, BestKeeper and RefFinder were used to evaluate the expression stability of 10 candidate reference genes in different developmental stages of water dropwort. The results showed that TBP and UBQ were the most stable genes in different developmental stages of water dropwort, while GAPDH was the most unstable gene. The normalization of EXP1 genes at different developmental stages further confirmed the reliability of internal reference genes. The results of this study provide a theoretical basis for selecting appropriate internal reference genes in different developmental stages of water dropwort. This study also provides technical support and reliable basis for the expression analysis of key genes in different developmental stages of water dropwort.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zhi-Yuan Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Ya-Jie Yan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Nan Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zi-Qi Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jia-Lu Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Shu-Ping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liang-Jun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Zaid DS, Li W, Yang S, Li Y. Identification of bioactive compounds of Bacillus velezensis HNA3 that contribute to its dual effects as plant growth promoter and biocontrol against post-harvested fungi. Microbiol Spectr 2023; 11:e0051923. [PMID: 37811935 PMCID: PMC10715170 DOI: 10.1128/spectrum.00519-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
Collapse
Affiliation(s)
- Doaa S. Zaid
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Desert Research Center, Ain Shams, Egypt
| | - Wenya Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Siyu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Rodon J, Te N, Ballester M, Segalés J, Vergara-Alert J, Bensaid A. Quantification of camelid cytokine mRNA expression in PBMCs by microfluidic qPCR technology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105061. [PMID: 37717710 DOI: 10.1016/j.dci.2023.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Camelids are economically and socially important in several parts of the world and might carry pathogens with epizootic or zoonotic potential. However, biological research in these species is limited due to lack of reagents. Here, we developed RT-qPCR assays to quantify a panel of camelid innate and adaptive immune response genes, which can be monitored in a single run. The assays were validated with PHA, PMA-ionomycin, and Poly I:C-stimulated PBMCs from alpaca, dromedary camel and llama, including normalization by multiple reference genes. Further, comparative gene expression analyses for the different camelid species were performed by a unique microfluidic qPCR assay. Compared to unstimulated controls, PHA and PMA-ionomycin stimulation elicited robust Th1 and Th2 responses in PBMCs from camelid species. Additional activation of type I and type III IFN signalling pathways was described exclusively in PHA-stimulated dromedary lymphocytes, in contrast to those from alpaca and llama. We also found that PolyI:C stimulation induced robust antiviral response genes in alpaca PBMCs. The proposed methodology should be useful for the measurement of immune responses to infection or vaccination in camelid species.
Collapse
Affiliation(s)
- Jordi Rodon
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| | - Nigeer Te
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), 08140, Caldes de Montbui, Spain.
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain; Department de Sanitat i Anatomia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, 08193, Bellaterra, Catalonia, Spain.
| | - Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| | - Albert Bensaid
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| |
Collapse
|
24
|
Akin-Bali DF, Doganay Erdogan B, Aslar Oner D, Mahmud A, Tasdelen S, Kurekci E, Akar N, Ozdag Sevgili H. Genetic Profiling of Pediatric Patients with B-Cell Precursor Acute Lymphoblastic Leukemia. J Pediatr Genet 2023; 12:288-300. [PMID: 38162155 PMCID: PMC10756719 DOI: 10.1055/s-0041-1742246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a heterogeneous leukemia subgroup. It has multiple sub-types that are likely to be classified by prognostic factors. Following a systematic literature review, this study analyzed the genes correlated with BCP-ALL prognosis ( IKZF1, PAX5, EBF1, CREBBP, CRLF2, JAK2, ERG, CXCR4, ZAP70, VLA4, NF1, NR3C1, RB1, TSLP, ZNRF1, and FOXO3A) , specifically their nucleotide variations and expression profiles in pediatric BCP-ALL samples. The study included 45 pediatric BCP-ALL patients with no cytogenetic anomaly and a control group of 10 children. The selected genes' hot-spot regions were sequenced using next-generation sequencing, while Polymorphism Phenotyping v2 and Supplemental Nutrition Assistance Program were used to identify pathogenic mutations. The expression analysis was performed using quantitative real-time polymerase chain reaction. The mutation analysis detected 328 variants (28 insertions, 47 indels, 74 nucleotide variants, 75 duplications, and 104 deletions). The most and least frequently mutated genes were IKZF1 and CREBBP , respectively. There were statistically significant differences between patients and controls for mutation distribution in eight genes ( ERG, CRLF2, CREBBP, TSLP, JAK2, ZAP70, FOXO3A, and NR3C1 ). The expression analysis revealed that JAK and ERG were significantly overexpressed in patients compared with controls (respectively, p = 0.004 and p = 0.003). This study combined genes and pathways previously analyzed in pediatric BCP-ALL into one dataset for a comprehensive analysis from the same samples to unravel candidate prognostic biomarkers. Novel mutations were identified in all of the studied genes.
Collapse
Affiliation(s)
- Dilara Fatma Akin-Bali
- Department of Medical Biology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Beyza Doganay Erdogan
- Department of Biostatistic, Faculty of Medicine, Biostatistics, Ankara University, Ankara, Turkey
| | - Deniz Aslar Oner
- Atatürk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Akkan Mahmud
- LÖSANTE Children's and Adult Hospital, Ankara, Turkey
| | | | - Emin Kurekci
- LÖSANTE Children's and Adult Hospital, Ankara, Turkey
| | - Nejat Akar
- Department of Pediatrics, TOBB-ETU Hospital, Ankara, Turkey
| | | |
Collapse
|
25
|
Musyaju S, Modi HR, Flerlage WJ, Scultetus AH, Shear DA, Pandya JD. Revert total protein normalization method offers a reliable loading control for mitochondrial samples following TBI. Anal Biochem 2023; 680:115301. [PMID: 37673410 DOI: 10.1016/j.ab.2023.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Owing to evidence that mitochondrial dysfunction plays a dominant role in the traumatic brain injury (TBI) pathophysiology, the Western blot (WB) based immunoblotting method is widely employed to identify changes in the mitochondrial protein expressions after neurotrauma. In WB method, the housekeeping proteins (HKPs) expression is routinely used as an internal control for sample normalization. However, the traditionally employed HKPs can be susceptible to complex cascades of TBI pathogenesis, leading to their inconsistent expression. Remarkably, our data illustrated here that mitochondrial HKPs, including Voltage-dependent anion channels (VDAC), Complex-IV, Cytochrome C and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) yielded altered expressions following penetrating TBI (PTBI) as compared to Sham. Therefore, our goal was to identify more precise normalization procedure in WB. Adult male Sprague Dawley rats (N = 6 rats/group) were used to perform PTBI, and the novel REVERT Total Protein (RTP) method was used to quantify mitochondrial protein load consistency between samples at 6 h and 24 h post-injury. Notably, the RTP method displayed superior protein normalization compared to HKPs method with higher sensitivity at both time-points between experimental groups. Our data favors application of RTP based normalization to accurately quantify protein expression where inconsistent HKPs may be evident in neuroscience research.
