1
|
Evers K, Farisco M, Chatila R, Earp BD, Freire IT, Hamker F, Nemeth E, Verschure PFMJ, Khamassi M. Preliminaries to artificial consciousness: A multidimensional heuristic approach. Phys Life Rev 2025; 52:180-193. [PMID: 39787683 DOI: 10.1016/j.plrev.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The pursuit of artificial consciousness requires conceptual clarity to navigate its theoretical and empirical challenges. This paper introduces a composite, multilevel, and multidimensional model of consciousness as a heuristic framework to guide research in this field. Consciousness is treated as a complex phenomenon, with distinct constituents and dimensions that can be operationalized for study and for evaluating their replication. We argue that this model provides a balanced approach to artificial consciousness research by avoiding binary thinking (e.g., conscious vs. non-conscious) and offering a structured basis for testable hypotheses. To illustrate its utility, we focus on "awareness" as a case study, demonstrating how specific dimensions of consciousness can be pragmatically analyzed and targeted for potential artificial instantiation. By breaking down the conceptual intricacies of consciousness and aligning them with practical research goals, this paper lays the groundwork for a robust strategy to advance the scientific and technical understanding of artificial consciousness.
Collapse
Affiliation(s)
- K Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | - M Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden; Biogem Molecular Biology and Genetics Research Institute, Ariano Irpino, AV, Italy.
| | - R Chatila
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - B D Earp
- Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK; Centre for Biomedical Ethics, National University of Singapore, Singapore
| | - I T Freire
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - F Hamker
- Artificial Intelligence, Computer Science, Chemnitz University of Technology, Germany
| | - E Nemeth
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - P F M J Verschure
- Alicante Institute of Neuroscience & Department of Health Psychology, Universidad Miguel Hernandez, Spain
| | - M Khamassi
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| |
Collapse
|
2
|
Peng L, Li J, Xu L, Zhang Z, Wang Z, Zhong X, Wang L, Shao Y, Yue Y. Reduced visual and middle temporal gyrus activity correlates with years of exercise in athletes using resting-state fMRI. J Neuroimaging 2025; 35:e13249. [PMID: 39501905 DOI: 10.1111/jon.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Different types of physical training can lead to changes in brain activity and function, and these changes can vary depending on the type of training. However, it remains unclear whether there are commonalities in how different types of training affect brain activity and function. The purpose of this study is to compare the brain activity states of professional athletes with those of ordinary university students and to explore the relationship between training and differences in brain activity states. METHODS This study primarily utilizes resting-state MRI and the degree centrality metric to investigate spontaneous brain activity in 86 high-level athletes with extensive training and 74 age- and gender-matched nonathletes. Additionally, a correlation analysis between brain activity in relevant regions and years of training was conducted. RESULTS The analysis revealed that, compared to nonathletes, high-level athletes exhibited reduced activity in the Calcarine (a visual area) and Middle Temporal Gyrus. Furthermore, changes in the activity of the Calcarine and Middle Temporal Gyrus were significantly correlated with the number of years of professional training. CONCLUSIONS The study results indicate that long-term physical training is associated with changes in brain activity in athletes, providing insights into the neural mechanisms underlying behavioral performance in professional athletes.
Collapse
Affiliation(s)
- Lei Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jiyuan Li
- Department of Magnetic Resonance Imaging, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Zheyuan Zhang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Zexuan Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yunlong Yue
- Department of Magnetic Resonance Imaging, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Shah FI, Shehzadi S, Akram F, Haq IU, Javed B, Sabir S, Kazim Y, Ashfaq S. Unveiling the Psychedelic Journey: An Appraisal of Psilocybin as a Profound Antidepressant Therapy. Mol Biotechnol 2025; 67:36-53. [PMID: 38117395 DOI: 10.1007/s12033-023-00994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Depression, a global health concern with significant implications for suicide rates, remains challenging to treat effectively with conventional pharmacological options. The existing pharmaceutical interventions for these illnesses need daily dosing, are accompanied by various adverse effects, and may exhibit limited efficacy in certain cases. However, hope emerges from an unlikely source-Psilocybin, a natural hallucinogen found in certain mushrooms. Recently, this enigmatic compound has garnered attention for its potential therapeutic benefits in addressing various mental health issues, including depression. Psilocybin alters mood, cognition, and perception by acting on a particular subtype of serotonin receptors in the brain. It's feasible that these shifts in consciousness will promote healing development, offering a novel approach to depression management. This comprehensive review explores psilocybin, derived from specific mushrooms, and its implications in the treatment of depression. The study examines new perspectives and therapeutic possibilities surrounding psilocybin, addressing existing gaps in academic literature. It delves into its biosynthesis, unique mechanisms of action, therapeutic applications, and anti-depressive effects. By uncovering the potential of this mind-altering substance, the review aims to advance psychiatric care, offering hope to those globally affected by depression.
