1
|
Shen R, Fang Q, Zhang K, Xiao Y, Cheng M, Xiong B, Zhou W. Optimization of activated sludge polyhydroxyalkanoates(PHAs) synthesis system by performing sludge activity recovery experiments and varying the initial sludge concentration. ENVIRONMENTAL TECHNOLOGY 2024; 45:4682-4690. [PMID: 37970915 DOI: 10.1080/09593330.2023.2283059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/17/2023] [Indexed: 11/19/2023]
Abstract
Polyhydroxyalkanoates(PHAs) are considered a good alternative to petroleum-based plastics because of their good biodegradability and biocompatibility. The synthesis of PHAs using activated sludge can not only solve the problem of the high cost of pure cultures but also improve the utilization value of activated sludge. In this study, sludge activity recovery experiments were firstly conducted and the effects of different initial sludge concentrations on the activated sludge PHAs synthesis system were further investigated. the initial sludge concentrations were 1#SBR (2800 ± 50) mg/L, 2#SBR (4200 ± 50) mg/L, and 3#SBR (5500 ± 50) mg/L. The results showed that the activity, sedimentation performance and PHAs synthesis capacity of activated sludge were enhanced after the sludge activity recovery experiment. At the initial sludge concentration of 4200 mg/L, the activated sludge PHAs synthesis system was operated stably and the synthesis efficiency of PHAs was enhanced. In contrast, at the initial sludge concentration of 2800 and 5500 mg/L, the steady state of the activated sludge PHAs synthesis system was damaged to different degrees at different times, and the synthesis efficiency of PHAs was greatly reduced.
Collapse
Affiliation(s)
- Ruoyu Shen
- School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Qian Fang
- School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Kequan Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Yanyu Xiao
- School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Meiying Cheng
- School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Bowen Xiong
- School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Wuyang Zhou
- School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Jantharadej K, Jaroensawat J, Matanachai K, Limpiyakorn T, Tobino T, Thayanukul P, Suwannasilp BB. Bioaugmentation of Thauera mechernichensis TL1 for enhanced polyhydroxyalkanoate production in mixed microbial consortia for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170240. [PMID: 38278252 DOI: 10.1016/j.scitotenv.2024.170240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Polyhydroxyalkanoate (PHA) is a fully biodegradable bioplastic. To foster a circular economy, the integration of PHA production into wastewater treatment facilities can be accomplished using mixed microbial consortia. The effectiveness of this approach relies greatly on the enrichment of PHA-accumulating microorganisms. Hence, our study focused on bioaugmenting Thauera mechernichensis TL1 into mixed microbial consortia with the aim of enriching PHA-accumulating microorganisms and enhancing PHA production. Three sequencing batch reactors-SBRctrl, SBR2.5%, and SBR25%-were operated under feast/famine conditions. SBR2.5% and SBR25% were bioaugmented with T. mechernichensis TL1 at 2.5%w/w of mixed liquor volatile suspended solids (MLVSS) and 25%w/w MLVSS, respectively, while SBRctrl was not bioaugmented. SBR2.5% and SBR25% achieved maximum PHA accumulation capacities of 56.3 %gPHA/g mixed liquor suspended solids (MLSS) and 50.2 %gPHA/gMLSS, respectively, which were higher than the 25.4 %gPHA/gMLSS achieved by SBRctrl. The results of quantitative polymerase chain reaction targeting the 16S rRNA gene specific to T. mechernichensis showed higher abundances of T. mechernichensis in SBR2.5% and SBR25% compared with SBRctrl in the 3rd, 17th, and 31st cycles. Fluorescence in situ hybridization, together with fluorescent staining of PHA with Nile blue A, confirmed PHA accumulation in Thauera spp. The study demonstrated that bioaugmentation of T. mechernichensis TL1 at 2.5%w/w MLVSS is an effective strategy to enhance PHA accumulation and facilitate the enrichment of PHA-accumulating microorganisms in mixed microbial consortia. The findings could contribute to the advancement of PHA production from wastewater, enabling the transformation of wastewater treatment plants into water and resource recovery facilities.
Collapse
Affiliation(s)
- Krittayapong Jantharadej
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jarataroon Jaroensawat
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Kanin Matanachai
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Tomohiro Tobino
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Parinda Thayanukul
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
| | - Benjaporn Boonchayaanant Suwannasilp
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
de Mello AFM, Vandenberghe LPDS, Machado CMB, Brehmer MS, de Oliveira PZ, Binod P, Sindhu R, Soccol CR. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 393:130078. [PMID: 37993072 DOI: 10.1016/j.biortech.2023.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.
Collapse
Affiliation(s)
- Ariane Fátima Murawski de Mello
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| | - Clara Matte Borges Machado
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Mateus Seleme Brehmer
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | | | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Traina F, Corsino SF, Capodici M, Licitra E, Di Bella G, Torregrossa M, Viviani G. Combined recovery of polyhydroxyalkanoates and reclaimed water in the mainstream of a WWTP for agro-food industrial wastewater valorisation by membrane bioreactor technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119836. [PMID: 38141345 DOI: 10.1016/j.jenvman.2023.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
The present study investigated the combined production of reclaimed water for reuse purposes and polyhydroxyalkanoates (PHA) from an agro-food industrial wastewater. A pilot plant implementing a two-stage process for PHA production was studied. It consisted of a mainstream sequencing batch membrane bioreactor (SBMBR) in which selection of PHA-accumulating organisms and wastewater treatment were carried out in, and a side-stream fed-batch reactor (FBR) where the excess sludge from the SBMBR was used for PHA accumulation. The performance of the SBMBR was compared with that of a conventional sequencing batch reactor (SBR) treating the same wastewater under different food to microorganisms' ratios (F/M) ranging between 0.125 and 0.650 kgCOD kgTSS-3 d-1. The SBMBR enabled to obtain very high-quality effluent in compliance with the relevant national (Italy) and European regulations (Italian DM 185/03 and EU, 2020/741) in the field of wastewater reclamation, whereas the performances in the SBR collapsed at F/M higher than 0.50 kgCOD kgTSS-1d-1. A maximum intracellular storage of 45% (w/w) and a production yield of 0.63 gPHA L-1h-1 were achieved when the SBMBR system was operated with a F/M ratio close to 0.50 kgCOD kgTSS-1d-1. This resulted approximately 35% higher than those observed in the SBR, since the ultrafiltration membrane avoided the washout of dispersed and filamentous bacteria capable of storing PHA. Furthermore, while maximizing PHA productivity in conventional SBR systems led to process dysfunctions, in the SBMBR system it helped mitigate these issues by reducing membrane fouling behaviour. The results of this study supported the possibility to achieve combined recovery of reclaimed water and high-value added bioproducts using membrane technology, leading the way for agro-food industrial wastewater valorization in the frame of a circular economy model.
Collapse
Affiliation(s)
- Francesco Traina
- Department of Engineering, University of Palermo, Viale Delle Scienze, Ed. 8, 90128, Palermo, Italy.
| | - Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale Delle Scienze, Ed. 8, 90128, Palermo, Italy.
| | - Marco Capodici
- Department of Engineering, University of Palermo, Viale Delle Scienze, Ed. 8, 90128, Palermo, Italy
| | - Enrico Licitra
- Facoltà di Ingegneria e Architettura, Università Degli Studi di Enna ''Kore'', Cittadella Universitaria, 94100, Enna, Italy
| | - Gaetano Di Bella
- Facoltà di Ingegneria e Architettura, Università Degli Studi di Enna ''Kore'', Cittadella Universitaria, 94100, Enna, Italy
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, Viale Delle Scienze, Ed. 8, 90128, Palermo, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale Delle Scienze, Ed. 8, 90128, Palermo, Italy
| |
Collapse
|
5
|
Noutsopoulos C, Gkoutzioupa V, Katsou E, Frison N, Fatone F, Malamis S. Integrated selection of PHA-storing biomass and nitrogen removal via nitrite from sludge reject water: a mathematical model. ENVIRONMENTAL TECHNOLOGY 2024; 45:73-86. [PMID: 35794016 DOI: 10.1080/09593330.2022.2099311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
One of the most recent innovations to promote a circular economy during wastewater treatment is the production of biopolymers. It has recently been demonstrated that it is possible to integrate the production of biopolymers in the form of polyhydroxyalkanoates (PHA) with nitrogen removal via nitrite during the treatment of sludge reject water. In the present study, simulation of a new process for bioresource recovery was conducted by an appropriate modification of the Activated Sludge Model 3. The process consists of the integrated nitrogen removal via nitrite from sludge reject water and the selection of PHA-storing biomass by inducing a feast and famine regime under aerobic and anoxic conditions. According to the results, it is anticipated that simulation data matched very satisfactorily with the experimental data and confirmed the main experimental observation, showing that during the famine period the PHA depletion was almost complete due to the availability of nitrite as the electron acceptor. Simulation results indicate that the selection of the volumetric organic loading rate and of the relative duration of the aerobic feast/anoxic famine duration is critical in order to allow for the effective denitritation of the internally stored PHA during the famine phase.