Collapse
Affiliation(s)
- Sudeep Musyaju
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - William J Flerlage
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Jignesh D Pandya
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
26
|
Xue M, Zhao S, Gu G, Xu D, Zhang X, Hou X, Miao J, Dong H, Hu D, Lai D, Zhou L. A Genome-Wide Comparison of Rice False Smut Fungus Villosiclava virens Albino Strain LN02 Reveals the Genetic Diversity of Secondary Metabolites and the Cause of Albinism. Int J Mol Sci 2023; 24:15196. [PMID: 37894876 PMCID: PMC10607355 DOI: 10.3390/ijms242015196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Rice false smut (RFS) caused by Villosiclava virens (anamorph: Ustilaginoidea virens) has become one of the most destructive fungal diseases to decrease the yield and quality of rice grains. An albino strain LN02 was isolated from the white RFS balls collected in the Liaoning Province of China in 2019. The strain LN02 was considered as a natural albino mutant of V. virens by analyzing its phenotypes, internal transcribed spacer (ITS) conserved sequence, and biosynthesis gene clusters (BGCs) for secondary metabolites. The total assembled genome of strain LN02 was 38.81 Mb, which was comprised of seven nuclear chromosomes and one mitochondrial genome with an N50 value of 6,326,845 bp and 9339 protein-encoding genes. In addition, the genome of strain LN02 encoded 19 gene clusters for biosynthesis of secondary metabolites mainly including polyketides, terpenoids and non-ribosomal peptides (NRPs). Four sorbicillinoid metabolites were isolated from the cultures of strain LN02. It was found that the polyketide synthase (PKS)-encoding gene uspks1 for ustilaginoidin biosynthesis in strain LN02 was inactivated due to the deletion of four bases in the promoter sequence of uvpks1. The normal uvpks1 complementary mutant of strain LN02 could restore the ability to synthesize ustilaginoidins. It demonstrated that deficiency of ustilaginoidin biosynthesis is the cause of albinism for RFS albino strain LN02, and V. virens should be a non-melanin-producing fungus. This study further confirmed strain LN02 as a white phenotype mutant of V. virens. The albino strain LN02 will have a great potential in the development and application of secondary metabolites. The physiological and ecological functions of ustilaginoidins in RFS fungus are needed for further investigation.
Collapse
Affiliation(s)
- Mengyao Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Siji Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Gan Gu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Xuwen Hou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Jiankun Miao
- Institute of Plant Protection, Liaoning Academy of Agricultural Science, Shenyang 110161, China; (J.M.); (H.D.)
| | - Hai Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Science, Shenyang 110161, China; (J.M.); (H.D.)
| | - Dongwei Hu
- Biotechnology Institute, Zhejiang University, Hangzhou 310058, China;
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| |
Collapse
|
27
|
Barta N, Ördög N, Pantazi V, Berzsenyi I, Borsos BN, Majoros H, Páhi ZG, Ujfaludi Z, Pankotai T. Identifying Suitable Reference Gene Candidates for Quantification of DNA Damage-Induced Cellular Responses in Human U2OS Cell Culture System. Biomolecules 2023; 13:1523. [PMID: 37892205 PMCID: PMC10605043 DOI: 10.3390/biom13101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
DNA repair pathways trigger robust downstream responses, making it challenging to select suitable reference genes for comparative studies. In this study, our goal was to identify the most suitable housekeeping genes to perform comparable molecular analyses for DNA damage-related studies. Choosing the most applicable reference genes is important in any kind of target gene expression-related quantitative study, since using the housekeeping genes improperly may result in false data interpretation and inaccurate conclusions. We evaluated the expressional changes of eight well-known housekeeping genes (i.e., 18S rRNA, B2M, eEF1α1, GAPDH, GUSB, HPRT1, PPIA, and TBP) following treatment with the DNA-damaging agents that are most frequently used: ultraviolet B (UVB) non-ionizing irradiation, neocarzinostatin (NCS), and actinomycin D (ActD). To reveal the significant changes in the expression of each gene and to determine which appear to be the most acceptable ones for normalization of real-time quantitative polymerase chain reaction (RT-qPCR) data, comparative and statistical algorithms (such as absolute quantification, Wilcoxon Rank Sum Test, and independent samples T-test) were conducted. Our findings clearly demonstrate that the genes commonly employed as reference candidates exhibit substantial expression variability, and therefore, careful consideration must be taken when designing the experimental setup for an accurate and reproducible normalization of RT-qPCR data. We used the U2OS cell line since it is generally accepted and used in the field of DNA repair to study DNA damage-induced cellular responses. Based on our current data in U2OS cells, we suggest using 18S rRNA, eEF1α1, GAPDH, GUSB, and HPRT1 genes for UVB-induced DNA damage-related studies. B2M, HPRT1, and TBP genes are recommended for NCS treatment, while 18S rRNA, B2M, and PPIA genes can be used as suitable internal controls in RT-qPCR experiments for ActD treatment. In summary, this is the first systematic study using a U2OS cell culture system that offers convincing evidence for housekeeping gene selection following treatment with various DNA-damaging agents. Here, we unravel an indispensable issue for performing and assessing trustworthy DNA damage-related differential gene expressional analyses, and we create a "zero set" of potential reference gene candidates.
Collapse
Affiliation(s)
- Nikolett Barta
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
| | - Vasiliki Pantazi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Ivett Berzsenyi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Barbara N. Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
| | - Hajnalka Majoros
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Zoltán G. Páhi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), University of Szeged, Budapesti út 9, H-6728 Szeged, Hungary
| | - Zsuzsanna Ujfaludi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary; (N.B.); (N.Ö.); (V.P.); (I.B.); (B.N.B.); (H.M.); (Z.G.P.)
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), University of Szeged, Budapesti út 9, H-6728 Szeged, Hungary
| |
Collapse
|
28
|
Flatschacher D, Eschlböck A, Zeilinger S. Identification and evaluation of suitable reference genes for RT-qPCR analyses in Trichoderma atroviride under varying light conditions. Fungal Biol Biotechnol 2023; 10:20. [PMID: 37789459 PMCID: PMC10546744 DOI: 10.1186/s40694-023-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Trichoderma atroviride is a competitive soil-borne mycoparasitic fungus with extensive applications as a biocontrol agent in plant protection. Despite its importance and application potential, reference genes for RT-qPCR analysis in T. atroviride have not been evaluated. Light exerts profound effects on physiology, such as growth, conidiation, secondary metabolism, and stress response in T. atroviride, as well as in other fungi. In this study, we aimed to address this gap by identifying stable reference genes for RT-qPCR experiments in T. atroviride under different light conditions, thereby enhancing accurate and reliable gene expression analysis in this model mycoparasite. We measured and compared candidate reference genes using commonly applied statistical algorithms. RESULTS Under cyclic light-dark cultivation conditions, tbp and rho were identified as the most stably expressed genes, while act1, fis1, btl, and sar1 were found to be the least stable. Similar stability rankings were obtained for cultures grown under complete darkness, with tef1 and vma1 emerging as the most stable genes and act1, rho, fis1, and btl as the least stable genes. Combining the data from both cultivation conditions, gapdh and vma1 were identified as the most stable reference genes, while sar1 and fis1 were the least stable. The selection of different reference genes had a significant impact on the calculation of relative gene expression, as demonstrated by the expression patterns of target genes pks4 and lox1. CONCLUSION The data emphasize the importance of validating reference genes for different cultivation conditions in fungi to ensure accurate interpretation of gene expression data.
