1
|
AbouSamra MM. Liposomal nano-carriers mediated targeting of liver disorders: mechanisms and applications. J Liposome Res 2024; 34:728-743. [PMID: 38988127 DOI: 10.1080/08982104.2024.2377085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Mohamed AT, Hameed RA, El-Moslamy SH, Fareid M, Othman M, Loutfy SA, Kamoun EA, Elnouby M. Facile synthesis of Fe 2O 3, Fe 2O 3@CuO and WO 3 nanoparticles: characterization, structure determination and evaluation of their biological activity. Sci Rep 2024; 14:6081. [PMID: 38480834 PMCID: PMC10937632 DOI: 10.1038/s41598-024-55319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Due to their high specific surface area and its characteristic's functionalized nanomaterials have great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles (NPs) based on iron oxide Fe2O3, iron oxide modified with copper oxide Fe2O3@CuO, and tungsten oxide WO3 were facile synthesized for biomedical applications. The obtained nanomaterials have nanocrystal sizes of 35.5 nm for Fe2O3, 7 nm for Fe2O3@CuO, and 25.5 nm for WO3. In addition to octahedral and square nanoplates for Fe2O3, and WO3; respectively. Results revealed that Fe2O3, Fe2O3@CuO, and WO3 NPs showed remarked anticancer effects versus a safe effect on normal cells through cytotoxicity test using MTT-assay. Notably, synthesized NPs e.g. our result demonstrated that Fe2O3@CuO exhibited the lowest IC50 value on the MCF-7 cancer cell line at about 8.876 µg/ml, compared to Fe2O3 was 12.87 µg/ml and WO3 was 9.211 µg/ml which indicate that the modification NPs Fe2O3@CuO gave the highest antiproliferative effect against breast cancer. However, these NPs showed a safe mode toward the Vero normal cell line, where IC50 were monitored as 40.24 µg/ml for Fe2O3, 21.13 µg/ml for Fe2O3@CuO, and 25.41 µg/ml for WO3 NPs. For further evidence. The antiviral activity using virucidal and viral adsorption mechanisms gave practiced effect by viral adsorption mechanism and prevented the virus from replicating inside the cells. Fe2O3@CuO and WO3 NPs showed a complete reduction in the viral load synergistic effect of combinations between the tested two materials copper oxide instead of iron oxide alone. Interestingly, the antimicrobial efficiency of Fe2O3@CuO NPs, Fe2O3NPs, and WO3NPs was evaluated using E. coli, S. aureus, and C. albicans pathogens. The widest microbial inhibition zone (ca. 38.45 mm) was observed with 250 mg/ml of WO3 NPs against E. coli, whereas using 40 mg/ml of Fe2O3@CuO NPS could form microbial inhibition zone ca. 32.86 mm against S. aureus. Nevertheless, C. albicans was relatively resistant to all examined NPs. The superior biomedical activities of these nanostructures might be due to their unique features and accepted evaluations.
Collapse
Affiliation(s)
- Asmaa T Mohamed
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt
| | - Reda Abdel Hameed
- Basic Science Department, Preparatory Year, University of Ha'il, 1560, Hail, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Shahira H El-Moslamy
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt
| | - Mohamed Fareid
- Basic Science Department, Preparatory Year, University of Ha'il, 1560, Hail, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Mohamad Othman
- Basic Science Department, Preparatory Year, University of Ha'il, 1560, Hail, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Fom El-Khalig, 11796, Cairo, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt.
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, New Borg Al-Arab City, 21934, Alexandria, Egypt.
| | - Mohamed Elnouby
- Nanotechnology and Composite Materials Department, Advanced Technology and New Materials Research (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
3
|
Rusdin A, Mohd Gazzali A, Ain Thomas N, Megantara S, Aulifa DL, Budiman A, Muchtaridi M. Advancing Drug Delivery Paradigms: Polyvinyl Pyrolidone (PVP)-Based Amorphous Solid Dispersion for Enhanced Physicochemical Properties and Therapeutic Efficacy. Polymers (Basel) 2024; 16:286. [PMID: 38276694 PMCID: PMC10820039 DOI: 10.3390/polym16020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The current challenge in drug development lies in addressing the physicochemical issues that lead to low drug effectiveness. Solubility, a crucial physicochemical parameter, greatly influences various biopharmaceutical aspects of a drug, including dissolution rate, absorption, and bioavailability. Amorphous solid dispersion (ASD) has emerged as a widely explored approach to enhance drug solubility. OBJECTIVE The objective of this review is to discuss and summarize the development of polyvinylpyrrolidone (PVP)-based amorphous solid dispersion in improving the physicochemical properties of drugs, with a focus on the use of PVP as a novel approach. METHODOLOGY This review was conducted by examining relevant journals obtained from databases such as Scopus, PubMed, and Google Scholar, since 2018. The inclusion and exclusion criteria were applied to select suitable articles. RESULTS This study demonstrated the versatility and efficacy of PVP in enhancing the solubility and bioavailability of poorly soluble drugs. Diverse preparation methods, including solvent evaporation, melt quenching, electrospinning, coprecipitation, and ball milling are discussed for the production of ASDs with tailored characteristics. CONCLUSION PVP-based ASDs could offer significant advantages in the formulation strategies, stability, and performance of poorly soluble drugs to enhance their overall bioavailability. The diverse methodologies and findings presented in this review will pave the way for further advancements in the development of effective and tailored amorphous solid dispersions.
Collapse
Affiliation(s)
- Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjadjaran, Jl. Raya Bandung-Sumedang Km-21, Bandung 45363, Indonesia; (A.R.); (S.M.); (D.L.A.)
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjadjaran, Jl. Raya Bandung-Sumedang Km-21, Bandung 45363, Indonesia;
| | - Amirah Mohd Gazzali
- Departement Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, P.Penang, Penang 11800, Malaysia;
| | - Nur Ain Thomas
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia;
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjadjaran, Jl. Raya Bandung-Sumedang Km-21, Bandung 45363, Indonesia; (A.R.); (S.M.); (D.L.A.)
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjadjaran, Jl. Raya Bandung-Sumedang Km-21, Bandung 45363, Indonesia; (A.R.); (S.M.); (D.L.A.)
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjadjaran, Jl. Raya Bandung-Sumedang Km-21, Bandung 45363, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjadjaran, Jl. Raya Bandung-Sumedang Km-21, Bandung 45363, Indonesia; (A.R.); (S.M.); (D.L.A.)
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| |
Collapse
|
4
|
Pai FT, Lin WJ. Synergistic cytotoxicity of irinotecan combined with polysaccharide-based nanoparticles for colorectal carcinoma. BIOMATERIALS ADVANCES 2023; 153:213577. [PMID: 37572599 DOI: 10.1016/j.bioadv.2023.213577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Functional polymeric nanoparticles (NPs) with antitumor potential were combined with the topoisomerase I inhibitor, irinotecan (IRT), to enhance cytotoxicity against colorectal cancers. The negatively charged γ-polyglutamic acid (γ-PGA) or fucoidan (FCD) was complexed with the positively charged chitosan (CS) to encapsulate IRT. The size of the γ-PGA/CS/IRT NPs and FCD/CS/IRT NPs were 146.0 ± 8.0 nm and 230.8 ± 2.5 nm, respectively, with polydispersity index ≤0.3. The cellular uptake ability of FCD/CS-FITC NPs was better than that of γ-PGA/CS-FITC NPs, especially in p-selectin positive HCT116 colorectal cancer cells (4.8 ± 0.8 μg/mL vs 11.4 ± 2.2 μg/mL). The IC50 of FCD/CS/IRT NPs was 2.4 times lower than that of γ-PGA/CS/IRT NPs in HCT116 cells (4.8 ± 0.8 μg/mL vs 11.4 ± 2.2 μg/mL), indicating its superior antitumor potential. The combination of irinotecan and fucoidan-based NPs exhibited a synergistic effect (CI <1), resulting in better anticancer activity of FCD/CS/IRT NPs than irinotecan alone. The apoptosis-related proteins, caspase 3, caspase 9, and poly(ADP-ribose) polymerase (PARP), were prominently increased in FCD/CS/IRT NPs-treated HCT116 cells by 2.3 folds, 3.5 folds, and 6.3 folds, respectively. All results support that fucoidan-based irinotecan-loaded nanoparticles possess the ability to effectively enhance cellular uptake and induce synergistic apoptosis of colorectal cancer cells.