Collapse
Affiliation(s)
- Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece
| | | | - Evina Katsou
- Department of Civil & Environmental Engineering, Uxbridge Campus, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesco Fatone
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, Ancona, Italy
| | - Simos Malamis
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
6
|
de Vrije T, Nagtegaal RM, Veloo RM, Kappen FHJ, de Wolf FA. Medium chain length polyhydroxyalkanoate produced from ethanol by Pseudomonas putida grown in liquid obtained from acidogenic digestion of organic municipal solid waste. BIORESOURCE TECHNOLOGY 2023; 375:128825. [PMID: 36878376 DOI: 10.1016/j.biortech.2023.128825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Production of medium chain length polyhydroxyalkanoate (mcl-PHA) up to about 6 g.L-1 was obtained by feeding ethanol to Pseudomonas putida growing in liquid obtained from acidogenic digestion of organic municipal solid waste. Washing the wet, heat-inactivated Pseudomonas cells at the end of the fermentation with ethanol obviated the need of drying the biomass and enabled the removal of contaminating lipids before solvent-mediated extraction of PHA. Using 'green' solvents, 90 to near 100% of the mcl-PHA was extracted and purities of 71-78% mcl-PHA were reached already by centrifugation and decantation without further filtration for biomass removal. The mcl-PHA produced in this way consists of 10-18% C8, 72-78% C10 and 8-12% C12 chains (entirely medium chain length), has a crystallinity and melting temperature of ∼13% and ∼49 °C, respectively, and is a stiff rubberlike, colourless material at room temperature.
Collapse
Affiliation(s)
- Truus de Vrije
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands.
| | - Ricardo M Nagtegaal
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Ruud M Veloo
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Frans H J Kappen
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
7
|
Piwowarek K, Lipińska E, Kieliszek M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl Microbiol Biotechnol 2023; 107:2169-2208. [PMID: 36929188 PMCID: PMC10033485 DOI: 10.1007/s00253-023-12458-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
8
|
Chou HC, Chen CH, Huang CM, Wang HJ, Hsiung YC, Liang CH, Ou CM, Guo GL. Screening potential polyhydroxyalkanoate-producing bacteria from wastewater sludge. Arch Microbiol 2023; 205:120. [PMID: 36928394 DOI: 10.1007/s00203-023-03446-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
We applied fluorescence staining of Nile red, polymerase chain reaction (PCR), and carbon substrate utilization and pressure tolerance analysis to execute three-stage screening for potential polyhydroxyalkanoate (PHA) producers in the sludge samples of 21 large-scale wastewater treatment plants of city and industrial parks in Taiwan area. Total 35,429 colonies were grown on 196 plates, the screened 30 strains were subjected to 16S rRNA analysis, and 18 identified genera belonged to Proteobacteria (67%), Firmicutes (17%), and Actinomycetota (16%). The PHA accumulation results revealed that nine genera (50% of 18 screened) produced PHAs by limiting the nitrogen source and excess single carbon sources of glucose in an aerobic status. The PHA accumulation percentage was 1.44-58.77% at dry cell weight, and the theoretical yield from glucose was 0.52-58.76%. Our results indicate that our triple-screening method is promising for identifying a high biodiversity of PHA-accumulating bacteria from activated sludge for future industrial applications.
Collapse
Affiliation(s)
- Hung-Che Chou
- Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Chia-Hsin Chen
- Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Chun-Mei Huang
- Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Hui-Jun Wang
- Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | | | | | - Chung-Mao Ou
- Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Gia-Luen Guo
- Institute of Nuclear Energy Research, Taoyuan City, Taiwan.
| |
Collapse
|
9
|
Botti A, Biagi E, Musmeci E, Breglia A, Degli Esposti M, Fava F, Zanaroli G. Effect of polyhydroxyalkanoates on the microbial reductive dechlorination of polychlorinated biphenyls and competing anaerobic respirations in a marine microbial culture. MARINE POLLUTION BULLETIN 2023; 186:114458. [PMID: 36493518 DOI: 10.1016/j.marpolbul.2022.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The effect of polyhydroxyalkanoates (PHAs) with different composition on the reductive dechlorination activity of a polychlorinated biphenyls (PCBs) dechlorinating marine microbial community and on the activity of sulfate-reducing (SRB) and methanogenic bacteria (MB), were investigated in marine sediment microcosms and compared with the main monomer, 3-hydroxybutyric acid (3HB). Despite PHAs were fermented more slowly than 3HB, all electron donors stimulated constantly sulfate-reduction, methanogenesis and, only transiently, PCB reductive dechlorination. No relevant differences were observed with different compositions of PHAs. According to electron balances, the majority of the supplied electrons (50 %) were consumed by SRB and to less extent by MB (9-31 %), while a small percentage (0.01 %) was delivered to OHRB. In the studied conditions PHAs were confirmed as potential slow‑hydrogen releasing compounds in marine environment but their fermentation rate was sufficiently high to mainly stimulate the competitors of organohalide respring bacteria for electron donors.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Alessia Breglia
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Micaela Degli Esposti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
10
|
Brison A, Rossi P, Derlon N. Single CSTR can be as effective as an SBR in selecting PHA-storing biomass from municipal wastewater-derived feedstock. WATER RESEARCH X 2023; 18:100165. [PMID: 37250287 PMCID: PMC10214291 DOI: 10.1016/j.wroa.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A key step for the production of polyhydroxyalkanoates (PHAs) from organic waste streams is the selection of a biomass with a high PHA-storage capacity (selection-step), which is usually performed in sequencing batch reactors (SBR). A major advancement would be to perform such selection in continuous reactors to facilitate the full-scale implementation of PHA production from municipal wastewater (MWW)-derived feedstock. The present study therefore investigates to what extent a simple continuous-flow stirred-tank reactor (CSTR) represents a relevant alternative to anSBR. To this end, we operated two selection reactors (CSTR vs. SBR) on filtered primary sludge fermentate while performing a detailed analysis of the microbial communities, and monitoring PHA-storage over long-term (∼150 days) and during accumulation batches. Our study demonstrates that a simple CSTR is as effective as an SBR in selecting biomass with high PHA-storage capacity (up to 0.65 gPHA gVSS-1) while being 50% more efficient in terms of substrate to biomass conversion yields. We also show that such selection can occur on VFA-rich feedstock containing nitrogen (N) and phosphorus (P) in excess, whereas previously, selection of PHA-storing organisms in a single CSTR has only been studied under P limitation. We further found that microbial competition was mostly affected by nutrient availability (N and P) rather than by the reactor operation mode (CSTR vs. SBR). Similar microbial communities therefore developed in both selection reactors, while microbial communities were very different depending on N availability. Rhodobacteraceae gen. were most abundant when growth conditions were stable and N-limited, whereas dynamic N- (and P-) excess conditions favoured the selection of the known PHA-storer Comamonas, and led to the highest observed PHA-storage capacity. Overall, we demonstrate that biomass with high storage capacity can be selected in a simple CSTR on a wider range of feedstock than just P-limited ones.
