1
|
Tsai CL, Chien CY, Pan CY, Tseng YT, Wang TC, Lin TK. Effects of long-term Tai Chi vs. aerobic exercise on antioxidant activity and cognitive function in individuals with Parkinson's disease. Behav Brain Res 2025; 476:115274. [PMID: 39332640 DOI: 10.1016/j.bbr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
An imbalance between the generation of reactive oxygen species and the body's antioxidant defense mechanisms is closely related to the development and progression of Parkinson's disease (PD). Considering that physical exercise is a potential therapeutic intervention for modulating oxidative stress markers and cognitive function in PD, the primary purpose of this study was to compare the effects of different long-term exercise modalities on antioxidants and cognitive performance in patients with PD. In addition, the secondary purpose was to explore whether changes in the levels of these biochemical markers are associated with alterations in cognitive performance pre- and post-intervention. In all, 61 participants were randomly divided into the aerobic exercise (AE, n=20), Tai Chi exercise (TCE, n=21), or control (n=20) group. Blood samples were collected before and after a 12-week intervention period for the analysis of antioxidant markers [leukocyte 8-hydroxydeoxyguanosine (8-OHdG), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-Px), oxidized glutathione (GSSG), superoxide dismutase (SOD), and uric acid (UA)]. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Although no significant changes were observed in the activity of 8-OhdG, GSH-Px, GSSG, GSH:GSSG ratio, SOD, and cognitive performance in the AE and TCE groups, the 12-week AE intervention led to a significant increase in CAT and GSH levels, along with a significantly decrease in UA levels among individuals with PD. Conversely, the TCE intervention resulted in a significant increase in GSH levels. However, SOD activity and MMSE scores were significantly decreased after 12 weeks in the control group. The correlations between changes in MMSE scores and changes in the levels of GSH and UA prior to and after the intervention reached significance in the AE group. Thus, long-term AE and TCE might serve as effective strategies for reducing oxidative damage and preserving cognitive function in PD, with AE exhibiting greater benefits compared with TCE. These findings hold potential clinical relevance as complementary measures to standard medical treatments and alternative therapies, such as antioxidant supplements and dietary adjustments, particularly for individuals in the early stages of PD.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Taiwan; Department of Psychology, National Cheng Kung University, Taiwan.
| | - Chung-Yao Chien
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan
| | - Chien-Yu Pan
- Department of Physical Education, National Kaohsiung Normal University, Taiwan
| | - Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Taiwan
| | - Tsai-Chiao Wang
- General Research Service Center, National Pingtung University of Science and Technology, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Taiwan; Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Taiwan.
| |
Collapse
|
2
|
Deng T, Yu W, Lü Y. Different physical exercise in the treatment of Alzheimer's disease. Psychogeriatrics 2025; 25:e13207. [PMID: 39460576 DOI: 10.1111/psyg.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Alzheimer's disease (AD) is rapidly becoming one of the most expensive, burdening, and deadly diseases of this century. Up to now, there is still a lack of pharmacotherapy with substantial efficacy, and physical exercise is a promising and low-cost way to aid in delaying the process of AD. The aim of this review is to summarise the efficacy of different physical exercise approaches and doses in the management of AD, including aerobic exercise, resistance exercise and multicomponent exercise. A literature search using MeSH terms for each topic is undertaken using PubMed and the Web of Science Core Collection database, supplemented by hand searching for additional references. Retrieved articles were reviewed, synthesised, and summarised. This review shows that aerobic exercise has been almost unanimously recognised for the improvement of cognition, neuropsychiatric symptoms and activities of daily living. Resistance exercise also shows a good prospect in the above aspects and has a unique advantage in enhancing muscle strength, while multicomponent physical activity does not seen to significantly improve cognitive function. Each type of exercise has a dose effect, but for individuals with AD, the most appropriate exercise dose is still controversial.
Collapse
Affiliation(s)
- Tianqing Deng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Gholami F, Mesrabadi J, Iranpour M, Donyaei A. Exercise training alters resting brain-derived neurotrophic factor concentration in older adults: A systematic review with meta-analysis of randomized-controlled trials. Exp Gerontol 2025; 199:112658. [PMID: 39674562 DOI: 10.1016/j.exger.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This systematic review with meta-analysis investigated the effects of exercise training on brain-derived neurotrophic factor (BDNF) in older adults. Electronic databases of PubMed, Web of Science and Scopus were searched for studies investigating the effect of exercise training ≥4 weeks on resting BDNF levels in older adults. A standardized mean difference (SMD) was generated through random effects model. Thirty-five randomized-controlled trials met the inclusion criteria. Exercise training significantly increased resting BDNF levels [SMD = 0.56 (95 % CI 0.28 to 0.85)] both in plasma (SMD = 0.63) and serum (SMD = 0.54). Regarding exercise modality, aerobic (SMD = 0.48), resistance (SMD = 0.76) and combined exercise training (SMD = 0.55) increased BDNF levels. Exercise training with the duration of 12 weeks (SMD =0.65), moderate-to-vigorous (SMD = 0.83) and vigorous intensity (SMD = 0.71), and 3-4 sessions per week frequency (SMD = 0.78) yielded the largest effects on BDNF elevation. Since BDNF represents a fundamental contribution in neuronal processes and is linked to brain health, exercise training may help delay aging-related neuro-degenerative processes. REGISTRATION NUMBER: CRD42024499195.
Collapse
Affiliation(s)
- Farhad Gholami
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran.
| | - Javad Mesrabadi
- Department of Educational Psychology, Psychology and Educational Science Faculty, University of Azarbai-jan Shahid Madani, Tabriz, Iran
| | - Mohadeseh Iranpour
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran
| | - Adel Donyaei
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran
| |
Collapse
|
4
|
Ye Y, Wu K, Xu F, Li H, Li X, Hu P, Cheng H. Effects of exercise on patients with vascular cognitive impairment based on ACSM recommendations: a systematic review of randomized controlled trials. J Neurol 2024; 272:31. [PMID: 39666076 DOI: 10.1007/s00415-024-12830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Exercise is considered to be an effective method for functional recovery in patients with vascular cognitive impairment (VCI), but there is a paucity of research on exercise dosage. There has been no meta-analysis of the effects of exercise therapy for vascular cognitive impairment based on the American College of Sports Medicine (ACSM) exercise prescription for a seemingly healthy population. We therefore conducted a study to analyze the effects of various exercise therapies on cognitive functioning, physical functioning, and ability to perform activities of daily living in patients diagnosed with vascular cognitive impairment. METHODS Four electronic databases, namely PubMed, Embase, Web of Science, and Cochrane, were systematically searched for studies examining the effects of exercise on patients with VCI. The exercise interventions were categorized into an ACSM high adherence group versus an ACSM low or indeterminate adherence group, following the recommendations for exercise testing and prescribing for seemingly healthy populations developed by ACSM. Meta-analyses were conducted using a random effects model to compare results among subgroups. RESULTS The study encompassed 14 trials involving 1333 subjects. Among these, 8 studies adhered highly to ACSM recommendations, while 6 studies demonstrated low or uncertain adherence. Subgroup analyses revealed differing effects: in the high adherence group, SMDs for cognitive functioning, living ability, and physical functioning were 0.53 (95% CI 0.13-0.94), 0.53 (95% CI 0.11-0.94), and 0.66 (95% CI 0.45-0.87), respectively. Conversely, in the low or indeterminate adherence group, SMDs for cognitive functioning, living ability, and physical functioning were 0.09 (95% CI - 0.13 to 0.32), - 0.11 (95% CI - 0.57 to 0.34), and 0.65 (95% CI - 0.04 to 1.35). We performed subgroup analyses by type of vascular cognitive impairment, and meta-analyses showed positive SMDs of 0.59 (95% CI 0.22-0.97) and 0.68 (95% CI 0.47-0.90) for exercise on cognitive impairment after stroke in terms of cognitive function and physical function, respectively. CONCLUSION The results suggest that exercise interventions exhibiting high adherence to ACSM guidelines yield more favorable outcomes concerning cognitive functioning, physical functioning, and daily living abilities among patients with VCI compared to interventions with low or uncertain adherence to ACSM recommendations.
Collapse
Affiliation(s)
- Yu Ye
- Graduate School of Anhui University of Chinese Medicine, Anhui, China
| | - Kairui Wu
- Graduate School of Anhui University of Chinese Medicine, Anhui, China
| | - Fangyuan Xu
- Graduate School of Anhui University of Chinese Medicine, Anhui, China
| | - Hongtao Li
- Graduate School of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xuejun Li
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China.
| | - Peijia Hu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China.
| | - Hongliang Cheng
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China.
| |
Collapse
|
5
|
Sanchez-Martinez Y, Lopez-Lopez JP, Gomez-Montoya I, Hernandez-Quiñones D, Ruiz-Uribe G, Rincón-Rueda Z, Garcia RG, Lopez-Jaramillo P. Muscular strength, endothelial function and cognitive disorders: state of the art. J Physiol 2024. [PMID: 39612371 DOI: 10.1113/jp285939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024] Open
Abstract
In recent years, the ageing population has increasingly grown. This process carries a range of pathophysiological changes involving alterations in the skeletal muscle, vascular endothelium and brain function, becoming an important risk factor for developing cognitive disorders and cardiovascular diseases. With ageing, there is a decrease in muscle mass and muscle strength, and a relationship between muscle strength decrease and cognitive decline has been shown. Lower handgrip strength has been linked to memory impairment, lower global cognitive function, decreased attention and reduced visuospatial abilities in the elderly, but understanding of the underlying mechanisms that explain the link between altered skeletal muscle function and structure, endothelial dysfunction, and the role of endothelial dysfunction in the onset of cognitive disorders has been scarcely explored. This review aims to detail the cellular and molecular mechanisms by which the progressive changes associated with ageing can alter healthy skeletal muscle and endothelial function, creating an environment of oxidative stress, inflammation and mitochondrial dysfunction. These changes can lead to reduced muscle strength, and the secretion of detrimental endothelial factors, resulting in endothelial dysfunction, blood-brain barrier disruption, and damage to neurons and microglia, ultimately accelerating the onset of cognitive disorders in the elderly. In addition, we aimed to describe the mechanisms that potentially explain how preserving muscular function with resistance training could prevent brain function deterioration, including the production of different factors that allow an improved endothelial function, haemodynamic parameters and brain plasticity, ultimately delaying the onset of cognitive impairment and chronic diseases.
Collapse
Affiliation(s)
| | - Jose P Lopez-Lopez
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | | | | | - Gabriela Ruiz-Uribe
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | - Zully Rincón-Rueda
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
| | - Ronald G Garcia
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Patricio Lopez-Jaramillo
- Masira Research Institute, Universidad de Santander (UDES), Bucaramanga, Colombia
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
6
|
Yu H, Ma BX, Feng YC, He ZW, Li C, Wang ZH, Gao T, Xu XY. Effects of multi-domain cognitive-motor training in older adults with amnestic mild cognitive impairment: A randomized controlled trial. Geriatr Nurs 2024; 61:64-72. [PMID: 39541634 DOI: 10.1016/j.gerinurse.2024.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to examine the effect of a multi-domain cognitive-motor training program at different durations on cognitive function in older adults with amnestic mild cognitive impairment (aMCI) in China. Seventy-two older adults from a large nursing home were randomized to the multi-domain, cognitive-motor training group and usual care control group. Cognitive function included global cognition, attention, language performance, visuospatial ability, and executive function were assessed at baseline, 12 weeks, and 24 weeks. The multi-domain, cognitive-motor training program significantly improved global cognition (p < 0.05), visuospatial ability (p < 0.05), and executive function (p < 0.05) after 12- and 24- week intervention. Older adults in the training program showed significant improvements in most cognitive subdomains after 12 and 24 weeks, but not in attention and executive function after 12 weeks. The findings suggest that long-duration multi-domain cognitive-motor training positively affects cognitive function, particularly in attention and executive function in older adults with aMCI.