Collapse
Affiliation(s)
| | | | - Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | | | | | | | | |
Collapse
|
4
|
Ferreira LO, Padilha da Silveira E, Paz CA, Otake Hamoy MK, Barbosa GB, Santos MF, Conceição RM, Amaral ALG, Resende KD, Favacho Lopes DC, Hamoy M. Decreasing brain activity caused by acute administration of ketamine and alcohol - A randomized, controlled, observer-blinded experimental study. Front Pharmacol 2024; 15:1456009. [PMID: 39478968 PMCID: PMC11521905 DOI: 10.3389/fphar.2024.1456009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Substance abuse is a major public health problem. In recent years, ketamine, which is a parenteral anesthetic, has been consumed increasingly as an illicit drug together with alcohol, although little is known of how this association alters brain activity. The present study investigated the influence of progressive doses of ketamine, associated with alcohol, on electrophysiological activity. Methods For this, 72 late-adolescent (8-10-week-old) male Wistar rats received either ketamine only, at low (10 mg/kg), intermediate (20 mg/kg) or high (30 mg/kg) doses via intraperitoneal injection, or alcohol (2 mL/100 g) via oral gavage followed by ketamine (at low, intermediate, and high doses). Electroencephalograms (EEG) and electromyographic recordings were obtained 5 min after the final application of the drug. Results When administered alone, ketamine resulted in an increase in delta, theta, beta, and gamma brainwaves, with a more pronounced effect being detected at the highest dose (30 mg/kg) in the case of the delta, beta, and gamma waves. The amplitude of the alpha brainwaves was reduced at all doses of ketamine, but less intensively at the highest dose. When administered alone, alcohol reduced all the brainwaves, with the reduction in the alpha waves being exacerbated by ketamine at all doses, and that of the theta and beta waves being boosted at the lowest dose. The intermediate dose of ketamine (20 mg/kg) reverted the alcohol-induced reduction in the theta and gamma waves, whereas the high dose increased delta, theta, beta, and gamma bandpower. Discussion Overall, then, while ketamine enhances the depressant effects of alcohol on the alpha brainwave at all doses, a low dose intensified this effect on the theta and beta 175 waves, whereas a high dose produces neuronal hyperexcitability in the theta and 176 gamma bandpower.
Collapse
Affiliation(s)
- Luan Oliveira Ferreira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Department of Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Esther Padilha da Silveira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Clarissa A. Paz
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Maria K. Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Gabriela B. Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Murilo F. Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Raína M. Conceição
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Anthony Lucas G. Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Karina Dias Resende
- Department of Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
5
|
Marchetti G. The self and conscious experience. Front Psychol 2024; 15:1340943. [PMID: 38333065 PMCID: PMC10851942 DOI: 10.3389/fpsyg.2024.1340943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
The primary determinant of the self (S) is the conscious experience (CE) we have of it. Therefore, it does not come as a surprise that empirical research on S mainly resorts to the CE (or lack of CE) that subjects have of their S. What comes as a surprise is that empirical research on S does not tackle the problem of how CE contributes to building S. Empirical research investigates how S either biases the cognitive processing of stimuli or is altered through a wide range of means (meditation, hypnosis, etc.). In either case, even for different reasons, considerations of how CE contributes to building S are left unspecified in empirical research. This article analyzes these reasons and proposes a theoretical model of how CE contributes to building S. According to the proposed model, the phenomenal aspect of consciousness is produced by the modulation-engendered by attentional activity-of the energy level of the neural substrate (that is, the organ of attention) that underpins attentional activity. The phenomenal aspect of consciousness supplies the agent with a sense of S and informs the agent on how its S is affected by the agent's own operations. The phenomenal aspect of consciousness performs its functions through its five main dimensions: qualitative, quantitative, hedonic, temporal, and spatial. Each dimension of the phenomenal aspect of consciousness can be explained by a specific aspect of the modulation of the energy level of the organ of attention. Among other advantages, the model explains the various forms of S as outcomes resulting from the operations of a single mechanism and provides a unifying framework for empirical research on the neural underpinnings of S.
