1
|
Huang MC, Chiang LJ, Chien WH, Liu TH, Chen CH, Liu YL. Plasma leptin levels are lower in females, but not males, with ketamine use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024:1-11. [PMID: 39432890 DOI: 10.1080/00952990.2024.2394963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024]
Abstract
Background: Ketamine has emerged as a prominent substance of misuse. Leptin, an adipocyte-derived polypeptide hormone, has been implicated in the development of addiction. Sex-specific changes in leptin levels have been demonstrated following acute ketamine administration; the persistence of long-term ketamine use on leptin levels is uncertain.Objectives: To assess the sex-difference of leptin levels, and their persistence, in individuals with ketamine use disorder (KUD) compared to healthy controls.Methods: Plasma leptin levels were measured in 62 healthy controls (37 males, 25 females) and 68 participants with KUD (50 males, 18 females) on the first day (baseline) and after 1 and 2 weeks of abstinence. As leptin levels are affected by body mass index (BMI), BMI-adjusted leptin (leptin/BMI ratio) was also examined. Mixed model for repeated measures was used to examine changes after ketamine abstinence.Results: Compared to same-sex controls, female, but not male, participants with KUD demonstrated lower leptin levels and leptin/BMI ratio at baseline, week 1, and week 2 (leptin levels: p = .001, 0.006 and 0.032, respectively; leptin/BMI ratio: p = .004, 0.022, and 0.09, respectively). Repeated measures showed that leptin levels and the leptin/BMI ratio increased after 2 weeks of abstinence in male participants with KUD (p = .002 and 0.011, respectively), but females did not show such an increase (p > .05).Conclusions: Sex-specific differences were observed in leptin levels and the leptin/BMI ratio in individuals with KUD compared to controls. Lower leptin levels in females with KUD persisted after 2 weeks of abstinence.
Collapse
Affiliation(s)
- Ming-Chyi Huang
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Li-Jung Chiang
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Wan-Hsi Chien
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Tung-Hsia Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
2
|
Zallar LJ, Rivera-Irizarry JK, Hamor PU, Pigulevskiy I, Rico Rozo AS, Mehanna H, Liu D, Welday JP, Bender R, Asfouri JJ, Levine OB, Skelly MJ, Hadley CK, Fecteau KM, Nelson S, Miller J, Ghazal P, Bellotti P, Singh A, Hollmer LV, Erikson DW, Geri J, Pleil KE. Rapid nongenomic estrogen signaling controls alcohol drinking behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565358. [PMID: 37961707 PMCID: PMC10635092 DOI: 10.1101/2023.11.02.565358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ovarian-derived estrogen is a key modulator of numerous physiological processes via genomic and nongenomic mechanisms, including signaling non-canonically at membrane-associated estrogen receptors in the brain to rapidly regulate neuronal function. However, the mechanisms mediating estrogen regulation of behaviors such as alcohol consumption remain unclear. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high circulating estrogen levels, but a causal role for estrogen signaling in driving alcohol drinking in gonadally-intact animals has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance behavior when circulating estrogen was high during the proestrus phase of the estrous cycle than when it was low, contributing to sex differences in these behaviors. The pro-drinking, but not anxiolytic, effect of high endogenous estrogen state occurred via rapid estrogen signaling at membrane-associated estrogen receptor alpha in the bed nucleus of the stria terminalis, which promoted synaptic excitation of corticotropin-releasing factor neurons and facilitated their activity during alcohol drinking behavior. This study is the first to demonstrate a rapid, nongenomic signaling mechanism for ovarian-derived estrogen signaling in the brain controlling behavior in gonadally intact females, and it establishes a causal role for estrogen in an intact hormonal context for driving alcohol consumption that contributes to known sex differences in this behavior.
Collapse
Affiliation(s)
- Lia J. Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jean K. Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter U. Hamor
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irena Pigulevskiy
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ana-Sofia Rico Rozo
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hajar Mehanna
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dezhi Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline P. Welday
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rebecca Bender
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Joseph J. Asfouri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B. Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Colleen K. Hadley
- Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, NY 10065, USA
| | - Kristopher M. Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Scottie Nelson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John Miller
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pasha Ghazal
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter Bellotti
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashna Singh
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lauren V. Hollmer
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David W. Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E. Pleil
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
3
|
Dumiaty Y, Underwood BM, Phy-Lim J, Chee MJ. Neurocircuitry underlying the actions of glucagon-like peptide 1 and peptide YY 3-36 in the suppression of food, drug-seeking, and anxiogenesis. Neuropeptides 2024; 105:102427. [PMID: 38579490 DOI: 10.1016/j.npep.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Obesity is a critical health condition worldwide that increases the risks of comorbid chronic diseases, but it can be managed with weight loss. However, conventional interventions relying on diet and exercise are inadequate for achieving and maintaining weight loss, thus there is significant market interest for pharmaceutical anti-obesity agents. For decades, receptor agonists for the gut peptide glucagon-like peptide 1 (GLP-1) featured prominently in anti-obesity medications by suppressing appetite and food reward to elicit rapid weight loss. As the neurocircuitry underlying food motivation overlaps with that for drugs of abuse, GLP-1 receptor agonism has also been shown to decrease substance use and relapse, thus its therapeutic potential may extend beyond weight management to treat addictions. However, as prolonged use of anti-obesity drugs may increase the risk of mood-related disorders like anxiety and depression, and individuals taking GLP-1-based medication commonly report feeling demotivated, the long-term safety of such drugs is an ongoing concern. Interestingly, current research now focuses on dual agonist approaches that include GLP-1 receptor agonism to enable synergistic effects on weight loss or associated functions. GLP-1 is secreted from the same intestinal cells as the anorectic gut peptide, Peptide YY3-36 (PYY3-36), thus this review assessed the therapeutic potential and underlying neural circuits targeted by PYY3-36 when administered independently or in combination with GLP-1 to curb the appetite for food or drugs of abuse like opiates, alcohol, and nicotine. Additionally, we also reviewed animal and human studies to assess the impact, if any, for GLP-1 and/or PYY3-36 on mood-related behaviors in relation to anxiety and depression. As dual agonists targeting GLP-1 and PYY3-36 may produce synergistic effects, they can be effective at lower doses and offer an alternative approach for therapeutic benefits while mitigating undesirable side effects.
Collapse
Affiliation(s)
- Yasmina Dumiaty
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Brett M Underwood
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Jenny Phy-Lim
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
4
|
Nammalwar B, Bunce RA. Recent Advances in Pyrimidine-Based Drugs. Pharmaceuticals (Basel) 2024; 17:104. [PMID: 38256937 PMCID: PMC10820437 DOI: 10.3390/ph17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrimidines have become an increasingly important core structure in many drug molecules over the past 60 years. This article surveys recent areas in which pyrimidines have had a major impact in drug discovery therapeutics, including anti-infectives, anticancer, immunology, immuno-oncology, neurological disorders, chronic pain, and diabetes mellitus. The article presents the synthesis of the medicinal agents and highlights the role of the biological target with respect to the disease model. Additionally, the biological potency, ADME properties and pharmacokinetics/pharmacodynamics (if available) are discussed. This survey attempts to demonstrate the versatility of pyrimidine-based drugs, not only for their potency and affinity but also for the improved medicinal chemistry properties of pyrimidine as a bioisostere for phenyl and other aromatic π systems. It is hoped that this article will provide insight to researchers considering the pyrimidine scaffold as a chemotype in future drug candidates in order to counteract medical conditions previously deemed untreatable.
Collapse
Affiliation(s)
- Baskar Nammalwar
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA;
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Hafenbreidel M, Pandey S, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral amygdala corticotropin releasing factor receptor 2 interacts with nonmuscle myosin II to destabilize memory in males. Neurobiol Learn Mem 2023; 206:107865. [PMID: 37995804 DOI: 10.1016/j.nlm.2023.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Preclinical studies show that inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory in male and female adult and adolescent rodents. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g., dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To understand the mechanisms responsible for drug specific selectivity we began by investigating, in male mice, the pharmacokinetic differences in METH and COC brain exposure . Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, we next assessed transcriptional differences. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotropin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility. Pretreatment with AS2B prevented the ability of Blebb to disrupt an established METH-associated memory. Alternatively, combining CRF2 overexpression and agonist treatment, urocortin 3 (UCN3), in the BLA during conditioning rendered COC-associated memory susceptible to disruption by NMII inhibition, mimicking the Blebb-induced, retrieval-independent memory disruption seen with METH. These results suggest that BLA CRF2 receptor activation during memory formation in male mice can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption by NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Surya Pandey
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
6
|
Athota P, Nguyen NM, Schaal VL, Jagadesan S, Guda C, Yelamanchili SV, Pendyala G. Novel RNA-Seq Signatures Post-Methamphetamine and Oxycodone Use in a Model of HIV-Associated Neurocognitive Disorders. Viruses 2023; 15:1948. [PMID: 37766354 PMCID: PMC10534928 DOI: 10.3390/v15091948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In the 21st century, the effects of HIV-associated neurocognitive disorders (HAND) have been significantly reduced in individuals due to the development of antiretroviral therapies (ARTs). However, the growing epidemic of polysubstance use (PSU) has led to concern for the effects of PSU on HIV-seropositive individuals. To effectively treat individuals affected by HAND, it is critical to understand the biological mechanisms affected by PSU, including the identification of novel markers. To fill this important knowledge gap, we used an in vivo HIV-1 Transgenic (HIV-1 Tg) animal model to investigate the effects of the combined use of chronic methamphetamine (METH) and oxycodone (oxy). A RNA-Seq analysis on the striatum-a brain region that is primarily targeted by both HIV and drugs of abuse-identified key differentially expressed markers post-METH and oxy exposure. Furthermore, ClueGO analysis and Ingenuity Pathway Analysis (IPA) revealed crucial molecular and biological functions associated with ATP-activated adenosine receptors, neuropeptide hormone activity, and the oxytocin signaling pathway to be altered between the different treatment groups. The current study further reveals the harmful effects of chronic PSU and HIV infection that can subsequently impact neurological outcomes in polysubstance users with HAND.