Collapse
Affiliation(s)
- Fang-Ting Pai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
5
|
Rashdan HRM, Okasha H, Salem MM, Abd El-Hady BM, Ekram B. Investigation of novel HCV therapies: Boscia angustifalia &Boscia senegalensis extracts loaded on galactosylated chitosan nanoparticles synthesized by eco-friendly method for HCV treatment. Int J Biol Macromol 2023:125420. [PMID: 37353115 DOI: 10.1016/j.ijbiomac.2023.125420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Hepatitis C virus (HCV) is a major causative agent of chronic liver diseases including chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma worldwide. Treatment of HCV has evolved from early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C after receiving therapy with direct-acting antivirals (DAA) with a 0.5 % chance of the hepatitis C virus recurrence, similar to other chronic viral infections. So, retreatment options following treatment failure have become crucial issues. Hence, this study aims to investigate a new promising therapy for HCV. In the field of nanomedicine, chitosan nanoparticles are well-known delivery systems that are frequently used as polymeric carriers. Galactosylated chitosan nanoparticles have been widely applied in HCV treatment. In this study, we have modified galactosylation by an eco-friendly method using l-ascorbic instead of hazardous reagents and we have loaded it with newly tested two Boscia extracts each in three different concentrations. The synthesized chitosan nanoparticles showed two dispersion peaks, at 196 ± 29 nm and 1.33 ± 0.36 μm, with a zeta potential of +3.3 ± 0.4mV with high stability in a range of 40.7 mV. The percentage of encapsulation of Boscia angustifalia extract was found to be 46.58 ± 1.33 % and for Boscia senegalensis extract was 9.77 ± 0.33 %. The release of Boscia angustifalia extract from the nanoparticles was about 40 % in acidic media after 180 min and about 60 % in normal pH. However, the release of Boscia senegalensis extract was 20 % in acidic media and 56 % in normal media after 24 h. Testing of these two newly developed composites against HCV was carried out using an in vitro system for the production of hepatitis C virus (HCV) which was established by infection of human hepatoma cells. Evidence for persistent virus production was monitored by the ELISA technique using an anti-HCV-specific antibody. Results obtained showed that all samples had an anti-HCV activity that increased by increasing concentration, and Boscia angustifalia had remarkable anti-HCV activity compared to Boscia senegalensis.
Collapse
Affiliation(s)
- Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt.
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Maha M Salem
- Photochemistry and Plant Systematic Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt
| | - Bothaina M Abd El-Hady
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt
| | - Basma Ekram
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt.
| |
Collapse
|
6
|
Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polym Bull (Berl) 2023:1-25. [PMID: 37362954 PMCID: PMC10073797 DOI: 10.1007/s00289-023-04755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha 752050 India
| | - Sarbari Acharya
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| | - Anwesha Kanungo
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
7
|
Yin W, Ding L. Nanocarrier-based drug delivery system in herpes simplex virus treatment. Future Virol 2023. [DOI: 10.2217/fvl-2022-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Herpes simplex virus (HSV) is a highly contagious DNA virus that affects the majority of people worldwide. HSV establishes a latent infection in the ganglia, where it can reactivate, leading to recurrent disease. Currently, there are many experimental vaccines against HSV, but none have been used to treat herpes infections. At the same time, the therapeutic effect of existing anti-HSV drugs is limited. Nanocarriers, which deliver drugs to specific targets, have been used in different diseases, including viral infections. Nanocarriers could be designed to encapsulate drugs and directly target infected cells. This review will describe in detail the use of nanocarriers for targeted therapy of HSV infection.
Collapse
Affiliation(s)
- Wei Yin
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science & Technology, Xianning, China
| | - Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, China
| |
Collapse
|
8
|
Herdiana Y, Wathoni N, Gozali D, Shamsuddin S, Muchtaridi M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030879. [PMID: 36986740 PMCID: PMC10051865 DOI: 10.3390/pharmaceutics15030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Despite recent advances, cancer remains the primary killer on a global scale. Numerous forms of research have been conducted to discover novel and efficient anticancer medications. The complexity of breast cancer is a major challenge which is coupled with patient-to-patient variations and heterogeneity between cells within the tumor. Revolutionary drug delivery is expected to provide a solution to that challenge. Chitosan nanoparticles (CSNPs) have prospects as a revolutionary delivery system capable of enhancing anticancer drug activity and reducing negative impacts on normal cells. The use of smart drug delivery systems (SDDs) as delivering materials to improve the bioactivity of NPs and to understand the intricacies of breast cancer has garnered significant interest. There are many reviews about CSNPs that present various points of view, but they have not yet described a series in cancer therapy from cell uptake to cell death. With this description, we will provide a more complete picture for designing preparations for SDDs. This review describes CSNPs as SDDSs, enhancing cancer therapy targeting and stimulus response using their anticancer mechanism. Multimodal chitosan SDDs as targeting and stimulus response medication delivery will improve therapeutic results.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), USM, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
9
|
Abuelmakarem HS, Hamdy O, Sliem MA, El-Azab J, Ahmed WA. Early cancer detection using the fluorescent Ashwagandha chitosan nanoparticles combined with near-infrared light diffusion characterization: in vitro study. Lasers Med Sci 2023; 38:37. [PMID: 36627516 PMCID: PMC9832086 DOI: 10.1007/s10103-022-03678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023]
Abstract
Early cancer diagnosis through characterizing light propagation and nanotechnology increases the survival rate. The present research is aimed at evaluating the consequence of using natural nanoparticles in cancer therapy and diagnosis. Colon cancer cells were differentiated from the normal cells via investigating light diffusion combined with the fluorescence effect of the Ashwagandha chitosan nanoparticles (Ash C NPs). Ionic gelation technique synthesized the Ash C NPs. High-resolution transmission electron microscope, dynamic light scattering, and zeta potential characterized Ash C NPs. Fourier transform infrared spectroscopy analyzed Ash C NPs, chitosan, and Ashwagandha root water extract. Moreover, the MTT assay evaluated the cytotoxicity of Ash C NPs under the action of near-infrared light (NIR) irradiation. The MTT assay outcomes were statistically analyzed by Bonferroni post hoc multiple two-group comparisons using one-way variance analysis (ANOVA). Based on the Monte-Carlo simulation technique, the spatially resolved steady-state diffusely reflected light from the cancerous and healthy cells is acquired. The diffuse equation reconstructed the optical fluence rate using the finite element technique. The fluorescent effect of the nanoparticles was observed when the cells were irradiated with NIR. The MTT assay revealed a decrease in the cell viability under the action of Ash C NPs with and without laser irradiation. Colon cancer and normal cells were differentiated based on the optical characterization after laser irradiation. The light diffusion equation was successfully resolved for the fluence rate on cells' surfaces showing different normal and cancer cells values. Ash C NPs appeared its fluorescent effect in the presence of NIR laser.
Collapse
Affiliation(s)
- Hala S Abuelmakarem
- System and Biomedical Engineering Department, The Higher Institute of Engineering, El Shoruk Academy, El-Shorouk, Egypt.
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt.
| | - Omnia Hamdy
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt
| | - Mahmoud A Sliem
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILE), Cairo University, Giza, 12613, Egypt
- Chemistry Department, Faculty of Science, Taibah University, Al-Ula, Medina, Saudi Arabia
| | - Jala El-Azab
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt
| | - Wafaa A Ahmed
- Cancer Biology Department, Biochemistry and Molecular Biology Unit, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Khoo SC, Goh MS, Alias A, Luang-In V, Chin KW, Ling Michelle TH, Sonne C, Ma NL. Application of antimicrobial, potential hazard and mitigation plans. ENVIRONMENTAL RESEARCH 2022; 215:114218. [PMID: 36049514 PMCID: PMC9422339 DOI: 10.1016/j.envres.2022.114218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Meng Shien Goh
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Amirah Alias
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Kah Wei Chin
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Tiong Hui Ling Michelle
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Nyuk Ling Ma
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
11
|
Korica MD, Kramar A, Peršin Fratnik Z, Obradović B, Kuraica MM, Dojčinović B, Fras Zemljič L, Kostić M. Obtaining Medical Textiles Based on Viscose and Chitosan/Zinc Nanoparticles with Improved Antibacterial Properties by Using a Dielectric Barrier Discharge. Polymers (Basel) 2022; 14:polym14194152. [PMID: 36236100 PMCID: PMC9573166 DOI: 10.3390/polym14194152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
This study aimed to obtain functional viscose textiles based on chitosan coatings with improved antibacterial properties and washing durability. For that reason, before functionalization with chitosan/zinc nanoparticles (NCH+Zn), the viscose fabric was modified by nonthermal gas plasma of dielectric barrier discharge (DBD) to introduce into its structure functional groups suitable for attachment of NCH+Zn. NCH+Zn were characterized by measurements of hydrodynamic diameter and zeta potential and AFM. DBD-plasma-modified and NCH+Zn-functionalized fabrics were characterized by zeta potential measurements, ATR-FTIR spectroscopy, the calcium acetate method (determination of content of carboxyl and aldehyde groups), SEM, breaking-strength measurements, elemental analysis, and ICP-OES. Their antibacterial activity was determined under dynamic contact conditions. In addition to SEM, the NCH+Zn distributions on viscose fabrics were also indirectly characterized by measuring their absorbent capacities before and after functionalization with NCH+Zn. Washing durability was monitored through changes in the zeta potential, chitosan and zinc content, and antibacterial activity after 1, 3, and 5 washing cycles. The obtained results showed that DBD plasma modification contributed to the simultaneous improvement of NCH+Zn sorption and antibacterial properties of the viscose fabric functionalized with NCH+Zn, and its washing durability, making it suitable for the production of high-value-added medical textiles.