Collapse
Affiliation(s)
- Antoine Brison
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
11
|
Co-Culture of Halotolerant Bacteria to Produce Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Using Sewage Wastewater Substrate. Polymers (Basel) 2022; 14:polym14224963. [PMID: 36433088 PMCID: PMC9699070 DOI: 10.3390/polym14224963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The focus of the current study was the use of sewage wastewater to obtain PHA from a co-culture to produce a sustainable polymer. Two halotolerant bacteria, Bacillus halotolerans 14SM (MZ801771) and Bacillus aryabhattai WK31 (MT453992), were grown in a consortium to produce PHA. Sewage wastewater (SWW) was used to produce PHA, and glucose was used as a reference substrate to compare the growth and PHA production parameters. Both bacterial strains produced PHA in monoculture, but a copolymer was obtained when the co-cultures were used. The co-culture accumulated a maximum of 54% after 24 h of incubation in 10% SWW. The intracellular granules indicated the presence of nucleation sites for granule initiation. The average granule size was recorded to be 231 nm; micrographs also indicated the presence of extracellular polymers and granule-associated proteins. Fourier transform infrared spectroscopy (FTIR) analysis of the polymer produced by the consortium showed a significant peak at 1731 cm-1, representing the C=O group. FTIR also presented peaks in the region of 2800 cm-1 to 2900 cm-1, indicating C-C stretching. Proton nuclear magnetic resonance (1HNMR) of the pure polymer indicated chemical shifts resulting from the proton of hydroxy valerate and hydroxybutyrate, confirming the production of poly(3-hydroxybutyrate-co-3-hydroxy valerate) (P3HBV). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed that the copolymer was biocompatible, even at a high concentration of 5000 µg mL-1. The results of this study show that bacterial strains WK31 and 14SM can be used to synthesize a copolymer of butyrate and valerate using the volatile fatty acids present in the SWW, such as propionic acid or pentanoic acid. P3HBV can also be used to provide an extracellular matrix for cell-line growth without causing any cytotoxic effects.
Collapse
|
12
|
Pei R, Vicente-Venegas G, Van Loosdrecht MCM, Kleerebezem R, Werker A. Quantification of polyhydroxyalkanoate accumulated in waste activated sludge. WATER RESEARCH 2022; 221:118795. [PMID: 35785696 DOI: 10.1016/j.watres.2022.118795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Polyhydroxyalkanoate accumulation experiments at pilot scale were performed with fullscale municipal waste activated sludge. Development of biomass PHA content was quantified by thermogravimetric analysis. Over 48 h the biomass reached up to 0.49 ± 0.03 gPHA/gVSS (n=4). Samples were processed in parallel to characterise the distribution of PHA in the biomass. Selective staining methods and image analysis were performed by Confocal Laser Scanning Microscopy. The image analysis indicated that nominally 55% of this waste activated sludge was engaged in PHA storage activity. Thus even if the biomass PHA content reached 0.49gPHA/gVSS, the accumulating fraction of the biomass was estimated to have attained about 0.64gPHA/gVSS. The combination of quantitative microscopy and polymer mass assessment enabled to distinguish the effect of level of enrichment in PHA storing bacteria and the average PHA storage capacity of the accumulating bacteria. The distribution of microbial 16S rRNA levels did not follow a measurable trend during PHA accumulation.
Collapse
Affiliation(s)
- Ruizhe Pei
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands.
| | - Gerard Vicente-Venegas
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands
| | - Mark C M Van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Alan Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands
| |
Collapse
|
13
|
Wang J, Sun Y, Xia K, Deines A, Cooper R, Pallansch K, Wang ZW. Pivotal role of municipal wastewater resource recovery facilities in urban agriculture: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10743. [PMID: 35670377 DOI: 10.1002/wer.10743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Urban agriculture provides a promising, comprehensive solution to water, energy, and food scarcity challenges resulting from the population growth, urbanization, and the accelerating effects of anthropogenic climate change. Their close access to consumers, profitable business models, and important roles in educational, social, and physical entertainment benefit both developing and developed nations. In this sense, Urban Water Resource Reclamation Facilities (WRRFs) can play a pivotal role in the sustainable implementation of urban agriculture. Reclaimed water as a recovered resource has less supply variability and in certain cases can be of higher quality than other water sources used in agriculture. Another recovered resource, namely, biosolids, as byproduct from wastewater treatment can be put to beneficial use as fertilizers, soil amendments, and construction material additives. The renewable electricity, heat, CO2, and bioplastics produced from WRRFs can also serve as essential resources in support of urban agriculture operation with enhanced sustainability. In short, this review exhibits a holistic picture of the state-of-the-art of urban agriculture in which WRRFs can potentially play a pivotal role. PRACTITIONER POINTS: Reclaimed water can be of higher quality than other sources used in urban agriculture. Biosolids can be put to beneficial use as fertilizers, soil amendments, and construction material additives. The renewable electricity, heat, CO2, and bioplastics produced can also serve as essential resources in support of urban agriculture.
Collapse
Affiliation(s)
- Jiefu Wang
- Center for Applied Water Research and Innovation, Virginia Tech, Ashburn, Virginia, USA
| | - Yuepeng Sun
- Center for Applied Water Research and Innovation, Virginia Tech, Ashburn, Virginia, USA
| | - Kang Xia
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Ross Cooper
- Alexandria Renew Enterprises, Alexandria, Virginia, USA
| | | | - Zhi-Wu Wang
- Center for Applied Water Research and Innovation, Virginia Tech, Ashburn, Virginia, USA
| |
Collapse
|
14
|
Ribeiro JM, Conca V, Santos JMM, Dias DFC, Sayi-Ucar N, Frison N, Oehmen A. Expanding ASM models towards integrated processes for short-cut nitrogen removal and bioplastic recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153492. [PMID: 35104516 DOI: 10.1016/j.scitotenv.2022.153492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
In next-generation water resource recovery facilities (WRRFs), it is becoming increasingly important to save energy costs and promote resource recovery of valuable products. One way of reducing the substantial aeration energy costs at WRRFs is to employ shortcut N removal, while polyhydroxyalkanoate (PHA) production and recovery as bioplastic is a promising means of recovering a valuable product from biosolids. Both objectives can be achieved simultaneously through the Short-Cut Enhanced Phosphorus and PHA Recovery (SCEPPHAR) process. However, current mathematical models have not previously been employed to describe the behavior of such a process, which limits engineering design and optimisation of process operation. This work focusses on extending the ASM3 model towards the description of short-cut nitrogen removal and simultaneous PHA recovery in a sidestream treatment process. The calibrated and validated model described very well the nitritation process coupled with the aerobic feast/anoxic famine process for the selection of PHA producing organisms at a pilot-scale facility operated in Carbonera, Italy, where the normalised root mean squared error (NRMSE) was consistently <20%. Furthermore, the model applied to the PHA selection stage could effectively describe the PHA accumulation stage without recalibration. A simulation study was performed using the modified ASM3 model to assess the relative benefits of the SCEPPHAR process strategy as compared to the fully aerobic selection process for mixed culture PHA production. While the level of PHA production was found to be 34% lower with SCEPPHAR, a 43% savings in volatile fatty acids (VFAs) demand, a 15% decrease in Total suspended solids (TSS) production and a 28% decrease in oxygen demand were also achievable, which could lead to savings in operational costs. This study facilitates the design and optimisation of WRRFs that integrate short-cut N removal with PHA production, saving aeration energy costs while achieving resource recovery.
Collapse
Affiliation(s)
- Joao M Ribeiro
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vincenzo Conca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Jorge M M Santos
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Daniel F C Dias
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Nilay Sayi-Ucar
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Adrian Oehmen
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; School of Chemical Engineering, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
15
|
Production and Characterization of Polyhydroxyalkanoates from Wastewater via Mixed Microbial Cultures and Microalgae. SUSTAINABILITY 2022. [DOI: 10.3390/su14063704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the context of circular economy and sustainable production of materials, this project investigated the feasibility of producing sustainable polyhydroxyalkanoates (PHA) from microalgae and sludge used in the treatment of municipal wastewater. The overall process was studied looking at the main steps: microalgae production, fermentation of the biomass, production and characterization of the PHAs. It was possible to obtain blends of hydroxybutyrate-hydroxyvalerate copolymers with high molecular weights and different compositions depending on the nature of the feedstock (mixed volatile fatty acids). In some cases, almost completely amorphous PHA materials were obtained, suggesting a potential diversification of uses and applications.