Collapse
Affiliation(s)
- Pranavi Athota
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
| | - Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
| | - Sankarasubramanian Jagadesan
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
| | - Chittibabu Guda
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
- National Strategic Research Institute, Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (P.A.); (N.M.N.); (V.L.S.); (S.V.Y.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA; (S.J.); (C.G.)
- National Strategic Research Institute, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Hafenbreidel M, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral Amygdala Corticotrophin Releasing Factor Receptor 2 Interacts with Nonmuscle Myosin II to Destabilize Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541732. [PMID: 37292925 PMCID: PMC10245849 DOI: 10.1101/2023.05.22.541732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g. dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To investigate a potential source of this specificity, pharmacokinetic differences in METH and COC brain exposure were examined. Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, transcriptional differences were next assessed. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotrophin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility after METH conditioning. Pretreatment with AS2B occluded the ability of Blebb to disrupt an established METH-associated memory. Alternatively, the Blebb-induced, retrieval-independent memory disruption seen with METH was mimicked for COC when combined with CRF2 overexpression in the BLA and its ligand, UCN3 during conditioning. These results indicate that BLA CRF2 receptor activation during learning can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption via NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
- Present address: Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, 29464
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| |
Collapse
|
8
|
Lepore G, Morley-McLaughlin T, Davidson N, Han C, Masese C, Reynolds G, Saltz V, Robinson SA. Buprenorphine reduces somatic withdrawal in a mouse model of early-life morphine exposure. Drug Alcohol Depend 2023; 248:109938. [PMID: 37267743 DOI: 10.1016/j.drugalcdep.2023.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
The rising prevalence of early-life opioid exposure has become a pressing public health issue in the U.S. Neonates exposed to opioids in utero are at risk of experiencing a constellation of postpartum withdrawal symptoms commonly referred to as neonatal opioid withdrawal syndrome (NOWS). Buprenorphine (BPN), a partial agonist at the mu-opioid receptor (MOR) and antagonist at the kappa-opioid receptor (KOR), is currently approved to treat opioid use disorder in adult populations. Recent research suggests that BPN may also be effective in reducing withdrawal symptoms in neonates who were exposed to opioids in utero. We sought to determine whether BPN attenuates somatic withdrawal in a mouse model of NOWS. Our findings indicate that the administration of morphine (10mg/kg, s.c.) from postnatal day (PND) 1-14 results in increased somatic symptoms upon naloxone-precipitated (1mg/kg, s.c.) withdrawal. Co-administration of BPN (0.3mg/kg, s.c.) from PND 12-14 attenuated symptoms in morphine-treated mice. On PND 15, 24h following naloxone-precipitated withdrawal, a subset of mice was examined for thermal sensitivity in the hot plate test. BPN treatment significantly increased response latency in morphine-exposed mice. Lastly, neonatal morphine exposure elevated mRNA expression of KOR, and reduced mRNA expression of corticotropin-releasing hormone (CRH) in the periaqueductal gray when measured on PND 14. Altogether, this data provides support for the therapeutic effects of acute low-dose buprenorphine treatment in a mouse model of neonatal opioid exposure and withdrawal.
Collapse
Affiliation(s)
- Gina Lepore
- Department of Systems Pharmacology and Translational Therapeutics. Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPA19104, United States
| | | | - Natalie Davidson
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Caitlin Han
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Cynthia Masese
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Grace Reynolds
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Victoria Saltz
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Shivon A Robinson
- Department of Psychology, Williams CollegeWilliamsMA01267, United States.
| |
Collapse
|
9
|
Maternal opioid addiction: A potential cause of elevated 17-OH progesterone in neonatal screening. Arch Pediatr 2023; 30:77-82. [PMID: 36526499 DOI: 10.1016/j.arcped.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/10/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Congenital adrenal hyperplasia (CAH) is a disease that is part of neonatal screening. There are many causes of false-positive results on neonatal screening, and maternal opioid consumption during pregnancy is suspected to increase 17-hydroxyprogesterone (17-OHP) levels at birth. The aim of this study was to determine the effect of maternal drug consumption on 17-OHP values on neonatal screening. MATERIAL AND METHODS We studied 17-OHP levels of term newborns with reported maternal drug consumption born at the Maternity Hospital of Nancy between 2002 and 2018. These infants were matched with newborns of mothers without drug addiction. The 17-OHP levels, withdrawal syndromes, birth parameters, and maternal characteristics were compared between the two groups. RESULTS The study included 241 patients (121 in the drug-exposed group, 120 in the control group). The mean 17-OHP levels in newborns of mothers with substance addiction were 9.83 nmol/L compared to 4.90 nmol/L (p=0.0001) in the control group. Newborns exposed to drugs were smaller (p=0.0001), lighter (p=0.0001), had smaller head circumference (p=0.0001), and had lower Apgar scores (p=0.004 at 1 min and p=0.0001 at 5 min). The 17-OHP level did not differ in cases of withdrawal syndrome in drug-exposed newborn (p=0.911). CONCLUSION A significant increase in 17-OHP levels was observed in newborns exposed to drugs, with no influence of withdrawal syndrome on 17-OHP levels. Maternal substance addiction may be associated with moderately increased 17-OHP levels during neonatal screening.
Collapse
|
10
|
Parekh SV, Adams LO, Barkell GA, Lysle DT. Sex-differences in anxiety, neuroinflammatory markers, and enhanced fear learning following chronic heroin withdrawal. Psychopharmacology (Berl) 2023; 240:347-359. [PMID: 36633660 PMCID: PMC9879843 DOI: 10.1007/s00213-023-06310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Post-traumatic stress disorder (PTSD) and opioid use disorder (OUD) are comorbid in clinical populations. However, both pre-clinical and clinical studies of these co-occurring disorders have disproportionately represented male subjects, limiting the applicability of these findings. Our previous work has identified chronic escalating heroin administration and withdrawal can produce enhanced fear learning. This behavior is associated with an increase in dorsal hippocampal (DH) interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and glial fibrillary acidic protein (GFAP) immunoreactivity. Further, we have shown that these increases in IL-1β and TNF-α are mechanistically necessary for the development of enhanced fear learning. Although these are exciting findings, this paradigm has only been studied in males. The current studies aim to examine sex differences in the behavioral and neuroimmune effects of chronic heroin withdrawal and future enhanced fear learning. In turn, we determined that chronic escalating heroin administration can produce withdrawal in female rats comparable to male rats. Subsequently, we examined the consequence of heroin withdrawal on future enhanced fear learning and IL-1β, TNF-α, and GFAP immunoreactivity. Strikingly, we identified sex differences in these neuroimmune measures, as chronic heroin administration and withdrawal does not produce enhanced fear learning or immunoreactivity changes in females. Moreover, we determined whether heroin withdrawal produces short-term and long-term anxiety behaviors in both female and males. Collectively, these novel experiments are the first to test whether heroin withdrawal can sensitize future fear learning, produce neurobiological changes, and cause short-term and long-term anxiety behaviors in female rats.
Collapse
Affiliation(s)
- Shveta V Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3720, Chapel Hill, NC, 27599-3270, USA
| | - Lydia O Adams
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3720, Chapel Hill, NC, 27599-3270, USA
| | - Gillian A Barkell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3720, Chapel Hill, NC, 27599-3270, USA
| | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3720, Chapel Hill, NC, 27599-3270, USA.
| |
Collapse
|
11
|
Antoine D, Venigalla G, Truitt B, Roy S. Linking the gut microbiome to microglial activation in opioid use disorder. Front Neurosci 2022; 16:1050661. [PMID: 36590299 PMCID: PMC9800800 DOI: 10.3389/fnins.2022.1050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Substance use disorder (SUD) is a physical and psychological disorder globally prevalent today that has resulted in over 107,000 drug overdose deaths in 2021 in the United States alone. This manuscript reviews the potential relationship between opioid use disorder (OUD), a prevalent subset of SUD, and the microglia, the resident macrophages of the central nervous system (CNS), as they have been found to become significantly more activated during opioid exposure. The inflammatory response mediated by the microglia could contribute to the pathophysiology of SUDs, in particular OUD. Further understanding of the microglia and how they respond to not only signals in the CNS but also signals from other areas of the body, such as the gut microbiome, could explain how the microglia are involved in drug use. Several studies have shown extensive communication between the gut microbiome and the microglia, which may be an important factor in the initiation and development of OUD. Particularly, strategies seeking to manipulate and restore the gut microbiome have been shown to reduce microglial activation and attenuate inflammation. In this review, we discuss the evidence for a link between the microglia and OUD and how the gut microbiome might influence microglial activation to drive the disorder and its associated behaviors. Understanding this connection between microglia and the gut microbiome in the context of drug use may present additional therapeutic targets to treat the different stages of drug use.