Collapse
Affiliation(s)
- Hong Yu
- School of Nursing, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Bing Xin Ma
- School of Nursing, Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ya Cheng Feng
- The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazuang 050031, China
| | - Zi Wen He
- The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, Hebei, China
| | - Cong Li
- Aerospace Center Hospital, No. 15, Yuquan Road, Beijing, China
| | - Zi Han Wang
- School of Nursing, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Ting Gao
- School of Nursing, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Xin Yi Xu
- School of Nursing, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China.
| |
Collapse
|
7
|
Boidin M, Grégoire CA, Gagnon C, Thorin-Trescases N, Thorin E, Nigam A, Juneau M, Guillaume A, Tremblay J, Gayda M, Bherer L. Effects of variation in exercise training load on cognitive performances and neurotrophic biomarkers in patients with coronary artery disease. J Appl Physiol (1985) 2024; 137:1158-1167. [PMID: 38961824 PMCID: PMC11573279 DOI: 10.1152/japplphysiol.00636.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
This study compared the effects of linear (LP) and nonlinear (NLP) training periodization on cognitive functions, neurotrophic biomarkers [plasma brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1)], and cathepsin-B in patients with coronary artery disease (CAD). Forty-four patients with CAD reported to our laboratory on two occasions to undergo testing procedures before and after training sessions, and were then blindly randomized to NLP or LP for 36 training sessions. Visit 1 included blood samples and a maximal cardiopulmonary exercise testing to get maximal oxygen uptake (V̇o2peak). Visit 2 included cognitive functions assessment. Thirty-nine patients completed the study (LP: n = 20, NLP: n = 19), with no observed changes in cognitive performances after the training intervention in either group. IGF-1 concentration decreased in both groups (time-effect: P < 0.001), whereas BDNF concentration increased (time-effect: P < 0.05) without group interaction, and cathepsin-B did not change after the intervention. Associations were found between ΔV̇o2peak and ΔBDNF (R2 = 0.18, P = 0.04), and ΔIGF-1 and Δshort-term/working memory (R2 = 0.17, P = 0.01) in the pooled sample, with ΔIGF-1 and ΔBDNF accounting for 10% of the variance in Δshort-term/working memory. In the LP group, associations were found between ΔV̇o2peak and ΔBDNF (R2 = 0.45, P = 0.02), ΔBDNF and Δshort-term/working memory (R2 = 0.62, P = 0.004), ΔIGF-1 and Δshort-term/working memory (R2 = 0.31, P = 0.01), and ΔIGF-1 and Δexecutive function (R2 = 0.22, P = 0.04). This study indicates that linear and nonlinear training periodization led to an increase in BDNF, and a decrease in IGF-1, without change in cognitive function in individuals with stable CAD.NEW & NOTEWORTHY We used a novel and supervised iso-energetic training, integrating both moderate- and high-intensity aerobic exercises. Our findings indicate that greater variation in training load did not yield cognitive enhancements, although both protocols exhibited positive effects on brain-derived neurotrophic factor (BDNF) levels. Moreover, this study establishes a clear positive association between short-term and working memory and neurotrophic biomarkers. In addition, the independent predictive value of change in insulin-like growth factor-1 (IGF-1) on improvement in short-term and working memory highlight the close relationship between neurotrophic markers and cognition. Consequently, our results advocate for exercise training interventions targeting neurotrophic biomarkers to enhance cognitive function among individuals with coronary artery disease.
Collapse
Affiliation(s)
- Maxime Boidin
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, University of Liverpool, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Christine Gagnon
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Anil Nigam
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Juneau
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Arthur Guillaume
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Tremblay
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Mathieu Gayda
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Louis Bherer
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Yi Q, Wang S, Feng X, Liu X, Selvanayagam VS, Cheong JPG. Global trends and hotspots of exercise interventions for mild cognitive impairment: A global bibliometric analysis. Medicine (Baltimore) 2024; 103:e39550. [PMID: 39287229 PMCID: PMC11404907 DOI: 10.1097/md.0000000000039550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Exercise interventions for mild cognitive impairment (MCI) have been extensively studied. However, there is no bibliometric study on exercise interventions for MCI. This study aimed to identify the collaborative networks, research hotspots, evolution trends, and future directions. METHODS Relevant documents were retrieved from the Web of Science Core Collection database. VOSviewer was used to analyze the co-authorship of the author, countries and institutions, and the keywords co-occurrence. CiteSpace was used to detect burst keywords' research trends. RESULTS A total of 569 articles were included and showed an overall increasing trend in annual publications. The most influential subject categories, authors, journals, country, and institutions were "geriatrics gerontology," "Doi, Takehiko and Shimada, Hiroyuki," "Journal of Alzheimer's Disease," USA, and "Veterans Health Administration," respectively. The research hotspots are "effectiveness," "neural mechanism" and "correlation" of exercise interventions, and the emerging trend is "intervention quality." CONCLUSION This area is in a rapid development phase, whereby research hotpots are focused and the research trend is clear. The highly productive authors and institutions have made outstanding contributions and the subject categories present an interdisciplinary trend. However, there is weak cooperation between countries and institutions, and a substantial research gap exists between developed and developing countries. Future research may highlight the intervention quality, emphasizing the combination with virtual reality technology.
Collapse
Affiliation(s)
- Qing Yi
- Faculty of Sports and Exercise Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shuo Wang
- School Physical Education Department, Hebei Sport University, Hebei, China
| | - XiaoWei Feng
- Faculty of Physical Education, Hainan Normal University, Hainan, China
| | - Xutao Liu
- Department of Studies, Faculty of Educational Studies, University Putra Malaysia, Serdang, Malaysia
| | | | | |
Collapse
|
10
|
Liu S, Yang Y, Wang K, Zhang T, Luo J. A study on the impact of acute exercise on cognitive function in Alzheimer's disease or mild cognitive impairment patients: A narrative review. Geriatr Nurs 2024; 59:215-222. [PMID: 39053163 DOI: 10.1016/j.gerinurse.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
This narrative review follows the JBI approach and comprehensively explores the effects and mechanisms of acute exercise on cognitive function in Alzheimer's disease (AD) and Mild cognitive impairment (MCI) patients. The results showed that the combination of acute exercise and cognitive training improved the cognitive function of AD patients better than aerobic exercise or resistance training alone. For patients with MCI, moderate intensity acute aerobic exercise and resistance exercise were beneficial to enhance Inhibitory control (IC), but high-intensity acute exercise was adverse to improve IC; Brain-derived neurotrophic factor (BDNF) and Insulin-like growth factor 1 (IGF-1) may assume the potential mediating mechanism of acute exercise on cognitive function in AD and MCI patients, but more research is needed to further confirm this mechanism.
Collapse
Affiliation(s)
- Shiqi Liu
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Yi Yang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Kun Wang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Tingran Zhang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Jiong Luo
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
11
|
Li X, Qu X, Shi K, Yang Y, Sun J. Physical exercise for brain plasticity promotion an overview of the underlying oscillatory mechanism. Front Neurosci 2024; 18:1440975. [PMID: 39176382 PMCID: PMC11338794 DOI: 10.3389/fnins.2024.1440975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
The global recognition of the importance of physical exercise (PE) for human health has resulted in increased research on its effects on cortical activity. Neural oscillations, which are prominent features of brain activity, serve as crucial indicators for studying the effects of PE on brain function. Existing studies support the idea that PE modifies various types of neural oscillations. While EEG-related literature in exercise science exists, a comprehensive review of the effects of exercise specifically in healthy populations has not yet been conducted. Given the demonstrated influence of exercise on neural plasticity, particularly cortical oscillatory activity, it is imperative to consolidate research on this phenomenon. Therefore, this review aims to summarize numerous PE studies on neuromodulatory mechanisms in the brain over the past decade, covering (1) effects of resistance and aerobic training on brain health via neural oscillations; (2) how mind-body exercise affects human neural activity and cognitive functioning; (3) age-Related effects of PE on brain health and neurodegenerative disease rehabilitation via neural oscillation mechanisms; and (4) conclusion and future direction. In conclusion, the effect of PE on cortical activity is a multifaceted process, and this review seeks to comprehensively examine and summarize existing studies' understanding of how PE regulates neural activity in the brain, providing a more scientific theoretical foundation for the development of personalized PE programs and further research.
Collapse
Affiliation(s)
| | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| | | | | |
Collapse
|
12
|
Chang CL, Lin TK, Pan CY, Wang TC, Tseng YT, Chien CY, Tsai CL. Distinct effects of long-term Tai Chi Chuan and aerobic exercise interventions on motor and neurocognitive performance in early-stage Parkinson's disease: a randomized controlled trial. Eur J Phys Rehabil Med 2024; 60:621-633. [PMID: 38888734 PMCID: PMC11403633 DOI: 10.23736/s1973-9087.24.08166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative condition characterized by movement disorders and probable cognitive impairment. Exercise plays an important role in PD management, and recent studies have reported improvement in motor symptoms and cognitive function following aerobic and Tai Chi Chuan exercise. AIM To explore the different effects of Tai Chi Chuan and aerobic exercise on the clinical motor status and neurocognitive performance of patients with early-stage PD. DESIGN A randomized controlled trial. SETTING Parkinson's Disease Center at Kaohsiung Chang Gung Memorial Hospital and National Cheng Kung University Hospital. POPULATION Patients with idiopathic PD. METHODS Fifty-six patients with PD were recruited and divided into three groups: aerobic exercise (AE, N.=14), Tai Chi Chuan exercise (TE, N.=16), and control (CG, N.=13). Before and after a 12-week intervention period, we used unified Parkinson's disease rating scale Part III (UPDRS-III) scores and neuropsychological (e.g., accuracy rates [ARs] and reaction times [RTs]) and neurophysiological (e.g., event-related potential [ERP] N2 and P3 latencies and amplitudes) parameters to respectively assess the patients' clinical motor symptoms and neurocognitive performance when performing a working memory (WM) task. RESULTS Compared to baseline, UPDRS-III scores were significantly lower in the AE and TE groups after the intervention period, whereas those for the CG group were higher. In terms of the neurocognitive parameters, when performing the WM task after the intervention period, the AE group exhibited significantly faster RTs and larger ERP P3 amplitudes, the TE group exhibited an improvement only in ERP P3 amplitude, and the CG group exhibited a significantly reduced ERP P3 amplitude. However, neither the TE nor the AE group exhibited improved ARs and ERP N2 performance. CONCLUSIONS The present study supported the distinct effectiveness of Tai Chi Chuan and aerobic exercise for improving motor symptoms and providing neurocognitive benefits in PD patients. CLINICAL REHABILITATION IMPACT These results have important implications regarding the use of these exercise interventions for managing PD, particularly in the early stages.