Collapse
|
16
|
Yoon J, Oh MK. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. BIORESOURCE TECHNOLOGY 2022; 344:126307. [PMID: 34767907 DOI: 10.1016/j.biortech.2021.126307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Biosynthesis of polyhydroxyalkanoates (PHAs) from C1 gases is highly desirable in solving problems such as climate change and microplastic pollution. PHAs are biopolymers synthesized in microbial cells and can be used as alternatives to petroleum-based plastics because of their biodegradability. Because 50% of the cost of PHA production is due to organic carbon sources and salts, the utilization of costless C1 gases as carbon sources is expected to be a promising approach for PHA production. In this review, strategies for PHA production using C1 gases through fermentation and metabolic engineering are discussed. In particular, autotrophs, acetogens, and methanotrophs are strains that can produce PHA from CO2, CO, and CH4. In addition, integrated bioprocesses for the efficient utilization of C1 gases are introduced. Biorefinery processes from C1 gas into bioplastics are prospective strategies with promising potential and feasibility to alleviate environmental issues.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Rajesh Banu J, Ginni G, Kavitha S, Yukesh Kannah R, Kumar V, Adish Kumar S, Gunasekaran M, Tyagi VK, Kumar G. Polyhydroxyalkanoates synthesis using acidogenic fermentative effluents. Int J Biol Macromol 2021; 193:2079-2092. [PMID: 34774601 DOI: 10.1016/j.ijbiomac.2021.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHA) are natural polyesters synthesized by microbes which consume excess amount of carbon and less amount of nutrients. It is biodegradable in nature, and it synthesized from renewable resources. It is considered as a future polymer, which act as an attractive replacement to petrochemical based polymers. The main hindrance to the commercial application of PHA is the high manufacturing cost. This article provides an overview of different cost-effective substrates, their characteristics and composition, major strains involved in economical production of PHA and biosynthetic pathways leading to accumulation of PHA. This review also covers the operational parameters, various fermentative modes including batch, fed-batch, repeated fed-batch and continuous fed-batch systems, along with advanced feeding strategies such as single pulse carbon feeding, feed forward control, intermittent carbon feeding, feast famine conditions to observe their effects for improving PHA synthesis and associated challenges. In addition, it also presents the economic analysis and future perspectives for the commercialization of PHA production process thereby making the process sustainable and lucrative with the possibility of commercial biomanufacturing.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - G Ginni
- Department of Civil Engineering, Amrita College of Engineering and Technology, Amritagiri, Nagercoil, Tamil Nadu, 629901, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India; Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, 620015, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway.
| |
Collapse
|
18
|
Saratale RG, Cho SK, Saratale GD, Kumar M, Bharagava RN, Varjani S, Kadam AA, Ghodake GS, Palem RR, Mulla SI, Kim DS, Shin HS. An Overview of Recent Advancements in Microbial Polyhydroxyalkanoates (PHA) Production from Dark Fermentation Acidogenic Effluents: A Path to an Integrated Bio-Refinery. Polymers (Basel) 2021; 13:polym13244297. [PMID: 34960848 PMCID: PMC8704710 DOI: 10.3390/polym13244297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Global energy consumption has been increasing in tandem with economic growth motivating researchers to focus on renewable energy sources. Dark fermentative hydrogen synthesis utilizing various biomass resources is a promising, less costly, and less energy-intensive bioprocess relative to other biohydrogen production routes. The generated acidogenic dark fermentative effluent [e.g., volatile fatty acids (VFAs)] has potential as a reliable and sustainable carbon substrate for polyhydroxyalkanoate (PHA) synthesis. PHA, an important alternative to petrochemical based polymers has attracted interest recently, owing to its biodegradability and biocompatibility. This review illustrates methods for the conversion of acidogenic effluents (VFAs), such as acetate, butyrate, propionate, lactate, valerate, and mixtures of VFAs, into the value-added compound PHA. In addition, the review provides a comprehensive update on research progress of VFAs to PHA conversion and related enhancement techniques including optimization of operational parameters, fermentation strategies, and genetic engineering approaches. Finally, potential bottlenecks and future directions for the conversion of VFAs to PHA are outlined. This review offers insights to researchers on an integrated biorefinery route for sustainable and cost-effective bioplastics production.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea; (R.G.S.); (A.A.K.)
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggido, Korea; (S.-K.C.); (G.S.G.)
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea;
- Correspondence:
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University, Vidya Vihar 226 025, Uttar Pradesh, India;
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India;
| | - Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea; (R.G.S.); (A.A.K.)
| | - Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggido, Korea; (S.-K.C.); (G.S.G.)
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University Biomedical, Campus 32, Seoul 10326, Korea;
| | - Sikandar I. Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India;
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea;
| |
Collapse
|
19
|
Estévez-Alonso Á, Pei R, van Loosdrecht MCM, Kleerebezem R, Werker A. Scaling-up microbial community-based polyhydroxyalkanoate production: status and challenges. BIORESOURCE TECHNOLOGY 2021; 327:124790. [PMID: 33582521 DOI: 10.1016/j.biortech.2021.124790] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Conversion of organic waste and wastewater to polyhydroxyalkanoates (PHAs) offers a potential to recover valuable resources from organic waste. Microbial community-based PHA production systems have been successfully applied in the last decade at lab- and pilot-scales, with a total of 19 pilot installations reported in the scientific literature. In this review, research at pilot-scale on microbial community-based PHA production is categorized and subsequently analyzed with focus on feedstocks, enrichment strategies, yields of PHA on substrate, biomass PHA content and polymer characterization. From this assessment, the challenges for further scaling-up of microbial community-based PHA production are identified.
Collapse
Affiliation(s)
- Ángel Estévez-Alonso
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Ruizhe Pei
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Alan Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| |
Collapse
|
20
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
21
|
Umemura RT, Felisberti MI. Plasticization of poly(3‐hydroxybutyrate) with triethyl citrate: Thermal and mechanical properties, morphology, and kinetics of crystallization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P, Ravikumar Y, Zabed HM, Qi X. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review. BIORESOURCE TECHNOLOGY 2020; 306:123132. [PMID: 32220472 DOI: 10.1016/j.biortech.2020.123132] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are inevitably a key biopolymer that has the potential to replace the conventional petrochemical based plastics that pose jeopardy to the environment globally. Even then the reach of PHA in the common market is so restricted. The economy of PHA is such that, even after several attempts the overall production cost seems to be high and this very factor surpasses PHAs usage when compared to the conventional polymers. The major focus of the review relies on the synthesis of PHA from Mixed Microbial Cultures (MMCs), through a 3-stage process most probably utilizing feedstocks from waste streams or models that mimic them. Emphasis was given to the works carried out in the past decade and their coherence with each and every individual criteria (Aeration, Substrate and bioprocess parameters) such that to understand their effect in enhancing the overall production of PHA.
Collapse
Affiliation(s)
- Poorna Chandrika Sabapathy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Katharina Meixner
- University of Natural Resources and Life Sciences, Vienna, Austria; Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
| | - Parthiban Anburajan
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
23
|
Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. WATER 2020. [DOI: 10.3390/w12051431] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advancement of science has facilitated increase in the human lifespan, reflected in economic and population growth, which unfortunately leads to increased exploitation of resources. This situation entails not only depletion of resources, but also increases environmental pollution, mainly due to atmospheric emissions, wastewater effluents, and solid wastes. In this scenario, it is compulsory to adopt a paradigm change, as far as the consumption of resources by the population is concerned, to achieve a circular economy. The recovery and reuse of resources are key points, leading to a decrease in the consumption of raw materials, waste reduction, and improvement of energy efficiency. This is the reason why the concept of the circular economy can be applied in any industrial activity, including the wastewater treatment sector. With this in view, this review manuscript focuses on demonstrating the challenges and opportunities in applying a circular economy in the water sector. For example, reclamation and reuse of wastewater to increase water resources, by paying particular attention to the risks for human health, recovery of nutrients, or highly added-value products (e.g., metals and biomolecules among others), valorisation of sewage sludge, and/or recovery of energy. Being aware of this situation, in the European, Union 18 out of 27 countries are already reusing reclaimed wastewater at some level. Moreover, many wastewater treatment plants have reached energy self-sufficiency, producing up to 150% of their energy requirements. Unfortunately, many of the opportunities presented in this work are far from becoming a reality. Still, the first step is always to become aware of the problem and work on optimizing the solution to make it possible.