Collapse
Affiliation(s)
- Danielle Antoine
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States,Department of Neuroscience, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Greeshma Venigalla
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Bridget Truitt
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States,Department of Neuroscience, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Sabita Roy,
| |
Collapse
|
12
|
Sequeira-Cordero A, Brenes JC. Time course of plasticity-related alterations following the first exposure to amphetamine in juvenile rats. Pharmacol Biochem Behav 2022; 221:173489. [PMID: 36375621 DOI: 10.1016/j.pbb.2022.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
In vulnerable consumers, the first drug exposure induces various neurobehavioral adaptations that may represent the starting point toward addiction. Elucidating the neuroplastic mechanisms underlying that first rewarding experience would contribute to understanding the transition from recreational to compulsive drug use. In a preclinical model with juvenile rats, we analyzed the time-dependent fluctuations in the expression of neuroplasticity-related genes like the brain-derived neurotrophic factor (BDNF), its tropomyosin receptor kinase B (TrkB), the cAMP response element-binding protein (CREB), the microRNA-132, the Rho GTPase-activating protein 32 (p250GAP), the corticotropin-releasing factor (CRF), and the neurotransmitters contents in the nucleus accumbens (NAc) and the dorsal striatum (DS) 45, 90, and 180 min after an amphetamine (AMPH) injection. As expected, AMPH altered the concentration of norepinephrine, dopamine, DOPAC, and serotonin in a region- and time-dependent manner. Regarding gene expression, AMPH at 45 min upregulated BDNF and primiR-132 expression in NAc and downregulated TrkB expression in DS. At 90 min, AMPH upregulated TrkB, CREB, p250GAP, and primiR-132 expression in NAc and BDNF, primiR-132, and CRF in DS. At 180 min, only BNDF in NAc continued to be upregulated by AMPH. Based on the levels of AMPH-induced hyperactivity, we classified the rats as low and high AMPH responders. High AMPH responders characterized by overexpressing BDNF, CREB, p250GAP, and CRF in NAc and by showing lower levels of dopamine and serotonin metabolites and turnovers in both regions. Our findings demonstrated that a single AMPH administration is enough to induce neuroplastic adaptations, especially in the NAc of prone rats.
Collapse
Affiliation(s)
- Andrey Sequeira-Cordero
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
13
|
Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2022; 55:2170-2195. [PMID: 33825217 PMCID: PMC8494863 DOI: 10.1111/ejn.15223] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Addiction is a chronic relapsing disorder with devastating personal, societal, and economic consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource scarcity are linked with increased risk of later-life addiction, but the brain mechanisms underlying this link are still poorly understood. Here, we focus on data from rodent models of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be determined. We first summarize evidence for a link between ELA and addiction in humans, then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous disease with many individually varying behavioral aspects that may be impacted by ELA, we next discuss common rodent assays of addiction-like behaviors. We then summarize the specific addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss some of the underlying changes in brain reward and stress circuits that are likely responsible. By better understanding the behavioral and neural mechanisms by which ELA promotes addiction vulnerability, we hope to facilitate development of new approaches for preventing or treating addiction in those with a history of ELA.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Pediatrics, University of California Irvine, Irvine, CA
| | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
14
|
Baidoo N, Leri F. Extended amygdala, conditioned withdrawal and memory consolidation. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110435. [PMID: 34509531 DOI: 10.1016/j.pnpbp.2021.110435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Opioid withdrawal can be associated to environmental cues through classical conditioning. Exposure to these cues can precipitate a state of conditioned withdrawal in abstinent subjects, and there are suggestions that conditioned withdrawal can perpetuate the addiction cycle in part by promoting the storage of memories. This review discusses evidence supporting the hypothesis that conditioned withdrawal facilitates memory consolidation by activating a neurocircuitry that involves the extended amygdala. Specifically, the central amygdala, the bed nucleus of the stria terminalis, and the nucleus accumbens shell interact functionally during withdrawal, mediate expression of conditioned responses, and are implicated in memory consolidation. From this perspective, the extended amygdala could be a neural pathway by which drug-seeking behaviour performed during a state of conditioned withdrawal is more likely to become habitual and persistent.
Collapse
Affiliation(s)
- Nana Baidoo
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada
| | - Francesco Leri
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada.
| |
Collapse
|
15
|
Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
17
|
Serum Corticotrophin Releasing Factor (CRF) and its correlation with stress and craving in detoxified opioid-dependent subjects. Asian J Psychiatr 2022; 68:102964. [PMID: 34923378 DOI: 10.1016/j.ajp.2021.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
Corticotrophin Releasing Factor (CRF) might be suitable as biological measure of stress as it is implicated directly in both central neurological and endocrine stress-response. The study aims to compare serum CRF levels and perceived stress in opioid-dependent subjects (n = 53) with non-using controls (n = 47) and to correlate them with general and instantaneous craving (in cases only). Perceived stress score and serum CRF levels were significantly higher among the users. No significant correlation with craving was found. The significant difference in serum CRF levels indicate feasibility of measuring CRF levels in peripheral fluids and asserts its role as biochemical measure of stress.
Collapse
|
18
|
Sequeira-Cordero A, Brenes JC. Time-dependent changes in striatal monoamine levels and gene expression following single and repeated amphetamine administration in rats. Eur J Pharmacol 2021; 904:174148. [PMID: 33961872 DOI: 10.1016/j.ejphar.2021.174148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
As drug addiction may result from pathological usurpations of learning and memory's neural mechanisms, we focused on the amphetamine-induced time-dependent neurochemical changes associated with neural plasticity. We used juvenile rats as the risk for drug abuse is higher during adolescence. Experiment 1 served to define the appropriate amphetamine dose and the neurochemical effects of a single administration. In experiment 2, rats received seven amphetamine or saline injections in the open-field test throughout a twelve-day period. We measured the mRNA levels of the brain-derived neurotrophic factor (BDNF), its tropomyosin receptor kinase B (TrkB), the cAMP response element-binding protein (CREB), the microRNA-132, the Rho GTPase-activating protein 32 (p250GAP), the corticotropin-releasing factor (CRF), and monoamines and amino-acids contents in the nucleus accumbens and the dorsal striatum 45, 90, and 180 min after the last injection. We found that amphetamine changed gene expression only at certain time points and in a dose and region-dependent manner. Repeated but not single administrations upregulated accumbal and striatal BDNF (180 min) and striatal pri-miR-132 (90 min) expression, while downregulated accumbal CREB levels (90 min). As only some drug users develop addiction, we compared brain parameters between low and high amphetamine responders. Prone subjects characterized by having reduced striatal 5-HT metabolism, higher accumbal BDNF and TrkB expression, and lower levels of CREB in the dorsal striatum and p250GAP in both regions. Thus, individual differences in drug-induced changes in neurotransmission and gene expression in nigrostriatal and mesolimbic dopaminergic pathways may underlie the plasticity adaptations associated with behavioral sensitization to amphetamine.
Collapse
Affiliation(s)
- Andrey Sequeira-Cordero
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
19
|
Ferrer-Pérez C, Reguilón MD, Miñarro J, Rodríguez-Arias M. Oxytocin Signaling as a Target to Block Social Defeat-Induced Increases in Drug Abuse Reward. Int J Mol Sci 2021; 22:ijms22052372. [PMID: 33673448 PMCID: PMC7956822 DOI: 10.3390/ijms22052372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
There is huge scientific interest in the neuropeptide oxytocin (OXT) due to its putative capacity to modulate a wide spectrum of physiological and cognitive processes including motivation, learning, emotion, and the stress response. The present review seeks to increase the understanding of the role of OXT in an individual’s vulnerability or resilience with regard to developing a substance use disorder. It places specific attention on the role of social stress as a risk factor of addiction, and explores the hypothesis that OXT constitutes a homeostatic response to stress that buffers against its negative impact. For this purpose, the review summarizes preclinical and clinical literature regarding the effects of OXT in different stages of the addiction cycle. The current literature affirms that a well-functioning oxytocinergic system has protective effects such as the modulation of the initial response to drugs of abuse, the attenuation of the development of dependence, the blunting of drug reinstatement and a general anti-stress effect. However, this system is dysregulated if there is continuous drug use or chronic exposure to stress. In this context, OXT is emerging as a promising pharmacotherapy to restore its natural beneficial effects in the organism and to help rebalance the functions of the addicted brain.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychology and Sociology, University of Zaragoza, C/Ciudad Escolar s/n, 44003 Teruel, Spain;
| | - Marina D. Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (M.D.R.); (J.M.)
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (M.D.R.); (J.M.)
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (M.D.R.); (J.M.)
- Correspondence:
| |
Collapse
|
20
|
Pirri F, Akbarabadi A, Sadat-Shirazi MS, Nouri Zadeh-Tehrani S, Mahboubi S, Karimi Goudarzi A, Zarrindast MR. Comparison and interaction of morphine and CB1 agonist conditioned place preference in the rat model of early life stress. Int J Dev Neurosci 2021; 81:238-248. [PMID: 33534920 DOI: 10.1002/jdn.10094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Early life stress (ELS) disrupts brain development and subsequently affects physical and psychological health. ELS has been associated with an increased risk of relapse and inadequate treatment response in addicted patients. The current study was designed to find the effect of ELS on the rewarding effect of morphine and cannabinoid and their interaction. Pregnant female Wistar rats were used in this study. On postnatal day 2 (PND2), pups were separated from their mothers for 3 hr daily. This procedure was repeated every day at the same time until PND 14. The control group was kept in the standard nesting way with their mothers. The adult male offspring of maternal separated (MS) and standard nested (SN) rats were used. Using conditioned place preference task (CPP), the rewarding effect of morphine (0.75, 1.25, 2.5, and 5 mg/kg) was evaluated in both MS and SN groups. Besides, the rewarding effect of cannabinoids was investigated using the administration of CB1 receptor agonist (ACPA, 0.25, 0.5, 1 µg/rat) and inverse agonist (AM-251, 30, 60, and 90 ng/rat) in the nucleus accumbens (NAc). To evaluate the interaction between NAc cannabinoidergic system and morphine, the noneffective dose of ACPA and AM-251 were administered with a noneffective dose of morphine (0.75 mg/kg) on both MS and SN animals. Obtained results indicated that MS groups had a leftward shift in the rewarding effect of morphine and conditioned with low doses of morphine. However, they had a rightward shift in the rewarding effect of cannabinoids. In addition, coadministration of noneffective doses of morphine and ACPA potentiate conditioning in both MS and SN groups. Previous evidence shows that ELS induced changes in the brain, especially in the reward circuits. Here, we demonstrated that MS animals are more sensitive to the rewarding effect of morphine compared with SN animals. In addition, ELS disrupts the cannabinoid system and affect the rewarding effect of cannabinoids.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sarah Mahboubi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karimi Goudarzi
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
21
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates dependence-induced alcohol drinking and anxiety-like behavior in male rats. Neuropsychopharmacology 2021; 46:509-518. [PMID: 33191400 PMCID: PMC8027820 DOI: 10.1038/s41386-020-00904-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a devastating illness defined by periods of heavy drinking and withdrawal, often leading to a chronic relapsing course. Initially, alcohol is consumed for its positive reinforcing effects, but later stages of AUD are characterized by drinking to alleviate withdrawal-induced negative emotional states. Brain stress response systems in the extended amygdala are recruited by excessive alcohol intake, sensitized by repeated withdrawal, and contribute to the development of addiction. In this study, we investigated one such brain stress response system, pituitary adenylate cyclase-activating polypeptide (PACAP), and its cognate receptor, PAC1R, in alcohol withdrawal-induced behaviors. During acute withdrawal, rats exposed to chronic intermittent ethanol vapor (ethanol-dependent) displayed a significant increase in PACAP levels in the bed nucleus of the stria terminalis (BNST), a brain area within the extended amygdala critically involved in both stress and withdrawal. No changes in PACAP levels were observed in the central nucleus of the amygdala. Site-specific microinfusion of the PAC1R antagonist PACAP(6-38) into the BNST dose-dependently blocked excessive alcohol intake in ethanol-dependent rats without affecting water intake overall or basal ethanol intake in control, nondependent rats. Intra-BNST PACAP(6-38) also reversed ethanol withdrawal-induced anxiety-like behavior in ethanol-dependent rats, but did not affect this measure in control rats. Our findings show that chronic intermittent exposure to ethanol recruits the PACAP/PAC1R system of the BNST and that these neuroadaptations mediate the heightened alcohol drinking and anxiety-like behavior observed during withdrawal, suggesting that this system represents a major brain stress element responsible for the negative reinforcement associated with the "dark side" of alcohol addiction.