Collapse
Affiliation(s)
- Cheng-Liang Chang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC)
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (ROC)
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (ROC)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (ROC)
| | - Chien-Yu Pan
- Department of Physical Education, National Kaohsiung Normal University, Kaohsiung, Taiwan (ROC)
| | - Tsai-Chiao Wang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC)
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan (ROC)
| | - Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Hsinchu, Taiwan (ROC)
| | - Chung-Yao Chien
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan (ROC)
| | - Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC) -
| |
Collapse
|
13
|
Miron VV, Assmann CE, Mostardeiro VB, da Silveira MV, Copetti PM, Bissacotti BF, Schirmann AA, Castro MFV, Gutierres JM, da Cruz Fernandes M, Viero FT, Morsch VM, Schetinger MRC, Cardoso AM. Neuroprotective effect of long-term resistance physical exercise against memory damage elicited by a lipopolysaccharide-induced neuroinflammation model in male rats. J Neurosci Res 2024; 102:e25370. [PMID: 39158105 DOI: 10.1002/jnr.25370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/20/2024]
Abstract
Resistance exercise training (RET) is considered an excellent tool for preventing diseases with an inflammatory background. Its neuroprotective, antioxidant, and anti-inflammatory properties are responsible for positively modulating cholinergic and oxidative systems, promoting neurogenesis, and improving memory. However, the mechanisms behind these actions are largely unknown. In order to investigate the pathways related to these effects of exercise, we conducted a 12-week long-term exercise training protocol and used lipopolysaccharide (LPS) to induce damage to the cortex and hippocampus of male Wistar rats. The cholinergic system, oxidative stress, and histochemical parameters were analyzed in the cerebral cortex and hippocampus, and memory tests were also performed. It was observed that LPS: (1) caused memory loss in the novel object recognition (NOR) test; (2) increased the activity of acetylcholinesterase (AChE) and Iba1 protein density; (3) reduced the protein density of brain-derived neurotrophic factor (BDNF) and muscarinic acetylcholine receptor M1 (CHRM1); (4) elevated the levels of lipid peroxidation (TBARS) and reactive species (RS); and (5) caused inflammatory damage to the dentate gyrus. RET, on the other hand, was able to prevent all alterations induced by LPS, as well as increase per se the protein density of the alpha-7 nicotinic acetylcholine receptor (nAChRα7) and Nestin, and the levels of protein thiols (T-SH). Overall, our study elucidates some mechanisms that support resistance physical exercise as a valuable approach against LPS-induced neuroinflammation and memory loss.
Collapse
Affiliation(s)
- Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Vitor Bastianello Mostardeiro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marcylene Vieira da Silveira
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Priscila Marquezan Copetti
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bianca Fagan Bissacotti
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Adriel Antonio Schirmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jessié Martins Gutierres
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marilda da Cruz Fernandes
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Tibolla Viero
- Department of Pharmacology and Physiology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Vera Maria Morsch
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences, Medical School, Federal University of the South Border, Chapecó, Brazil
| |
Collapse
|
14
|
Tsai CL, Chen ZR, Chia PS, Pan CY, Tseng YT, Chen WC. Acute resistance exercise combined with whole body vibration and blood flow restriction: Molecular and neurocognitive effects in late-middle-aged and older adults. Exp Gerontol 2024; 192:112450. [PMID: 38710456 DOI: 10.1016/j.exger.2024.112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Limited research exists regarding the effects of resistance exercise (RE) combined with whole body vibration (WBV), blood flow restriction (BFR), or both on the neuropsychological performance of working memory (WM) in late-middle-aged and older adults and regarding the physiological mechanisms underlying this effect. This study thus explored the acute molecular and neurophysiological mechanisms underlying WM performance following RE combined with WBV, BFR, or both. Sixty-six participants were randomly assigned into a WBV, BFR, or WBV + BFR group. Before and after the participants engaged in a single bout of isometric RE combined with WBV, BFR, or both, this study gathered data on several neurocognitive measures of WM performance, namely, accuracy rate (AR), reaction time (RT), and brain event-related potential (specifically P3 latency and amplitude), and data on biochemical indices, such as the levels of insulin-like growth factor-1 (IGF-1), norepinephrine (NE), and brain-derived neurotrophic factor (BDNF). Although none of the RE modalities significantly affected RTs and P3 latencies, ARs and P3 amplitudes significantly improved in the WBV and WBV + BFR groups. The WBV + BFR group exhibited greater improvements than the WBV group did. Following acute RE combined with WBV, BFR, or both, IGF-1 and NE levels significantly increased in all groups, whereas BDNF levels did not change. Crucially, only the changes in NE levels were significantly correlated with improvements in ARs in the WBV + BFR and WBV groups. The findings suggest that combining acute RE with WBV, BFR, or both could distinctively mitigate neurocognitive decline in late-middle-aged and older adults.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Taiwan; Department of Psychology, National Cheng Kung University, Taiwan.
| | - Zi-Rong Chen
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Taiwan
| | - Pao-Shan Chia
- Southern Taiwan University of Science and Technology, Taiwan
| | - Chien-Yu Pan
- Department of Physical Education, National Kaohsiung Normal University, Taiwan
| | - Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Taiwan
| | - Wen-Chyuan Chen
- Chang Gung University of Science and Technology, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Sleep Center, Linkou-Chang Gung Memorial Hospital, Taiwan.
| |
Collapse
|
15
|
Cai Z, Cai R, Sen L. Effects of different types of physical exercise on executive function of older adults: a scoping review. Front Psychol 2024; 15:1376688. [PMID: 39006543 PMCID: PMC11239569 DOI: 10.3389/fpsyg.2024.1376688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Objective This scoping review examined the impact of physical exercise on executive function (EF) in older adults and investigated the moderating effects of exercise types. Methods We systematically searched four electronic databases for randomized controlled trials (RCTs) investigating the effects of exercise on EF, published until November 26, 2023. The proportions of positive and null/negative effects across all studies were calculated. Results In total, 91 studies were included in the analysis. Among these, 27 (29.7%) studies employed aerobic exercise interventions for older adults' EF, with 19 (70.4%) studies reporting positive effects. Additionally, 18 (19.8%) studies utilized strength exercise interventions for older adults' EF, with 15 (83.3%) studies demonstrating positive benefits. Furthermore, 32 (35.2%) studies employed coordination exercise interventions for older adults' EF, with 25 (78.1%) studies showing positive benefits. Similarly, 30 (33%) studies applied mixed exercise interventions for older adults' EF, with 25 (83.3%) studies indicating positive benefits. Conclusion Overall, all four types of physical exercise enhance EF in older adults, with mixed exercises being the most effective.
Collapse
Affiliation(s)
- Zhidong Cai
- Department of Physical Education, Suzhou University of Science and Technology, Suzhou, China
| | - Ruibao Cai
- School of Physical Education, Chizhou University, Chizhou, China
| | - Li Sen
- School of Physical Education and Health, Shanghai Lixin University of Accounting and Finance, Shanghai, China
| |
Collapse
|
16
|
Vints WAJ, Gökçe E, Šeikinaitė J, Kušleikienė S, Česnaitienė VJ, Verbunt J, Levin O, Masiulis N. Resistance training's impact on blood biomarkers and cognitive function in older adults with low and high risk of mild cognitive impairment: a randomized controlled trial. Eur Rev Aging Phys Act 2024; 21:9. [PMID: 38600451 PMCID: PMC11005144 DOI: 10.1186/s11556-024-00344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/30/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The aging brain exhibits a neuroinflammatory state, driven partly by peripheral pro-inflammatory stimuli, that accelerates cognitive deterioration. A growing body of evidence clearly indicates that physical exercise partly alleviates neuroinflammation and positively affects the aging process and cognition. In this randomized controlled trial, we aimed to observe the effect of 12 weeks of resistance training (RT) on peripheral biomarker levels, cognitive function changes and their interrelationship, and explore differences in those exercise-induced changes in older adults with high risk of mild cognitive impairment (MCI) compared to older adults with low risk of MCI. METHODS Fifty-two participants (aged 60-85 years old, 28 female) were randomly allocated to a 12 week lower limb RT program consisting of two training sessions per week or waiting list control group. The Montreal Cognitive Assessment (MoCA) was used to stratify participants screened as high (< 26/30) or low risk (≥ 26/30) of MCI. We assessed serum Interleukin 6 (IL-6), Insulin-like Growth Factor-1 (IGF-1), and Kynurenine (KYN) levels. Cognitive measurement consisted of and four subtests of Automated Neuropsychological Assessment Metrics (ANAM), the two-choice reaction time, go/no-go, mathematical processing, and memory search test. RESULTS Twelve weeks of RT improved Go/No-go test results in older adults with high MCI risk. RT did not significantly affect blood biomarkers. However, IGF-1 level increases were associated with improvements in response time on the mathematical processing test in the exercise group, and IL-6 level increases were associated with improvements in response time on the memory search test in the total group of participants. Finally, KYN levels significantly differed between older adults with low and high MCI risk but no significant associations with performance were found. CONCLUSION Our study results suggest a different effect of RT on inhibitory control between older adults with low compared to high MCI risk. IGF-1 may play a role in the mechanism behind the cognitive benefit of RT and KYN may be a surrogate biomarker for neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania.
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, Maastricht, The Netherlands.
- Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, The Netherlands.
| | - Evrim Gökçe
- Sports Rehabilitation Laboratory, Ankara City Hospital, 06800, Ankara, Turkey
| | - Julija Šeikinaitė
- Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Vilnius University, Vilnius, Lithuania
| | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Vida J Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, Maastricht, The Netherlands
- Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, The Netherlands
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
- Department of Imaging and Pathology, Group Biomedical Sciences, Biomedical MRI Unit, Catholic University Leuven, Leuven, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
- Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
17
|
Tjen-A-Looi SCY, Fu LW, Malik S, Harris RE, Uchida S. Editorial: Therapeutic neuromodulation for aging-related disorders associated with the autonomic nervous system. Front Aging Neurosci 2024; 16:1399972. [PMID: 38596596 PMCID: PMC11003546 DOI: 10.3389/fnagi.2024.1399972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- Stephanie Chee Yee Tjen-A-Looi
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Liang-Wu Fu
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Richard E. Harris
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Sae Uchida
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
18
|
Otsuka S, Kikuchi K, Takeshita Y, Takada S, Tani A, Sakakima H, Maruyama I, Makizako H. Relationship between physical activity and cerebral white matter hyperintensity volumes in older adults with depressive symptoms and mild memory impairment: a cross-sectional study. Front Aging Neurosci 2024; 16:1337397. [PMID: 38414630 PMCID: PMC10896982 DOI: 10.3389/fnagi.2024.1337397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Cerebral white matter hyperintensities (WMHs) are commonly found in the aging brain and have been implicated in the initiation and severity of many central nervous system diseases. Furthermore, an increased WMH volume indicates reduced brain health in older adults. This study investigated the association between WMH volume and physical activity in older adults with depressive symptoms (DS) and mild memory impairment (MMI). Factors associated with the WMH volume were also investigated. Methods A total of 57 individuals aged over 65 years with DS and MMI were included in this study. The participants underwent magnetic resonance imaging to quantify WMH volumes. After WMH volume was accumulated, normalized to the total intracranial volume (TIV), the percentage of WMH volume was calculated. In addition, all participants wore a triaxial accelerometer for 2 weeks, and the average daily physical activity and number of steps were measured. The levels of blood biomarkers including cortisol, interleukin-6 (IL-6), brain-derived insulin-like growth factor-1, and brain-derived neurotrophic factor were measured. Motor and cognitive functions were also assessed. Results Faster maximum walking speed and longer time spent engaged in moderate physical activity were associated with a smaller percent of WMH volume, whereas higher serum IL-6 levels were associated with a larger percent of WMH volume. The number of steps per day, time spent engaged in low levels of physical activity, cognitive function, and all other measured biomarkers were not significantly associated with percent of WMH volume. Discussion Higher blood inflammatory cytokine levels, shorter duration of moderate physical activity, and lower maximum walking speed were associated with a higher percent of WMH volume. Our results provide useful information for maintaining brain health in older adults at a high risk of developing dementia and may contribute to the development of preventive medicine for brain health.