Collapse
|
24
|
Ivorra-Martinez J, Verdu I, Fenollar O, Sanchez-Nacher L, Balart R, Quiles-Carrillo L. Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness. Polymers (Basel) 2020; 12:polym12051118. [PMID: 32422915 PMCID: PMC7285169 DOI: 10.3390/polym12051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) represent a promising group of bacterial polyesters for new applications. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is a very promising bacterial polyester with potential uses in the packaging industry; nevertheless, as with many (almost all) bacterial polyesters, PHBH undergoes secondary crystallization (aging) which leads to an embrittlement. To overcome or minimize this, in the present work a flexible petroleum-derived polyester, namely poly(ε-caprolactone), was used to obtain PHBH/PCL blends with different compositions (from 0 to 40 PCL wt %) using extrusion followed by injection moulding. The thermal analysis of the binary blends was studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TGA). Both TGA and DSC revealed immiscibility between PHBH and PCL. Mechanical dynamic thermal analysis (DMTA) allowed a precise determination of the glass transition temperatures (Tg) as a function of the blend composition. By means of field emission scanning electron microscopy (FESEM), an internal structure formed by two phases was observed, with a PHBH-rich matrix phase and a finely dispersed PCL-rich phase. These results confirmed the immiscibility between these two biopolymers. However, the mechanical properties obtained through tensile and Charpy tests, indicated that the addition of PCL to PHBH considerably improved toughness. PHBH/PCL blends containing 40 PCL wt % offered an impact resistance double that of neat PHBH. PCL addition also contributed to a decrease in brittleness and an improvement in toughness and some other ductile properties. As expected, an increase in ductile properties resulted in a decrease in some mechanical resistant properties, e.g., the modulus and the strength (in tensile and flexural conditions) decreased with increasing wt % PCL in PHBH/PCL blends.
Collapse
|
25
|
Langford A, Chan CM, Pratt S, Garvey CJ, Laycock B. The morphology of crystallisation of PHBV/PHBV copolymer blends. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Zeng F, Jin W, Zhao Q. Operation performance of an A/O process combined sewage sludge treatment and phosphorus recovery using human urine. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2597-2607. [PMID: 30767924 DOI: 10.2166/wst.2019.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel sewage sludge treatment process is developed in which sludge anaerobically phosphorus (P) released with the temperature control/ultrasonic treatment and recovery with human urine are incorporated to a conventional anaerobic/aerobic (A/O) process. The results showed that temperature affected the anaerobic P release and the maximum orthophosphate (PO4 3-P) release rate was 21.68 mg PO4 3-P/(g MLVSS.h) at 20 °C. The optimal specific energy of ultrasonic treatment was 15,000 kJ/kg TS, at which the solubilization degree of soluble chemical oxygen demand (SCOD) was 37.93%, which verified that the anaerobic sludge flocs were broken and the organic matter was obviously released. Human urine and P-rich sludge stream could be verified as a feasible way of P recovery in the form of struvite. The output of P in the combined A/O treatment process consisted of three pathways (i.e., effluent wastewater, sewage sludge, and P recovery). The influent P could be recovered by 22.84% and about 1.48 g/d potential struvite could be recovered from the anaerobic sludge flow using 0.27 L/d-human urine. The mass balances of COD and nitrogen (N) indicated that the combined A/O process also improved the organic mineralization and the removal of N.
Collapse
Affiliation(s)
- Fanzhe Zeng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China E-mail:
| | - Wenbiao Jin
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China E-mail:
| |
Collapse
|
27
|
Wijeyekoon S, Carere CR, West M, Nath S, Gapes D. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors. WATER RESEARCH 2018; 140:1-11. [PMID: 29679930 DOI: 10.1016/j.watres.2018.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/12/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Organic waste residues can be hydrothermally treated to produce organic acid rich liquors. These hydrothermal liquors are a potential feedstock for polyhydroxyalkanoate (PHA) production. We investigated the effect of dissolved oxygen concentration and substrate feeding regimes on PHA accumulation and yield using two hydrothermal liquors derived from a mixture of primary and secondary municipal wastewater treatment sludge and food waste. The enriched culture accumulated a maximum of 41% PHA of cell dry weight within 7 h; which is among the highest reported for N and P rich hydrothermal liquors. Recovered PHA was 77% polyhydroxybutyrate and 23% polyhydroxyvalerate by mass. The families Rhodocyclaceae (84%) and Saprospiraceae (20.5%) were the dominant Proteobacteria (73%) in the enriched culture. The third most abundant bacterial genus, Bdellovibrio, includes species of known predators of PHA producers which may lead to suboptimal PHA accumulation. The PHA yield was directly proportional to DO concentration for ammonia stripped liquor (ASL) and inversely proportional to DO concentration for low strength liquor (LSL). The highest yield of 0.50 Cmol PHA/Cmol substrate was obtained for ASL at 25% DO saturation. A progressively increasing substrate feeding regime resulted in increased PHA yields. These findings demonstrate that substrate feeding regime and oxygen concentration can be used to control the PHA yield and accumulation rate thereby enhancing PHA production viability from nutrient rich biomass streams.
Collapse
Affiliation(s)
- Suren Wijeyekoon
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand.
| | - Carlo R Carere
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand; GNS Science, Wairakei Research Centre, 114 Karetoto Road, Wairakei, Taupō, 3352, New Zealand
| | - Mark West
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Shresta Nath
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Daniel Gapes
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| |
Collapse
|
28
|
Kumar M, Ghosh P, Khosla K, Thakur IS. Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge. BIORESOURCE TECHNOLOGY 2018; 255:111-115. [PMID: 29414155 DOI: 10.1016/j.biortech.2018.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 06/08/2023]
Abstract
In the current study, the feasibility of utilizing municipal secondary wastewater sludge for Polyhydroxyalkanoate (PHA) extraction was improved by optimization of various parameters (temperature, duration and concentration of sludge solids). Optimized process parameters resulted in PHA recovery of 0.605 g, significantly higher than un-optimized conditions. The characterization of PHA was carried out by GC-MS, FT-IR and NMR (1H and 13C) spectroscopy. The PHA profile was found to be dominated by mcl PHA (58%) along with other diverse PHA. The results of the present study show rich diversity of PHA extracted from a raw material which is readily available at minimal cost. In conclusion, exploring the potential of wastes for production of bioplastics not only reduces the cost of bioplastic production, but also provides a sustainable means for waste management.
Collapse
Affiliation(s)
- Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India
| | - Khushboo Khosla
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
29
|
Munir S, Jamil N. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source. J Basic Microbiol 2018; 58:247-254. [DOI: 10.1002/jobm.201700276] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sajida Munir
- Department of Microbiology and Molecular Genetics; University of the Punjab; Lahore Pakistan
- Department of Zoology; University of Lahore; Sargodha Pakistan
| | - Nazia Jamil
- Department of Microbiology and Molecular Genetics; University of the Punjab; Lahore Pakistan
| |
Collapse
|
30
|
Nakajima H, Dijkstra P, Loos K. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers (Basel) 2017; 9:polym9100523. [PMID: 30965822 PMCID: PMC6418730 DOI: 10.3390/polym9100523] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 11/23/2022] Open
Abstract
The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versatile and adaptable polymer chemical structures and to achieve target properties and functionalities. In this review, biobased polymers are categorized as those that are: (1) upgrades from biodegradable polylactides (PLA), polyhydroxyalkanoates (PHAs), and others; (2) analogous to petroleum-derived polymers such as bio-poly(ethylene terephthalate) (bio-PET); and (3) new biobased polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The recent developments and progresses concerning biobased polymers are described, and important technical aspects of those polymers are introduced. Additionally, the recent scientific achievements regarding high-spec engineering-grade biobased polymers are presented.