Collapse
Affiliation(s)
- Giorgio Marchetti
- Mind, Consciousness and Language Research Center, Alano di Piave, Italy
| |
Collapse
|
6
|
Villiger D, Trachsel M. With great power comes great vulnerability: an ethical analysis of psychedelics' therapeutic mechanisms proposed by the REBUS hypothesis. JOURNAL OF MEDICAL ETHICS 2023; 49:826-832. [PMID: 37045591 DOI: 10.1136/jme-2022-108816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Psychedelics are experiencing a renaissance in mental healthcare. In recent years, more and more early phase trials on psychedelic-assisted therapy have been conducted, with promising results overall. However, ethical analyses of this rediscovered form of treatment remain rare. The present paper contributes to the ethical inquiry of psychedelic-assisted therapy by analysing the ethical implications of its therapeutic mechanisms proposed by the relaxed beliefs under psychedelics (REBUS) hypothesis. In short, the REBUS hypothesis states that psychedelics make rigid beliefs revisable by increasing the influence of bottom-up input. Put differently, patients become highly suggestible and sensitive to context during a psychedelic session, amplifying therapeutic influence and effects. Due to that, patients are more vulnerable in psychedelic-assisted therapy than in other therapeutic interventions; they lose control during a psychedelic session and become dependent on the therapeutic setting (including the therapist). This enhanced vulnerability is ethically relevant and has been exploited by some therapists in the past. Therefore, patients in current research settings and starting mainstream medical settings need to be well informed about psychedelics' mechanisms and their implications to give valid informed consent to treatment. Furthermore, other security measures are warranted to protect patients from the vulnerability coming with psychedelic-assisted therapy.
Collapse
Affiliation(s)
- Daniel Villiger
- Department of Philosophy, University of Zurich, Zurich, Switzerland
| | - Manuel Trachsel
- Clinical Ethics Unit of University Hospital Basel and Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
7
|
Hanna A, Jirsch J, Alain C, Corvinelli S, Lee JS. Electroencephalogram measured functional connectivity for delirium detection: a systematic review. Front Neurosci 2023; 17:1274837. [PMID: 38033553 PMCID: PMC10687158 DOI: 10.3389/fnins.2023.1274837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Delirium is an acute alteration of consciousness marked by confusion, inattention, and changes in cognition. Some speculate that delirium may be a disorder of functional connectivity, but the requirement to lay still may limit measurement with existing functional imaging modalities in this population. Electroencephalography (EEG) may allow for a more feasible approach to the study of potential connectivity disturbances in delirium. We conducted a systematic review to investigate whether there are EEG-measurable differences in brain functional connectivity in the resting state associated with delirium. Methods Medline, PubMed, PsychInfo, Embase and CINAHL were searched for relevant articles containing original data studying EEG functional connectivity measures in delirium. Results The search yielded 1,516 records. Following strict inclusion criteria, four studies were included in the review. The studies used a variety of EEG measures including phase lag index, coherence, entropy, shortest path length, minimum spanning tree, and network clustering coefficients to study functional connectivity between scalp electrodes. Across connectivity measures, delirium was associated with decreased brain functional connectivity. All four studies found decreased alpha band connectivity for patients with delirium. None of the studies directly compared the different motor subtypes of delirium. Significance This systematic review provides converging evidence for disturbances in oscillatory-based functional connectivity in delirium.