Collapse
Affiliation(s)
- Daniel Flatschacher
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| | - Alexander Eschlböck
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
29
|
Yu J, Li P, Tu S, Feng N, Chang L, Niu Q. Integrated Analysis of the Transcriptome and Metabolome of Brassica rapa Revealed Regulatory Mechanism under Heat Stress. Int J Mol Sci 2023; 24:13993. [PMID: 37762295 PMCID: PMC10531312 DOI: 10.3390/ijms241813993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Affected by global warming; heat stress is the main limiting factor for crop growth and development. Brassica rapa prefers cool weather, and heat stress has a significant negative impact on its growth, development, and metabolism. Understanding the regulatory patterns of heat-resistant and heat-sensitive varieties under heat stress can help deepen understanding of plant heat tolerance mechanisms. In this study, an integrative analysis of transcriptome and metabolome was performed on the heat-tolerant ('WYM') and heat-sensitive ('AJH') lines of Brassica rapa to reveal the regulatory networks correlated to heat tolerance and to identify key regulatory genes. Heat stress was applied to two Brassica rapa cultivars, and the leaves were analyzed at the transcriptional and metabolic levels. The results suggest that the heat shock protein (HSP) family, plant hormone transduction, chlorophyll degradation, photosynthetic pathway, and reactive oxygen species (ROS) metabolism play an outstanding role in the adaptation mechanism of plant heat tolerance. Our discovery lays the foundation for future breeding of horticultural crops for heat resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (P.L.); (S.T.); (N.F.) (L.C.)
| |
Collapse
|
30
|
Rosenkranz M, Fürle K, Hibbert J, Ulmer A, Ali A, Giese T, Blank A, Haefeli WE, Böhnlein E, Lanzer M, Thomson-Luque R. Multifunctional IgG/IgM antibodies and cellular cytotoxicity are elicited by the full-length MSP1 SumayaVac-1 malaria vaccine. NPJ Vaccines 2023; 8:112. [PMID: 37558673 PMCID: PMC10412566 DOI: 10.1038/s41541-023-00701-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
Radical control of malaria likely requires a vaccine that targets both the asymptomatic liver stages and the disease-causing blood stages of the human malaria parasite Plasmodium falciparum. While substantial progress has been made towards liver stage vaccines, the development of a blood stage vaccine is lagging behind. We have recently conducted a first-in-human clinical trial to evaluate the safety and immunogenicity of the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as adjuvant. Here, we show that the vaccine, termed SumayaVac-1, elicited both a humoral and cellular immune response as well as a recall T cell memory. The induced IgG and IgM antibodies were able to stimulate various Fc-mediated effector mechanisms associated with protection against malaria, including phagocytosis, release of reactive oxygen species, production of IFN-γ as well as complement activation and fixation. The multifunctional activity of the humoral immune response remained for at least 6 months after vaccination and was comparable to that of naturally acquired anti-MSP1 antibodies from semi-immune adults from Kenya. We further present evidence of SumayaVac-1 eliciting a recallable cellular cytotoxicity by IFN-γ producing CD8+ T cells. Our study revitalizes MSP1FL as a relevant blood stage vaccine candidate and warrants further evaluation of SumayaVac-1 in a phase II efficacy trial.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Ulmer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arin Ali
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Giese
- Institute for Immunology, Heidelberg University Hospital and German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Antje Blank
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Lanzer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Sumaya-Biotech GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
31
|
Novotny MV, Xu W, Mulya A, Janocha AJ, Erzurum SC. Method for Depletion of Mitochondria DNA in Human Bronchial Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551015. [PMID: 37546956 PMCID: PMC10402132 DOI: 10.1101/2023.07.28.551015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Introduction Mitochondria are increasingly recognized to play a role in the airway inflammation of asthma. Model systems to study the role of mitochondrial gene expression in bronchial epithelium are lacking. Here, we create custom bronchial epithelial cell lines derived from primary airway epithelium that are depleted of mitochondrial DNA. Methods We treated BET-1A and BEAS-2B cells with ethidium bromide (EtBr) with or without 2',3'-dideoxycytidine (ddC) to create cells lacking mitochondrial DNA (mtDNA). Cells' mtDNA copy number were verified by quantitative polymerase chain reaction (qPCR) in comparison to nuclear DNA (nDNA). Cells were also assessed for oxidative phosphorylation by measures of oxygen consumption using the Seahorse analyzer. Results One week of EtBr treatment led to ~95% reduction of mtDNA copy number (mtDNA-CN) in cells (mtDNA-CN, mean±SE, baseline vs. treatment: BEAS-2B, 820 ± 62 vs. 56 ± 9; BET-1A, 957 ± 52 vs. 73 ± 2), which was further reduced by addition of 25 μM ddC (mtDNA-CN: BEAS-2B, 2.8; BET-1A, 47.9). Treatment for up to three weeks with EtBr and ddC led to near complete loss of mtDNA (mtDNA-CN: BEAS-2B, 0.1; BET-1A, 0.3). The basal oxygen consumption rate (OCR) of mtDNA-depleted BET-1A and BEAS-2B cells dropped to near zero. Glycolysis measured by extracellular acidification rate (ECAR) increased ~two-fold in cells when mtDNA was eliminated [ECAR (mpH/min/103 cells), baseline vs. treatment: BEAS-2B, 0.50 ± 0.03 vs. 0.94 ± 0.10 P=0.005; BET-1A, 0.80 ± 0.04 vs. 1.14 ± 0.06 P=0.001]. Conclusion Mitochondrial DNA-depleted BET-1A ρ0 and BEAS-2B ρ0 cell lines are viable, lack the capacity for aerobic respiration, and increase glycolysis. This cell model system can be used to further test mitochondrial mechanisms of inflammation in bronchial epithelial cells.
Collapse
Affiliation(s)
| | - Weiling Xu
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anny Mulya
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Serpil C. Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
32
|
Liu Y, Zhang C, Harijati N, Diao Y, Liu E, Hu Z. Selection and Evaluation of Reference Genes for RT-qPCR Analysis in Amorphophallus Konjac Based on Transcriptome Data. Genes (Basel) 2023; 14:1513. [PMID: 37628565 PMCID: PMC10454643 DOI: 10.3390/genes14081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Combined with the Konjac transcriptome database of our laboratory and internal reference genes commonly used in plants, the eight candidate internal reference genes were screened and detected. They are the 25S ribosomal RNA gene (25S rRNA), 18S ribosomal RNA gene (18S rRNA), actin gene (ACT), glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH), ubiquitin gene (UBQ), β-tubulin gene (β-TUB), eukaryotic elongation factor 1-αgene(eEF-1α), and eukaryotic translation initiation factor 4α-1 gene (eIF-4α). The results of GeNorm, Normfinder, and BestKeeper were analyzed comprehensively. The data showed that the expression levels of 25S rRNA, 18S rRNA, and ACT at the reproductive periods, eEF-1α and eIF-4α at the nutritional periods, and eEF-1α, UBQ, and ACT at different leaf developmental periods were stable. These identified and stable internal reference genes will provide the basis for the subsequent molecular biology-related studies of Konjac.
Collapse
Affiliation(s)
- Yanli Liu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (Y.D.)
| | - Chengcheng Zhang
- Lotus Engineering Research Center of Hubei Province, College of Life Science, Wuhan University, Wuhan 430072, China;
| | - Nunung Harijati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia;
| | - Ying Diao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (Y.D.)
| | - Erxi Liu
- Institute of Konjac, Enshi Academy of Agricultural Sciences, Enshi 445000, China;
| | - Zhongli Hu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (Y.D.)