Collapse
Affiliation(s)
- Matea D. Korica
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ana Kramar
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Department of Material Science and Engineering and Chemical Engineering, University Carlos III of Madrid, Avda, Universidad 30, 28911 Madrid, Spain
| | - Zdenka Peršin Fratnik
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Bratislav Obradović
- Faculty of Physics, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| | - Milorad M. Kuraica
- Faculty of Physics, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Lidija Fras Zemljič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Mirjana Kostić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3303628
| |
Collapse
|
12
|
Wu X, Zheng X, Tang H, Zhao L, He C, Zou Y, Song X, Li L, Yin Z, Ye G. A network pharmacology approach to identify the mechanisms and molecular targets of curcumin against Alzheimer disease. Medicine (Baltimore) 2022; 101:e30194. [PMID: 36042609 PMCID: PMC9410577 DOI: 10.1097/md.0000000000030194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a degenerative brain disease, which may lead to severe memory loss and other cognitive disorders. However, few effective drugs are available in the clinic at present. Curcumin, a major ingredient of traditional Chinese medicine, Curcuma Longa, has various pharmacological activities. Therefore, exploring clinical drugs based on the inhibition of AD pathological features is imperative. METHODS First, we utilized the HERB database and Swisstarget Prediction database to get the related targets of curcumin and intersected with the AD targets. The intersection targets were used to construct the protein-protein interaction network and performed gene ontology and kyoto encyclopedia of genes and genomes analyses. Further, we obtained targets of curcumin against AD-related tau and aβ pathology via the AlzData database. These targets were applied to perform GEO and receiver operating characteristic analyses. Finally, the reliability of the core targets was evaluated using molecular docking technology. RESULTS We identified 49 targets of curcumin against AD, and kyoto encyclopedia of genes and genomes pathway enrichment analysis demonstrated that the Alzheimer disease pathway (has05010) was significantly enriched. Even more, we obtained 16 targets of curcumin-related Aβ and tau pathology. Among these targets, 8 targets involved the Alzheimer disease pathway and the biological process analyses showed that positive regulation of cytokine production (GO:0001819) was significantly enriched. Bioinformatic analyses indicated that HMOX1, CSF1R, NFKB1, GSK3B, BACE1, AR, or PTGS1 expression was significantly different compared to the control group in the AD patients. Finally, molecular docking studies suggested these genes have a good binding force with curcumin. CONCLUSIONS In this study, we identified curcumin exerted the effect of treating AD by regulating multitargets and multichannels through the method of network pharmacology.
Collapse
Affiliation(s)
- Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
- *Correspondence: Gang Ye, PhD, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, China (e-mail: )
| | - Xiaomei Zheng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
- *Correspondence: Gang Ye, PhD, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, China (e-mail: )
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China
| |
Collapse
|
13
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
14
|
Alavi M, Kamarasu P, McClements DJ, Moore MD. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Adv Colloid Interface Sci 2022; 306:102726. [PMID: 35785596 DOI: 10.1016/j.cis.2022.102726] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Certain types of metal-based nanoparticles are effective antiviral agents when used in their original form ("bare") or after their surfaces have been functionalized ("modified"), including those comprised of metals (e.g., silver) and metal oxides (e.g., zinc oxide, titanium dioxide, or iron dioxide). These nanoparticles can be prepared with different sizes, morphologies, surface chemistries, and charges, which leads to different antiviral activities. They can be used as aqueous dispersions or incorporated into composite materials, such as coatings or packaging materials. In this review, we provide an overview of the design, preparation, and characterization of metal-based nanoparticles. We then discuss their potential mechanisms of action against various kinds of viruses. Finally, the applications of some of the most common metal and metal oxide nanoparticles are discussed, including those fabricated from silver, zinc oxide, iron oxide, and titanium dioxide. In general, the major antiviral mechanisms of metal and metal oxide nanoparticles have been observed to be 1) attachment of nanoparticles to surface moieties of viral particles like spike glycoproteins, that disrupt viral attachment and uncoating in host cells; 2) generation of reactive oxygen species (ROS) that denature viral macromolecules such as nucleic acids, capsid proteins, and/or lipid envelopes; and 3) inactivation of viral glycoproteins by the disruption of the disulfide bonds of viral proteins. Several physicochemical properties of metal and metal oxide nanoparticles including size, shape, zeta potential, stability in physiological conditions, surface modification, and porosity can all impact the antiviral efficacy of the nanoparticles.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran; Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Pragathi Kamarasu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
15
|
Ferreira LLC, Abreu MP, Costa CB, Leda PO, Behrens MD, Dos Santos EP. Curcumin and Its Analogs as a Therapeutic Strategy in Infections Caused by RNA Genome Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:120-137. [PMID: 35352306 PMCID: PMC8963406 DOI: 10.1007/s12560-022-09514-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/09/2022] [Indexed: 05/03/2023]
Abstract
The use of natural resources for the prevention and treatment of diseases considered fatal to humanity has evolved. Several medicinal plants have nutritional and pharmacological potential in the prevention and treatment of viral infections, among them, turmeric, which is recognized for its biological properties associated with curcuminoids, mainly represented by curcumin, and found mostly in rhizomes. The purpose of this review was to compile the pharmacological activities of curcumin and its analogs, aiming at stimulating their use as a therapeutic strategy to treat infections caused by RNA genome viruses. We revisited its historical application as an anti-inflammatory, antioxidant, and antiviral agent that combined with low toxicity, motivated research against viruses affecting the population for decades. Most findings concentrate particularly on arboviruses, HIV, and the recent SARS-CoV-2. As one of the main conclusions, associating curcuminoids with nanomaterials increases solubility, bioavailability, and antiviral effects, characterized by blocking the entry of the virus into the cell or by inhibiting key enzymes in viral replication and transcription.
Collapse
Affiliation(s)
- Leide Lene C Ferreira
- Herbal Medicines Department, Vital Brazil Institute, Maestro José Botelho, 64, Santa Rosa, CEP 24.230-340, Niterói, RJ, Brazil.
- Galenic Development Laboratory, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marina P Abreu
- Herbal Medicines Department, Vital Brazil Institute, Maestro José Botelho, 64, Santa Rosa, CEP 24.230-340, Niterói, RJ, Brazil
| | - Camila B Costa
- Technological Development and Innovation Laboratory, Vital Brazil Institute, Rio de Janeiro, Brazil
| | - Paulo O Leda
- Laboratory of Natural Products for Public Health, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Dutra Behrens
- Laboratory of Natural Products for Public Health, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Elisabete Pereira Dos Santos
- Galenic Development Laboratory, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Jyotirmayee B, Mahalik G. A review on selected pharmacological activities of Curcuma longa L. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B Jyotirmayee
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Gyanranjan Mahalik
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
17
|
Loutfy SA, Abdel-Salam AI, Moatasim Y, Gomaa MR, Abdel Fattah NF, Emam MH, Ali F, ElShehaby HA, Ragab EA, Alam El-Din HM, Mostafa A, Ali MA, Kasry A. Antiviral activity of chitosan nanoparticles encapsulating silymarin (Sil-CNPs) against SARS-CoV-2 ( in silico and in vitro study). RSC Adv 2022; 12:15775-15786. [PMID: 35685696 PMCID: PMC9132606 DOI: 10.1039/d2ra00905f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
To develop a specific treatment against COVID-19, we investigated silymarin-chitosan nanoparticles (Sil-CNPs) as an antiviral agent against SARS-CoV-2 using in silico and in vitro approaches. Docking of Sil and CNPs was carried out against SARS-CoV-2 spike protein using AutoDock Vina. CNPs and Sil-CNPs were prepared by the ionic gelation method and characterized by TEM, FT-IR, zeta analysis, and the membrane diffusion method to determine the drug release profile. Cytotoxicity was tested on both Vero and Vero E6 cell lines using the MTT assay. Minimum binding energies with spike protein and ACE2 were -6.6, and -8.0 kcal mol-1 for CNPs, and -8.9, and -9.7 kcal mol-1 for Sil, respectively, compared to -6.6 and -8.4 kcal mol-1 respectively for remdesivir (RMV). CNPs and Sil-CNPs were prepared at sizes of 29 nm and 82 nm. The CC50 was 135, 35, and 110 μg mL-1 for CNPs, Sil, and Sil-CNPs, respectively, on Vero E6. The IC50 was determined at concentrations of 0.9, 12 and 0.8 μg mL-1 in virucidal/replication assays for CNPs, Sil, and Sil-CNPs respectively using crystal violet. These results indicate antiviral activity of Sil-CNPs against SARS-CoV-2.