Collapse
Affiliation(s)
- Shotaro Otsuka
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Yasufumi Takeshita
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Seiya Takada
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akira Tani
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hyuma Makizako
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
19
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
20
|
Khalafi M, Maleki AH, Symonds ME, Sakhaei MH, Rosenkranz SK, Ehsanifar M, Korivi M, Liu Y. Interleukin-15 responses to acute and chronic exercise in adults: a systematic review and meta-analysis. Front Immunol 2024; 14:1288537. [PMID: 38235143 PMCID: PMC10791876 DOI: 10.3389/fimmu.2023.1288537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Purpose Interlukin-15 (IL-15) is an inflammatory cytokine that plays a vital role in immunology and obesity-associated metabolic syndrome. We performed this systematic review and meta-analysis to investigate whether exercise promotes circulating IL-15 concentrations in adults. Methods We searched PubMed, Web of Science, and Scopus from inception to May, 2023 and identified original studies that investigated the effectiveness of acute and/or chronic exercise on serum/plasma IL-15 levels in adults. Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated using random effect models. Subgroup analyses were performed based on type of exercise, and training status, health status and body mass indexes (BMI) of participants. Results Fifteen studies involving 411 participants and 12 studies involving 899 participants were included in the acute and chronic exercise analyses, respectively. Our findings showed that acute exercise increased circulating IL-15 concentrations immediately after exercise compared with baseline [SMD=0.90 (95% CI: 0.47 to 1.32), p=0.001], regardless of exercise type and participants' training status. Similarly, acute exercise was also associated with increased IL-15 concentrations even one-hour after exercise [SMD=0.50 (95% CI: 0.00 to 0.99), p=0.04]. Nevertheless, chronic exercise did not have a significant effect on IL-15 concentrations [SMD=0.40 (95% CI: -0.08 to 0.88), p=0.10]. Conclusion Our results confirm that acute exercise is effective in increasing the IL-15 concentrations immediately and one-hour after exercise intervention, and thereby playing a potential role in improving metabolism in adults. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=445634, identifier CRD42023445634.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Aref Habibi Maleki
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Michael E. Symonds
- Academic Unit of Population and Lifespan Sciences, Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mohammad Hossein Sakhaei
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Guilan, Iran
| | - Sara K. Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Mahsa Ehsanifar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Mallikarjuna Korivi
- Institute of Human Movement and Sports Engineering, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yubo Liu
- Institute of Human Movement and Sports Engineering, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
21
|
Morella I, Negro M, Dossena M, Brambilla R, D'Antona G. Gut-muscle-brain axis: Molecular mechanisms in neurodegenerative disorders and potential therapeutic efficacy of probiotic supplementation coupled with exercise. Neuropharmacology 2023; 240:109718. [PMID: 37774944 DOI: 10.1016/j.neuropharm.2023.109718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Increased longevity is often associated with age-related conditions. The most common neurodegenerative disorders in the older population are Alzheimer's disease (AD) and Parkinson's disease (PD), associated with progressive neuronal loss leading to functional and cognitive impairments. Although symptomatic treatments are available, there is currently no cure for these conditions. Gut dysbiosis has been involved in the pathogenesis of AD and PD, thus interventions targeting the "gut-brain axis" could potentially prevent or delay these pathologies. Recent evidence suggests that the skeletal muscle and the gut microbiota can affect each other via the "gut-muscle axis". Importantly, cognitive functions in AD and PD patients significantly benefit from physical activity. In this review, we aim to provide a comprehensive picture of the crosstalk between the brain, the skeletal muscle and the gut microbiota, introducing the concept of "gut-muscle-brain axis". Moreover, we discuss human and animal studies exploring the modulatory role of exercise and probiotics on cognition in AD and PD. Collectively, the findings presented here support the potential benefits of physical activity and probiotic supplementation in AD and PD. Further studies will be needed to develop targeted and multimodal strategies, including lifestyle changes, to prevent or delay the course of these pathologies.
Collapse
Affiliation(s)
- Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Massimo Negro
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK; Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
22
|
Yan J, Li X, Guo X, Lin Y, Wang S, Cao Y, Lin H, Dai Y, Ding Y, Liu W. Effect of Multicomponent Exercise on Cognition, Physical Function and Activities of Daily Life in Older Adults With Dementia or Mild Cognitive Impairment: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2023; 104:2092-2108. [PMID: 37142178 DOI: 10.1016/j.apmr.2023.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To review the evidence for the effectiveness of multicomponent exercise (an exercise program combining aerobic, endurance, balance, and flexibility exercises) on cognition, physical function, and activities of daily living in people with dementia and mild cognitive impairment (MCI). DATA SOURCES AND STUDY SELECTION We conducted this study under the guidance of a designated protocol (PROSPERO CRD42022324641). Pertinent randomized controlled trials were selected from PubMed, Embase, Web of Science, and the Cochrane Library by 2 independent authors through May 2022. DATA EXTRACTION Two authors independently extracted the data and assessed the quality of the included studies following the Cochrane Risk of Bias tool. Outcome data were extracted in a random effects model and estimated as Hedges' g and 95% confidence interval (CI). To validate specific results, the Egger test combined the Duval and Tweedie "trim and fill" method and sensitivity analysis with study removed were performed. DATA SYNTHESIS A total of 21 publications were eligible for the quantitative analysis. In dementia, estimates of Hedges' g showed effects on global cognition (g=0.403; 95% CI, 0.168-0.638; P<.05), especially executive function (g=0.344; 95% CI, 0.111-0.577; P<.05), flexibility (g=0.671; 95% CI, 0.353-0.989; P<.001), agility and mobility (g=0.402; 95% CI, 0.089-0.714; P<.05), muscle strength (g=1.132; 95% CI, 0.420-1.845; P<.05), and activities of daily living (g=0.402; 95% CI, 0.188-0.615; P<.05). Also, a positive trend was observed in gait speed. Additionally, multicomponent exercise had positive effects on global cognition (g=0.978; 95% CI, 0.298-1.659; P<.05) and executive function (g=0.448; 95% CI, 0.171-0.726; P<.05) in patients with MCI. CONCLUSIONS Our findings confirm the viability of multicomponent exercise as a management strategy for patients with dementia and MCI.
Collapse
Affiliation(s)
- Jiamin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaohan Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoqin Guo
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanting Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sinuo Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yajun Cao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanyi Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China.
| |
Collapse
|
23
|
Ren J, Xiao H. Exercise Intervention for Alzheimer's Disease: Unraveling Neurobiological Mechanisms and Assessing Effects. Life (Basel) 2023; 13:2285. [PMID: 38137886 PMCID: PMC10744739 DOI: 10.3390/life13122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a major cause of age-related dementia, characterized by cognitive dysfunction and memory impairment. The underlying causes include the accumulation of beta-amyloid protein (Aβ) in the brain, abnormal phosphorylation, and aggregation of tau protein within nerve cells, as well as neuronal damage and death. Currently, there is no cure for AD with drug therapy. Non-pharmacological interventions such as exercise have been widely used to treat AD, but the specific molecular and biological mechanisms are not well understood. In this narrative review, we integrate the biology of AD and summarize the knowledge of the molecular, neural, and physiological mechanisms underlying exercise-induced improvements in AD progression. We discuss various exercise interventions used in AD and show that exercise directly or indirectly affects the brain by regulating crosstalk mechanisms between peripheral organs and the brain, including "bone-brain crosstalk", "muscle-brain crosstalk", and "gut-brain crosstalk". We also summarize the potential role of artificial intelligence and neuroimaging technologies in exercise interventions for AD. We emphasize that moderate-intensity, regular, long-term exercise may improve the progression of Alzheimer's disease through various molecular and biological pathways, with multimodal exercise providing greater benefits. Through in-depth exploration of the molecular and biological mechanisms and effects of exercise interventions in improving AD progression, this review aims to contribute to the existing knowledge base and provide insights into new therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Child, Lingnan Normal University, Zhanjiang 524037, China
- Institute of Sport and Health, South China Normal University, Guangzhou 510631, China
| | - Haili Xiao
- Institute of Sport and Health, Lingnan Normal University, Zhanjiang 524037, China;
| |
Collapse
|
24
|
Setayesh S, Mohammad Rahimi GR. The impact of resistance training on brain-derived neurotrophic factor and depression among older adults aged 60 years or older: A systematic review and meta-analysis of randomized controlled trials. Geriatr Nurs 2023; 54:23-31. [PMID: 37703686 DOI: 10.1016/j.gerinurse.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to investigate the impact of resistance training on brain-derived neurotrophic factor (BDNF) and depression among older adults aged 60 years or older. METHOD Four electronic databases were systematically searched. RESULTS A total of 11 randomized controlled trials, with a pooled sample of 868 participants, met our inclusion criteria. Meta-analysis demonstrated that resistance training significantly improved circulating BDNF levels (mean difference; MD: 0.73 ng/ml; 95% CI [0.04, 1.42]; p = 0.04). Additionally, resistance training was associated with significant improvements in depression (standardized mean difference; SMD: -0.38; 95% CI [- 0.62, -0.14]; p = 0.002). DISCUSSION These findings suggest that resistance training may be an effective intervention for improving BDNF levels and reducing depression symptoms in older adults. Further research is needed to confirm these findings and to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Shayan Setayesh
- Department of Exercise Physiology, Sanabad Golbahar Institute of Higher Education, Golbahar, Iran
| | | |
Collapse
|
25
|
Chokprasit P, Yimthiang S, Veerasakul S. Development and efficacy evaluation of a personalised self-care programme for reducing work-related musculoskeletal disorders among rubber farmers in Thailand. Heliyon 2023; 9:e20664. [PMID: 37842618 PMCID: PMC10570579 DOI: 10.1016/j.heliyon.2023.e20664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Work-related musculoskeletal disorders (WMSDs), the most common causes of work-related pain, suffering, absenteeism, and disability, are a major health concern for rubber farmers. WMSDs are persistent and frequently recur, resulting in increased health burdens for workers. Fortunately, appropriate intervention may relieve discomfort. Specified interventions have been recommended to reduce incidences of WMSD. Objective This study aimed to develop and evaluate the efficacy of a personalised self-care programme (PSCP) for relieving pain caused by WMSDs among rubber farmers. Methods Demographic data and details concerning the prevalence of pain regions were collected using a questionnaire adapted from the Nordic Musculoskeletal Questionnaire (IOC 1.00). The evidence gained from modified questionnaires and special tests was used to develop the PSCP. The PSCP was verified by three experts (IOC 1.00). Based on the questionnaires, only participants with a pain score of 3 or higher were recruited for the study. The PSCP's efficacy was evaluated by comparing the results before application and after 28 days. A numerical rating scale was employed to estimate the degree of pain. The pathogeneses of WMSDs were confirmed with a special test performed by a physical therapist. Additionally, the levels of interleukin (IL)-6 and IL-10 were measured to determine the PSCP's effect on inflammatory molecules. The efficacy of the PSCP was analysed using a paired t-test. Results The results showed that farmers experienced the greatest discomfort in the lower back, followed by the shoulders, legs, and neck. Therefore, this PSCP was designed to alleviate work-related musculoskeletal pain in these body regions. A reduction in pain by two degrees was observed after 28 days of the PSCP (x ‾ before = 5.26, SD = 1.96, x ‾ after = 2.40, SD = 1.64, p < 0.001). Special tests confirmed that the number of pain regions were also decreased (x ‾ before = 0.089, SD = 0.067, x ‾ after = 0.016, SD = 0.030, p < 0.001). In addition, IL-10 levels increased (p ≤ 0.001) following the PSCP, whereas IL-6 levels remained unaltered. Conclusions After 28 days of use, the PSCP was effective at reducing pain levels, decreasing pain regions, and promoting the production of anti-inflammatory molecules. This finding demonstrates that the PSCP could help alleviate work-related musculoskeletal pain among rubber farmers. The PSCP may be an appropriate intervention for alleviating pain.