Collapse
Affiliation(s)
- Hajime Nakajima
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Peter Dijkstra
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
31
|
Chan CM, Johansson P, Magnusson P, Vandi LJ, Arcos-Hernandez M, Halley P, Laycock B, Pratt S, Werker A. Mixed culture polyhydroxyalkanoate-rich biomass assessment and quality control using thermogravimetric measurement methods. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Carbon recovery from wastewater through bioconversion into biodegradable polymers. N Biotechnol 2017; 37:9-23. [DOI: 10.1016/j.nbt.2016.05.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
|
33
|
Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants. Bioengineering (Basel) 2017; 4:bioengineering4020054. [PMID: 28952533 PMCID: PMC5590461 DOI: 10.3390/bioengineering4020054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 12/04/2022] Open
Abstract
This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants.
Collapse
|
34
|
Wang Y, Zhu Y, Gu P, Li Y, Fan X, Song D, Ji Y, Li Q. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge. Int J Biol Macromol 2017; 98:34-38. [DOI: 10.1016/j.ijbiomac.2017.01.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/08/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
|
35
|
Montiel-Jarillo G, Carrera J, Suárez-Ojeda ME. Enrichment of a mixed microbial culture for polyhydroxyalkanoates production: Effect of pH and N and P concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:300-307. [PMID: 28117150 DOI: 10.1016/j.scitotenv.2017.01.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Polyhydroxyalkanoates (PHA) are biopolymers that can be an alternative against conventional plastics. The study reported herein evaluated the enrichment of a mixed microbial culture (MMC) operated under feast/famine regime and different pHs in a sequencing batch reactor (SBR) using acetate as sole carbon source to produce polyhydroxyalkanoates (PHAs). The enrichment step was evaluated at controlled pH of 7.5 and also without pH control (averaged value of 9.0). The acetate uptake rate (-qS) of both enrichments at the end of the experimental period exhibited similar behaviour being about 0.18CmolAcCmolX-1h-1 and 0.19CmolAcCmolX-1h-1 for SBR-A and SBR-B, respectively. However, the PHA-storing capacity of the biomass enriched without pH control was better, exhibiting a maximum PHA content of 36% (gPHAg-1 VSS) with a PHA production rate (qPHA) of 0.16CmolPHACmolX-1h-1. Batch experiments were performed to evaluate PHA-storing capacity of the enriched culture at different pHs and nutrients concentrations. In the pH experiments (without nutrient limitation), it was found that in the absence of controlled pH, the enriched biomass exhibited a PHA content of 44% gPHAg-1 VSS with -qS and PHA to substrate yield (YPHA/Ac) of 0.57CmolAcCmolX-1h-1 and 0.33CmolPHACmolAc-1, respectively. Regarding the experiments at variable nutrients concentration (pH ranging 8.8 to 9.2), the results indicate that the PHA content in the enriched biomass is significantly higher being around 51% gPHAg-1 VSS under nitrogen limitation. This work demonstrated the feasibility of the enrichment of a MMC with PHA storage ability without pH control. Results also suggest that better PHAs contents and substrate uptake rates are obtained without controlling the pH in the accumulation step. Finally, this work also highlights the importance of understanding the role of nutrients concentration during the accumulation step.
Collapse
Affiliation(s)
- Gabriela Montiel-Jarillo
- GENOCOV Research Group, Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Edifici Q, c/ de les Sitges S/N, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Julián Carrera
- GENOCOV Research Group, Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Edifici Q, c/ de les Sitges S/N, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Edifici Q, c/ de les Sitges S/N, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
36
|
Korkakaki E, van Loosdrecht MCM, Kleerebezem R. Survival of the fastest: Selective removal of the side population for enhanced PHA production in a mixed substrate enrichment. BIORESOURCE TECHNOLOGY 2016; 216:1022-1029. [PMID: 27343455 DOI: 10.1016/j.biortech.2016.05.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/09/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
The success of enriching PHA-producers in a feast/famine regime strongly depends on the substrate utilized. A distinction can be made between substrates that select for PHA-producers (e.g. volatile fatty acids) and substrates that select for growing organisms (e.g. methanol). In this study the feasibility of using such a mixed substrate was evaluated. A sedimentation step was introduced in the cycle after acetate depletion and the supernatant containing methanol was discharged. This process configuration resulted in an increased maximum PHA storage capacity of the biomass from 48wt% to 70wt%. A model based on the experimental results indicated that the length of the pre-settling period and the supernatant volume that is discharged play a significant role for the elimination of the side population. However, the kinetic properties of the two different populations determine the success of the proposed strategy.
Collapse
Affiliation(s)
- Emmanouela Korkakaki
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
37
|
Biological System as Reactor for the Production of Biodegradable Thermoplastics, Polyhydroxyalkanoates. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
38
|
Hilliou L, Teixeira PF, Machado D, Covas JA, Oliveira CS, Duque AF, Reis MA. Effects of fermentation residues on the melt processability and thermomechanical degradation of PHBV produced from cheese whey using mixed microbial cultures. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Korkakaki E, Mulders M, Veeken A, Rozendal R, van Loosdrecht MCM, Kleerebezem R. PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix. WATER RESEARCH 2016; 96:74-83. [PMID: 27019467 DOI: 10.1016/j.watres.2016.03.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/02/2016] [Accepted: 03/13/2016] [Indexed: 05/06/2023]
Abstract
Leachate from the source separated organic fraction of municipal solid waste (OFMSW) was evaluated as a substrate for polyhydroxyalkanoates (PHA) production. Initially, the enrichment step was conducted directly on leachate in a feast-famine regime. Maximization of the cellular PHA content of the enriched biomass yielded to low PHA content (29 wt%), suggesting that the selection for PHA-producers was unsuccessful. When the substrate for the enrichment was switched to a synthetic volatile fatty acid (VFA) mixture -resembling the VFA carbon composition of the leachate-the PHA-producers gained the competitive advantage and dominated. Subsequent accumulation with leachate in nutrient excess conditions resulted in a maximum PHA content of 78 wt%. Based on the experimental results, enriching a PHA-producing community in a "clean" VFA stream, and then accumulating PHA from a stream that does not allow for enrichment but does enable a high cellular PHA content, such as OFMSW leachate, makes the overall process much more economically attractive. The estimated overall process yield can be increased four-fold, in comparison to direct use of the complex matrix for both enrichment and accumulation.
Collapse
Affiliation(s)
- Emmanouela Korkakaki
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | - Michel Mulders
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Adrie Veeken
- Attero BV, Vamweg 7, 9418 TM, Wijster, The Netherlands
| | - Rene Rozendal
- Paques BV, T. de Boerstraat 24, 8561 EL, Balk, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| |
Collapse
|
40
|
Modin O, Persson F, Wilén BM, Hermansson M. Nonoxidative removal of organics in the activated sludge process. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2016; 46:635-672. [PMID: 27453679 PMCID: PMC4940897 DOI: 10.1080/10643389.2016.1149903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants.
Collapse
Affiliation(s)
- Oskar Modin
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
41
|
Basset N, Katsou E, Frison N, Malamis S, Dosta J, Fatone F. Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line. BIORESOURCE TECHNOLOGY 2016; 200:820-829. [PMID: 26587791 DOI: 10.1016/j.biortech.2015.10.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
A novel scheme was developed for the treatment of municipal wastewater integrating nitritation/denitritation with the selection of polyhydroxyalkanoates (PHA) storing biomass under an aerobic/anoxic, feast/famine regime. The process took place in a sequencing batch reactor (SBR) and the subsequent PHA accumulation in a batch reactor. The carbon source added during the selection and accumulation steps consisted of fermentation liquid from the organic fraction of municipal solids waste (OFMSW FL) (Period I) and OFMSW and primary sludge fermentation liquid (Period II). Selection of PHA storing biomass was successful and denitritation was driven by internally stored PHA during the famine phase. Under optimum conditions of SBR operation ammonia removal was 93%, reaching a maximum nitrite removal of 98%. The treated effluent met the nitrogen limits, while PHA-storing biomass was successfully selected. The maximum accumulation of PHA was 10.6% (wt.) since the nutrients present in the carbon source promoted bacterial growth.