Collapse
Affiliation(s)
- Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Ahmed I Abdel-Salam
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Mokhtar R Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Nasra F Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
| | - Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Fedaa Ali
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | | | - Eman A Ragab
- Biochemistry Dept, Faculty of Science, Cairo University Egypt
| | - Hanaa M Alam El-Din
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Amal Kasry
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| |
Collapse
|
18
|
Akbari A, Bigham A, Rahimkhoei V, Sharifi S, Jabbari E. Antiviral Polymers: A Review. Polymers (Basel) 2022; 14:1634. [PMID: 35566804 PMCID: PMC9101550 DOI: 10.3390/polym14091634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Polymers, due to their high molecular weight, tunable architecture, functionality, and buffering effect for endosomal escape, possess unique properties as a carrier or prophylactic agent in preventing pandemic outbreak of new viruses. Polymers are used as a carrier to reduce the minimum required dose, bioavailability, and therapeutic effectiveness of antiviral agents. Polymers are also used as multifunctional nanomaterials to, directly or indirectly, inhibit viral infections. Multifunctional polymers can interact directly with envelope glycoproteins on the viral surface to block fusion and entry of the virus in the host cell. Polymers can indirectly mobilize the immune system by activating macrophages and natural killer cells against the invading virus. This review covers natural and synthetic polymers that possess antiviral activity, their mechanism of action, and the effect of material properties like chemical composition, molecular weight, functional groups, and charge density on antiviral activity. Natural polymers like carrageenan, chitosan, fucoidan, and phosphorothioate oligonucleotides, and synthetic polymers like dendrimers and sialylated polymers are reviewed. This review discusses the steps in the viral replication cycle from binding to cell surface receptors to viral-cell fusion, replication, assembly, and release of the virus from the host cell that antiviral polymers interfere with to block viral infections.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Vahid Rahimkhoei
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA;
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
19
|
Design strategies for antiviral coatings and surfaces: A review ☆. APPLIED SURFACE SCIENCE ADVANCES 2022; 8:100224. [PMCID: PMC8865753 DOI: 10.1016/j.apsadv.2022.100224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 05/31/2023]
Abstract
The routine disinfection and sanitization of surfaces, objects, and textiles has become a time-consuming but necessary task for managing the COVID-19 pandemic. Nonetheless, the excessive use of sanitizers and disinfectants promotes the development of antibiotic-resistant microbes. Moreover, that improper disinfection could lead to more virus transfer, which leads to more viral mutations. Recently developed antiviral surface coatings can reduce the reliance on traditional disinfectants. These surfaces remain actively antimicrobial between periods of active cleaning of the surfaces, allowing a much more limited and optimized use of disinfectants. The novel nature of these surfaces has led, however, to many inconsistencies within the rapidly growing literature. Here we provide tools to guide the design and development of antimicrobial and antiviral surfaces and coatings. We describe how engineers can best choose testing options and propose new avenues for antiviral testing. After defining testing protocols, we summarize potential inorganic and organic materials able to serve as antiviral surfaces and present their antiviral mechanisms. We discuss the main limitations to their application, including issues related to toxicity, antimicrobial resistance, and environmental concerns. We propose solutions to counter these limitations and highlight how the context of specific use of an antiviral surface must guide material selection. Finally, we discuss how the use of coatings that combine multiple antimicrobial mechanisms can avoid the development of antibiotic resistance and improve the antiviral properties of these surfaces.
Collapse
|
20
|
One-Pot Pulsed Laser Ablation Route Assisted Molybdenum Trioxide Nano-Belts Doped in PVA/CMC Blend for the Optical and Electrical Properties Enhancement. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02257-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Bekmukhametova A, Uddin MMN, Houang J, Malladi C, George L, Wuhrer R, Barman SK, Wu MJ, Mawad D, Lauto A. Fabrication and characterization of chitosan nanoparticles using the coffee-ring effect for photodynamic therapy. Lasers Surg Med 2022; 54:758-766. [PMID: 35195285 DOI: 10.1002/lsm.23530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Biocompatible nanoparticles have been increasingly used in a variety of medical applications, including photodynamic therapy. Although the impact of synthesis parameters and purification methods is reported in previous studies, it is still challenging to produce a reliable protocol for the fabrication, purification, and characterization of nanoparticles in the 200-300 nm range that are highly monodisperse for biomedical applications. STUDY DESIGN/MATERIALS AND METHODS We investigated the synthesis of chitosan nanoparticles in the 200-300 nm range by evaluating the chitosan to sodium tripolyphosphate (TPP) mass ratio and acetic acid concentration of the chitosan solution. Chitosan nanoparticles were also crosslinked to rose bengal and incubated with human breast cancer cells (MCF-7) to test photodynamic activity using a green laser (λ = 532 nm, power = 90 mW). RESULTS We established a simple protocol to fabricate and purify biocompatible nanoparticles with the most frequent size occurring between 200 and 300 nm. This was achieved using a chitosan to TPP mass ratio of 5:1 in 1% v/v acetic acid at a pH of 5.5. The protocol involved the formation of nanoparticle coffee rings that showed the particle shape to be spherical in the first approximation. Photodynamic treatment with rose bengal-nanoparticles killed ~98% of cancer cells. CONCLUSION A simple protocol was established to prepare and purify spherical and biocompatible chitosan nanoparticles with a peak size of ~200 nm. These have remarkable antitumor activity when coupled with photodynamic treatment.
Collapse
Affiliation(s)
- Alina Bekmukhametova
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Mir Muhammad Nasir Uddin
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.,Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Jessica Houang
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Chandra Malladi
- Molecular Biology and Genetics, Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Laurel George
- Advanced Materials Characterisation Facility, Western Sydney University, Penrith, New South Wales, Australia
| | - Richard Wuhrer
- Advanced Materials Characterisation Facility, Western Sydney University, Penrith, New South Wales, Australia
| | - Shital K Barman
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Ming J Wu
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Damia Mawad
- School of Materials Science and Engineering and Australian Centre for NanoMedicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.,Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, University of New South Wales, Penrith, New South Wales, Australia
| |
Collapse
|
22
|
El Gamal AY, Atia MM, Sayed TE, Abou-Zaid MI, Tohamy MR. Antiviral activity of chitosan nanoparticles for controlling plant-infecting viruses. S AFR J SCI 2022. [DOI: 10.17159/sajs.2022/10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chitosan nanoparticles (ChiNPs) are a potentially effective means for controlling numerous plant diseases. This study firstly describes the antiviral capabilities of ChiNPs to control plant viral diseases compared to its bulk form. Bean yellow mosaic virus (BYMV) was used as a model plant virus affecting faba bean plants and many other legumes. The antiviral effectiveness of ChiNPs and chitosan were evaluated as a curative application method, using six dosage rates (50, 100, 200, 250, 300 and 400 mg/L). Results indicated that ChiNPs curatively applied 48 h post virus inoculation entirely inhibit the disease infectivity and viral accumulation content at 300 mg/L and 400 mg/L. The virus titre was greatly alleviated within the plant tissues by 7.71% up to100% depending on ChiNP dosage rates. However, chitosan used in its bulk-based material form revealed a relatively low to an intermediate reduction in virus infectivity by 6.67% up to 48.86%. Interestingly, ChiNPs affect the virus particle’s integrity by producing defective and incomplete BYMV viral particles, defeating their replication and accumulation content within the plant tissues. Simultaneously, ChiNP applications were appreciably shown to promote the pathogenesis-related (PR-1) gene and other defence-related factors. The mRNA of the PR-1 gene was markedly accumulated in treated plants, reaching its maximum at 400 mg/L with 16.22-fold relative expression change over the untreated control. Further, the total phenol dynamic curve was remarkably promoted for 30 days in response to ChiNP application, as compared to the untreated control. Our results provide the first report that chitosan-based nanomaterials have a superior effect in controlling plant viruses as an antiviral curing agent, suggesting that they may feasibly be involved in viral disease management strategies under field conditions without serious health concerns and environmental costs.