Collapse
Affiliation(s)
- Angelica Hanna
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON, Canada
| | - Jeffrey Jirsch
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Claude Alain
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute Baycrest, Toronto, ON, Canada
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Sara Corvinelli
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jacques S. Lee
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Yang Z, Yue T, Zschorlich VR, Li D, Wang D, Qi F. Behavioral Effects of Repetitive Transcranial Magnetic Stimulation in Disorders of Consciousness: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:1362. [PMID: 37891731 PMCID: PMC10605911 DOI: 10.3390/brainsci13101362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Traumatic brain injury, cardiac arrest, intracerebral hemorrhage, and ischemic stroke may cause disorders of consciousness (DoC). Repetitive transcranial magnetic stimulation (rTMS) has been used to promote the recovery of disorders of consciousness (DoC) patients. In this meta-analysis, we examined whether rTMS can relieve DoC patient symptoms. We searched through journal articles indexed in PubMed, the Web of Science, Embase, Scopus, and the Cochrane Library until 20 April 2023. We assessed whether studies used rTMS as an intervention and reported the pre- and post-rTMS coma recovery scale-revised (CRS-R) scores. A total of 207 patients from seven trials were included. rTMS significantly improved the recovery degree of patients; the weighted mean difference (WMD) of the change in the CRS-R score was 1.89 (95% confidence interval (CI): 1.39-2.39; p < 0.00001) in comparison with controls. The subgroup analysis showed a significant improvement in CRS-R scores in rTMS over the dorsolateral prefrontal cortex (WMD = 2.24; 95% CI: 1.55-2.92; p < 0.00001; I2 = 31%) and the primary motor cortex (WMD = 1.63; 95% CI: 0.69-2.57; p = 0.0007; I2 = 14%). Twenty-hertz rTMS significantly improved CRS-R scores in patients with DoC (WMD = 1.61; 95% CI: 0.39-2.83; p = 0.010; I2 = 31%). Furthermore, CRS-R scores in rTMS over 20 sessions significantly improved (WMD = 1.75; 95% CI: 0.95-2.55; p < 0.0001; I2 = 12%). rTMS improved the symptoms of DoC patients; however, the available evidence remains limited and inadequate.
Collapse
Affiliation(s)
- Zihan Yang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Tian Yue
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Volker R. Zschorlich
- Institute of Sport Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Dai Li
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Duanwei Wang
- Shandong Mental Health Center, Shandong University, Jinan 250012, China
| | - Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
9
|
Plosnić G, Raguž M, Deletis V, Chudy D. Dysfunctional connectivity as a neurophysiologic mechanism of disorders of consciousness: a systematic review. Front Neurosci 2023; 17:1166187. [PMID: 37539385 PMCID: PMC10394244 DOI: 10.3389/fnins.2023.1166187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Disorders of consciousness (DOC) has been an object of numbers of research regarding the diagnosis, treatment and prognosis in last few decades. We believe that the DOC could be considered as a disconnection syndrome, although the exact mechanisms are not entirely understood. Moreover, different conceptual frameworks highly influence results interpretation. The aim of this systematic review is to assess the current knowledge regarding neurophysiological mechanisms of DOC and to establish possible influence on future clinical implications and usage. Methods We have conducted a systematic review according to PRISMA guidelines through PubMed and Cochrane databases, with studies being selected for inclusion via a set inclusion and exclusion criteria. Results Eighty-nine studies were included in this systematic review according to the selected criteria. This includes case studies, randomized controlled trials, controlled clinical trials, and observational studies with no control arms. The total number of DOC patients encompassed in the studies cited in this review is 1,533. Conclusion Connectomics and network neuroscience offer quantitative frameworks for analysing dynamic brain connectivity. Functional MRI studies show evidence of abnormal connectivity patterns and whole-brain topological reorganization, primarily affecting sensory-related resting state networks (RSNs), confirmed by EEG studies. As previously described, DOC patients are identified by diminished global information processing, i.e., network integration and increased local information processing, i.e., network segregation. Further studies using effective connectivity measurement tools instead of functional connectivity as well as the standardization of the study process are needed.
Collapse
Affiliation(s)
- Gabriela Plosnić
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Vedran Deletis
- Albert Einstein College of Medicine, New York, NY, United States
| | - Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Fingelkurts AA, Fingelkurts AA. Patients with Disorders of Consciousness: Are They Nonconscious, Unconscious, or Subconscious? Expanding the Discussion. Brain Sci 2023; 13:brainsci13050814. [PMID: 37239286 DOI: 10.3390/brainsci13050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Unprecedented advancements in the diagnosis and treatment of patients with disorders of consciousness (DoC) have given rise to ethical questions about how to recognize and respect autonomy and a sense of agency of the personhood when those capacities are themselves disordered, as they typically are in patients with DoC. At the intersection of these questions rests the distinction between consciousness and unconsciousness. Indeed, evaluations of consciousness levels and capacity for recovery have a significant impact on decisions regarding whether to discontinue or prolong life-sustaining therapy for DoC patients. However, in the unconsciousness domain, there is the confusing array of terms that are regularly used interchangeably, making it quite challenging to comprehend what unconsciousness is and how it might be empirically grounded. In this opinion paper, we will provide a brief overview of the state of the field of unconsciousness and show how a rapidly evolving electroencephalogram (EEG) neuroimaging technique may offer empirical, theoretical, and practical tools to approach unconsciousness and to improve our ability to distinguish consciousness from unconsciousness and also nonconsciousness with greater precision, particularly in cases that are borderline (as is typical in patients with DoC). Furthermore, we will provide a clear description of three distant notions of (un)consciousness (unconsciousness, nonconsciousness, and subconsciousness) and discuss how they relate to the experiential selfhood which is essential for comprehending the moral significance of what makes life worth living.