Collapse
Affiliation(s)
- Parnchon Chokprasit
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, 80161, Nakhon Si Thammarat, Thailand
| | - Supabhorn Yimthiang
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, 80161, Nakhon Si Thammarat, Thailand
| | - Siriluk Veerasakul
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, 80161, Nakhon Si Thammarat, Thailand
- Center of Excellence in Data Science for Health Study, Walailak University, 80161, Nakhon Si Thammarat, Thailand
| |
Collapse
|
26
|
Li C, Yang W, Meng Y, Feng L, Sun L, Li Z, Liu X, Li M. Exploring the therapeutic mechanism of Banxia Xiexin Decoction in mild cognitive impairment and diabetes mellitus: a network pharmacology approach. Metab Brain Dis 2023; 38:2315-2325. [PMID: 37556042 DOI: 10.1007/s11011-023-01270-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
The incidence of mild cognitive impairment (MCI) and diabetes mellitus (DM) is increasing year by year. Clinical findings show that Banxia Xiexin Decoction (BXD) can be combined to treat MCI and DM. However, the principle and mechanism of BXD in treating MCI and DM remain unclear. In this study, to explore the common mechanism of BXD in treating MCI and DM by using the method of network pharmacology. Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) was used to screen the main active components of BXD, as well as to predict and screen its potential targets. Using Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), DisGeNET, GeneCards to select the target proteins of two diseases, and intersecting the drug target and the disease target to obtain the common target of drug diseases, which is imported into cytoscape software to draw the network diagram of "drug components-target diseases" and the interaction network diagram between the common target proteins. According to the Database for Annotation, Visualization and Integrated Discovery (DAVID) database, we analyzed the common targets using two methods, gene ontology Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway enrichment analysis and Gene Ontology (GO) function enrichment analysis, as well as studied the interaction mechanism of the two diseases, with the results validated using molecular docking. A total of 267 main active components of BXD were screened, together with the two diseases shared 233 common targets. The top five key targets identified by the topological analysis were TP53, AKT1, STAT3, TNF, and MAPK3. Go enrichment results indicated that it was primarily related to response to drug, extracellular space, enzyme binding, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding. t KEGG enrichment pathway analysis identified 20 significant pathways, the majority of which are AGE-RAGE signaling pathways in diabetic complications, lipid and atherosclerosis, fluid shear stress and atherosclerosis, IL-17 signaling pathway, TNF signaling pathway, and so on. The results of molecular docking revealed that the key components of BXD, baicalein, licochalcone a, quercetin, and naringenin, had strong binding ability with core targets TP53, AKT1, STAT3, TNF, MAPK3. BXD can treat MCI and DM by multi-targets and multi-channels,and plays a role of "homotherapy for heteropathy" mainly through response to drug, positive regulation of gene expression, extracellular space and enzyme binding and other ways.
Collapse
Affiliation(s)
- Cong Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Yang
- Neurology Department, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Yubo Meng
- Neurology Department, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Lina Feng
- Neurology Department, Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Linlin Sun
- Neurology Department, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Zhenghong Li
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Xingfang Liu
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Mingquan Li
- Neurology Department, Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
27
|
Huang B, Chen K, Li Y. Aerobic exercise, an effective prevention and treatment for mild cognitive impairment. Front Aging Neurosci 2023; 15:1194559. [PMID: 37614470 PMCID: PMC10442561 DOI: 10.3389/fnagi.2023.1194559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Aerobic exercise has emerged as a promising intervention for mild cognitive impairment (MCI), a precursor to dementia. The therapeutic benefits of aerobic exercise are multifaceted, encompassing both clinical and molecular domains. Clinically, aerobic exercise has been shown to mitigate hypertension and type 2 diabetes mellitus, conditions that significantly elevate the risk of MCI. Moreover, it stimulates the release of nitric oxide, enhancing arterial elasticity and reducing blood pressure. At a molecular level, it is hypothesized that aerobic exercise modulates the activation of microglia and astrocytes, cells crucial to brain inflammation and neurogenesis, respectively. It has also been suggested that aerobic exercise promotes the release of exercise factors such as irisin, cathepsin B, CLU, and GPLD1, which could enhance synaptic plasticity and neuroprotection. Consequently, regular aerobic exercise could potentially prevent or reduce the likelihood of MCI development in elderly individuals. These molecular mechanisms, however, are hypotheses that require further validation. The mechanisms of action are intricate, and further research is needed to elucidate the precise molecular underpinnings and to develop targeted therapeutics for MCI.
Collapse
Affiliation(s)
- Baiqing Huang
- Sports Institute, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Ying Li
- Sports Institute, Yunnan Minzu University, Kunming, China
| |
Collapse
|
28
|
Han X, Ashraf M, Tipparaju SM, Xuan W. Muscle-Brain crosstalk in cognitive impairment. Front Aging Neurosci 2023; 15:1221653. [PMID: 37577356 PMCID: PMC10413125 DOI: 10.3389/fnagi.2023.1221653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Sarcopenia is an age-related, involuntary loss of skeletal muscle mass and strength. Alzheimer's disease (AD) is the most common cause of dementia in elderly adults. To date, no effective cures for sarcopenia and AD are available. Physical and cognitive impairments are two major causes of disability in the elderly population, which severely decrease their quality of life and increase their economic burden. Clinically, sarcopenia is strongly associated with AD. However, the underlying factors for this association remain unknown. Mechanistic studies on muscle-brain crosstalk during cognitive impairment might shed light on new insights and novel therapeutic approaches for combating cognitive decline and AD. In this review, we summarize the latest studies emphasizing the association between sarcopenia and cognitive impairment. The underlying mechanisms involved in muscle-brain crosstalk and the potential implications of such crosstalk are discussed. Finally, future directions for drug development to improve age-related cognitive impairment and AD-related cognitive dysfunction are also explored.
Collapse
Affiliation(s)
| | | | | | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
29
|
Nishikori S, Yasuda J, Murata K, Takegaki J, Harada Y, Shirai Y, Fujita S. Resistance training rejuvenates aging skin by reducing circulating inflammatory factors and enhancing dermal extracellular matrices. Sci Rep 2023; 13:10214. [PMID: 37353523 PMCID: PMC10290068 DOI: 10.1038/s41598-023-37207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
Aerobic training (AT) is suggested to be an effective anti-aging strategy for skin aging. However, the respective effects of resistance training (RT) have not been studied. Therefore, we compared the effects of AT and RT on skin aging in a 16-week intervention in 61 healthy sedentary middle-aged Japanese women. Data from 56 women were available for analysis. Both interventions significantly improved skin elasticity and upper dermal structure, and RT also improved dermal thickness. After the training intervention, expression of dermal extracellular matrix-related genes was increased in normal human primary dermal fibroblasts. AT and RT had different effects on circulating levels of factors, such as cytokines, hormones in serum, and metabolites, and RT increased dermal biglycan (BGN). To our knowledge, this is the first report to show different effects of AT and RT on skin aging and identify the key factors involved in RT-induced skin rejuvenation.
Collapse
Affiliation(s)
- Shu Nishikori
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Jun Yasuda
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Kao Murata
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Junya Takegaki
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Yasuko Harada
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Yuki Shirai
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan.
| |
Collapse
|
30
|
Nath K, Ferguson I, Puleio A, Wall K, Stark J, Clark S, Story C, Cohen B, Anderson-Hanley C. Brain Health Indicators Following Acute Neuro-Exergaming: Biomarker and Cognition in Mild Cognitive Impairment (MCI) after Pedal-n-Play (iPACES). Brain Sci 2023; 13:844. [PMID: 37371324 DOI: 10.3390/brainsci13060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Facing an unrelenting rise in dementia cases worldwide, researchers are exploring non-pharmacological ways to ameliorate cognitive decline in later life. Twenty older adults completed assessments before and after a single bout of interactive physical and cognitive exercise, by playing a neuro-exergame that required pedaling and steering to control progress in a tablet-based video game tailored to impact executive function (the interactive Physical and Cognitive Exercise System; iPACES v2). This study explored the cognitive and biomarker outcomes for participants with mild cognitive impairment (MCI) and normative older adults after 20 min of pedal-to-play exercise. Neuropsychological and salivary assessments were performed pre- and post-exercise to assess the impact. Repeated-measures ANOVAs revealed significant interaction effects, with MCI participants experiencing greater changes in executive function and alpha-amylase levels than normative older adults; within-group changes were also significant. This study provides further data regarding cognitive effects and potential mechanisms of action for exercise as an intervention for MCI.