Collapse
|
22
|
Curtis GR, Oakes K, Barson JR. Expression and Distribution of Neuropeptide-Expressing Cells Throughout the Rodent Paraventricular Nucleus of the Thalamus. Front Behav Neurosci 2021; 14:634163. [PMID: 33584216 PMCID: PMC7873951 DOI: 10.3389/fnbeh.2020.634163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has been shown to make significant contributions to affective and motivated behavior, but a comprehensive description of the neurochemicals expressed in the cells of this brain region has never been presented. While the PVT is believed to be composed of projection neurons that primarily use as their neurotransmitter the excitatory amino acid, glutamate, several neuropeptides have also been described in this brain region. In this review article, we combine published literature with our observations from the Allen Brain Atlas to describe in detail the expression and distribution of neuropeptides in cells throughout the mouse and rat PVT, with a special focus on neuropeptides known to be involved in behavior. Several themes emerge from this investigation. First, while the majority of neuropeptides are expressed across the antero-posterior axis of the PVT, they generally exist in a gradient, in which expression is most dense but not exclusive in either the anterior or posterior PVT, although other neuropeptides display somewhat more equal expression in the anterior and posterior PVT but have reduced expression in the middle PVT. Second, we find overall that neuropeptides involved in arousal are more highly expressed in the anterior PVT, those involved in depression-like behavior are more highly expressed in the posterior PVT, and those involved in reward are more highly expressed in the medial PVT, while those involved in the intake of food and drugs of abuse are distributed throughout the PVT. Third, the pattern and content of neuropeptide expression in mice and rats appear not to be identical, and many neuropeptides found in the mouse PVT have not yet been demonstrated in the rat. Thus, while significantly more work is required to uncover the expression patterns and specific roles of individual neuropeptides in the PVT, the evidence thus far supports the existence of a diverse yet highly organized system of neuropeptides in this nucleus. Determined in part by their location within the PVT and their network of projections, the function of the neuropeptides in this system likely involves intricate coordination to influence both affective and motivated behavior.
Collapse
Affiliation(s)
- Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kathleen Oakes
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
23
|
Townsend EA, Negus SS, Banks ML. Medications Development for Treatment of Opioid Use Disorder. Cold Spring Harb Perspect Med 2021; 11:a039263. [PMID: 31932466 PMCID: PMC7778216 DOI: 10.1101/cshperspect.a039263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review describes methods for preclinical evaluation of candidate medications to treat opioid use disorder (OUD). The review is founded on the propositions that (1) drug self-administration procedures provide the most direct method for assessment of medication effectiveness, (2) procedures that assess choice between opioid and nondrug reinforcers are especially useful, and (3) states of opioid dependence and withdrawal profoundly influence both opioid reinforcement and effects of candidate medications. Effects of opioid medications and vaccines on opioid choice in nondependent and opioid-dependent subjects are reviewed. Various nonopioid medications have also been examined, but none yet have been identified that safely and reliably reduce opioid choice. Future research will focus on (1) strategies for increasing safety and/or effectiveness of opioid medications (e.g., G-protein-biased μ-opioid agonists), and (2) continued development of nonopioid medications (e.g., clonidine) that might serve as adjunctive agents to current opioid medications.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
24
|
Lemos C, Salti A, Amaral IM, Fontebasso V, Singewald N, Dechant G, Hofer A, El Rawas R. Social interaction reward in rats has anti-stress effects. Addict Biol 2021; 26:e12878. [PMID: 31984611 PMCID: PMC7757251 DOI: 10.1111/adb.12878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Social interaction in an alternative context can be beneficial against drugs of abuse. Stress is known to be a risk factor that can exacerbate the effects of addictive drugs. In this study, we investigated whether the positive effects of social interaction are mediated through a decrease in stress levels. For that purpose, rats were trained to express cocaine or social interaction conditioned place preference (CPP). Behavioural, hormonal, and molecular stress markers were evaluated. We found that social CPP decreased the percentage of incorrect transitions of grooming and corticosterone to the level of naïve untreated rats. In addition, corticotropin-releasing factor (CRF) was increased in the bed nucleus of stria terminalis after cocaine CPP. In order to study the modulation of social CPP by the CRF system, rats received intracerebroventricular CRF or alpha-helical CRF, a nonselective antagonist of CRF receptors. The subsequent effects on CPP to cocaine or social interaction were observed. CRF injections increased cocaine CPP, whereas alpha-helical CRF injections decreased cocaine CPP. However, alpha-helical CRF injections potentiated social CPP. When social interaction was made available in an alternative context, CRF-induced increase of cocaine preference was reversed completely to the level of rats receiving cocaine paired with alpha-helical CRF. This reversal of cocaine preference was also paralleled by a reversal in CRF-induced increase of p38 MAPK expression in the nucleus accumbens shell. These findings suggest that social interaction could contribute as a valuable component in treatment of substance use disorders by reducing stress levels.
Collapse
Affiliation(s)
- Cristina Lemos
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I Medical University Innsbruck Innsbruck Austria
| | - Ahmad Salti
- Institute of Molecular Biology University of Innsbruck Innsbruck Austria
| | - Inês M. Amaral
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I Medical University Innsbruck Innsbruck Austria
| | - Veronica Fontebasso
- Department of Pharmacology and Toxicology University of Innsbruck Innsbruck Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology University of Innsbruck Innsbruck Austria
| | - Georg Dechant
- Institute for Neuroscience Medical University Innsbruck Innsbruck Austria
| | - Alex Hofer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I Medical University Innsbruck Innsbruck Austria
| | - Rana El Rawas
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I Medical University Innsbruck Innsbruck Austria
| |
Collapse
|
25
|
Amaral IM, Lemos C, Cera I, Dechant G, Hofer A, El Rawas R. Involvement of cAMP-Dependent Protein Kinase in the Nucleus Accumbens in Cocaine Versus Social Interaction Reward. Int J Mol Sci 2020; 22:E345. [PMID: 33396297 PMCID: PMC7794935 DOI: 10.3390/ijms22010345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Evidence suggests that PKA activity in the nucleus accumbens (NAc) plays an essential role in reward-related learning. In this study, we investigated whether PKA is differentially involved in the expression of learning produced by either natural reinforcers or psychostimulants. For that purpose, we inhibited PKA through a bilateral infusion of Rp-cAMPS, a specific PKA inhibitor, directly into the NAc. The effects of PKA inhibition in the NAc on the expression of concurrent conditioned place preference (CPP) for cocaine (drug) and social interaction (natural reward) in rats were evaluated. We found that PKA inhibition increased the expression of cocaine preference. This effect was not due to altered stress levels or decreased social reward. PKA inhibition did not affect the expression of natural reward as intra-NAc Rp-cAMPS infusion did not affect expression of social preference. When rats were trained to express cocaine or social interaction CPP and tested for eventual persisting preference 7 and 14 days after CPP expression, cocaine preference was persistent, but social preference was abolished after the first test. These results suggest that PKA in the NAc is involved in drug reward learning that might lead to addiction and that only drug, but not natural, reward is persistent.
Collapse
Affiliation(s)
- Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Cristina Lemos
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Isabella Cera
- Institute for Neuroscience, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.C.); (G.D.)
| | - Georg Dechant
- Institute for Neuroscience, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.C.); (G.D.)