- Lotus Engineering Research Center of Hubei Province, College of Life Science, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
33
|
Torso NDG, Quintanilha JCF, Cursino MA, Pincinato EDC, Lima CSP, Moriel P. Data Normalization of Urine miRNA Profiling from Head and Neck Cancer Patients Treated with Cisplatin. Int J Mol Sci 2023; 24:10884. [PMID: 37446060 DOI: 10.3390/ijms241310884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The microRNA (miRNA) expression profile by qRT-PCR depends directly on the most appropriate normalization strategy adopted; however, currently there is no universally adequate reference gene. Therefore, this study aimed to determine, considering RNA-Seq results, the most adequate endogenous normalizer for use in the relative quantification of urine miRNAs from head and neck cancer patients, treated with cisplatin chemoradiotherapy. The massive sequencing was performed to identify the miRNAs differentially expressed between the group with cisplatin nephrotoxicity (n = 6) and the one without (n = 6). The candidate endogen normalizer was chosen according to four criteria: (1) the miRNA must be expressed in most samples; (2) the miRNA must have a fold change value between 0.99 and 1.01; (3) the miRNA must have a p-value ≥ 0.98; and (4) the miRNA must not be commented on by the final GeneGlobe (Qiagen, Hilden, Germany) analysis. Four miRNAs met all the criteria (hsa-miR-363-5p, hsa-miR-875-5p, hsa-miR-4302, and hsa-miR-6749-5p) and were selected for validation by qRT-PCR in a cohort of 49 patients (including the 12 sequencing participants). Only hsa-miR-875-5p was shown to be an adequate normalizer for the experimental condition under investigation, as it exhibited invariant expression between the two groups.
Collapse
Affiliation(s)
| | | | | | | | | | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083970, Brazil
| |
Collapse
|
34
|
Tang J, Li E, Liu J, Zhang Z, Hua B, Jiang J, Miao M. Selection of Reliable Reference Genes for Gene Expression Normalization in Sagittaria trifolia. Genes (Basel) 2023; 14:1321. [PMID: 37510226 PMCID: PMC10379039 DOI: 10.3390/genes14071321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Real-time quantitative PCR (RT-qPCR) is a method with high sensitivity and convenience that has been extensively used to analyze the expression level of target genes. A reference gene with a highly stable expression is required to ensure the accuracy of experimental results. However, the report on appropriate reference genes in arrowheads (Sagittaria trifolia) is still limited. In this study, eight candidate reference genes (ACT5, UBQ, GAPDH, CYP, NAC, IDH, SLEEPER and PLA) were selected. The candidate genes were employed in a RT-qPCR assay in different tissues at different developmental stages of the same tissue (including corm, leaf and leafstalk) in arrowheads. Five statistical algorithms, GeNorm, NormFinder, BestKeeper, delta cycle threshold (ΔCt) and RefFinder, were used to evaluate the stability of these genes' expressions in order to identify the appropriate reference genes. The results showed that UBQ was the optimum reference gene in leaf, leafstalk, root, stolon and corm, IDH exhibited the most stable expression during the expansion of corm, UBQ and PLA were the most stable reference genes in developmental stages of leaf and leafstalk, respectively. Finally, the reliability of reference genes was further confirmed by the normalization of PDS and EXP1 genes under different arrowhead tissues and developmental stages of corm, respectively. This study constitutes important guidance for the selection of reliable reference genes for analyzing the tissue- and developmental-stage-specific expression of genes in arrowheads.
Collapse
Affiliation(s)
- Jing Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Enjiao Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Jiexia Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Jiezeng Jiang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
35
|
Jadid N, Rosidah NLA, Ramadani MRN, Prasetyowati I, Sa’adah NN, Widodo AF, Oktafitria D. Plastid DNA Barcoding and RtActin cDNA Fragment Isolation of Reutealis Trisperma: A Promising Bioresource for Biodiesel Production. Bioinform Biol Insights 2023; 17:11779322231182768. [PMID: 37360051 PMCID: PMC10286179 DOI: 10.1177/11779322231182768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Reutealis trisperma belonging to the family Euphorbiaceae is currently used for biodiesel production, and rapid development in plant-based biofuel production has led to its increasing demand. However, massive utilization of bio-industrial plants has led to conservation issues. Moreover, genetic information on R trisperma is still limited, which is crucial for developmental, physiological, and molecular studies. Studying gene expression is essential to explain plant physiological processes. Nonetheless, this technique requires sensitive and precise measurement of messenger RNA (mRNA). In addition, the presence of internal control genes is important to avoid bias. Therefore, collecting and preserving genetic data for R trisperma is indispensable. In this study, we aimed to evaluate the application of plastid loci, rbcL, and matK, to the DNA barcode of R trisperma for use in conservation programs. In addition, we isolated and cloned the RtActin (RtACT) gene fragment for use in gene expression studies. Sequence information was analyzed in silico by comparison with other Euphorbiaceae plants. For actin fragment isolation, reverse-transcription polymerase chain reaction was used. Molecular cloning of RtActin was performed using the pTA2 plasmid before sequencing. We successfully isolated and cloned 592 and 840 bp of RtrbcL and RtmatK fragment genes, respectively. The RtrbcL barcoding marker, rather than the RtmatK plastidial marker, provided discriminative molecular phylogenetic data for R Trisperma. We also isolated 986 bp of RtACT gene fragments. Our phylogenetic analysis demonstrated that R trisperma is closely related to the Vernicia fordii Actin gene (97% identity). Our results suggest that RtrbcL could be further developed and used as a barcoding marker for R trisperma. Moreover, the RtACT gene could be further investigated for use in gene expression studies of plant.
Collapse
Affiliation(s)
- Nurul Jadid
- Department of Biology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
| | | | | | - Indah Prasetyowati
- Department of Biology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
| | - Noor Nailis Sa’adah
- Department of Biology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
| | | | - Dwi Oktafitria
- Department of Biology, Universitas PGRI Ronggolawe, Tuban, Indonesia
| |
Collapse
|
36
|
Oh D, De Spiegelaere W, Nauwynck HJ. Selection and validation of reference genes for RT-qPCR normalization of porcine alveolar macrophages (PAMs) for PRRSV studies. Sci Rep 2023; 13:8840. [PMID: 37258711 DOI: 10.1038/s41598-023-35873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
Porcine alveolar macrophages (PAMs) are widely used for in vitro studies of porcine respiratory viruses. Gene expression in these cells is altered by viral infection and cellular immune response. Real-time reverse transcription polymerase chain reaction (RT-qPCR) is a powerful technique for analyzing these changes. In order to obtain reliable quantitative RT-qPCR data and come to sound conclusions, stable reference genes are needed for normalization of target gene expression. In the present study, we evaluated the expression stability of nine reference genes in PAMs during cultivation and upon porcine reproductive and respiratory syndrome virus (PRRSV) inoculation. Using geNorm and NormFinder algorithms, we identified PSAP and GAPDH as the most stable reference genes under all experimental conditions. The selected reference genes were used for the normalization of CD163 expression under different conditions. This study demonstrates that selection of appropriate reference genes is essential for normalization and validation of RT-qPCR data across all experimental conditions. This study provides a new set of stable reference genes for future studies with porcine respiratory viruses in PAMs.