Collapse
Affiliation(s)
- Kartik Nath
- Union College, 807 Union Street, Schenectady, NY 12308, USA
| | | | - Alexa Puleio
- Union College, 807 Union Street, Schenectady, NY 12308, USA
| | - Kathryn Wall
- Union College, 807 Union Street, Schenectady, NY 12308, USA
| | - Jessica Stark
- Union College, 807 Union Street, Schenectady, NY 12308, USA
| | - Sean Clark
- Gordon College, 255 Grapevine Rd, Wenham, MA 01984, USA
| | - Craig Story
- Gordon College, 255 Grapevine Rd, Wenham, MA 01984, USA
| | - Brian Cohen
- Union College, 807 Union Street, Schenectady, NY 12308, USA
| | - Cay Anderson-Hanley
- Union College, 807 Union Street, Schenectady, NY 12308, USA
- iPACES LLC, 56 Clifton Country Road, Suite 104 (Box#11), Clifton Park, NY 12065, USA
| |
Collapse
|
31
|
Karamacoska D, Butt A, Leung IHK, Childs RL, Metri NJ, Uruthiran V, Tan T, Sabag A, Steiner-Lim GZ. Brain function effects of exercise interventions for cognitive decline: a systematic review and meta-analysis. Front Neurosci 2023; 17:1127065. [PMID: 37260849 PMCID: PMC10228832 DOI: 10.3389/fnins.2023.1127065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Exercise is recognized as a modifiable lifestyle factor that can mitigate cognitive decline and dementia risk. While the benefits of exercise on cognitive aging have been reported on extensively, neuronal effects in adults experiencing cognitive decline have not been systematically synthesized. The aim of this systematic review was to assess the effects of exercise on cognition and brain function in people with cognitive decline associated with dementia risk. Method A systematic search was conducted for randomized controlled trials of ≥ 4 weeks exercise (aerobic, resistance, or mind-body) that assessed cognition and brain function using neuroimaging and neurophysiological measures in people with subjective or objective cognitive decline. Study characteristics and brain function effects were narratively synthesized, while domain-specific cognitive performance was subjected to meta-analysis. Study quality was also assessed. Results 5,204 records were identified and 12 unique trials met the eligibility criteria, representing 646 adults classified with cognitive frailty, mild or vascular cognitive impairment. Most interventions involved 40-minute sessions conducted 3 times/week. Exercise improved global cognition (g = -0.417, 95% CI, -0.694 to -0.140, p = 0.003, I2 = 43.56%), executive function (g = -0.391, 95% CI, -0.651 to -0.131, p = 0.003, I2 = 13.28%), but not processing speed or general short-term memory (both p >0.05). Across fMRI and ERP studies, significant neuronal adaptations were found with exercise cf. control throughout the brain and were linked with improved global cognition, memory, and executive function. Cerebral blood flow was also found to improve with 24 weeks of exercise, but was not linked with cognitive changes. Discussion The cognitive improvements associated with exercise are likely driven by increased metabolic activity, cerebrovascular mechanisms, and neuroplasticity throughout the brain. Our paper shows the promise in, and need for, high-quality trials integrating cognitive and brain function measures to elucidate the functional relationship between exercise and brain health in populations with a high risk of dementia. Systematic review registration PROSPERO, identifier: CRD42022291843.
Collapse
Affiliation(s)
- Diana Karamacoska
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| | - Ali Butt
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Isabella H. K. Leung
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
| | - Ryan L. Childs
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Vithya Uruthiran
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
| | - Tiffany Tan
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Angelo Sabag
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Genevieve Z. Steiner-Lim
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
32
|
Ding Z, Leung PY, Lee TL, Chan AS. Effectiveness of lifestyle medicine on cognitive functions in mild cognitive impairments and dementia: A systematic review on randomized controlled trials. Ageing Res Rev 2023; 86:101886. [PMID: 36806378 DOI: 10.1016/j.arr.2023.101886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Mild cognitive impairment (MCI) and dementia are associated with lifestyle risk factors, making lifestyle medicine a potentially viable intervention for people with MCI and dementia. The present study aims to examine the effectiveness of lifestyle medicine on cognitive functions among people with MCI and dementia, by performing a systematic review and meta-analysis on randomized controlled trials (RCT). A systematic literature search was conducted to extract RCTs adopting lifestyle interventions of diet, exercise, and stress management or emotional well-being. Results showed that 65 studies were eligible. Exercise was the most promising lifestyle intervention that improved various cognitive functions among people with MCI and dementia, and was more effective in MCI than in dementia. Interventions on stress management or emotional well-being did not show a significant effect on people with MCI, and the evidence for people with dementia was insufficient to conclude. Similarly, due to the lack of RCTs on a healthy dietary pattern, the effectiveness of diet interventions was not examined. In conclusion, the exercise component of lifestyle medicine can be an effective and clinically significant intervention for protecting people with MCI and dementia against cognitive declines, especially when served as an early intervention at the stage of MCI.
Collapse
Affiliation(s)
- Zihan Ding
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Pui-Ying Leung
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz-Lok Lee
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Liao X, Shen J, Li M. Effects of multi-domain intervention on intrinsic capacity in older adults: A systematic review of randomized controlled trials (RCTs). Exp Gerontol 2023; 174:112112. [PMID: 36736466 DOI: 10.1016/j.exger.2023.112112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Intrinsic capacity is central to the maintenance of function in older adults, and maintaining optimal intrinsic capacity is of great importance to promote healthy aging. The purpose of this systematic review and meta-analysis was to analyze the impact of multi-domain interventions on intrinsic capacity in older adults, intervention components, and potential interactions between components. A total of 6740 published articles were screened until August 2022, and the review included 25 randomized controlled trials that analyzed populations, interventions, control groups, and outcomes. The meta-analysis showed improvements in the primary outcome indicators in the intervention group compared to the control group. These included increased scores on the Mini-Mental State Examination as an indicator of cognitive function, decreased scores on the Geriatric Depression Scale (GDS-15) as an indicator of psychological ability and increased scores on the Short Physical Performance Battery (SPPB) as an indicator of physical performance, with only the SPPB indicator analyzed showing greater heterogeneity. Significant improvements were also seen in the secondary indicators Time-to-Walk Test (TUG), gait speed, Chair Stand Test (CST), grip strength values and BMI. There was insufficient data for the Mini Nutritional Assessment (MNA) as an indicator of vitality to conduct a meta-analysis. Studies were of moderate to high quality. The results of this review indicate that multi-domain interventions can maintain the level of intrinsic capacity in older adults and are equally effective in older adults with declining self-care abilities.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Nursing Department, The First Affiliated Hospital of Chongqing Medical University, Yuzhong district, #1 Youyi road, Chongqing 400014, China
| | - Jun Shen
- Nursing Department, The First Affiliated Hospital of Chongqing Medical University, Yuzhong district, #1 Youyi road, Chongqing 400014, China.
| | - Miao Li
- Nursing Department, The First Affiliated Hospital of Chongqing Medical University, Yuzhong district, #1 Youyi road, Chongqing 400014, China
| |
Collapse
|
34
|
Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. J Neuroinflammation 2023; 20:76. [PMID: 36935511 PMCID: PMC10026496 DOI: 10.1186/s12974-023-02753-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
35
|
Ayari S, Abellard A, Carayol M, Guedj É, Gavarry O. A systematic review of exercise modalities that reduce pro-inflammatory cytokines in humans and animals' models with mild cognitive impairment or dementia. Exp Gerontol 2023; 175:112141. [PMID: 36898593 DOI: 10.1016/j.exger.2023.112141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE To investigate which type, frequency, duration, intensity, and volume of chronic exercise might more strongly reduce pro-inflammatory cytokines and enhance anti-inflammatory cytokines in human and animal models with Mild Cognitive Impairment (MCI) or dementia. DESIGN A systematic review. DATA SOURCE English-language search of 13 electronic databases: Web of Science, PubMed/Medline, Sport Discus, Scopus, Cochrane, Psych Net, Springer, ScienceDirect, Pascal & Francis, Sage journals, Pedro, Google Scholar, and Sage. INCLUSION CRITERIA (i) human and animal studies that included exercise, physical activity, or fitness training as an experimental intervention, (ii) studies that addressed MCI, dementia, or AD, (iii) studies that focused on measuring cytokines and/or other inflammatory and/or neuroinflammatory immune markers, (iii) studies that examined inflammatory indicators in blood, CSF (Cerebrospinal Fluid), and brain tissue. RESULTS Of the 1290 human and animal studies found, 38 were included for qualitative analysis, 11 human articles, 27 animal articles, and two articles addressing both human and animal protocols. In the animal model, physical exercise decreased pro-inflammatory markers in 70.8 % of the articles and anti-inflammatory cytokines: IL -4, IL -10, IL-4β, IL -10β, and TGF-β in 26 % of articles. Treadmill running, resistance exercise, and swimming exercise reduce pro-inflammatory cytokines and increase anti-inflammatory cytokines. In the human model, 53.9 % of items reduced pro-inflammatory proteins and 23 % increased anti-inflammatory proteins. Cycling exercise, multimodal, and resistance training effectively decreased pro-inflammatory cytokines. CONCLUSION In rodent animal models with AD phenotype, treadmill, swimming, and resistance training remain good interventions that can delay various mechanisms of dementia progression. In the human model, aerobic, multimodal, and resistance training are beneficial in both MCI and AD. Multimodal training of moderate to high intensity multimodal exercise is effective for MCI. Voluntary cycling training, moderate- or high-intensity aerobic exercise is effective in mild AD patients.
Collapse
Affiliation(s)
- Sawsen Ayari
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| | - Alexandre Abellard
- Mediterranean Institute of Information and Communication Sciences, Toulon, France.
| | - Marion Carayol
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| | - Éric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France.
| | - Olivier Gavarry
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| |
Collapse
|
36
|
Ahn J, Kim M. Effects of aerobic exercise on global cognitive function and sleep in older adults with mild cognitive impairment: A systematic review and meta-analysis. Geriatr Nurs 2023; 51:9-16. [PMID: 36871328 DOI: 10.1016/j.gerinurse.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
We conducted a systematic review and meta-analysis to determine the integrated effect of aerobic exercise on cognitive function and sleep in older adults with mild cognitive impairment (MCI) and to optimize exercise methods for improving cognitive function. We searched multiple databases from January 1, 2011, to August 31, 2022, and analyzed 11 studies. Global cognitive function in older adults with MCI undergoing aerobic exercise training was significantly improved (standardized mean difference [SMD]=0.76, 95% confidence interval [CI]:0.37, 1.14), while sleep improvement was not significant (SMD= -2.07 [95% CI: -6.76, 2.62]). In the moderator analysis, aerobic exercise types with cognitive factors, exercise time of 30-50 min per session, and exercise frequency of 5-7 times per week had statistically significant effects on cognitive function improvement. However, meta-regression identified only exercise frequency as a significant moderator of the mean effect size of cognitive function.
Collapse
Affiliation(s)
- Juhyun Ahn
- College of Nursing, Songho University, Republic of Korea
| | - Myoungsuk Kim
- College of Nursing, Kangwon National University, Republic of Korea.
| |
Collapse
|
37
|
Ahn J, Kim M. Effects of exercise therapy on global cognitive function and, depression in older adults with mild cognitive impairment: A systematic review and meta-analysis. Arch Gerontol Geriatr 2023; 106:104855. [PMID: 36436448 DOI: 10.1016/j.archger.2022.104855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to identify the integrated effects of exercise therapy on global cognitive function and, depression in older adults with mild cognitive function (MCI) and to determine the optimal exercise methods. METHODS We searched international, and domestic databases from January 1, 2010, to May 31, 2022, and included 22 articles in the meta-analysis (global cognitive function 21 articles; depression 7articles). Meta-analysis of variance and meta-regression were performed with moderator analysis to explore the causes of heterogeneity RESULTS: The mean effects (standardized mean differences) were 0.65 (95% confidence interval [CI]: 0.39-0.91) for global cognitive function and -0.38 (95% CI: -0.63 to -0.12) for depression in older adults with MCI who received exercise therapy, and the effect was statistically significant. CONCLUSION Aerobic and resistance exercises were effective in improving global cognitive function, Whereas multicomponent and neuromotor exercises were not. Aerobic exercise was the most effective at improving cognitive function. Thus, exercise therapy is effective in reducing depression in older adults with MCI. The mean effect of global cognitive function increased with higher exercise frequency.