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| |
Collapse
|
26
|
Liang X, Hu X, Zhang X, Fu H. ASF (a Compound of Traditional Chinese Medicine) in the treatment of patients with alcohol dependence: Study protocol of a randomized, double-blinded, placebo-controlled clinical trial. Medicine (Baltimore) 2020; 99:e23899. [PMID: 33350787 PMCID: PMC7769360 DOI: 10.1097/md.0000000000023899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Alcohol dependence is one of the biggest problems facing public health worldwide. Currently, it is an under-diagnosed and under-treated disease. Even when given treatments for addiction withdrawal, over 2/3 of patients who have undergone abstinence-oriented treatment will relapse in the first year. Therefore, it is necessary to find an efficacious way to prevent and treat alcohol dependence. ASF (a Compound of Traditional Chinese Medicine) has proven to inhibit the formation and expression of ethanol-induced behavioral sensitization and the development of conditioned place preference in mice. As an empirical prescription for abstinence from alcohol, ASF has long been used in clinical patients. However, the effect of ASF in humans has not yet been investigated. The purpose of this study is to evaluate the efficacy of ASF for patients with alcohol dependence. METHODS The effect of ASF will be studied in a randomized, double-blinded, placebo-controlled clinical trial. 82 outpatients and inpatients will be recruited and randomly assigned to treatment with either ASF or placebo for 6 weeks as a complement to cognitive behavioural therapy. The primary endpoints are the changes in the average daily alcohol consumption of the 2 groups before and after treatment and comparison of the scores of the psychological craving self-rating scale during the courses of treatment of 2 groups. The secondary endpoints include abstinence rates of the 2 groups during the follow-up period, days without consumption, and changes of Short Form Health Survey (SF-36) scores in 2 groups before and after therapy. DISCUSSION This study is the first randomized controlled trial to investigate ASF in the treatment of alcohol dependence. ASF is likely to be a new and effective drug for the treatment of alcohol dependence developed from natural products with a low incidence of side effects or toxicity. TRIAL REGISTRATION Registry number: ChiCTR2000039397.
Collapse
Affiliation(s)
- Xianting Liang
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Xia Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongfang Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Calarco CA, Lobo MK. Depression and substance use disorders: Clinical comorbidity and shared neurobiology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:245-309. [PMID: 33648671 DOI: 10.1016/bs.irn.2020.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mood disorders, including major depressive disorder (MDD), are the most prevalent psychiatric illnesses, and pose an incredible burden to society, both in terms of disability and in terms of costs associated with medical care and lost work time. MDD has extremely high rates of comorbidity with substance use disorders (SUD) as many of the same neurobiological circuits and molecular mechanisms regulate the reward pathways disrupted in both conditions. MDD may induce SUDs, SUD may contribute to MDD development, or underlying vulnerabilities and common life experience may confer risk to developing both conditions. In this chapter we explore theories of MDD and SUD comorbidity, the neurobiological underpinnings of depression, overlapping cellular and molecular pathways for both conditions, and current treatment approaches for these comorbid conditions.
Collapse
Affiliation(s)
- Cali A Calarco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
28
|
Gyawali U, Martin DA, Sulima A, Rice KC, Calu DJ. Role of BNST CRFR1 Receptors in Incubation of Fentanyl Seeking. Front Behav Neurosci 2020; 14:153. [PMID: 33088264 PMCID: PMC7493668 DOI: 10.3389/fnbeh.2020.00153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The time-dependent increase in cue-triggered opioid seeking, termed “incubation of opioid craving,” is modeled in rodents by examining responding for opioid-associated cues after a period of forced abstinence. With opioid drugs, withdrawal symptoms may heighten cue reactivity by recruiting brain systems involved in both reward seeking and stress responses. Corticotropin releasing factor (CRF) in the bed nucleus of the stria terminalis (BNST) is a critical driver of stress-induced relapse to drug seeking. Here, we sought to determine whether BNST CRF receptor 1 (CRFR1) signaling drives incubation of opioid craving in opioid dependent and non-dependent rats. First, we tested whether BNST CRFR1 signaling drives incubation of opioid craving in rats with short-access fentanyl self-administration experience (2.5 μg/kg/infusion, 3 h/day for 10 days). On Day 1 of forced abstinence, we gave bilateral intra-BNST vehicle injections to all rats and measured lever responding for opioid cues in the absence of fentanyl infusions. On Day 30 of forced abstinence, we gave an identical test after bilateral intra-BNST injections of vehicle or CRFR1 receptor antagonist, R121919 (1 μg/0.3 μL/hemisphere). Vehicle treated rats showed greater responding for opioid associated cues on Day 30 relative to Day 1, and this incubation effect was prevented by intra-BNST R121919 on Day 30. Next, we incorporated an opioid-dependence procedure to investigate whether BNST CRFR1 signaling drives opioid cue-reactivity to a greater extent in opioid-dependent relative to non-dependent rats. We trained rats to self-administer fentanyl for 5 days before initiating the dependence phase and resuming daily fentanyl self-administration sessions for 10 days. We gave intra-BNST R121919 or vehicle injections before testing during acute (Day 5) or protracted (Day 30) withdrawal. During acute withdrawal, antagonizing BNST CRFR1 decreased the number of press bouts without affecting bout size or duration. These patterns of responding with R121919 treatment resulted in less fentanyl-associated conditioned reinforcement during test. Together, these findings suggest a role for BNST CRFR1 signaling in driving cue-reinforced opioid seeking after periods of forced abstinence.
Collapse
Affiliation(s)
- Utsav Gyawali
- Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - David A Martin
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Agnieszka Sulima
- Intramural Research Program, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism, Baltimore, MD, United States
| | - Kenner C Rice
- Intramural Research Program, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism, Baltimore, MD, United States
| | - Donna J Calu
- Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
29
|
Delery EC, Edwards S. Neuropeptide and cytokine regulation of pain in the context of substance use disorders. Neuropharmacology 2020; 174:108153. [PMID: 32470337 DOI: 10.1016/j.neuropharm.2020.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Substance use disorders (SUDs) are frequently accompanied by affective symptoms that promote negative reinforcement mechanisms contributing to SUD maintenance or progression. Despite their widespread use as analgesics, chronic or excessive exposure to alcohol, opioids, and nicotine produces heightened nociceptive sensitivity, termed hyperalgesia. This review focuses on the contributions of neuropeptide (CRF, melanocortin, opioid peptide) and cytokine (IL-1β, TNF-α, chemokine) systems in the development and maintenance of substance-induced hyperalgesia. Few effective therapies exist for either chronic pain or SUD, and the common interaction of these disease states likely complicates their effective treatment. Here we highlight promising new discoveries as well as identify gaps in research that could lead to more effective and even simultaneous treatment of SUDs and co-morbid hyperalgesia symptoms.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
30
|
Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci Biobehav Rev 2020; 115:164-188. [PMID: 32360413 DOI: 10.1016/j.neubiorev.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Individuals with mood disorders or with addiction, impulsivity and some personality disorders can share in common a dysfunction in how the brain perceives reward, where processing of natural endorphins or the response to exogenous dopamine stimulants is impaired. Reward Deficiency Syndrome (RDS) is a polygenic trait with implications that suggest cross-talk between different neurological systems that include the known reward pathway, neuroendocrine systems, and motivational systems. In this review we evaluate well-characterized animal models for their construct validity and as potential models for RDS. Animal models used to study substance use disorder, major depressive disorder (MDD), early life stress, immune dysregulation, attention deficit hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), compulsive gambling and compulsive eating disorders are discussed. These disorders recruit underlying reward deficiency mechanisms in multiple brain centers. Because of the widespread and remarkable array of associated/overlapping behavioral manifestations with a common root of hypodopaminergia, the basic endophenotype recognized as RDS is indeed likened to a behavioral octopus. We conclude this review with a look ahead on how these models can be used to investigate potential therapeutics that target the underlying common deficiency.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States.
| | - Rosemary Bassey
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, 500 Hofstra University, Hempstead, NY 11549, United States
| | - Kenneth Blum
- Western University Health Sciences, Graduate College of Biomedical Sciences, Pomona, California, United States
| |
Collapse
|
31
|
Regier PS, Kampman KM, Childress AR. Clinical Trials for Stimulant Use Disorders: Addressing Heterogeneities That May Undermine Treatment Outcomes. Handb Exp Pharmacol 2020; 258:299-322. [PMID: 32193666 DOI: 10.1007/164_2019_303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, use of cocaine and amphetamines and deaths associated with stimulants have been on the rise, and there are still no FDA-approved medications for stimulant use disorders. One contributing factor may involve heterogeneity. At the neurobiological level, dual dopamine dysfunction may be undermining medication efficacy, suggesting a need for combination pharmacotherapies. At the population level, individual variability is expressed in a number of ways and, if left unaddressed, may interfere with medication efficacy. This chapter reviews studies investigating medications to address dopamine dysfunction, and it also identifies several prominent heterogeneities associated with stimulant (and other substance) use disorders. The chapter has implications for improving interventions to treat stimulant use disorders, and the theme of individual heterogeneity may have broader application across substance use disorders.
Collapse
Affiliation(s)
- Paul S Regier
- Department of Psychiatry, Perelman School of Medicine, Center for Studies of Addiction, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kyle M Kampman
- Department of Psychiatry, Perelman School of Medicine, Center for Studies of Addiction, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Rose Childress
- Department of Psychiatry, Perelman School of Medicine, Center for Studies of Addiction, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Alavijeh MM, Vaezi G, Khaksari M, Hojati V. Berberine hydrochloride attenuates voluntary methamphetamine consumption and anxiety-like behaviors via modulation of oxytocin receptors in methamphetamine addicted rats. Physiol Behav 2019; 206:157-165. [PMID: 30922821 DOI: 10.1016/j.physbeh.2019.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/01/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Methamphetamine (METH) addiction is recognized as one of the major public health concerns, with no approved pharmacological agents for treatment. Berberine hydrochloride, an isoquinoline alkaloid in plants, induces antipsychotic and anxiolytic effects. Hence, we hypothesized that berberine may modulate the METH-induced rewarding effects. MATERIALS AND METHODS In this study, three groups of rat including control (N = 10), METH + vehicle (N = 10), and METH + berberine (N = 10) were kept in separate cages one day before expriments. METH (20 mg/L) was dissolved in tap water inside a bottle, while there was only tap water in the control bottle. Two groups received free METH solutions for two weeks (up to 12 mg/kg). Afterwards, they were abstianced for three weeks. Only one group received 100 mg/kg/day of berberine. After three weeks, locomotor activity and anxiety (elevated plus maze test) were evaluated, then the two-bottles choice model was used for one week to evaluate drug preferences. Finally, the brain of rats was removed for evaluation of oxytocin receptor expression via immunofluorescence staining method. RESULTS The results showed that METH preference was lower in the berberine + METH group during drug intake compared to the METH group (P < .05). During withdrawal, berberine reduced anxiety-like behaviors (P < .05) and decreased locomotor activity versus the METH group (P < .001). Also, berberine increased numbers of oxytocin receptors in comparison with the METH group (P < .01). CONCLUSION Considering the modulation of oxytocin receptors, berberine may be considered as a potential therapeutic agent for METH addiction.