Collapse
Affiliation(s)
- Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
37
|
Munguía-Ramírez B, Armenta-Leyva B, Henao-Díaz A, Ye F, Baum DH, Giménez-Lirola LG, Zimmerman JJ. Evaluation of a Porcine Endogenous Reference Gene (Internal Sample Control) in a Porcine Reproductive and Respiratory Syndrome Virus RT-qPCR. Vet Sci 2023; 10:381. [PMID: 37368767 DOI: 10.3390/vetsci10060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Endogenous reference genes are used in gene-expression studies to "normalize" the results and, increasingly, as internal sample controls (ISC) in diagnostic quantitative polymerase chain reaction (qPCR). Three studies were conducted to evaluate the performance of a porcine-specific ISC in a commercial porcine reproductive and respiratory syndrome virus (PRRSV) reverse transcription-qPCR. Study 1 evaluated the species specificity of the ISC by testing serum from seven non-porcine domestic species (n = 34). In Study 2, the constancy of ISC detection over time (≥42 days) was assessed in oral fluid (n = 130), serum (n = 215), and feces (n = 132) collected from individual pigs of known PRRSV status. In Study 3, serum (n = 150), oral fluid (n = 150), and fecal samples (n = 75 feces, 75 fecal swabs) from commercial herds were used to establish ISC reference limits. Study 1 showed that the ISC was porcine-specific, i.e., all samples from non-porcine species were ISC negative (n = 34). In Study 2, the ISC was detected in all oral fluid, serum, and fecal samples, but differed in concentration between specimens (p < 0.05; mixed-effects regression model). The results of Study 3 were used to establish ISC reference limits for the 5th, 2.5th and 1.25th percentiles. Overall, the ISC response was consistent to the point that failure in detection is sufficient justification for re-testing and/or re-sampling.
Collapse
Affiliation(s)
- Berenice Munguía-Ramírez
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Betsy Armenta-Leyva
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alexandra Henao-Díaz
- Pig Improvement Company (PIC) México, Santiago de Querétaro 76040, Querétaro, Mexico
| | - Fangshu Ye
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA 50011, USA
| | - David H Baum
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey J Zimmerman
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
38
|
Baettig CG, Zirngibl M, Smith KF, Lear G, Tremblay LA. Comparison between droplet digital PCR and reverse transcription-quantitative PCR methods to measure ecotoxicology biomarkers. MARINE POLLUTION BULLETIN 2023; 190:114829. [PMID: 36958116 DOI: 10.1016/j.marpolbul.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is currently the gold-standard technique for detecting and quantifying messenger RNA. However, without proper validation, the method may produce artefactual and non-reproducible cycle threshold values generating poor-quality data. The newer droplet digital PCR (ddPCR) method allows for the absolute quantification of targeted nucleic acids providing more sensitive and accurate measurements without requiring external standards. This study compared these two PCR-based methods to measure the expression of well-documented genes used in ecotoxicology studies. We exposed Mediterranean mussels (Mytilus galloprovincialis) to copper and analyzed gene expression in gills and digestive glands using RT-qPCR and ddPCR assays. A step-by-step methodology to optimize and compare the two technologies is described. After ten-fold serial complementary DNA dilution, both RT-qPCR and ddPCR exhibited comparable linearity and efficiency and produced statistically similar results. We conclude that ddPCR is a suitable method to assess gene expression in an ecotoxicological context. However, RT-qPCR has a shorter processing time and remains more cost-effective.
Collapse
Affiliation(s)
- Camille G Baettig
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Cawthron Institute, Nelson, New Zealand.
| | | | - Kirsty F Smith
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Cawthron Institute, Nelson, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Louis A Tremblay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
39
|
Guaita-Cespedes M, Grillo-Risco R, Hidalgo MR, Fernández-Veledo S, Burks DJ, de la Iglesia-Vayá M, Galán A, Garcia-Garcia F. Deciphering the sex bias in housekeeping gene expression in adipose tissue: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2023; 14:20. [PMID: 37072826 PMCID: PMC10114345 DOI: 10.1186/s13293-023-00506-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND As the housekeeping genes (HKG) generally involved in maintaining essential cell functions are typically assumed to exhibit constant expression levels across cell types, they are commonly employed as internal controls in gene expression studies. Nevertheless, HKG may vary gene expression profile according to different variables introducing systematic errors into experimental results. Sex bias can indeed affect expression display, however, up to date, sex has not been typically considered as a biological variable. METHODS In this study, we evaluate the expression profiles of six classical housekeeping genes (four metabolic: GAPDH, HPRT, PPIA, and UBC, and two ribosomal: 18S and RPL19) to determine expression stability in adipose tissues (AT) of Homo sapiens and Mus musculus and check sex bias and their overall suitability as internal controls. We also assess the expression stability of all genes included in distinct whole-transcriptome microarrays available from the Gene Expression Omnibus database to identify sex-unbiased housekeeping genes (suHKG) suitable for use as internal controls. We perform a novel computational strategy based on meta-analysis techniques to identify any sexual dimorphisms in mRNA expression stability in AT and to properly validate potential candidates. RESULTS Just above half of the considered studies informed properly about the sex of the human samples, however, not enough female mouse samples were found to be included in this analysis. We found differences in the HKG expression stability in humans between female and male samples, with females presenting greater instability. We propose a suHKG signature including experimentally validated classical HKG like PPIA and RPL19 and novel potential markers for human AT and discarding others like the extensively used 18S gene due to a sex-based variability display in adipose tissue. Orthologs have also been assayed and proposed for mouse WAT suHKG signature. All results generated during this study are readily available by accessing an open web resource ( https://bioinfo.cipf.es/metafun-HKG ) for consultation and reuse in further studies. CONCLUSIONS This sex-based research proves that certain classical housekeeping genes fail to function adequately as controls when analyzing human adipose tissue considering sex as a variable. We confirm RPL19 and PPIA suitability as sex-unbiased human and mouse housekeeping genes derived from sex-specific expression profiles, and propose new ones such as RPS8 and UBB.
Collapse
Affiliation(s)
- Maria Guaita-Cespedes
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Spain
| | - Rubén Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigaciò Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Deborah Jane Burks
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Neuroendocrinology Laboratory, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Imaging Unit FISABIO-CIPF, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Amparo Galán
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
- Molecular Neuroendocrinology Laboratory, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Francisco Garcia-Garcia
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| |
Collapse
|
40
|
Bastaki NK, Albarjas TA, Almoosa FA, Al-Adsani AM. Chronic heat stress induces the expression of HSP genes in the retina of chickens (Gallus gallus). Front Genet 2023; 14:1085590. [PMID: 37077545 PMCID: PMC10106695 DOI: 10.3389/fgene.2023.1085590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Chronic heat stress during summer is a major challenge imposed by global warming. Chickens are more sensitive to heat stress than mammals because they lack sweat glands. Thus, chickens are more susceptible to heat stress during summer than other seasons. Induction of heat shock protein (HSP) genes is one of the primary defense mechanisms against heat stress. Tissue-specific responses exhibited by different classes of HSPs upon exposure to heat stress have been reported previously in different tissues including the heart, kidney, intestine, blood, and muscle, but not in the retina. Therefore, this study aimed to investigate the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress.Methods: This study was conducted during the summers of 2020 and 2021 in Kuwait. Chickens (Gallus gallus) were divided into control and heat-treated groups and sacrificed at different developmental stages. Retinas were extracted and analyzed by using Real Time quantitative Polymerase Chain Reaction (RT-qPCR).Results: Our results from the summer of 2021 were similar to that from the summer of 2020, regardless of whether GAPDH or RPL5 was used as a gene normalizer. All five HSP genes were upregulated in the retina of 21-day-old heat-treated chickens and stayed upregulated until 35 days of age, with the exception of HSP40, which was downregulated. The addition of two more developmental stages in the summer of 2021 showed that at 14 days, all HSP genes were upregulated in the retina of heat-treated chickens. In contrast, at 28 days, HSP27 and HSP40 were downregulated, whereas HSP60, HSP70, and HSP90 were upregulated. Furthermore, our results showed that under chronic heat stress, the highest upregulation of HSP genes was seen at the earliest developmental stages.Discussion: To the best of our knowledge, this is the first study to report the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress. Some of our results match the previously reported expression levels of some HSPs in other tissues under heat stress. These results suggest that HSP gene expression can be used as a biomarker for chronic heat stress in the retina.