Collapse
Affiliation(s)
- Ahmed Y. El Gamal
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mahmoud M. Atia
- Plant Pathology Department, Zagazig University, Zagazig, Egypt
| | - Tarek El Sayed
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | | | | |
Collapse
|
23
|
Alvi Z, Akhtar M, Mahmood A, Ur-Rahman N, Nazir I, Sadaquat H, Ijaz M, Syed SK, Waqas MK, Wang Y. Enhanced Oral Bioavailability of Epalrestat SBE 7-β-CD Complex Loaded Chitosan Nanoparticles: Preparation, Characterization and in-vivo Pharmacokinetic Evaluation. Int J Nanomedicine 2022; 16:8353-8373. [PMID: 35002232 PMCID: PMC8721161 DOI: 10.2147/ijn.s339857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background Epalrestat (EPL) is a carboxylic acid derivative with poor aqueous solubility and its pharmacokinetic features are not fully defined. Purpose Current research aimed to fabricate inclusion complexation of EPL with SBE7 β-CD (IC) and EPL/SBE7 β-CD CS NPs (NP). Methods EPL was complexed with SBE7 β-CD using the co-precipitation method, and the prepared complex was fabricated into nanoparticles using the ionic gelation method. The prepared formulations were characterized for particle size analysis, surface morphology, and in vitro dissolution study. The % inhibition of EPL against α-glucosidase enzyme was also conducted to check the drug’s antidiabetic activity. Finally, an in vivo pharmacokinetic investigation was carried out to determine the concentration of EPL in rabbit plasma of the prepared formulation. In vivo pharmacokinetic studies were conducted by giving a single dose of pure EPL, IC, and NP. Results The size of NP was found to be 241.5 nm with PDI 0.363 and zeta potential of +31.8 mV. The surface of the prepared NP was non-porous, smooth and spherical when compared with pure EPL, SBE7 β-CD and IC. The cumulative drug release (%) from IC and NP was 73% and 88%, respectively, as compared to pure drug (25%). The % inhibition results for in vitro α-glucosidase was reported to be 74.1% and the predicted binding energy for in silico molecular docking was calculated to be −6.6 kcal/mol. The calculated Cmax values for EPL, IC and NP were 4.75±3.64, 66.91±7.58 and 84.27±6.91 μg/mL, respectively. The elimination half-life of EPL was 4 h and reduced to 2 h for IC and NP. The AUC0-α for EPL, IC and NP were 191.5±164.63, 1054.23±161.77 and 1072.5±159.54 μg/mL*h, respectively. Conclusion Taking these parameters into consideration it can be concluded that IC and NP have prospective applications for greatly improved delivery and regulatedt release of poorly water soluble drugs, potentially leading to increase therapeutic efficacy and fewer side effects.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan.,Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Nisar Ur-Rahman
- Department of Pharmacy, Royal College of Medical Sciences (RIMS), Multan, Punjab, 60000, Pakistan
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur, Punjab, 63100, Pakistan
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, People's Republic of China
| |
Collapse
|
24
|
Kumar S, Gogoi AS, Shukla S, Trivedi M, Gulati S. Conclusion and Future Prospects of Chitosan-Based Nanocomposites. CHITOSAN-BASED NANOCOMPOSITE MATERIALS 2022:305-341. [DOI: 10.1007/978-981-19-5338-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Gunathilake TMSU, Ching YC, Uyama H, Hai ND, Chuah CH. Enhanced curcumin loaded nanocellulose: a possible inhalable nanotherapeutic to treat COVID-19. CELLULOSE (LONDON, ENGLAND) 2022; 29:1821-1840. [PMID: 35002106 PMCID: PMC8725427 DOI: 10.1007/s10570-021-04391-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/20/2021] [Indexed: 05/10/2023]
Abstract
Nanocellulose/polyvinyl alcohol/curcumin (CNC/PVA/curcumin) nanoparticles with enhanced drug loading properties were developed by the dispersion of nanocellulose in curcumin/polyvinyl alcohol aqueous medium. Due to the physical and chemical nature of sulphuric acid hydrolyzed nanocellulose and the antiviral properties of curcumin, the possibility of using these nanoparticles as an inhalable nanotherapeutic for the treatment of coronavirus disease 2019 (COVID-19) is discussed. The adsorption of curcumin and PVA into nanocellulose, and the presence of anionic sulphate groups, which is important for the interaction with viral glycoproteins were confirmed by Fourier transform infrared (FTIR) spectroscopy. FESEM images showed that the diameter of nanocellulose ranged from 50 to 100 nm, which is closer to the diameter (60-140 nm) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The solubility of poorly water-soluble curcumin was increased from 40.58 ± 1.42 to 313.61 ± 1.05 mg/L with increasing the PVA concentration from 0.05 to 0.8% (w/v) in aqueous medium. This is a significant increase in the solubility compared to curcumin's solubility in carboxymethyl cellulose medium in our previous study. The drug loading capacity increased by 22-fold with the addition of 0.8% PVA to the nanocellulose dispersed curcumin solution. The highest drug release increased from 1.25 ± 0.15 mg/L to 17.11 ± 0.22 mg/L with increasing the PVA concentration from 0 to 0.8% in the drug-loaded medium. Future studies of this material will be based on the antiviral efficacy against SARS-CoV-2 and cell cytotoxicity studies. Due to the particulate nature, morphology and size of SARS-CoV-2, nanoparticle-based strategies offer a strong approach to tackling this virus. Hence, we believe that the enhanced loading of curcumin in nanocellulose will provide a promising nano-based solution for the treatment of COVID-19.
Collapse
Affiliation(s)
- Thennakoon M. Sampath U. Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603 Kuala, Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala, Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603 Kuala, Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala, Lumpur, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Nguyen Dai Hai
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, 01 TL29, District 12, Ho Chi Minh City, 700000 Vietnam
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022; 8:e08674. [PMID: 35028457 PMCID: PMC8741465 DOI: 10.1016/j.heliyon.2021.e08674] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, multifunctional drug delivery systems (DDSs) have been designed to provide a comprehensive approach with multiple functionalities, including diagnostic imaging, targeted drug delivery, and controlled drug release. Chitosan-based drug nanoparticles (CSNPs) systems are employed as diagnostic imaging and delivering the drug to particular targeted sites in a regulated manner. Drug release is an important factor in ensuring high reproducibility, stability, quality control of CSNPs, and scientific-based for developing CSNPs. Several factors influence drug release from CSNPs, including composition, composition ratio, ingredient interactions, and preparation methods. Early, CSNPs were used for improving drug solubility, stability, pharmacokinetics, and pharmacotherapeutics properties. Chitosan has been developed toward a multifunctional drug delivery system by exploring positively charged properties and modifiable functional groups. Various modifications to the polymer backbone, charge, or functional groups will undoubtedly affect the drug release from CSNPs. The drug release from CSNPs has a significant influence on its therapeutic actions. Our review's objective was to summarize and discuss the relationship between the modification in CSNPs as multifunctional delivery systems and drug release properties and kinetics of the drug release model. Kinetic models help describe the release rate, leading to increased efficiency, accuracy, the safety of the dose, optimizing the drug delivery device's design, evaluating the drug release rate, and improvement of patient compatibility. In conclusion, almost all CSNPs showed bi-phasic release, initial burst release drug in a particular time followed controlled manner release in achieving the expected release, stimuli external can be applied. CSNPs are a promising technique for multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| |
Collapse
|
27
|
Ranjitsingh AJA, Devanesan S, AlSalhi MS, Paul P, Padmalatha C. Antiviral and cytotoxic effects of a traditional drug KanthaRasaVillai with a cocktail of metallic nanoparticles. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:101693. [PMID: 34785874 PMCID: PMC8588738 DOI: 10.1016/j.jksus.2021.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 05/27/2023]
Abstract
Objective Alternative medicine plays an important role today in searching for therapeutics for cancer and viral infection. So, a scientific validation to characterize constituents in the alternative medicines and therapeutic testing is warranted using modern instrumentation. Methods In the present study, an old herbomineral formulation, KanthaRasavillai [KRV], was characterized using UV-vis spectrometry, FT-IR, XRD, SEM, and TEM study. Also, In vitro and in vivo studies were done to evaluate their antiviral and anticancer activity. FT-IR and XRD studies revealed a cocktail of nanoparticles of mercury, magnetic oxide, cinnabar, and arsenic.Results.Based on SEM, TEM, and XRD report, KRV contains nanoparticles in the size range of 9.1 nm to 25.0 nm. FT-IR analysis exposed the presence of several anti-cancerous bioactive compounds.Further in vitro testing against HCV virus proved KRV to inhibit HCV virus a close relative to SARS-CoV-2. MTT assay confirmed the anticancer effect of KRV against Huh-7 and MCF-7 cell lines. Conclusion The anticancer and antiviral properties in the ancient herbomineral drug with a cocktail of metal nanoparticles acknowledge the traditional medical practice as a pioneering approach for present-day ailments. However, the study concludes that the use of KRV depends on safety dosage and genuine preparation as described by ancient saints.
Collapse
Affiliation(s)
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Parameswari Paul
- Department of Horticulture, Molecular Genetics and Genomics Laboratory, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, South Korea
| | | |
Collapse
|
28
|
Jaber N, Al‐Remawi M, Al‐Akayleh F, Al‐Muhtaseb N, Al‐Adham ISI, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J Appl Microbiol 2022; 132:41-58. [PMID: 34218488 PMCID: PMC8447037 DOI: 10.1111/jam.15202] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is an abundant organic polysaccharide, which can be relatively easily obtained by chemical modification of animal or fungal source materials. Chitosan and its derivatives have been shown to exhibit direct antiviral activity, to be useful vaccine adjuvants and to have potential anti-SARS-CoV-2 activity. This thorough and timely review looks at the recent history of investigations into the role of chitosan and its derivatives as an antiviral agent and proposes a future application in the treatment of endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Nisrein Jaber
- Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Mayyas Al‐Remawi
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Faisal Al‐Akayleh
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Najah Al‐Muhtaseb
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | | | | |
Collapse
|
29
|
Omer AM, Sadik WAA, El-Demerdash AGM, Hassan HS. Formulation of pH-sensitive aminated chitosan–gelatin crosslinked hydrogel for oral drug delivery. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [PMCID: PMC7935400 DOI: 10.1016/j.carpta.2021.100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
COVID-19 pandemic is taking a dangerous turn due to unavailability of approved and effective vaccines and therapy. Currently available diagnostic techniques are time-consuming, expensive, and maybe impacted by the mutations produced in the virus. Therefore, investigation of novel, rapid, and economic diagnosis techniques, prophylactic vaccines and targeted efficacious drug delivery systems as treatment strategy is imperative. Carbohydrates are essential biomolecules which also act as markers in the realization of immune systems. Moreover, they exhibit antiviral, antimicrobial, and antifungal properties. Carbohydrate-based vaccines and therapeutics including stimuli sensitive systems can be developed successfully and used effectively to fight COVID-19. Thus, carbohydrate-based diagnostic, prophylactic and therapeutic alternatives could be promising to defeat COVID-19 propitiously. Morphology of SARS-CoV-2 and its relevance in devising combat strategies has been discussed. Carbohydrate-based approaches for tackling infectious diseases and their importance in the design of various diagnostic and treatment modalities have been reviewed.