Collapse
Affiliation(s)
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
33
|
Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, Datta G, Davila-Velderrain J, McGuire D, Tian C, Zhan X, Choquet H, Docherty AR, Faul JD, Foerster JR, Fritsche LG, Gabrielsen ME, Gordon SD, Haessler J, Hottenga JJ, Huang H, Jang SK, Jansen PR, Ling Y, Mägi R, Matoba N, McMahon G, Mulas A, Orrù V, Palviainen T, Pandit A, Reginsson GW, Skogholt AH, Smith JA, Taylor AE, Turman C, Willemsen G, Young H, Young KA, Zajac GJM, Zhao W, Zhou W, Bjornsdottir G, Boardman JD, Boehnke M, Boomsma DI, Chen C, Cucca F, Davies GE, Eaton CB, Ehringer MA, Esko T, Fiorillo E, Gillespie NA, Gudbjartsson DF, Haller T, Harris KM, Heath AC, Hewitt JK, Hickie IB, Hokanson JE, Hopfer CJ, Hunter DJ, Iacono WG, Johnson EO, Kamatani Y, Kardia SLR, Keller MC, Kellis M, Kooperberg C, Kraft P, Krauter KS, Laakso M, Lind PA, Loukola A, Lutz SM, Madden PAF, Martin NG, McGue M, McQueen MB, Medland SE, Metspalu A, Mohlke KL, Nielsen JB, Okada Y, Peters U, Polderman TJC, Posthuma D, Reiner AP, Rice JP, Rimm E, Rose RJ, Runarsdottir V, Stallings MC, Stančáková A, Stefansson H, Thai KK, Tindle HA, Tyrfingsson T, Wall TL, Weir DR, Weisner C, Whitfield JB, Winsvold BS, Yin J, Zuccolo L, Bierut LJ, Hveem K, Lee JJ, Munafò MR, Saccone NL, Willer CJ, Cornelis MC, David SP, Hinds DA, Jorgenson E, Kaprio J, Stitzel JA, Stefansson K, Thorgeirsson TE, Abecasis G, Liu DJ, Vrieze S. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 2019; 51:237-244. [PMID: 30643251 PMCID: PMC6358542 DOI: 10.1038/s41588-018-0307-5] [Citation(s) in RCA: 1148] [Impact Index Per Article: 229.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures.
Collapse
Affiliation(s)
- Mengzhen Liu
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Yu Jiang
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Institute of Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Robbee Wedow
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Sociology, University of Colorado Boulder, Boulder, CO, USA
- Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Yue Li
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David M Brazel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Interdisciplinary Quantitative Biology Graduate Group, University of Colorado Boulder, Boulder, CO, USA
| | - Fang Chen
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Institute of Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Gargi Datta
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jose Davila-Velderrain
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel McGuire
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Institute of Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Chao Tian
- 23andMe, Inc., Mountain View, CA, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for the Genetics of Host Defense, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Anna R Docherty
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry and Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Johanna R Foerster
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Lars G Fritsche
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Maiken Elvestad Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hongyan Huang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Seon-Kyeong Jang
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Philip R Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Yueh Ling
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - George McMahon
- Department of Population Health Science, Bristol Medical School, Oakfield Grove, Bristol, UK
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Anita Pandit
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy E Taylor
- Department of Population Health Science, Bristol Medical School, Oakfield Grove, Bristol, UK
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hannah Young
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory J M Zajac
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason D Boardman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Sociology, University of Colorado Boulder, Boulder, CO, USA
- Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | | | - Charles B Eaton
- Department of Family Medicine and Community Health, Alpert Medical School, Brown University, Providence, RI, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Tõnu Esko
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Nathan A Gillespie
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian J Hopfer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - William G Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Eric O Johnson
- Fellows Program, RTI International, Research Triangle Park, NC, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kenneth S Krauter
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Markku Laakso
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sharon M Lutz
- Department of Biostatistics and Bioinformatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matt McGue
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Matthew B McQueen
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Tinca J C Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, VU Medical Centre Amsterdam, Amsterdam, the Netherlands
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John P Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Alena Stančáková
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Khanh K Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Hilary A Tindle
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - Tamara L Wall
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Constance Weisner
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Luisa Zuccolo
- Department of Population Health Science, Bristol Medical School, Oakfield Grove, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - James J Lee
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- UK Centre for Tobacco and Alcohol Studies, School of Psychological Science, University of Bristol, Bristol, UK
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marilyn C Cornelis
- Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sean P David
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Gonçalo Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA.
- Institute of Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
34
|
Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M. Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 2018; 13:e0209291. [PMID: 30557308 PMCID: PMC6296503 DOI: 10.1371/journal.pone.0209291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Tamara Escrivá Martinez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
35
|
Sabzevari S, Rohbani K, Sadat-Shirazi MS, Babhadi-Ashar N, Shakeri A, Ashabi G, Khalifeh S, Ale-Ebrahim M, Zarrindast MR. Morphine exposure before conception affects anxiety-like behavior and CRF level (in the CSF and plasma) in the adult male offspring. Brain Res Bull 2018; 144:122-131. [PMID: 30503221 DOI: 10.1016/j.brainresbull.2018.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 02/03/2023]
Abstract
It has been proven that exposure to some drugs even before gestation had transgenerational effects. To investigate the changes which induced by parental morphine exposure before gestation; mainly the anxiety-like behavior, Corticotropin Releasing Factor (CRF) level in the CSF and plasma, CRF Receptor 1 (CRFR1), and the level of protein kinase C (PKC-α) were evaluated in the male offspring. Male and female Wistar rats were exposed to morphine for 21 following days. Ten days after last drug exposure, animals were prepared for mating in 4 distinct groups as follow: drug-naïve female and male (used as control), drug-naïve female and morphine-abstinent male, drug-naïve male and morphine-abstinent female, and morphine abstinent male and female. Offspring were subjected to assess anxiety-like behavior (using elevated plus maze test). CSF and plasma were gathered, and the CRF level was evaluated by ELISA. Using real-time PCR, the CRFR1 level in the brain was evaluated. Results showed that anxiety-like behavior increased in the offspring of morphine-abstinent parent(s) compared with the control group. CRF level in the plasma and CSF also increased in the litter of morphine-abstinent parent(s). CRFR1 mRNA level was upregulated in the brain of offspring with one and/or two morphine-abstinent parent(s). Furthermore, the level of PKC-α was decreased in the brain of offspring which had one and/or two morphine-abstinent parent(s). Taken together, our findings indicated that morphine exposure even before gestation induced transgenerational effects via dysregulation of HPA axis which results in anxiety in the adult male offspring.
Collapse
Affiliation(s)
- Saba Sabzevari
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Kiyana Rohbani
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Babhadi-Ashar
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Shakeri
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
36
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
37
|
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction. J Mol Neurosci 2018; 68:453-464. [PMID: 30074172 DOI: 10.1007/s12031-018-1147-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
While addiction to drugs of abuse represents a significant health problem worldwide, the behavioral and neural mechanisms that underlie addiction and relapse are largely unclear. The concept of the dark side of addiction, developed and explored by George Koob and colleagues, describes a systematic decrease in reward-related processing following drug self-administration and subsequent recruitment of anti-reward (i.e., stress) systems. Indeed, the activation of central nervous system (CNS) stress-response systems by drugs of abuse is contributory not only to mood and anxiety-related disorders but critical to both the maintenance of addiction and relapse following abstinence. In both human and animal studies, compounds that activate the bed nucleus of the stria terminalis (BNST) have roles in stress-related behaviors and addiction processes. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the BNST mediates many consequences of chronic stressor exposure that may engage in part downstream corticotropin-releasing hormone (CRH) signaling. Similar to footshock stress, the BNST administration of PACAP or the PAC1 receptor-specific agonist maxadilan can facilitate relapse following extinction of cocaine-seeking behavior. Further, in the same paradigm, the footshock-induced relapse could be attenuated following BNST pretreatment with PAC1 receptor antagonist PACAP6-38, implicating PACAP systems as critical components underlying stress-induced reinstatement. In congruence with previous work, the PAC1 receptor internalization and endosomal MEK/ERK signaling appear contributory mechanisms to the addiction processes. The studies offer new insights and approaches to addiction and relapse therapeutics.