Collapse
|
11
|
Ten-Year Change in Disorders of Consciousness: A Bibliometric Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010078. [PMID: 36676702 PMCID: PMC9867218 DOI: 10.3390/medicina59010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Objectives: Disorders of consciousness (DoC) is a dynamic and challenging discipline, presenting intriguing challenges to clinicians and neurorehabilitation specialists for the lack of reliable assessment methods and interventions. Understanding DoC keeps pace with scientific research is urgent to need. We quantitively analyzed publications on DoC over the recent 10 years via bibliometrics analysis, to summarize the intellectual structure, current research hotspots, and future research trends in the field of DoC. Methods: Literature was obtained from the Science Citation Index Expanded of Web of Science Core Collection (WoSCC). To illustrate the knowledge structure of DoC, CiteSpace 5.8.R3 was used to conduct a co-occurrence analysis of countries, institutions, and keywords, and a co-citation analysis of references and journals. Also, Gephi 0.9.2 contributed to the author and co-cited author analysis. We found the most influential journals, authors, and countries and the most talked about keywords in the last decade of research. Results: A total of 1919 publications were collected. Over the past 10 years, the total number of annual publications has continued to increase, with the largest circulation in 2018. We found most DoC research and close cooperation originated from developed countries, e.g., the USA, Canada, and Italy. Academics from Belgium appear to have a strong presence in the field of DoC. The most influential journals were also mainly distributed in the USA and some European countries. Conclusions: This bibliometric study sheds light on the knowledge architecture of DoC research over the past decade, reflecting current hotspots and emerging trends, and providing new insights for clinicians and academics interested in DoC. The hot issues in DoC were diagnosing and differentiating the level of consciousness, and detecting covert awareness in early severe brain-injured patients. New trends focus on exploring the recovery mechanism of DoC and neuromodulation techniques.
Collapse
|
12
|
Duszyk-Bogorodzka A, Zieleniewska M, Jankowiak-Siuda K. Brain Activity Characteristics of Patients With Disorders of Consciousness in the EEG Resting State Paradigm: A Review. Front Syst Neurosci 2022; 16:654541. [PMID: 35720438 PMCID: PMC9198636 DOI: 10.3389/fnsys.2022.654541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The assessment of the level of consciousness in disorders of consciousness (DoC) is still one of the most challenging problems in contemporary medicine. Nevertheless, based on the multitude of studies conducted over the last 20 years on resting states based on electroencephalography (EEG) in DoC, it is possible to outline the brain activity profiles related to both patients without preserved consciousness and minimally conscious ones. In the case of patients without preserved consciousness, the dominance of low, mostly delta, frequency, and the marginalization of the higher frequencies were observed, both in terms of the global power of brain activity and in functional connectivity patterns. In turn, the minimally conscious patients revealed the opposite brain activity pattern—the characteristics of higher frequency bands were preserved both in global power and in functional long-distance connections. In this short review, we summarize the state of the art of EEG-based research in the resting state paradigm, in the context of providing potential support to the traditional clinical assessment of the level of consciousness.