Collapse
Affiliation(s)
- Juhyun Ahn
- College of Nursing, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myoungsuk Kim
- College of Nursing, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
38
|
Frederiksen KS, Jensen CS, Høgh P, Gergelyffy R, Waldemar G, Andersen BB, Gottrup H, Vestergaard K, Wermuth L, Søndergaard HB, Sellebjerg F, Hasselbalch SG, Simonsen AH. Aerobic exercise does not affect serum neurofilament light in patients with mild Alzheimer's disease. Front Neurosci 2023; 17:1108191. [PMID: 36761410 PMCID: PMC9902368 DOI: 10.3389/fnins.2023.1108191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Aerobic exercise has been shown to modify Alzheimer pathology in animal models, and in patients with multiple sclerosis to reduce neurofilament light (NfL), a biomarker of neurodegeneration. Objective To investigate whether a 16-week aerobic exercise program was able to reduce serum NfL in patients with mild Alzheimer's disease (AD). Methods This is a secondary analysis of data from the multi-center Preserving Cognition, Quality of Life, Physical Health, and Functional Ability in Alzheimer's disease: The Effect of Physical Exercise (ADEX) study. Participants were randomized to 16 weeks of moderate intensity aerobic exercise or usual care. Clinical assessment and measurement of serum NfL was done at baseline and after the intervention. Results A total of 136 participants were included in the analysis. Groups were comparable at baseline except for APOEε4 carriership which was higher in the usual care group (75.3 versus 60.2%; p = 0.04). There was no effect of the intervention on serum NfL [intervention: baseline NfL (pg/mL) 25.76, change from baseline 0.87; usual care: baseline 27.09, change from baseline -1.16, p = 0.09]. Conclusion The findings do not support an effect of the exercise intervention on a single measure of neurodegeneration in AD. Further studies are needed using other types and durations of exercise and other measures of neurodegeneration. Clinical trial registration clinicaltrials.gov, identifier NCT01681602.
Collapse
Affiliation(s)
- Kristian Steen Frederiksen
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark,*Correspondence: Kristian Steen Frederiksen,
| | - Camilla Steen Jensen
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Peter Høgh
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Regional Dementia Research Centre, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bo Andersen
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Hanne Gottrup
- Dementia Clinic, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lene Wermuth
- Department of Neurology, Dementia Clinic, Slagelse Hospital, Slagelse, Denmark,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Copenhagen University Hospital–Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital–Rigshospitalet, Glostrup, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
39
|
Domingos C, Marôco JL, Miranda M, Silva C, Melo X, Borrego C. Repeatability of Brain Activity as Measured by a 32-Channel EEG System during Resistance Exercise in Healthy Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1992. [PMID: 36767358 PMCID: PMC9914944 DOI: 10.3390/ijerph20031992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Electroencephalography (EEG) is attracting increasing attention in the sports and exercise fields, as it provides insights into brain behavior during specific tasks. However, it remains unclear if the promising wireless EEG caps provide reliable results despite the artifacts associated with head movement. The present study aims to evaluate the repeatability of brain activity as measured by a wireless 32-channel EEG system (EMOTIV flex cap) during resistance exercises in 18 apparently healthy but physically inactive young adults (10 men and 8 women). Moderate-intensity leg press exercises are performed with two evaluations with 48 h. between. This intensity allows enough time for data analysis while reducing unnecessary but involuntary head movements. Repeated measurements of EEG during the resistance exercise show high repeatability in all frequency bands, with excellent ICCs (>0.90) and bias close to zero, regardless of sex. These results suggest that a 32-channel wireless EEG system can be used to collect data on controlled resistance exercise tasks performed at moderate intensities. Future studies should replicate these results with a bigger sample size and different resistance exercises and intensities.
Collapse
Affiliation(s)
- Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| | - João Luís Marôco
- Exercise and Health Sciences Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Marco Miranda
- Department of Physics, Instituto Superior Técnico, University of Lisbon, 1749-016 Lisbon, Portugal
- Department of Bioengineering, LaSEEB-Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Carlos Silva
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| | - Xavier Melo
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, 1496-751 Oeiras, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Caparica, 2829-511 Almada, Portugal
| | - Carla Borrego
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| |
Collapse
|
40
|
Ibrahim A, Mat Ludin AF, Singh DKA, Rajab NF, Shahar S. Changes in cardiovascular-health blood biomarkers in response to exercise intervention among older adults with cognitive frailty: A scoping review. Front Physiol 2023; 14:1077078. [PMID: 36875037 PMCID: PMC9975543 DOI: 10.3389/fphys.2023.1077078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Cardiovascular health contributes significantly to the incidence of cognitive impairment. Prior to conducting exercise-related intervention, it is crucial to explore cardiovascular health blood parameters that have been commonly used as guidance for the purpose of monitoring. Information on the effectiveness of exercise on cardiovascular-related biomarkers is lacking, especially among older adults with cognitive frailty. Therefore, we aimed to review existing evidence on cardiovascular-related blood parameters and their changes following exercise intervention among older adults with cognitive frailty. Methods: A systematic search was conducted on PubMed, Cochrane, and Scopus databases. Related studies involving only human and full text in either English or Malay language were selected. Types of impairment were limited to cognitive impairment, frailty, and cognitive frailty. Studies were restricted to randomized controlled trial and clinical trial design studies. For charting purposes, all variables were extracted and tabulated. Trends in types of parameters studied were explored. Results: A total of 607 articles were screened, and the final 16 were included in this review. Four cardiovascular-related blood parameter categories were extracted: inflammatory, glucose homeostasis, lipid profile, and hemostatic biomarkers. The common parameters monitored were IGF-1 and HbA1c, glucose, and insulin sensitivity in some studies. Out of the nine studies on inflammatory biomarkers, exercise interventions showed a reduction in pro-inflammatory markers, namely, IL-6, TNF-α, IL-15, leptin, and C-reactive protein and an increase in anti-inflammatory markers, namely, IFN-γ and IL-10. Similarly, in all eight studies, glucose homeostasis-related biomarkers had improved with exercise intervention. The lipid profile was tested in five studies, with four studies showing improvements with exercise intervention via a decrease in total cholesterol, triglycerides, and low-density lipoprotein and an increase in high-density lipoprotein. A decrease in pro-inflammatory biomarkers and an increase in anti-inflammatory biomarkers were demonstrated with multicomponent exercise, including aerobic exercise in six studies and aerobic exercise on its own in the remaining two studies. Meanwhile, four out of six studies that yielded improvements in glucose homeostasis biomarkers involved only aerobic exercise and the remaining two studies involved multicomponent with aerobic exercise. Conclusion: The most consistent blood parameters studied were glucose homeostasis and inflammatory biomarkers. These parameters have been shown to improve with multicomponent exercise programs, particularly with the inclusion of aerobic exercise.
Collapse
Affiliation(s)
- Azianah Ibrahim
- Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Arimi Fitri Mat Ludin
- Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Devinder Kaur Ajit Singh
- Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Myers J, Pathak HB, He J, Ghosh A, Puri RV, Asakura Y, Miyashita M. Combined Exercise and Game-Based Cognitive Training Intervention: Correlative Pilot Study of Neurotrophic and Inflammatory Biomarkers for Women With Breast Cancer. Cancer Nurs 2022; 47:00002820-990000000-00072. [PMID: 36542098 PMCID: PMC10232676 DOI: 10.1097/ncc.0000000000001175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Interventions that increase neuroprotective factors and/or decrease inflammatory biomarkers may be effective in improving cognitive function for cancer survivors. Concurrent investigation of potential mechanism(s) to fully understand and refine effective interventions is needed. OBJECTIVE This correlative prospective substudy was conducted to investigate biomarkers related to potential mechanism(s) for a combined exercise and game-based brain training intervention designed to improve cognitive function in breast cancer survivors. INTERVENTIONS/METHODS Fingerstick bloodspot samples were collected at 3 time points during the randomized, wait-list controlled interventional parent study. Samples were analyzed for neuroprotective factors and inflammatory biomarker levels. RESULTS Insulinlike growth factor 1 (IGF-1) levels significantly increased (P < .01) for the intervention group from baseline to 4 and 16 weeks postintervention. Insulinlike growth factor 1 levels correlated with neurocognitive test performace improvement for Trail Making Test B (r = 0.31, P = .02). This association was not significant in the mixed model. No significant correlation was seen between IGF-1 levels and changes in self-report of cognitive function, activity level, or intervention dose. CONCLUSIONS Further investigation of IGF-1 levels is warranted as related to potential mechanisms for the Combined Exercise and Game-based Cognitive Training intervention. Future investigations should involve a larger sample cohort and incorporate objective measures of physical activity and prescribed sampling time in relationship to the most recent performance of the intervention. IMPLICATIONS FOR PRACTICE Fingerstick bloodspot sample collection is feasible, acceptable, and effective for conducting biomarker research. This methodology minimizes participant burden and discomfort; increases clinical trial access for home, off-site, or rural settings; and facilitates research efforts during times of pandemic restrictions.
Collapse
Affiliation(s)
- Jamie Myers
- Author Affiliations: University of Kansas School of Nursing (Dr Myers); and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (Drs Pathak, Ghosh, and Puri); Department of Zoology, Rajiv Gandhi University, Papum Pare, Arunachal Pradesh, India (Dr Ghosh); Department of Biostatistics and Data Science, University of Kansas Medical Center (Dr He); Centura Health-St. Francis Health Services/Parker Adventist Palliative Care (Dr Asakura), Denver, Colorado; and Hiroshima University Graduate School of Biomedical and Health Sciences, Japan (Dr Miyashita)
| | | | | | | | | | | | | |
Collapse
|
42
|
Ahn S, Chung JW, Crane MK, Bassett DR, Anderson JG. The Effects of Multi-Domain Interventions on Cognition: A Systematic Review. West J Nurs Res 2022; 44:1134-1154. [PMID: 34261376 DOI: 10.1177/01939459211032272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review aimed to evaluate the effects of multi-domain interventions on cognition among individuals without dementia. Multi-domain interventions refer to those combining any single preventive measure such as physical activity, cognitive training, and/or nutrition to prevent dementia. Seventeen studies were included (n = 10,056 total participants; mean age = 73 years), eight of which were rated as strong in quality while the other nine showed moderate quality. The standardized mean difference (SMD; d) was used to calculate the effect size for each included study. Multi-domain interventions consisting of physical activity, cognitive training, cardioprotective nutrition, and/or cardiovascular health education exerted beneficial effects on global cognition, episodic memory, and/or executive function with very small to moderate effect sizes (0.16-0.77). Nurses may consider combining these components to potentially stave off dementia. Future research is warranted to identify the optimal multi-domain intervention components that can induce clinically significant beneficial effects on cognition.
Collapse
Affiliation(s)
- Sangwoo Ahn
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| | - Jae Woo Chung
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - David R Bassett
- Department of Kinesiology, Recreation, and Sport Studies, University of Tennessee, Knoxville, TN, USA
| | - Joel G Anderson
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
43
|
Cheng A, Zhao Z, Liu H, Yang J, Luo J. The physiological mechanism and effect of resistance exercise on cognitive function in the elderly people. Front Public Health 2022; 10:1013734. [PMID: 36483263 PMCID: PMC9723356 DOI: 10.3389/fpubh.2022.1013734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background As brain function declines and cognitive ability declines, the benefits of resistance exercise to the brain of older people are gradually gaining attention. Objective The purpose of this review is to explore the mechanism and relationship between physiological factors such as vascular and neuronal degeneration and cognitive decline, and to categorize the differences in the effects of an acute and chronic resistance exercise intervention on cognitive function in healthy elderly people and the possible regulators of cognitive effects. Methods Using PubMed, Elsevier, Web of Science, X-MOL, CNKI, and Taiwan academic literature database, the research papers published in relevant journals at home and abroad until April 2022 were searched with Chinese and English keywords such as Resistance exercise, the elderly, hippocampus, memory performance, neurons, cognitive function. Pedro scale was used to check the quality of various documents, and the relevant research documents were obtained with the resistance exercise elements as the main axis for comprehensive analysis. Results and conclusion (1) Resistance exercise can have a beneficial effect on the brain function of the elderly through blood flow changes, stimulate nerve conduction substances and endocrine metabolism, promote cerebrovascular regeneration and gray matter volume of the brain, and prevent or delay the cognitive function degradation such as memory and attention of the elderly; (2) Acute resistance can temporarily stimulate hormone secretion in vivo and significantly improve the effect of short-term memory test, but it has little effect on the cognitive performance of the elderly; (3) Moderate-high intensity resistance exercise (50-80%1RM, 1-3 times/week, 2-3 groups/time) lasting for at least 6 months is more prominent for the improvement of cognitive function of the elderly, while the parameters such as resistance exercise intensity, exercise amount, duration, evaluation test time and differences of subjects may have different degrees of influence on cognitive benefits.