Collapse
|
38
|
McAlinn HR, Reich B, Contoreggi NH, Kamakura RP, Dyer AG, McEwen BS, Waters EM, Milner TA. Sex Differences in the Subcellular Distribution of Corticotropin-Releasing Factor Receptor 1 in the Rat Hippocampus following Chronic Immobilization Stress. Neuroscience 2018; 383:98-113. [PMID: 29753863 PMCID: PMC5994383 DOI: 10.1016/j.neuroscience.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Corticotropin-releasing factor receptors (CRFR1) contribute to stress-induced adaptations in hippocampal structure and function that can affect learning and memory processes. Our prior studies showed that female rats with elevated estrogens compared to males have more plasmalemmal CRFR1 in CA1 pyramidal cells, suggesting a greater sensitivity to stress. Here, we examined the distribution of hippocampal CRFR1 following chronic immobilization stress (CIS) in female and male rats using immuno-electron microscopy. Without stress, total CRFR1 dendritic levels were higher in females in CA1 and in males in the hilus; moreover, plasmalemmal CRFR1 was elevated in pyramidal cell dendrites in CA1 in females and in CA3 in males. Following CIS, near-plasmalemmal CRFR1 increased in CA1 pyramidal cell dendrites in males but not to levels of control or CIS females. In CA3 and the hilus, CIS decreased cytoplasmic and total CRFR1 in dendrites in males only. These results suggest that in naive rats, CRF could induce a greater activation of CA1 pyramidal cells in females than males. Moreover, after CIS, which leads to even greater sex differences in CRFR1 by trafficking it to different subcellular compartments, CRF could enhance activation of CA1 pyramidal cells in males but to a lesser extent than either unstressed or CIS females. Additionally, CA3 pyramidal cells and inhibitory interneurons in males have heightened sensitivity to CRF, regardless of stress state. These sex differences in CRFR1 distribution and trafficking in the hippocampus may contribute to reported sex differences in hippocampus-dependent learning processes in baseline conditions and following chronic stress.
Collapse
Affiliation(s)
- Helena R McAlinn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Andreina G Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
39
|
The neurobiology of addiction. A vulnerability/resilience perspective. EUROPEAN JOURNAL OF PSYCHIATRY 2018. [DOI: 10.1016/j.ejpsy.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Jayanthi S, Gonzalez B, McCoy MT, Ladenheim B, Bisagno V, Cadet JL. Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Mol Neurobiol 2018; 55:5154-5166. [PMID: 28842817 PMCID: PMC5948251 DOI: 10.1007/s12035-017-0750-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
Abstract
Methamphetamine (METH) addiction is a biopsychosocial disorder that is accompanied by multiple relapses even after prolonged abstinence, suggesting the possibilities of long-lasting maladaptive epigenetic changes in the brain. Here, we show that METH administration produced time-dependent increases in the expression of corticotropin-releasing hormone (Crh/Crf), arginine vasopressin (Avp), and cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt) mRNAs in the rat nucleus accumbens (NAc). Chromatin immunoprecipitation (ChIP) assays revealed that METH increased the abundance of phosphorylated CREB (pCREB) at the promoter of Cartpt but not at Avp or Crh DNA sequences. In contrast, METH produced DNA hypomethylation at sites near the Crh transcription start site (TSS) and at intragenic Avp sequences. METH also increased DNA hydroxymethylation at the Crh TSS and at intragenic Avp sites. In addition, METH increased the protein expression of ten-eleven-translocation enzymes that catalyze DNA hydroxymethylation. Importantly, METH increased TET1 binding at the Crh promoter and increased TET3 binding at Avp intragenic regions. We further tested the role of TET enzymes in METH-induced changes in gene expression by using the TET inhibitor, 1,5-isoquinolinediol (IQD), and found that IQD blocked METH-induced increases in Crh and Avp mRNA expression. Together, these results indicate that METH produced changes in neuropeptide transcription by both activation of the cAMP/CREB pathway and stimulation of TET-dependent DNA hydroxymethylation. These results provide molecular evidence for epigenetic controls of METH-induced changes in the expression of neuropeptides.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Betina Gonzalez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Veronica Bisagno
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA.
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA IRP, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
41
|
Coplan JD, Lu D, El Sehamy AM, Tang C, Jackowski AP, Abdallah CG, Nemeroff CB, Owens MJ, Mathew SJ, Gorman JM. Early Life Stress Associated With Increased Striatal N-Acetyl-Aspartate: Cerebrospinal Fluid Corticotropin-Releasing Factor Concentrations, Hippocampal Volume, Body Mass and Behavioral Correlates. ACTA ACUST UNITED AC 2018; 2. [PMID: 29963652 PMCID: PMC6020138 DOI: 10.1177/2470547018768450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction Using proton magnetic resonance spectroscopy imaging, the effects of early
life stress on nonhuman primate striatal neuronal integrity were examined as
reflected by N-acetyl aspartate (NAA) concentrations. NAA
measures were interrogated through examining their relationship to
previously documented early life stress markers—cerebrospinal fluid
corticotropin-releasing factor concentrations, hippocampal volume, body
mass, and behavioral timidity. Rodent models of depression exhibit increases
in neurotrophic effects in the nucleus accumbens. We hypothesized that
rearing under conditions of early life stress (variable foraging demand,
VFD) would produce persistent elevations of NAA concentrations (in absolute
or ratio form) in ventral striatum/caudate nucleus (VS/CN) with altered
correlation to early life stress markers. Methods Eleven bonnet macaque males reared under VFD conditions and seven age-matched
control subjects underwent proton magnetic resonance spectroscopy imaging
during young adulthood. Voxels were placed over VS/CN to capture nucleus
accumbens. Cisternal cerebrospinal fluid corticotropin-releasing factor
concentrations, hippocampal volume, body mass, and response to a human
intruder had been previously determined. Results VFD-reared monkeys exhibited significantly increased NAA/creatine
concentrations in right VS/CN in comparison to normally reared controls,
controlling for multiple comparisons. In comparison to controls, VFD
cerebrospinal fluid corticotropin-releasing factor concentrations were
directly associated with right VS/CN absolute NAA. Left hippocampal volume
was inversely associated with left VS/CN NAA/creatine in VFD reared but not
in controls. Disruption of a normative inverse correlation between left
VS/CN NAA and body mass was noted in VFD. Only non-VFD subjects exhibited a
direct relationship between timidity response to an intruder and right VS/CN
NAA. Conclusion Early life stress produced persistent increases in VS/CN NAA, which
demonstrated specific patterns of association (or lack thereof) to early
life stress markers in comparison to non-VFD subjects. The data are broadly
consistent with a stable nonhuman primate phenotype of anxiety and mood
disorder vulnerability whereby in vivo indicators of neuronal integrity,
although reduced in hippocampus, are increased in striatum. The findings may
provide a catalyst for further studies in humans and other species regarding
a reciprocal hippocampal/nucleus accumbens relationship in affective
disorders.
Collapse
Affiliation(s)
- Jeremy D Coplan
- Department of Psychiatry & Behavioral Sciences, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Dunyue Lu
- McLaren Behavioral Health Services, Flint Township, MI, USA
| | | | - Cheuk Tang
- Departments of Psychiatry, Neuroscience, and Radiology, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Miami Health Systems, Miami, NY, USA
| | - Michael J Owens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA, USA
| | - Sanjay J Mathew
- Mental Health Care Line, Michael E. Debakey VA Medical Center, Houston, TX, USA; Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jack M Gorman
- Franklin Behavioral Health Care Consultants and Critica LLC, Bronx, New York, USA
| |
Collapse
|
42
|
Pexacerfont as a CRF1 antagonist for the treatment of withdrawal symptoms in men with heroin/methamphetamine dependence: a randomized, double-blind, placebo-controlled clinical trial. Int Clin Psychopharmacol 2018; 33:111-119. [PMID: 29064909 DOI: 10.1097/yic.0000000000000200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We assessed the efficacy of pexacerfont, a CRF1 antagonist, for the treatment of withdrawal symptoms. In this randomized, double-blind, placebo-controlled clinical trial, male patients with amphetamine or opioid dependence, on the basis of the Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV-TR), in the age range 18-55 years, received either pexacerfont or placebo (300, 200, and 100 mg/day in the first, second, and third week, respectively). No antidepressants, behavioral interventions, or substitution therapy were administered. Candidates were excluded if they had DSM-IV-TR axis I or II disorders (other than depressive/anxiety disorders). The primary outcomes were difference in the distribution of positive urine test results for heroin and methamphetamine at the end of the trial, and the mean difference in the change in the Visual Analog Scale (VAS) score for craving from the baseline to the endpoint between the two groups. No significant difference was detected for urine test results, but a significant difference was observed for craving scores. Also, significant time×treatment interactions were found for all the scales including VAS craving, VAS temptation severity, frequency of temptation, Clinical Opiate Withdrawal Scale, Amphetamine Withdrawal Questionnaire, Beck Anxiety Inventory, and Beck Depression Inventory II. Our findings favor pexacerfont as a potential treatment for withdrawal from drug dependence; however, further comprehensive studies are warranted.
Collapse
|
43
|
Ferrer-Pérez C, Reguilón MD, Manzanedo C, Aguilar MA, Miñarro J, Rodríguez-Arias M. Antagonism of corticotropin-releasing factor CRF 1 receptors blocks the enhanced response to cocaine after social stress. Eur J Pharmacol 2018; 823:87-95. [PMID: 29391155 DOI: 10.1016/j.ejphar.2018.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF2 receptor antagonist Astressin2-B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF1 receptor antagonist, while peripheral CRF2 receptor antagonist did not show effect. Acute administration of Astressin2-B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Carmen Manzanedo
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Asunción Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
44
|
Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:423-434. [PMID: 29383398 DOI: 10.1007/s00210-018-1470-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022]
Abstract
Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+ neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment.
Collapse
|
45
|
Yanovich C, Kirby ML, Michaelevski I, Yadid G, Pinhasov A. Social rank-associated stress vulnerability predisposes individuals to cocaine attraction. Sci Rep 2018; 8:1759. [PMID: 29379100 PMCID: PMC5789078 DOI: 10.1038/s41598-018-19816-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Studies of personality have suggested that dissimilarities in ability to cope with stressful situations results in differing tendency to develop addictive behaviors. The present study used selectively bred stress-resilient, socially-dominant (Dom) and stress-vulnerable, socially-submissive (Sub) mice to investigate the interaction between environmental stress and inbred predisposition to develop addictive behavior to cocaine. In a Conditioned Place Preference (CPP) paradigm using cocaine, Sub mice displayed an aversion to drug, whereas Dom mice displayed drug attraction. Following a 4-week regimen of Chronic Mild Stress (CMS), Sub mice in CPP displayed a marked increase (>400%) in cocaine attraction, whereas Dom mice did not differ in attraction from their non-stressed state. Examination of hippocampal gene expression revealed in Sub mice, exposure to external stimuli, stress or cocaine, increased CRH expression (>100%), which was evoked in Dom mice only by cocaine exposure. Further, stress-induced decreases in DRD1 (>60%) and DRD2 (>50%) expression in Sub mice differed markedly from a complete lack of change in Dom mice. From our findings, we propose that social stratification dictates vulnerability to stress-induced attraction that may lead to addiction via differential regulation of hippocampal response to dopaminergic input, which in turn may influence differing tendency to develop addictive behaviors.