Collapse
|
31
|
Szymańska E, Krzyżowska M, Cal K, Mikolaszek B, Tomaszewski J, Wołczyński S, Winnicka K. Potential of mucoadhesive chitosan glutamate microparticles as microbicide carriers - antiherpes activity and penetration behavior across the human vaginal epithelium. Drug Deliv 2021; 28:2278-2288. [PMID: 34668816 PMCID: PMC8530489 DOI: 10.1080/10717544.2021.1992037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Chitosan glutamate (gCS) spray-dried microparticles appear promising carriers to overcome challenges associated with vaginal microbicide delivery. This study aimed at elucidating the penetration and mucoadhesive behavior of developed gCS multiunit carriers with zidovudine (ZVD) as a model antiretroviral agent in contact with excised human vaginal epithelium followed with an examination of in vitro antiherpes activity in immortal human keratinocytes HaCaT and human vaginal epithelial cells VK2-E6/E7. Both ZVD dispersion and placebo microparticles served as controls. Microparticles displayed feasible (comparable to commercial vaginal product) mucoadhesive and mucoretention characteristics to isolated human vaginal tissue. Ex vivo penetration studies revealed that gCS increased the accumulation of active agent in the vaginal epithelium but surprisingly did not facilitate its penetration across human tissue. Finally, the obtained antiviral results demonstrated the potential of gCS as an antiherpes adjunctive, whose mode of action was related to blocking viral attachment.
Collapse
Affiliation(s)
- Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Białystok, Bialystok, Poland
| | - Małgorzata Krzyżowska
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Krzysztof Cal
- Department of Pharmaceutical Technology, Medical University of Gdańsk, Gdańsk, Poland
| | - Barbara Mikolaszek
- Department of Pharmaceutical Technology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Tomaszewski
- Private Obstetric and Gynecological Clinic, Tomaszewski Medical Centre, Białystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Białystok, Bialystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Bialystok, Poland
| |
Collapse
|
32
|
Jouzdani AF, Heidarimoghadam R, Hazhirkamal M, Ranjbar A. Nanoantioxidant/Antioxidant Therapy in 2019-nCoV: A New Approach to Reactive Oxygen Species Mechanisms. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885516666210719092931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The COVID-19 pandemic has caused serious concerns for people around the world. The
COVID-19 is associated with respiratory failure, generation of reactive oxygen species (ROS), and the
lack of antioxidants among patients. Specified ROS levels have an essential role as an adjuster of immunological
responses and virus cleaners, but excessive ROS will oxidize membrane lipids and cellular
proteins and quickly destroy virus-infected cells. It can also adversely damage normal cells in the
lungs and even the heart, resulting in multiple organ failures. Given the above, a highly potent antioxidant
therapy can be offered to reduce cardiac loss due to COVID-19. In modern medicine, nanoparticles
containing antioxidants can be used as a high-performance therapy in reducing oxidative stress in
the prevention and treatment of infectious diseases. This can provide a free and interactive tool to determine
whether antioxidants and nanoantioxidants can be administered for COVID-19. More research
and studies are needed to investigate and make definitive opinions about their medicinal uses.
Collapse
Affiliation(s)
- Ali Fathi Jouzdani
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Maryam Hazhirkamal
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
33
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
34
|
Lin MHC, Chang LC, Chung CY, Huang WC, Lee MH, Chen KT, Lai PS, Yang JT. Photochemical Internalization of Etoposide Using Dendrimer Nanospheres Loaded with Etoposide and Protoporphyrin IX on a Glioblastoma Cell Line. Pharmaceutics 2021; 13:pharmaceutics13111877. [PMID: 34834292 PMCID: PMC8621426 DOI: 10.3390/pharmaceutics13111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary neoplasm of the adult central nervous system originating from glial cells. The prognosis of those affected by GBM has remained poor despite advances in surgery, chemotherapy, and radiotherapy. Photochemical internalization (PCI) is a release mechanism of endocytosed therapeutics into the cytoplasm, which relies on the membrane disruptive effect of light-activated photosensitizers. In this study, phototherapy by PCI was performed on a human GBM cell-line using the topoisomerase II inhibitor etoposide (Etop) and the photosensitizer protoporphyrin IX (PpIX) loaded in nanospheres (Ns) made from generation-5 polyamidoamine dendrimers (PAMAM(G5)). The resultant formulation, Etop/PpIX-PAMAM(G5) Ns, measured 217.4 ± 2.9 nm in diameter and 40.5 ± 1.3 mV in charge. Confocal microscopy demonstrated PpIX fluorescence within the endo-lysosomal compartment, and an almost twofold increase in cellular uptake compared to free PpIX by flow cytometry. Phototherapy with 3 min and 5 min light illumination resulted in a greater extent of synergism than with co-administered Etop and PpIX; notably, antagonism was observed without light illumination. Mechanistically, significant increases in oxidative stress and apoptosis were observed with Etop/PpIX-PAMAM(G5) Ns upon 5 min of light illumination in comparison to treatment with either of the agents alone. In conclusion, simultaneous delivery and endo-lysosomal co-localization of Etop and PpIX by PAMAM(G5) Ns leads to a synergistic effect by phototherapy; in addition, the finding of antagonism without light illumination can be advantageous in lowering the dark toxicity and improving photo-selectivity.
Collapse
Affiliation(s)
- Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Wei-Chao Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Kuo-Tai Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-5-3621000 (ext. 3412); Fax: +886-5-3621000 (ext. 3002)
| |
Collapse
|
35
|
Ghasemzad M, Hashemian SMR, Memarnejadian A, Akbarzadeh I, Hossein-Khannazer N, Vosough M. The nano-based theranostics for respiratory complications of COVID-19. Drug Dev Ind Pharm 2021; 47:1353-1361. [PMID: 34666567 DOI: 10.1080/03639045.2021.1994989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs) for targeted drug delivery to the alveolar space appears to be an effective and promising therapeutic strategy. Loading the medicinal components into NPs enhances the stability, bioavailability, solubility and sustained release of them. This approach can circumvent major challenges in efficient drug delivery such as solubility and any adverse impact of medicinal components due to off-targeted delivery and resulting systemic complications. Inhalable NPs could be delivered through nasal sprays, inhalers, and nebulizers. NPs also could interfere in virus attachment to host cells and prevent infection. Moreover, nanomedicine-based technologies can facilitate accurate and rapid detection of virus compared to the conventional methods. In this review, the nano-based theranostics modalities for the management of respiratory complications of COVID-19 were discussed.
Collapse
Affiliation(s)
- Mahsa Ghasemzad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Faculty of Basic Sciences and Advanced Technologies in biology, Department of Molecular Cell Biology-Genetics, University of Science and Culture, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
36
|
Krishnan S, Thirunavukarasu A, Jha NK, Gahtori R, Roy AS, Dholpuria S, Kesari KK, Singh SK, Dua K, Gupta PK. Nanotechnology-based therapeutic formulations in the battle against animal coronaviruses: an update. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2021; 23:229. [PMID: 34690535 PMCID: PMC8520458 DOI: 10.1007/s11051-021-05341-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Outbreak of infectious diseases imposes a serious threat to human population and also causes a catastrophic impact on global economy. Animal coronaviruses remain as one of the intriguing problems, known to cause deadly viral diseases on economically important animal population, and also these infections may spread to other animals and humans. Through isolation of the infected animals from others and providing appropriate treatment using antiviral drugs, it is possible to prevent the virus transmission from animals to other species. In recent times, antiviral drug-resistant strains are being emerged as a deadly virus which are known to cause pandemic. To overcome this, nanoparticles-based formulations are developed as antiviral agent which attacks the animal coronaviruses at multiple sites in the virus replication cycle. Nanovaccines are also being formulated to protect the animals from coronaviruses. Nanoformulations contain particles of one or more dimensions in nano-scale (few nanometers to 1000 nm), which could be inorganic or organic in nature. This review presents the comprehensive outline of the nanotechnology-based therapeutics formulated against animal coronaviruses, which includes the nanoparticles-based antiviral formulations and nanoparticles-based adjuvant vaccines. The mechanism of action of these nanoparticles-based antivirals against animal coronavirus is also discussed using relevant examples. In addition, the scope of repurposing the existing nano-enabled antivirals and vaccines to combat the coronavirus infections in animals is elaborated.