Collapse
Affiliation(s)
- N Basset
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - E Katsou
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University, Kingston Lane, UB8 3PH Uxbridge, Middlesex, UK
| | - N Frison
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - S Malamis
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Athens, Greece
| | - J Dosta
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - F Fatone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
42
|
Khiewwijit R, Temmink H, Labanda A, Rijnaarts H, Keesman KJ. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation. BIORESOURCE TECHNOLOGY 2015; 197:295-301. [PMID: 26342342 DOI: 10.1016/j.biortech.2015.08.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 05/17/2023]
Abstract
This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8-10). Application of pH shock to a value of 9 at the start of a sequencing batch cycle, followed by a pH uncontrolled phase for 7days, gave the highest VFA yield of 440mgVFA-COD/g VSS. This yield was much higher than at fermentation without pH control or at a constant pH between 8 and 10. The high yield in the pH 9 shocked system could be explained by (1) a reduction of methanogenic activity, or (2) a high degree of solids degradation or (3) an enhanced protein hydrolysis and fermentation. VFA production can be further optimized by fine-tuning pH level and longer operation, possibly allowing enrichment of alkalophilic and alkali-tolerant fermenting microorganisms.
Collapse
Affiliation(s)
- Rungnapha Khiewwijit
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 113, 8900CC Leeuwarden, The Netherlands; Biobased Chemistry and Technology, Wageningen University, P.O. Box 17, 6700AA Wageningen, The Netherlands; Sub-department of Environmental Technology, Wageningen University, P.O. Box 8129, 6700EV Wageningen, The Netherlands.
| | - Hardy Temmink
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 113, 8900CC Leeuwarden, The Netherlands; Sub-department of Environmental Technology, Wageningen University, P.O. Box 8129, 6700EV Wageningen, The Netherlands
| | - Alvaro Labanda
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 113, 8900CC Leeuwarden, The Netherlands
| | - Huub Rijnaarts
- Sub-department of Environmental Technology, Wageningen University, P.O. Box 8129, 6700EV Wageningen, The Netherlands
| | - Karel J Keesman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 113, 8900CC Leeuwarden, The Netherlands; Biobased Chemistry and Technology, Wageningen University, P.O. Box 17, 6700AA Wageningen, The Netherlands
| |
Collapse
|
43
|
Unveiling PHA-storing populations using molecular methods. Appl Microbiol Biotechnol 2015; 99:10433-46. [DOI: 10.1007/s00253-015-7010-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
44
|
Frison N, Katsou E, Malamis S, Oehmen A, Fatone F. Development of a Novel Process Integrating the Treatment of Sludge Reject Water and the Production of Polyhydroxyalkanoates (PHAs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10877-10885. [PMID: 26270064 DOI: 10.1021/acs.est.5b01776] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyhydroxyalkanoates (PHAs) from activated sludge and renewable organic material can become an alternative product to traditional plastics since they are biodegradable and are produced from renewable sources. In this work, the selection of PHA storing bacteria was integrated with the side stream treatment of nitrogen removal via nitrite from sewage sludge reject water. A novel process was developed and applied where the alternation of aerobic-feast and anoxic-famine conditions accomplished the selection of PHA storing biomass and nitrogen removal via nitrite. Two configurations were examined: in configuration 1 the ammonium conversion to nitrite occurred in the same reactor in which the PHA selection process occurred, while in configuration 2 two separate reactors were used. The results showed that the selection of PHA storing biomass was successful in both configurations, while the nitrogen removal efficiency was much higher (almost 90%) in configuration 2. The PHA selection degree was evaluated by the volatile fatty acid (VFA) uptake rate (-qVFAs) and the PHA production rate (qPHA), which were 239 ± 74 and 89 ± 7 mg of COD per gram of active biomass (Xa) per hour, respectively. The characterization of the biopolymer recovered after the accumulation step, showed that it was composed of 3-hydroxybutyrate (3HB) (60%) and 3-hydroxyvalerate (3HV) (40%). The properties associated with the produced PHA suggest that they are suitable for thermoplastic processing.
Collapse
Affiliation(s)
- Nicola Frison
- University of Verona , Department of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy
| | - Evina Katsou
- University of Verona , Department of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University , Kingston Lane, UB8 3PH Uxbridge, Middlesex, U.K
| | - Simos Malamis
- University of Verona , Department of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens , 5 Iroon Polytechniou St., 15780, Athens, Greece
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Francesco Fatone
- University of Verona , Department of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
45
|
Uribe IO, Mosquera-Corral A, Rodicio JL, Esplugas S. Advanced technologies for water treatment and reuse. AIChE J 2015. [DOI: 10.1002/aic.15013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Inmaculada Ortiz Uribe
- Dept. de Ingenierías Química y Biomolecular, Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación (ETSIIyT); Universidad de Cantabria; Avda. de los Castros Santander 39005 Spain
| | - Anuska Mosquera-Corral
- Dept. de Ingeniería Química, Escuela de Ingeniería, Rúa Lope Gómez de Marzoa s/n; Universidad de Santiago de Compostela; Santiago de Compostela E-15782 Spain
| | - Juan Lema Rodicio
- Dept. de Ingeniería Química, Escuela de Ingeniería, Rúa Lope Gómez de Marzoa s/n; Universidad de Santiago de Compostela; Santiago de Compostela E-15782 Spain
| | - Santiago Esplugas
- Dept. de Ingeniería Química; Universidad de Barcelona; Martí Franques Barcelona 08028 Spain
| |
Collapse
|
46
|
Shen L, Hu H, Ji H, Zhang C, He N, Li Q, Wang Y. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from excess activated sludge as a promising substitute of pure culture. BIORESOURCE TECHNOLOGY 2015; 189:236-242. [PMID: 25898084 DOI: 10.1016/j.biortech.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to investigate the feasibility and technology to harvest poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by mixed culture. Copolymer PHBHHx, usually fermented by pure strains, was reported to be synthesized from activated sludge for the first time. Sodium laurate was used as the sole carbon substrate for sludge acclimation and PHBHHx accumulation. Batch experiments were designed to look into the impact of the carbon, nitrogen, phosphorus and oxygen supply on PHBHHx production. The results showed that the acclimated excess sludge was able to produce PHBHHx, and the maximum output (505.6 mg/L PHBHHx containing 6.34 mol% HHx) was achieved with conditions of the continuous aeration, nitrogen and phosphorus limitation, and adequate carbon source implemented by pulse feeding 0.5 g/L sodium laurate every 4h. Moreover, composition and structure of the PHBHHx from sludge were found similar to that from pure culture, according to literature, FTIR and NMR spectra. Finally, high-throughput sequencing technique characterized that phylum Chlorobi and genus Leadbetterella should be critical groups for PHBHHx synthesis in the sludge community.