Collapse
|
41
|
Ferreira MJ, Silva J, Pinto SC, Coimbra S. I Choose You: Selecting Accurate Reference Genes for qPCR Expression Analysis in Reproductive Tissues in Arabidopsis thaliana. Biomolecules 2023; 13:biom13030463. [PMID: 36979397 PMCID: PMC10046263 DOI: 10.3390/biom13030463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Quantitative real-time polymerase chain reaction (qPCR) is a widely used method to analyse the gene expression pattern in the reproductive tissues along with detecting gene levels in mutant backgrounds. This technique requires stable reference genes to normalise the expression level of target genes. Nonetheless, a considerable number of publications continue to present qPCR results normalised to a single reference gene and, to our knowledge, no comparative evaluation of multiple reference genes has been carried out in specific reproductive tissues of Arabidopsis thaliana. Herein, we assessed the expression stability levels of ten candidate reference genes (UBC9, ACT7, GAPC-2, RCE1, PP2AA3, TUA2, SAC52, YLS8, SAMDC and HIS3.3) in two conditional sets: one across flower development and the other using inflorescences from different genotypes. The stability analysis was performed using the RefFinder tool, which combines four statistical algorithms (geNorm, NormFinder, BestKeeper and the comparative ΔCt method). Our results showed that RCE1, SAC52 and TUA2 had the most stable expression in different flower developmental stages while YLS8, HIS3.3 and ACT7 were the top-ranking reference genes for normalisation in mutant studies. Furthermore, we validated our results by analysing the expression pattern of genes involved in reproduction and examining the expression of these genes in published mutant backgrounds. Overall, we provided a pool of appropriate reference genes for expression studies in reproductive tissues of A. thaliana, which will facilitate further gene expression studies in this context. More importantly, we presented a framework that will promote a consistent and accurate analysis of gene expression in any scientific field. Simultaneously, we highlighted the relevance of clearly defining and describing the experimental conditions associated with qPCR to improve scientific reproducibility.
Collapse
Affiliation(s)
- Maria João Ferreira
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Jessy Silva
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sara Cristina Pinto
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
42
|
Pant N, Rush C, Warner J, Eisen DP. Effect of Savirin or Ticagrelor Treatment on the Expression of Commonly Used Reference Genes in Staphylococcus aureus. Microorganisms 2023; 11:microorganisms11020336. [PMID: 36838300 PMCID: PMC9964243 DOI: 10.3390/microorganisms11020336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Reference genes are frequently used for the normalization of quantitative reverse transcriptase PCR (qRTPCR) data in gene expression studies. Staphylococcus aureus is one of the most common causes of biofilm-related infections. Savirin and ticagrelor show in vitro as well as in vivo antibiofilm activity against S. aureus. The main aim of this study was to identify the most stably expressed reference genes to study the effect of these molecules on genes in a strong biofilm producing S. aureus isolate isolated from biofilm-related infection. Quantitative real-time PCR was performed by using relative quantification method. Four different algorithms, delta Ct, normfinder, bestkeeper, and genorm, followed by a comprehensive analysis was used to identify the most stable reference genes from a list of sixteen different candidate reference genes. All four algorithms reported different results, with some comparable findings among some methods. In the comprehensive analysis of the results of all the algorithms used, the most stable reference genes found were spa, rpoD, and pyk for savirin treatment experiment and gapdH, gyrA, and gmk for ticagrelor treatment experiment. The optimal number of reference genes required was two for both the experimental conditions. Despite having some drawbacks, each algorithm can reliably determine an appropriate reference gene independently. However, based on consensus ranking and the required optimal number of reference genes reported, spa and rpoD were the most appropriate reference genes for savirin treatment experiment, and gapdH and gyrA were most appropriate for ticagrelor treatment experiment. This study provides baseline data on reference genes to study the effect of savirin or ticagrelor treatment on the expression of potential reference genes in S. aureus. We recommend prior re-validation of reference genes on a case-by-case basis before they can be used.
Collapse
Affiliation(s)
- Narayan Pant
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, Townsville, QLD 4811, Australia
- Correspondence:
| | - Catherine Rush
- Australian Institute of Tropical Health and Medicine, Townsville, QLD 4811, Australia
| | - Jeffrey Warner
- Australian Institute of Tropical Health and Medicine, Townsville, QLD 4811, Australia
| | - Damon P. Eisen
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
43
|
Hazarika A, Nongkhlaw B, Mukhopadhyay A. Identification of stable reference genes in peripheral blood mononuclear cells from type 2 diabetes mellitus patients. Sci Rep 2023; 13:486. [PMID: 36627346 PMCID: PMC9831022 DOI: 10.1038/s41598-023-27460-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Reference genes are obligatory for accurate normalization of mRNA transcript levels across samples and experimental conditions in Real Time-polymerase chain reaction (qRT-PCR) based quantitative gene expression assays. Selection of stably expressed reference genes is therefore crucial for ensuring reproducibility of such assays. However, there is a complete dearth of data on stability of commonly used reference genes in Peripheral Blood Mononuclear Cells (PBMCs) from Type 2 diabetes mellitus (T2DM) patients. We have evaluated the gene expression stability of 4 widely used reference genes (Beta-actin, ACTB; Peptidylprolyl Isomerase B, PPIB; Tyrosine 3 Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Zeta, YWHAZ; and Glyceraldehyde-3-Phosphate Dehydrogenase, GAPDH); in PBMCs from 39 T2DM patients and 47 normoglycemic (NGT) subjects. ACTB and YWHAZ were found to be the most stable genes in PBMCs from T2DM patients and therefore, can be recommended as suitable reference genes in similar contexts. GAPDH and PPIB expressions were not stable in PBMCs from T2DM patients. On using ACTB and YWHAZ as reference genes for measuring relative expression of GAPDH and PPIB in these subjects, relative GAPDH expression was found to be significantly lower in female T2DM patients, compared to female NGT subjects [GAPDH relative normalization unit (RNU): female T2DM (n = 19), median (Q1, Q3): 9.0 (8.1, 9.9); female NGT (n = 18): median (Q1, Q3): 10.1 (9.1, 11.0); P = 0.034]. Dysregulation of GAPDH in PBMCs from female T2DM patients could be associated with sex-specific differences in pathogenesis and outcomes of T2DM.