Collapse
Affiliation(s)
- Chen Yanovich
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Michael L Kirby
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Gal Yadid
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
46
|
Logrip ML, Walker JR, Ayanwuyi LO, Sabino V, Ciccocioppo R, Koob GF, Zorrilla EP. Evaluation of Alcohol Preference and Drinking in msP Rats Bearing a Crhr1 Promoter Polymorphism. Front Psychiatry 2018; 9:28. [PMID: 29497387 PMCID: PMC5818434 DOI: 10.3389/fpsyt.2018.00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022] Open
Abstract
Alcoholism is a pervasive societal problem, yet available pharmacotherapies fail to treat most sufferers. The type 1 corticotropin-releasing factor (CRF1) receptor has received much attention for its putative role in the progression to alcohol dependence, although at present its success in clinical trials has been limited. Two single-nucleotide polymorphisms in the rat Crhr1 promoter have been identified in the Marchigian substrain of Sardinian alcohol-preferring (msP) rats. Unlike other Wistar-derived alcohol-preferring lines, nondependent msP rats reduce their alcohol self-administration in response to CRF1 antagonists and show increased brain CRF1 expression. The current study tested the hypotheses that the A alleles in the Crhr1 promoter polymorphisms are: (1) unique to msP (vs. CRF1 antagonist-insensitive) alcohol-preferring lines and (2) associate with greater alcohol preference or intake. Two related polymorphisms were observed in which both loci on a given chromosome were either mutant variant (A) or wild-type (G) alleles within the distal Crhr1 promoter of 17/25 msP rats (68%), as compared to 0/23 Indiana P rats, 0/20 Sardinian alcohol-preferring rats bred at Scripps (Scr:sP) and 0/21 outbred Wistar rats. Alcohol consumption in msP rats did not differ according to the presence of Crhr1 A alleles, but greater alcohol preference (98%) was observed in A allele homozygous msP rats (AA) compared to msP rats with wild-type (GG, 91%) or heterozygous (GA, 91%) genotypes. The greater alcohol preference reflected decreased water intake, accompanied by reduced total calories consumed by AA rats. The data show that msP rats differentially possess mutant A variant alleles in the polymorphic promoter region of the Crhr1 gene that may differentially regulate consumption.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States.,Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - John R Walker
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Lydia O Ayanwuyi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Valentina Sabino
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States.,Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Eric P Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
47
|
Bouhlal S, Ellefsen KN, Sheskier MB, Singley E, Pirard S, Gorelick DA, Huestis MA, Leggio L. Acute effects of intravenous cocaine administration on serum concentrations of ghrelin, amylin, glucagon-like peptide-1, insulin, leptin and peptide YY and relationships with cardiorespiratory and subjective responses. Drug Alcohol Depend 2017; 180:68-75. [PMID: 28881319 PMCID: PMC5654385 DOI: 10.1016/j.drugalcdep.2017.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Food intake and use of drugs of abuse like cocaine share common central and peripheral physiological pathways. Appetitive hormones play a major role in regulating food intake; however, little is known about the effects of acute cocaine administration on the blood concentrations of these hormones in cocaine users. METHODS We evaluated serum concentrations of six appetitive hormones: ghrelin (total and acyl-ghrelin), amylin, glucagon-like peptide-1 (GLP-1), insulin, leptin and peptide YY (PYY), as well as acute cardiorespiratory and subjective responses of 8 experienced cocaine users who received 25mg intravenous (IV) cocaine. RESULTS Serum concentrations of GLP-1 (p=0.014) and PYY (p=0.036) were significantly decreased one hour following IV cocaine administration; there was a trend towards a decrease for insulin (p=0.055) and amylin (p=0.063) concentrations, while no significant IV cocaine effect was observed for ghrelin (total or acyl-ghrelin) or leptin concentrations (p's≫>0.5). We also observed associations between hormone concentrations acutely affected by IV cocaine (GLP-1, PYY, insulin, amylin) and some cocaine-related cardiorespiratory and subjective responses (e.g., increased heart and respiratory rates; feeling high and anxious). DISCUSSION These findings show a significant effect of acute IV cocaine administration on some appetitive hormones and suggest potential associations between these hormones and cocaine-related cardiorespiratory and subjective responses. Additional research is needed to further investigate the potential mechanisms underlining these associations.
Collapse
Affiliation(s)
- Sofia Bouhlal
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, United States
| | - Kayla N. Ellefsen
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Mikela B. Sheskier
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, United States
| | - Erick Singley
- Clinical Core Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Sandrine Pirard
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - David A. Gorelick
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, United States; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI 02906, United States.
| |
Collapse
|
48
|
Fahradpour M, Keov P, Tognola C, Perez-Santamarina E, McCormick PJ, Ghassempour A, Gruber CW. Cyclotides Isolated from an Ipecac Root Extract Antagonize the Corticotropin Releasing Factor Type 1 Receptor. Front Pharmacol 2017; 8:616. [PMID: 29033832 PMCID: PMC5627009 DOI: 10.3389/fphar.2017.00616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclotides are plant derived, cystine-knot stabilized peptides characterized by their natural abundance, sequence variability and structural plasticity. They are abundantly expressed in Rubiaceae, Psychotrieae in particular. Previously the cyclotide kalata B7 was identified to modulate the human oxytocin and vasopressin G protein-coupled receptors (GPCRs), providing molecular validation of the plants' uterotonic properties and further establishing cyclotides as valuable source for GPCR ligand design. In this study we screened a cyclotide extract derived from the root powder of the South American medicinal plant ipecac (Carapichea ipecacuanha) for its GPCR modulating activity of the corticotropin-releasing factor type 1 receptor (CRF1R). We identified and characterized seven novel cyclotides. One cyclotide, caripe 8, isolated from the most active fraction, was further analyzed and found to antagonize the CRF1R. A nanomolar concentration of this cyclotide (260 nM) reduced CRF potency by ∼4.5-fold. In contrast, caripe 8 did not inhibit forskolin-, or vasopressin-stimulated cAMP responses at the vasopressin V2 receptor, suggesting a CRF1R-specific mode-of-action. These results in conjunction with our previous findings establish cyclotides as modulators of both classes A and B GPCRs. Given the diversity of cyclotides, our data point to other cyclotide-GPCR interactions as potentially important sources of drug-like molecules.
Collapse
Affiliation(s)
- Mohsen Fahradpour
- Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria.,Medicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehran, Iran
| | - Peter Keov
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, BrisbaneQLD, Australia
| | - Carlotta Tognola
- Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | | | - Peter J McCormick
- School of Veterinary Medicine, University of SurreyGuildford, United Kingdom
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehran, Iran
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria.,Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
49
|
Leonard MZ, DeBold JF, Miczek KA. Escalated cocaine "binges" in rats: enduring effects of social defeat stress or intra-VTA CRF. Psychopharmacology (Berl) 2017; 234:2823-2836. [PMID: 28725939 PMCID: PMC5709163 DOI: 10.1007/s00213-017-4677-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Exposure to intermittent social defeat stress elicits corticotropin releasing factor (CRF) release into the VTA and induces long-term modulation of mesocorticolimbic dopamine activity in rats. These adaptations are associated with an intense cocaine-taking phenotype, which is prevented by CRF receptor antagonists. OBJECTIVE The present studies examine whether infusion of CRF into the VTA is sufficient to escalate cocaine-taking behavior, in the absence of social defeat experience. Additionally, we aimed to characterize changes in cocaine valuation that may promote binge-like cocaine intake. METHODS Male Long-Evans rats were microinjected into the VTA with CRF (50 or 500 ng/side), vehicle, or subjected to social defeat stress, intermittently over 10 days. Animals were then trained to self-administer IV cocaine (FR5). Economic demand for cocaine was evaluated using a within-session behavioral-economics threshold procedure, which was followed by a 24-h extended access "binge." RESULTS Rats that experienced social defeat or received intra-VTA CRF microinfusions (50 ng) both took significantly more cocaine than controls over the 24-h binge but showed distinct patterns of intake. Behavioral economic analysis revealed that individual demand for cocaine strongly predicts binge-like consumption, and demand elasticity (i.e. α) is augmented by intra-VTA CRF, but not by social defeat. The effects of CRF on cocaine-taking were also prevented by intra-VTA pretreatment with CP376395, but not Astressin-2B. CONCLUSIONS Repeated infusion of CRF into the VTA persistently alters cocaine valuation and intensifies binge-like drug intake in a CRF-R1-dependent manner. Conversely, the persistent pattern of cocaine bingeing induced by social defeat stress may suggest impaired inhibitory control, independent of reward valuation.
Collapse
Affiliation(s)
| | - Joseph F DeBold
- Department of Psychology, Tufts University, Medford, MA, USA
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, MA, USA.
- Department of Neuroscience, Tufts University, Boston, MA, USA.
| |
Collapse
|
50
|
Teleb M, Kuppast B, Spyridaki K, Liapakis G, Fahmy H. Synthesis of 2-imino and 2-hydrazono thiazolo[4,5- d ]pyrimidines as corticotropin releasing factor (CRF) antagonists. Eur J Med Chem 2017; 138:900-908. [DOI: 10.1016/j.ejmech.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022]
|