Collapse
Affiliation(s)
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Plot no. 32 – 34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Nainital, 263136 Uttarakhand India
| | - Ayush Singha Roy
- Department of Biotechnology, Amity School of Biotechnology, Amity University, Mumbai-Pune Expressway, Mumbai, Maharashtra 410206 India
| | - Sunny Dholpuria
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Plot no. 32 – 34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh India
| |
Collapse
|
37
|
Shah S, Chougule MB, Kotha AK, Kashikar R, Godugu C, Raghuvanshi RS, Singh SB, Srivastava S. Nanomedicine based approaches for combating viral infections. J Control Release 2021; 338:80-104. [PMID: 34375690 PMCID: PMC8526416 DOI: 10.1016/j.jconrel.2021.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Millions of people die each year from viral infections across the globe. There is an urgent need to overcome the existing gap and pitfalls of the current antiviral therapy which include increased dose and dosing frequency, bioavailability challenges, non-specificity, incidences of resistance and so on. These stumbling blocks could be effectively managed by the advent of nanomedicine. Current review emphasizes over an enhanced understanding of how different lipid, polymer and elemental based nanoformulations could be potentially and precisely used to bridle the said drawbacks in antiviral therapy. The dawn of nanotechnology meeting vaccine delivery, role of RNAi therapeutics in antiviral treatment regimen, various regulatory concerns towards clinical translation of nanomedicine along with current trends and implications including unexplored research avenues for advancing the current drug delivery have been discussed in detail.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Arun K Kotha
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Rama Kashikar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
38
|
Homaeigohar S, Liu Q, Kordbacheh D. Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers (Basel) 2021; 13:2833. [PMID: 34451371 PMCID: PMC8401873 DOI: 10.3390/polym13162833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 pandemic has driven a global research to uncover novel, effective therapeutical and diagnosis approaches. In addition, control of spread of infection has been targeted through development of preventive tools and measures. In this regard, nanomaterials, particularly, those combining two or even several constituting materials possessing dissimilar physicochemical (or even biological) properties, i.e., nanohybrid materials play a significant role. Nanoparticulate nanohybrids have gained a widespread reputation for prevention of viral crises, thanks to their promising antimicrobial properties as well as their potential to act as a carrier for vaccines. On the other hand, they can perform well as a photo-driven killer for viruses when they release reactive oxygen species (ROS) or photothermally damage the virus membrane. The nanofibers can also play a crucial protective role when integrated into face masks and personal protective equipment, particularly as hybridized with antiviral nanoparticles. In this draft, we review the antiviral nanohybrids that could potentially be applied to control, diagnose, and treat the consequences of COVID-19 pandemic. Considering the short age of this health problem, trivially the relevant technologies are not that many and are handful. Therefore, still progressing, older technologies with antiviral potential are also included and discussed. To conclude, nanohybrid nanomaterials with their high engineering potential and ability to inactivate pathogens including viruses will contribute decisively to the future of nanomedicine tackling the current and future pandemics.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| | - Qiqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Danial Kordbacheh
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| |
Collapse
|
39
|
Zare M, Thomas V, Ramakrishna S. Nanoscience and quantum science-led biocidal and antiviral strategies. J Mater Chem B 2021; 9:7328-7346. [PMID: 34378553 DOI: 10.1039/d0tb02639e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) caused the COVID-19 pandemic. According to the World Health Organization, this pandemic continues to be a serious threat to public health due to the worldwide spread of variants and their higher rate of transmissibility. A range of measures are necessary to slow the pandemic and save lives, which include constant evaluation and the careful adjustment of public-health responses augmented by medical treatments, vaccines and protective gear. It is hypothesized that nanostructured particulates underpinned by nanoscience and quantum science yield high-performing antiviral strategies, which can be applied in preventive, diagnostic, and therapeutic applications such as face masks, respirators, COVID test kits, vaccines, and drugs. This review is aimed at providing comprehensive and cohesive perspectives on various nanostructures that are suited to intensifying and amplifying the effectiveness of antiviral strategies. Growing scientific literature over the past eighteen months indicates that quantum dots, iron oxide, silicon oxide, polymeric and metallic nanoparticles have been employed in COVID-19 diagnostic assays, vaccines, and personal protective equipment (PPE). Quantum dots have displayed their suitability as more sensitive imaging probes in diagnostics and prognostics, and as controlled drug-release carriers that target the virus. Nanoscience and quantum science have assisted the design of advanced vaccine delivery since nanostructured materials are suited for antigen delivery, as mimics of viral structures and as adjuvants. Furthermore, the quantum science- and nanoscience-supported tailored functionalization of nanostructured materials offers insight and pathways to deal with future pandemics. This review seeks to illustrate several examples, and to explain the underpinning quantum science and nanoscience phenomena, which include wave functions, electrostatic interactions, van der Waals forces, thermal and electrodynamic fluctuations, dispersion forces, local field-enhancement effects, and the generation of reactive oxygen species (ROS). This review discusses how nanostructured materials are helpful in the detection, prevention, and treatment of the SARS-CoV-2 infection, other known viral infection diseases, and future pandemics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore.
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore.
| |
Collapse
|
40
|
Farouq MA, Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Biomolecular interactions with nanoparticles: applications for coronavirus disease 2019. Curr Opin Colloid Interface Sci 2021; 54:101461. [PMID: 33907504 PMCID: PMC8062422 DOI: 10.1016/j.cocis.2021.101461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticles are small particles sized 1-100 nm, which have a large surface-to-volume ratio, allowing efficient adsorption of drugs, proteins, and other chemical compounds. Consequently, functionalized nanoparticles have potential diagnostic and therapeutic applications. A variety of nanoparticles have been studied, including those constructed from inorganic materials, biopolymers, and lipids. In this review, we focus on recent work targeting the severe acute respiratory syndrome coronavirus 2 virus that causes coronavirus disease (COVID-19). Understanding the interactions between coronavirus-specific proteins (such as the spike protein and its host cell receptor angiotensin-converting enzyme 2) with different nanoparticles paves the way to the development of new therapeutics and diagnostics that are urgently needed for the fight against COVID-19, and indeed for related future viral threats that may emerge.
Collapse
Affiliation(s)
- Mohammed A.H. Farouq
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK,Corresponding author: Farouq, M.A.H
| | - Mohammed M. Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| | - Karina Kubiak-Ossowska
- Department of Physics/Archie-West HPC, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| |
Collapse
|
41
|
Formulation and Antibacterial Activity Evaluation of Quaternized Aminochitosan Membrane for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13152428. [PMID: 34372035 PMCID: PMC8347330 DOI: 10.3390/polym13152428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Much attention has been paid to chitosan biopolymer for advanced wound dressing owing to its exceptional biological characteristics comprising biodegradability, biocompatibility and respectable antibacterial activity. This study intended to develop a new antibacterial membrane based on quaternized aminochitosan (QAMCS) derivative. Herein, aminochitosan (AMCS) derivative was quaternized by N-(2-Chloroethyl) dimethylamine hydrochloride with different ratios. The pre-fabricated membranes were characterized by several analysis tools. The results indicate that maximum surface potential of +42.2 mV was attained by QAMCS3 membrane compared with +33.6 mV for native AMCS membrane. Moreover, membranes displayed higher surface roughness (1.27 ± 0.24 μm) and higher water uptake value (237 ± 8%) for QAMCS3 compared with 0.81 ± 0.08 μm and 165 ± 6% for neat AMCS membranes. Furthermore, the antibacterial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus cereus. Superior antibacterial activities with maximum inhibition values of 80–98% were accomplished by QAMCS3 membranes compared with 57–72% for AMCS membrane. Minimum inhibition concentration (MIC) results denote that the antibacterial activities were significantly boosted with increasing of polymeric sample concentration from 25 to 250 µg/mL. Additionally, all membranes unveiled better biocompatibility and respectable biodegradability, suggesting their possible application for advanced wound dressing.
Collapse
|
42
|
Rasmi Y, Saloua KS, Nemati M, Choi JR. Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1788. [PMID: 34361174 PMCID: PMC8308319 DOI: 10.3390/nano11071788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic is currently an unprecedented public health threat. The rapid spread of infections has led to calls for alternative approaches to combat the virus. Nanotechnology is taking root against SARS-CoV-2 through prevention, diagnostics and treatment of infections. In light of the escalating demand for managing the pandemic, a comprehensive review that highlights the role of nanomaterials in the response to the pandemic is highly desirable. This review article comprehensively discusses the use of nanotechnology for COVID-19 based on three main categories: prevention, diagnostics and treatment. We first highlight the use of various nanomaterials including metal nanoparticles, carbon-based nanoparticles and magnetic nanoparticles for COVID-19. We critically review the benefits of nanomaterials along with their applications in personal protective equipment, vaccine development, diagnostic device fabrication and therapeutic approaches. The remaining key challenges and future directions of nanomaterials for COVID-19 are briefly discussed. This review is very informative and helpful in providing guidance for developing nanomaterial-based products to fight against COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran;
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Kouass Sahbani Saloua
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran;
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
43
|
Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGDO. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int J Mol Sci 2021; 22:7130. [PMID: 34281181 PMCID: PMC8267827 DOI: 10.3390/ijms22137130] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.