Collapse
Affiliation(s)
- Ankita Hazarika
- grid.418280.70000 0004 1794 3160Division of Nutrition, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Sarjapur Road, Bangalore, India
| | - Bajanai Nongkhlaw
- grid.418280.70000 0004 1794 3160Division of Nutrition, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Sarjapur Road, Bangalore, India ,grid.464649.d0000 0004 1792 1201Present Address: Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Sarjapur Road, Bangalore, India.
| |
Collapse
|
44
|
Molomjamts M, Ingolfsland EC. Identification of reference genes for the normalization of retinal mRNA expression by RT-qPCR in oxygen induced retinopathy, anemia, and erythropoietin administration. PLoS One 2023; 18:e0284764. [PMID: 37098032 PMCID: PMC10128940 DOI: 10.1371/journal.pone.0284764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Anemia and retinopathy of prematurity (ROP) are common comorbidities experienced by preterm infants, yet the role of anemia on the pathogenesis of ROP remains unclear. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) is a sensitive technique for estimating the gene expression changes at the transcript level but requires identification of stably expressed reference genes for accurate data interpretation. This is particularly important for oxygen induced retinopathy studies given that some commonly used reference genes are sensitive to oxygen. This study aimed to identify stably expressed reference genes among eight commonly used reference genes in the neonatal rat pups' retina upon exposure to cyclic hyperoxia-hypoxia, anemia, and erythropoietin administration at two age groups (P14.5 and P20) using Bestkeeper, geNorm, and Normfinder, three publicly available, free algorithms, and comparing their results to the in-silico prediction program, RefFinder. RESULTS The most stable reference gene across both developmental stages was Rpp30, as predicted by Genorm, Bestkeeper, and Normfinder. RefFinder predicted Tbp to be the most stable across both developmental stages. At P14.5, stability varied by prediction program; at P20, RPP30 and MAPK1 were the most stable reference genes. Gapdh, 18S, Rplp0, and HPRT were predicted as the least stable reference genes by at least one of the prediction algorithms. CONCLUSION Expression of Rpp30 is the least affected by experimental conditions of oxygen induced retinopathy, phlebotomy induced anemia and erythropoietin administration at both timepoints of P14.5 and P20.
Collapse
Affiliation(s)
- Mandkhai Molomjamts
- Department of Pediatrics, Division of Neonatology, University of Minnesota, Minneapolis, MN, United States of America
| | - Ellen C Ingolfsland
- Department of Pediatrics, Division of Neonatology, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
45
|
Precise measurement of gene expression changes in mouse brain areas denervated by injury. Sci Rep 2022; 12:22530. [PMID: 36581670 PMCID: PMC9800364 DOI: 10.1038/s41598-022-26228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Quantitative PCR (qPCR) is a widely used method to study gene expression changes following brain injury. The accuracy of this method depends on the tissue harvested, the time course analyzed and, in particular on the choice of appropriate internal controls, i.e., reference genes (RGs). In the present study we have developed and validated an algorithm for the accurate normalization of qPCR data using laser microdissected tissue from the mouse dentate gyrus after entorhinal denervation at 0, 1, 3, 7, 14 and 28 days postlesion. The expression stabilities of ten candidate RGs were evaluated in the denervated granule cell layer (gcl) and outer molecular layer (oml) of the dentate gyrus. Advanced software algorithms demonstrated differences in stability for single RGs in the two layers at several time points postlesion. In comparison, a normalization index of several stable RGs covered the entire post-lesional time course and showed high stability. Using these RGs, we validated our findings and quantified glial fibrillary acidic protein (Gfap) mRNA and allograft inflammatory factor 1 (Aif1/Iba1) mRNA in the denervated oml. We compared the use of single RGs for normalization with the normalization index and found that single RGs yield variable results. In contrast, the normalization index gave stable results. In sum, our study shows that qPCR can yield precise, reliable, and reproducible datasets even under such complex conditions as brain injury or denervation, provided appropriate RGs for the model are used. The algorithm reported here can easily be adapted and transferred to any other brain injury model.
Collapse
|
46
|
Fachrul M, Méric G, Inouye M, Pamp SJ, Salim A. Assessing and removing the effect of unwanted technical variations in microbiome data. Sci Rep 2022; 12:22236. [PMID: 36564466 PMCID: PMC9789116 DOI: 10.1038/s41598-022-26141-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Varying technologies and experimental approaches used in microbiome studies often lead to irreproducible results due to unwanted technical variations. Such variations, often unaccounted for and of unknown source, may interfere with true biological signals, resulting in misleading biological conclusions. In this work, we aim to characterize the major sources of technical variations in microbiome data and demonstrate how in-silico approaches can minimize their impact. We analyzed 184 pig faecal metagenomes encompassing 21 specific combinations of deliberately introduced factors of technical and biological variations. Using the novel Removing Unwanted Variations-III-Negative Binomial (RUV-III-NB), we identified several known experimental factors, specifically storage conditions and freeze-thaw cycles, as likely major sources of unwanted variation in metagenomes. We also observed that these unwanted technical variations do not affect taxa uniformly, with freezing samples affecting taxa of class Bacteroidia the most, for example. Additionally, we benchmarked the performances of different correction methods, including ComBat, ComBat-seq, RUVg, RUVs, and RUV-III-NB. While RUV-III-NB performed consistently robust across our sensitivity and specificity metrics, most other methods did not remove unwanted variations optimally. Our analyses suggest that a careful consideration of possible technical confounders is critical during experimental design of microbiome studies, and that the inclusion of technical replicates is necessary to efficiently remove unwanted variations computationally.