Collapse
|
44
|
Salasova A, Monti G, Andersen OM, Nykjaer A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 2022; 17:74. [PMID: 36397124 PMCID: PMC9673319 DOI: 10.1186/s13024-022-00576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Collapse
|
45
|
Liu Z, Zhang L, Wu J, Zheng Z, Gao J, Lin Y, Liu Y, Xu H, Zhou Y. Machine learning-based classification of circadian rhythm characteristics for mild cognitive impairment in the elderly. Front Public Health 2022; 10:1036886. [PMID: 36388285 PMCID: PMC9650188 DOI: 10.3389/fpubh.2022.1036886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/10/2022] [Indexed: 01/29/2023] Open
Abstract
Introduction Using wrist-wearable sensors to ecological transient assessment may provide a more valid assessment of physical activity, sedentary time, sleep and circadian rhythm than self-reported questionnaires, but has not been used widely to study the association with mild cognitive impairment and their characteristics. Methods 31 normal cognitive ability participants and 68 MCI participants were monitored with tri-axial accelerometer and nocturnal photo volumetric pulse wave signals for 14 days. Two machine learning algorithms: gradient boosting decision tree and eXtreme gradient boosting were constructed using data on daytime physical activity, sedentary time and nighttime physiological functions, including heart rate, heart rate variability, respiratory rate and oxygen saturation, combined with subjective scale features. The accuracy, precision, recall, F1 value, and AUC of the different models are compared, and the training and model effectiveness are validated by the subject-based leave-one-out method. Results The low physical activity state was higher in the MCI group than in the cognitively normal group between 8:00 and 11:00 (P < 0.05), the daily rhythm trend of the high physical activity state was generally lower in the MCI group than in the cognitively normal group (P < 0.05). The peak rhythms in the sedentary state appeared at 12:00-15:00 and 20:00. The peak rhythms of rMSSD, HRV high frequency output power, and HRV low frequency output power in the 6h HRV parameters at night in the MCI group disappeared at 3:00 a.m., and the amplitude of fluctuations decreased; the amplitude of fluctuations of LHratio nocturnal rhythm increased and the phase was disturbed; the oxygen saturation was between 90 and 95% and less than 90% were increased in all time periods (P < 0.05). The F1 value of the two machine learning algorithms for MCI classification of multi-feature data combined with subjective scales were XGBoost (78.02) and GBDT (84.04). Conclusion By collecting PSQI Scale data combined with circadian rhythm characteristics monitored by wrist-wearable sensors, we are able to construct XGBoost and GBDT machine learning models with good discrimination, thus providing an early warning solution for identifying family and community members with high risk of MCI.
Collapse
Affiliation(s)
- Zhizhen Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Zhizhen Liu
| | - Lin Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhicheng Zheng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jiahui Gao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongsheng Lin
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yinghua Liu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Haihua Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yongjin Zhou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China,*Correspondence: Yongjin Zhou
| |
Collapse
|
46
|
Prado GHJD, Sardeli AV, Lord JM, Cavaglieri CR. The effects of ageing, BMI and physical activity on blood IL-15 levels: A systematic review and meta-analyses. Exp Gerontol 2022; 168:111933. [PMID: 36007720 DOI: 10.1016/j.exger.2022.111933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
AIM The purpose of the study was to test the effect of ageing, BMI, physical activity and chronic exercise on IL-15 blood concentration by meta-analyses of the literature. METHODS The search was performed on PubMed/MEDLINE, Web of Science, ProQuest, Embase and Cochrane databases. First meta-analysis compared blood IL-15 of healthy adults across three age groups (<35 years, 35-65 years, and >65 years), considering BMI as confounding factor; the second compared IL-15 levels between physically active and non-physically active individuals (cross-sectional studies); and the third tested the effect of chronic exercise interventions on blood IL-15 levels on participants of any age, sex, and health condition. RESULTS From 2582 studies retrieved, 67 were selected for the three meta-analyses (age effect: 59; physical activity cross-sectional effect: 5; chronic exercise effect: 14). Older adults had lower blood IL-15 than young and middle-aged adults (5.30 pg/ml [4.76; 5.83]; 7.11 pg/ml [6.33; 7.88]; 7.10 pg/ml [5.55; 8.65], respectively). However, the subgroup of overweight older adults had higher IL-15 than young and middle aged overweight adults; Habitual physical activity did not affect blood IL-15 (standardized mean difference [SMD] 0.61 [-0.65; 1.88], p = 0.34); Chronic exercise reduced blood IL-15 in short-term interventions (<16 weeks) (SMD -0.14 [-0.27; -0.01], p = 0.04), but not studies of >16 weeks of intervention (SMD 0.44 [-0.26; 1.15], p = 0.22). CONCLUSION The present meta-analyses highlight the complex interaction of age, BMI and physical activity on blood IL-15 and emphasize the need to take these factors into account when considering the role of this myokine in health throughout life.
Collapse
Affiliation(s)
| | - Amanda Veiga Sardeli
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil; Gerontology Program, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK.
| | - Janet Mary Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil; Gerontology Program, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
47
|
Gusatovic J, Gramkow MH, Hasselbalch SG, Frederiksen KS. Effects of aerobic exercise on event-related potentials related to cognitive performance: a systematic review. PeerJ 2022; 10:e13604. [PMID: 35846877 PMCID: PMC9281596 DOI: 10.7717/peerj.13604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
Introduction Aerobic exercise interventions may affect different cognitive domains such as attention, working memory, inhibition, etc. However, the neural mechanisms underlying this relationship, remains uncertain. Objective To perform a systematic review on exercise intervention studies that use event-related potentials (ERPs) as outcome for cognitive performance. Methods We identified studies through searches in four databases reporting the effects of either an acute bout or chronic exercise on any ERP associated with cognitive performance. Study population included participants >17 years of age with or without a diagnosis. Results A total of 5,797 records were initially identified through database searching of which 52 were eligible for inclusion. Most studies were of acute aerobic exercise with moderate intensity. Results were heterogenious across studies, but there was a trend that ERP amplitude increased and (to a lesser extent) latencies decreased post-exercise. The P3 ERP was the most often reported ERP. Conclusion Heterogeneity across studies regarding methodology limited the possibility to draw definitive conclusions but the most consistent findings were that acute aerobic exercise was associated with higher amplitudes, and to a lesser extent shorter latencies, of ERPs.
Collapse
Affiliation(s)
- Julia Gusatovic
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Holsey Gramkow
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Steen Frederiksen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Li H, Su W, Dang H, Han K, Lu H, Yue S, Zhang H. Exercise Training for Mild Cognitive Impairment Adults Older Than 60: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 88:1263-1278. [PMID: 35811527 PMCID: PMC9484098 DOI: 10.3233/jad-220243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background: The prevalence of mild cognitive impairment (MCI) continues to increase due to population aging. Exercise has been a supporting health strategy that may elicit beneficial effects on cognitive function and prevent dementia. Objective: This study aimed to examine the effects of aerobic, resistance, and multimodal exercise training on cognition in adults aged > 60 years with MCI. Methods: We searched the Cochrane Library, PubMed, and Embase databases and ClinicalTrials.gov (https://clinicaltrials.gov) up to November 2021, with no language restrictions. We included all published randomized controlled trials (RCTs) comparing the effect of exercise programs on cognitive function with any other active intervention or no intervention in participants with MCI aged > 60 years. Results: Twelve RCTs were included in this review. Meta-analysis results revealed significant improvements in resistance training on measures of executive function (p < 0.05) and attention (p < 0.05); no significant differences were observed between aerobic exercise and controls on any of the cognitive comparisons. Conclusion: Exercise training had a small beneficial effect on executive function and attention in older adults with MCI. Larger studies are required to examine the effects of exercise and the possible moderators.
Collapse
Affiliation(s)
- Hui Li
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Wenlong Su
- China Rehabilitation Research Center, Beijing, China
| | - Hui Dang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Kaiyue Han
- China Rehabilitation Research Center, Beijing, China
| | - Haitao Lu
- China Rehabilitation Research Center, Beijing, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
49
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
50
|
Liu ZT, Ma YT, Pan ST, Xie K, Shen W, Lin SY, Gao JY, Li WY, Li GY, Wang QW, Li LP. Effects of involuntary treadmill running in combination with swimming on adult neurogenesis in an Alzheimer's mouse model. Neurochem Int 2022; 155:105309. [PMID: 35276288 DOI: 10.1016/j.neuint.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Physical exercise plays a role on the prevention and treatment of Alzheimer's disease (AD), but the exercise mode and the mechanism for these positive effects is still ambiguous. Here, we investigated the effect of an aerobic interval exercise, running in combination with swimming, on behavioral dysfunction and associated adult neurogenesis in a mouse model of AD. We demonstrate that 4 weeks of the exercise could ameliorate Aβ42 oligomer-induced cognitive impairment in mice utilizing Morris water maze tests. Additionally, the exercised Aβ42 oligomer-induced mice exhibited a significant reduction of anxiety- and depression-like behaviors compared to the sedentary Aβ42 oligomer-induced mice utilizing an Elevated zero maze and a Tail suspension test. Moreover, by utilizing 5'-bromodeoxyuridine (BrdU) as an exogenous cell tracer, we found that the exercised Aβ42 oligomer-induced mice displayed a significant increase in newborn cells (BrdU+ cells), which differentiated into a majority of neurons (BrdU+ DCX+ cells or BrdU+NeuN+ cells) and a few of astrocytes (BrdU+GFAP+ cells). Likewise, the exercised Aβ42 oligomer-induced mice also displayed the higher levels of NeuN, PSD95, synaptophysin, Bcl-2 and lower level of GFAP protein. Furthermore, alteration of serum metabolites in transgenic AD mice between the exercised and sedentary group were significantly associated with lipid metabolism, amino acid metabolism, and neurotransmitters. These findings suggest that combined aerobic interval exercise-mediated metabolites and proteins contributed to improving adult neurogenesis and behavioral performance after AD pathology, which might provide a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Zhi-Tao Liu
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Yu-Tao Ma
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Shao-Tao Pan
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Kai Xie
- Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Wei Shen
- Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Su-Yang Lin
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Jun-Yan Gao
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Wan-Yi Li
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Guang-Yu Li
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Qin-Wen Wang
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China.
| | - Li-Ping Li
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, 315010, PR China.
| |
Collapse
|