Collapse
Affiliation(s)
| | | | | | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araraquara 14800-000, Brazil; (J.K.T.-G.); (Y.V.-C.); (A.B.S.)
| |
Collapse
|
44
|
Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021; 26:molecules26123694. [PMID: 34204251 PMCID: PMC8233993 DOI: 10.3390/molecules26123694] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.
Collapse
|
45
|
Sadique MA, Yadav S, Ranjan P, Verma S, Salammal ST, Khan MA, Kaushik A, Khan R. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. J Mater Chem B 2021; 9:4620-4642. [PMID: 34027540 DOI: 10.1039/d1tb00472g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite significant accomplishments in developing efficient rapid sensing systems and nano-therapeutics of higher efficacy, the recent coronavirus disease (COVID-19) pandemic is not under control successfully because the severe acute respiratory syndrome virus (SARS-CoV-2, original and mutated) transmits easily from human to -human and causes life-threatening respiratory disorders. Thus, it has become crucial to avoid this transmission through precautions and keep premises hygienic using high-performance anti-viral nanomaterials to trap and eradicate SARS-CoV-2. Such an antiviral nano-system has successfully demonstrated useful significant contribution in COVID-19 pandemic/endemic management effectively. However, their projection with potential sustainable prospects still requires considerable attention and efforts. With this aim, the presented review highlights various severe life-threatening viral infections and the role of multi-functional anti-viral nanostructures with manipulative properties investigated as an efficient precative shielding agent against viral infection progression. The salient features of such various nanostructures, antiviral mechanisms, and high impact multi-dimensional roles are systematically discussed in this review. Additionally, the challenges associated with the projection of alternative approaches also support the demand and significance of this selected scientific topic. The outcomes of this review will certainly be useful to motivate scholars of various expertise who are planning future research in the field of investigating sustainable and affordable high-performance nano-systems of desired antiviral performance to manage not only COVID-19 infection but other targeted viral infections as well.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
| | - Shalu Yadav
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpesh Ranjan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Verma
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shabi Thankaraj Salammal
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Akram Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Raju Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
46
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
47
|
Mallakpour S, Azadi E, Hussain CM. Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: Coating, packaging, and textile applications. Curr Opin Colloid Interface Sci 2021; 55:101480. [PMID: 34149297 PMCID: PMC8196516 DOI: 10.1016/j.cocis.2021.101480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The global epidemic owing to COVID-19 has generated awareness to ensuring best practices for avoiding the microorganism spread. Indeed, because of the increase in infections caused by bacteria and viruses such as SARS-CoV-2, the global demand for antimicrobial materials is growing. New technologies by using polymeric systems are of great interest. Virus transmission by contaminated surfaces leads to the spread of infectious diseases, so antimicrobial coatings are significant in this regard. Moreover, antimicrobial food packaging is beneficial to prevent the spread of microorganisms during food processing and transportation. Furthermore, antimicrobial textiles show an effective role. We aim to provide a review of prepared antimicrobial polymeric materials for use in coating, food packaging, and textile during the COVID-19 pandemic and after pandemic.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
48
|
de Castro KC, Costa JM. Polymeric surfaces with biocidal action: challenges imposed by the SARS-CoV-2, technologies employed, and future perspectives. JOURNAL OF POLYMER RESEARCH 2021. [PMCID: PMC8165346 DOI: 10.1007/s10965-021-02548-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Sharma N, Modak C, Singh PK, Kumar R, Khatri D, Singh SB. Underscoring the immense potential of chitosan in fighting a wide spectrum of viruses: A plausible molecule against SARS-CoV-2? Int J Biol Macromol 2021; 179:33-44. [PMID: 33607132 PMCID: PMC7885638 DOI: 10.1016/j.ijbiomac.2021.02.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Chitosan is a deacetylated polycationic polysaccharide derived from chitin. It is structurally constituted of N-acetyl-D-glucosamine and β-(1-4)-linked D-glucosamine where acetyl groups are randomly distributed across the polymer. The parameters of deacetylation and depolymerization process greatly influence various physico-chemical properties of chitosan and thus, offer a great degree of manipulation to synthesize chitosan of interest for various industrial and biomedical applications. Chitosan and its various derivatives have been a potential molecule of investigation in the area of anti-microbials especially anti-fungal, anti-bacterial and antiviral. The current review predominantly highlights and discusses about the antiviral activities of chitosan and its various substituted derivatives against a wide spectrum of human, animal, plants and bacteriophage viruses. The extrinsic and intrinsic factors that affect antiviral efficacy of chitosan have also been talked about. With the rapid unfolding of COVID-19 pandemic across the globe, we look for chitosan as a plausible potent antiviral molecule for fighting this disease. Through this review, we present enough literature data supporting role of chitosan against different strains of SARS viruses and also chitosan targeting CD147 receptors, a novel route for invasion of SARS-CoV-2 into host cells. We speculate the possibility of using chitosan as potential molecule against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nivya Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandrima Modak
- Birla Institute of Technology and Sciences (BITS), PILANI, Pilani campus, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmender Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
50
|
Carvalho APA, Conte‐Junior CA. Recent Advances on Nanomaterials to COVID-19 Management: A Systematic Review on Antiviral/Virucidal Agents and Mechanisms of SARS-CoV-2 Inhibition/Inactivation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000115. [PMID: 33786199 PMCID: PMC7994982 DOI: 10.1002/gch2.202000115] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Indexed: 05/05/2023]
Abstract
The current pandemic of coronavirus disease 2019 (COVID-19) is recognized as a public health emergency of worldwide concern. Nanomaterials can be effectively used to detect, capture/inactivate or inhibit coronavirus cell entry/replication in the human host cell, preventing infection. Their potential for nanovaccines, immunoengineering, diagnosis, repurposing medication, and disinfectant surfaces targeting the novel coronavirus (SARS-CoV-2) is highlighted. In this systematic review the aim is to present an unbiased view of which and how nanomaterials can reduce the spread of COVID-19. Herein, the focus is on SARS-CoV-2, analyzing 46 articles retrieved before December 31, 2020. The interface between nanomaterials is described, and the main mechanisms to inhibit SARS-CoV-2 pathogenesis and viral inactivation are also discussed. Nanocarbons, biopolymeric, copper, and silver nanoparticles are potential antiviral and virucidal agents toward self-cleaning and reusable filter media and surfaces (e.g., facial masks), drug administration, vaccines, and immunodiagnostic assays. Trends in toxicology research and safety tests can help fill the main gaps in the literature and overcome health surveillance's challenges. Phytochemicals delivery by nanocarriers also stand out as candidates to target and bio-friendly therapy. Nanocellulose might fill in the gaps. Future research using nanomaterials targeting novel therapies/prophylaxis measures to COVID-19 and future outbreaks is discussed.
Collapse
Affiliation(s)
- Anna Paula A. Carvalho
- COVID‐19 Research GroupTechnological Development Support Laboratory (LADETEC)Department of BiochemistryFederal University of Rio de Janeiro (UFRJ)UFRJRio de Janeiro21941‐909Brazil
- COVID‐19 Research GroupLaboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)UFRJRio de Janeiro21941‐909Brazil
- Graduate Program in Chemistry (PGQu)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)Rio de Janeiro21941‐909Brazil
- Graduate Program in Food Science (PPGCAL)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)Rio de Janeiro21941‐909Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ)Rio de Janeiro20020‐000Brazil
| | - Carlos A. Conte‐Junior
- COVID‐19 Research GroupTechnological Development Support Laboratory (LADETEC)Department of BiochemistryFederal University of Rio de Janeiro (UFRJ)UFRJRio de Janeiro21941‐909Brazil
- COVID‐19 Research GroupLaboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)UFRJRio de Janeiro21941‐909Brazil
- Graduate Program in Chemistry (PGQu)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)Rio de Janeiro21941‐909Brazil
- Graduate Program in Food Science (PPGCAL)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)Rio de Janeiro21941‐909Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ)Rio de Janeiro20020‐000Brazil
- Graduate Program in Veterinary Hygiene (PPGHV)Faculty of Veterinary MedicineFluminense Federal University (UFF)Niterói24230‐340Brazil
- Graduate Program in Sanitary Surveillance (PPGVS)National Institute of Health Quality Control (INCQS)Oswaldo Cruz Foundation (FIOCRUZ)Rio de Janeiro21040‐900Brazil
| |
Collapse
|