Collapse
Affiliation(s)
- Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Sünje Johanna Pamp
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Agus Salim
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Department of Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department Mathematics and Statistics, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
47
|
Kumar S, Ahmad A, Kushwaha N, Shokeen N, Negi S, Gautam K, Singh A, Tiwari P, Garg R, Agarwal R, Mohan A, Trikha A, Thakar A, Saini V. Selection of Ideal Reference Genes for Gene Expression Analysis in COVID-19 and Mucormycosis. Microbiol Spectr 2022; 10:e0165622. [PMID: 36377893 PMCID: PMC9769637 DOI: 10.1128/spectrum.01656-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Selection of reference genes during real-time quantitative PCR (qRT-PCR) is critical to determine accurate and reliable mRNA expression. Nonetheless, not a single study has investigated the expression stability of candidate reference genes to determine their suitability as internal controls in SARS-CoV-2 infection or COVID-19-associated mucormycosis (CAM). Using qRT-PCR, we determined expression stability of the nine most commonly used housekeeping genes, namely, TATA-box binding protein (TBP), cyclophilin (CypA), β-2-microglobulin (B2M), 18S rRNA (18S), peroxisome proliferator-activated receptor gamma (PPARG) coactivator 1 alpha (PGC-1α), glucuronidase beta (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT-1), β-ACTIN, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in patients with COVID-19 of various severities (asymptomatic, mild, moderate, and severe) and those with CAM. We used statistical algorithms (delta-CT [threshold cycle], NormFinder, BestKeeper, GeNorm, and RefFinder) to select the most appropriate reference gene and observed that clinical severity profoundly influences expression stability of reference genes. CypA demonstrated the most consistent expression irrespective of disease severity and emerged as the most suitable reference gene in COVID-19 and CAM. Incidentally, GAPDH, the most commonly used reference gene, showed the maximum variations in expression and emerged as the least suitable. Next, we determined expression of nuclear factor erythroid 2-related factor 2 (NRF2), interleukin-6 (IL-6), and IL-15 using CypA and GAPDH as internal controls and show that CypA-normalized expression matches well with the RNA sequencing-based expression of these genes. Further, IL-6 expression correlated well with the plasma levels of IL-6 and C-reactive protein, a marker of inflammation. In conclusion, GAPDH emerged as the least suitable and CypA as the most suitable reference gene in COVID-19 and CAM. The results highlight the expression variability of housekeeping genes due to disease severity and provide a strong rationale for identification of appropriate reference genes in other chronic conditions as well. IMPORTANCE Gene expression studies are critical to develop new diagnostics, therapeutics, and prognostic modalities. However, accurate determination of expression requires data normalization with a reference gene, whose expression does not vary across different disease stages. Misidentification of a reference gene can produce inaccurate results. Unfortunately, despite the global impact of COVID-19 and an urgent unmet need for better treatment, not a single study has investigated the expression stability of housekeeping genes across the disease spectrum to determine their suitability as internal controls. Our study identifies CypA and then TBP as the two most suitable reference genes for COVID-19 and CAM. Further, GAPDH, the most commonly used reference gene in COVID-19 studies, turned out to be the least suitable. This work fills an important gap in the field and promises to facilitate determination of an accurate expression of genes to catalyze development of novel molecular diagnostics and therapeutics for improved patient care.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Ayaan Ahmad
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Kushwaha
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Niti Shokeen
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheetal Negi
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Kamini Gautam
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Anup Singh
- Department of Otorhinolaryngology-Head & Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pavan Tiwari
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rakesh Garg
- Department of Onco-Anesthesiology, Intensive Care, Pain and Palliative Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Richa Agarwal
- Department of Onco-Anesthesiology, Intensive Care, Pain and Palliative Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anjan Trikha
- Department of Onco-Anesthesiology, Intensive Care, Pain and Palliative Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alok Thakar
- Department of Otorhinolaryngology-Head & Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- Biosafety Laboratory-3, Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
48
|
Ni M, Li Z, Li J, He H, Wang Y, Jiang Y, Wang X, Li Z, Li M, Xu H. Selection and validation of reference genes for the normalization of quantitative real-time PCR in different muscle tissues of rabbits. BMC ZOOL 2022; 7:60. [PMID: 37170359 PMCID: PMC10127086 DOI: 10.1186/s40850-022-00159-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
In molecular biology studies, the selection of optimal reference genes is of vital importance for accurately quantifying gene expression. The purpose of the present study was to screen the most stable reference genes in different muscle tissues of New Zealand white rabbits and Yufeng yellow rabbits.
Methods and results
Results indicated that the most stable reference genes in the muscle tissues of New Zealand white rabbits were HPRT1, ACTB and PPIC, while HPRT1, PPIC, and RPL13A were the most stable reference genes in muscle tissues of Yufeng yellow rabbits. However, in the longissimus dorsi muscle and the abdominal wall muscle of both varieties, the most stable reference genes were HPRT1, RPL13A, and SDHA. In the quadriceps femoris muscle, the most stable reference genes were ACTB, HPRT1, and SDHA. Furthermore, the relative abundance of MYOG, MYH3 and MSTN was used to confirm the suitability and reliability of the selected most stable reference genes and the most unstable reference gene. Results revealed the same expression patterns of these myogenic genes when normalized according to the most stable genes, while normalization against the unstable reference gene altered the observed expression patterns.
Conclusions
Taken together, our results demonstrated that the most stable reference genes varied among different muscle tissues and different breeds of rabbits. However, HPRT1, PPIC and SDHA presented high stability among all examined reference genes; thus, the combined analysis of HPRT1/ PPIC/ SDHA gene provides the best reference for RT-qPCR in muscle tissues of New Zealand white rabbits and Yufeng yellow rabbits, while HPRT1 is a better choice than other reference genes when using a single reference gene to assess target gene expression. Our results provide basic data for better measuring target gene expression profiles in muscle tissues of rabbits.
Collapse
|
49
|
Cheng TY, Zimmerman JJ, Giménez-Lirola LG. Internal reference genes with the potential for normalizing quantitative PCR results for oral fluid specimens. Anim Health Res Rev 2022; 23:147-156. [PMID: 36330795 DOI: 10.1017/s1466252322000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In basic research, testing of oral fluid specimens by real-time quantitative polymerase chain reaction (qPCR) has been used to evaluate changes in gene expression levels following experimental treatments. In diagnostic medicine, qPCR has been used to detect DNA/RNA transcripts indicative of bacterial or viral infections. Normalization of qPCR using endogenous and exogenous reference genes is a well-established strategy for ensuring result comparability by controlling sample-to-sample variation introduced during sampling, storage, and qPCR testing. In this review, the majority of recent publications in human (n = 136) and veterinary (n = 179) medicine did not describe the use of internal reference genes in qPCRs for oral fluid specimens (52.9% animal studies; 57.0% human studies). However, the use of endogenous reference genes has not been fully explored or validated for oral fluid specimens. The lack of valid internal reference genes inherent to the oral fluid matrix will continue to hamper the reliability, reproducibility, and generalizability of oral fluid qPCR assays until this issue is addressed.
Collapse
Affiliation(s)
- Ting-Yu Cheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
50
|
Validation of suitable reference genes by various algorithms for gene expression analysis in Isodon rubescens under different abiotic stresses. Sci Rep 2022; 12:19599. [PMID: 36380055 PMCID: PMC9666634 DOI: 10.1038/s41598-022-22397-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Isodon rubescens (Hemsley) H. Hara (Lamiaceae) is a traditional Chinese medicine plant that has been used to treat various human diseases. Oridonin is one of the main active ingredients, and the route of its molecular biosynthesis remains to be determined. The study of gene expression patterns can provide clues toward the understanding of its biological functions. The selection of suitable reference genes for normalizing target gene expression is the first steps in any quantitative real-time PCR (RT-qPCR) gene expression study. Therefore, validation of suitable reference genes is necessary for obtaining reliable results in RT-qPCR analyses of I. rubescens. Here, 12 candidate reference genes were chosen, and their expression stability in different tissues of I. rubescens and in leaves under different abiotic stresses (NaCl, dehydration, SA, MeJA, and ABA) was evaluated using the ∆Ct, NormFinder, GeNorm, BestKeeper, and RankAggreg statistical tools. Analysis using the comprehensive tools of RankAggreg algorithm showed that GADPH, 18S and eIF were stably expressed in different tissues; UBQ, Apt, and HIS; Cycl, UBQ, and PP2A; GADPH, 18S, and eIF; eIF, UBQ, and PP2A; TUB, Cycl, and UBQ; were the best three candidate reference genes for the samples of Dehydration, NaCl, SA, MeJA, and ABA treatment, respectively. While for the concatenated sets of ND (NaCl and dehydration) and SMA (SA, MeJA, and ABA), UBQ, HIS, and TUA; UBQ, eIF and Apt were the three appropriate candidate reference genes, respectively. In addition, the expression patterns of HMGR in different tissues and under different treatments were used to confirm the reliability of the selected reference genes, indicating that the use of an inappropriate reference gene as the internal control will cause results with a large deviation. This work is the first study on the expression stability of reference genes in I. rubescens and will be particularly useful for gene functional research in this species.
Collapse
|