Collapse
Affiliation(s)
- Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Hongyou Hu
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hongfang Ji
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Chuanpan Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
47
|
Marang L, van Loosdrecht MCM, Kleerebezem R. Modeling the competition between PHA-producing and non-PHA-producing bacteria in feast-famine SBR and staged CSTR systems. Biotechnol Bioeng 2015; 112:2475-84. [DOI: 10.1002/bit.25674] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Leonie Marang
- Department of Biotechnology; Delft University of Technology; Julianalaan 67 2628 BC Delft The Netherlands
| | - Mark C. M. van Loosdrecht
- Department of Biotechnology; Delft University of Technology; Julianalaan 67 2628 BC Delft The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology; Delft University of Technology; Julianalaan 67 2628 BC Delft The Netherlands
| |
Collapse
|
48
|
Valentino F, Karabegovic L, Majone M, Morgan-Sagastume F, Werker A. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. WATER RESEARCH 2015; 77:49-63. [PMID: 25846983 DOI: 10.1016/j.watres.2015.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
The response of a mixed-microbial-culture (MMC) biomass for PHA accumulation was evaluated over a range of relative nitrogen (N) and phosphorus (P) availabilities with respect to the supply of either complex (fermented whey permeate - FWP) or simpler (acetic acid) organic feedstocks. Fed-batch feed-on-demand PHA accumulation experiments were conducted where the feed N/COD and P/COD ratios were varied ranging from conditions of nutrient starvation to excess. A feast-famine enrichment (activated sludge) biomass, produced in a pilot-scale aerobic sequencing batch reactor on FWP and with a long history of stable PHA accumulation performance, was used for all the experiments as reference material. FWP with N/COD ratios of (2, 5, 15, 70 mg/g all with P/COD = 8 mg/g) as well as simulated FWP with nutrient starvation (N/COD = P/COD = 0) conditions were applied. For the acetic acid accumulations, nutrient starvation as well as N/COD variations (2.5, 5, 50 mg/g all with P/COD = 9 mg/g) and P/COD variations (0.5, 2, 9, 15 mg/g all with N/COD = 10 mg/g) were evaluated. An optimal range of combined N and P limitation with N/COD from 2 to 15 mg/g and P/COD from 0.5 to 3 mg/g was considered to offer consistent improvement of productivity over the case of nutrient starvation. Productivity increased due to active biomass growth of the PHA storing biomass without observed risk for a growth response overtaking PHA storage activity. PHA production with respect to the initial active biomass was significantly higher even in cases of excess nutrient additions when compared to the cases of nutrient starvation. The 24-h PHA productivities were enhanced as much as 4-fold from a base value of 1.35 g-PHA per gram initial active biomass with respect nutrient starvation feedstock. With or without nutrient loading the biomass consistently accumulated similar and significant PHA (nominally 60% g-PHA/g-VSS). Based on results from replicate experiments some variability in the extant biomass maximum PHA content was attributed to interpreted differences in the biomass initial physiological state and not due to changes in feedstock nutrient loading. We found that the accumulation process production rates for mixed cultures can be sustained long after the maximum PHA content of the biomass was reached. Within the specific context of the applied fed-batch feed-on-demand methods, active biomass growth was interpreted to have been largely restricted to the PHA-storing phenotypic fraction of the biomass. This study suggests practical prospects for mixed culture PHA production using a wide range of volatile fatty acid (VFA) rich feedstocks. Such VFA sources derived from residual industrial or municipal organic wastes often naturally contain associated nutrients ranging in levels from limitation to excess.
Collapse
Affiliation(s)
- Francesco Valentino
- Dept. of Chemistry, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | | | - Mauro Majone
- Dept. of Chemistry, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | | | - Alan Werker
- AnoxKaldnes AB, Klosterängsvägen 11A, 226 47, Lund, Sweden; The University of Queensland, Brisbane Queensland, 4072 Australia.
| |
Collapse
|
49
|
Valentino F, Morgan-Sagastume F, Fraraccio S, Corsi G, Zanaroli G, Werker A, Majone M. Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7281-7294. [PMID: 24996948 DOI: 10.1007/s11356-014-3268-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/27/2014] [Indexed: 05/28/2023]
Abstract
An innovative approach has been recently proposed in order to link polyhydroxyalkanoates (PHA) production with sludge minimization in municipal wastewater treatment, where (1) a sequencing batch reactor (SBR) is used for the simultaneous municipal wastewater treatment and the selection/enrichment of biomass with storage ability and (2) the acidogenic fermentation of the primary sludge is used to produce a stream rich in volatile fatty acids (VFAs) as the carbon source for the following PHA accumulation stage. The reliability of the proposed process has been evaluated at lab scale by using substrate synthetic mixtures for both stages, simulating a low-strength municipal wastewater and the effluent from primary sludge fermentation, respectively. Six SBR runs were performed under the same operating conditions, each time starting from a new activated sludge inoculum. In every SBR run, despite the low VFA content (10% chemical oxygen demand, COD basis) of the substrate synthetic mixture, a stable feast-famine regime was established, ensuring the necessary selection/enrichment of the sludge and soluble COD removal to 89%. A good process reproducibility was observed, as also confirmed by denaturing gradient gel electrophoresis (DGGE) analysis of the microbial community, which showed that a high similarity after SBR steady-state had been reached. The main variation factors of the storage properties among different runs were uncontrolled changes of settling properties which in turn caused variations of both sludge retention time and specific organic loading rate. In the following accumulation batch tests, the selected/enriched consortium was able to accumulate PHA with good rate (63 mg CODPHA g CODXa(-1) h(-1)) and yield (0.23 CODPHA CODΔS(-1)) in spite that the feeding solution was different from the acclimation one. Even though the PHA production performance still requires optimization, the proposed process has a good potential especially if coupled to minimization of both primary sludge (by its use as the VFA source for the PHA accumulation, via previous fermentation) and excess secondary sludge (by its use as the biomass source for the PHA accumulation).
Collapse
Affiliation(s)
- Francesco Valentino
- Department of Chemistry, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, RM, Italy,
| | | | | | | | | | | | | |
Collapse
|
50
|
Morgan-Sagastume F, Hjort M, Cirne D, Gérardin F, Lacroix S, Gaval G, Karabegovic L, Alexandersson T, Johansson P, Karlsson A, Bengtsson S, Arcos-Hernández MV, Magnusson P, Werker A. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. BIORESOURCE TECHNOLOGY 2015; 181:78-89. [PMID: 25638407 DOI: 10.1016/j.biortech.2015.01.046] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 05/11/2023]
Abstract
A pilot-scale process was operated over 22 months at the Brussels North Wastewater Treatment Plant (WWTP) in order to evaluate polyhydroxyalkanoate (PHA) production integration with services of municipal wastewater and sludge management. Activated sludge was produced with PHA accumulation potential (PAP) by applying feast-famine selection while treating the readily biodegradable COD from influent wastewater (average removals of 70% COD, 60% CODsol, 24% nitrogen, and 46% phosphorus). The biomass PAP was evaluated to be in excess of 0.4gPHA/gVSS. Batch fermentation of full-scale WWTP sludge at selected temperatures (35, 42 and 55 °C) produced centrate (6-9.4 gCODVFA/L) of consistent VFA composition, with optimal fermentation performance at 42 °C. Centrate was used to accumulate PHA up to 0.39 gPHA/gVSS. The centrate nutrients are a challenge to the accumulation process but producing a biomass with 0.5 gPHA/gVSS is considered to be realistically achievable within the typically available carbon flows at municipal waste management facilities.
Collapse
Affiliation(s)
- F Morgan-Sagastume
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden.
| | - M Hjort
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - D Cirne
- Dept. of Biotechnology and Biosystems, Veolia Recherche et Innovation (VERI) - Centre de Recherche de Maisons Laffitte, Chemin de la Digue - BP 76, 78603 Maisons-Laffitte, France
| | - F Gérardin
- Dept. of Biotechnology and Biosystems, Veolia Recherche et Innovation (VERI) - Centre de Recherche de Maisons Laffitte, Chemin de la Digue - BP 76, 78603 Maisons-Laffitte, France
| | - S Lacroix
- Dept. of Biotechnology and Biosystems, Veolia Recherche et Innovation (VERI) - Centre de Recherche de Maisons Laffitte, Chemin de la Digue - BP 76, 78603 Maisons-Laffitte, France
| | - G Gaval
- Dept. of Biotechnology and Biosystems, Veolia Recherche et Innovation (VERI) - Centre de Recherche de Maisons Laffitte, Chemin de la Digue - BP 76, 78603 Maisons-Laffitte, France
| | - L Karabegovic
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - T Alexandersson
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - P Johansson
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - A Karlsson
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - S Bengtsson
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - M V Arcos-Hernández
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - P Magnusson
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - A Werker
- AnoxKaldnes, Veolia Water Technologies, Klosterängsvägen 11A, 226 47 Lund, Sweden
| |
Collapse
|