Collapse
Affiliation(s)
- Anna Duszyk-Bogorodzka
- Behavioural Neuroscience Lab, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
- *Correspondence: Anna Duszyk-Bogorodzka
| | | | - Kamila Jankowiak-Siuda
- Behavioural Neuroscience Lab, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| |
Collapse
|
13
|
Bagnato S. The role of plasticity in the recovery of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:375-395. [PMID: 35034750 DOI: 10.1016/b978-0-12-819410-2.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disorders of consciousness (DOCs), i.e., coma, vegetative state, and minimally conscious state are the consequences of a severe brain injury that disrupts the brain ability to generate consciousness. Recovery from DOCs requires functional and structural changes in the brain. The sites where these plastic changes take place vary according to the pathophysiology of the DOC. The ascending reticular activating system of the brainstem and its complex connections with the thalamus and cortex are involved in the pathophysiology of coma. Subcortical structures, such as the striatum and globus pallidus, together with thalamocortical and corticothalamic projections, the basal forebrain, and several networks among different cortical areas are probably involved in vegetative and minimally conscious states. Some mechanisms of plasticity that allegedly operate in each of these sites to promote recovery of consciousness will be discussed in this chapter. While some mechanisms of plasticity work at a local level, others produce functional changes in complex neuronal networks, for example by entraining neuronal oscillations. The specific mechanisms of brain plasticity represent potential targets for future treatments aiming to restore consciousness in patients with severe DOCs.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù (PA), Italy.
| |
Collapse
|
14
|
Villiger D. How Psychedelic-Assisted Treatment Works in the Bayesian Brain. Front Psychiatry 2022; 13:812180. [PMID: 35360137 PMCID: PMC8963812 DOI: 10.3389/fpsyt.2022.812180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Psychedelics are experiencing a renaissance in clinical research. In recent years, an increasing number of studies on psychedelic-assisted treatment have been conducted. So far, the results are promising, suggesting that this new (or rather, rediscovered) form of therapy has great potential. One particular reason for that appears to be the synergistic combination of the pharmacological and psychotherapeutic interventions in psychedelic-assisted treatment. But how exactly do these two interventions complement each other? This paper provides the first account of the interaction between pharmacological and psychological effects in psychedelic-assisted treatment. Building on the relaxed beliefs under psychedelics (REBUS) hypothesis of Carhart-Harris and Friston and the contextual model of Wampold, it argues that psychedelics amplify the common factors and thereby the remedial effects of psychotherapy. More precisely, psychedelics are assumed to attenuate the precision of high-level predictions, making them more revisable by bottom-up input. Psychotherapy constitutes an important source of such input. At best, it signalizes a safe and supportive environment (cf. setting) and induces remedial expectations (cf. set). During treatment, these signals should become incorporated when high-level predictions are revised: a process that is hypothesized to occur as a matter of course in psychotherapy but to get reinforced and accelerated under psychedelics. Ultimately, these revisions should lead to a relief of symptoms.
Collapse
Affiliation(s)
- Daniel Villiger
- Department of Psychosomatics and Psychotherapy, Psychiatric University Hospital Basel, University of Basel, Basel, Switzerland.,Institute of Philosophy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T. Self, Me and I in the repertoire of spontaneously occurring altered states of Selfhood: eight neurophenomenological case study reports. Cogn Neurodyn 2021; 16:255-282. [PMID: 35401860 PMCID: PMC8934794 DOI: 10.1007/s11571-021-09719-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
This study investigates eight case reports of spontaneously emerging, brief episodes of vivid altered states of Selfhood (ASoSs) that occurred during mental exercise in six long-term meditators by using a neurophenomenological electroencephalography (EEG) approach. In agreement with the neurophenomenological methodology, first-person reports were used to identify such spontaneous ASoSs and to guide the neural analysis, which involved the estimation of three operational modules of the brain self-referential network (measured by EEG operational synchrony). The result of such analysis demonstrated that the documented ASoSs had unique neurophenomenological profiles, where several aspects or components of Selfhood (measured neurophysiologically and phenomenologically) are affected and expressed differently, but still in agreement with the neurophysiological three-dimensional construct model of the complex experiential Selfhood proposed in our earlier work (Fingelkurts et al. in Conscious Cogn 86:103031. 10.1016/j.concog.2020.103031, 2020).
Collapse
|
16
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
17
|
Trotti LM, Saini P, Crosson B, Meltzer CC, Rye DB, Nye JA. Regional brain metabolism differentiates narcolepsy type 1 and idiopathic hypersomnia. Sleep 2021; 44:6161267. [PMID: 33693888 DOI: 10.1093/sleep/zsab050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/13/2021] [Indexed: 12/18/2022] Open
Abstract
STUDY OBJECTIVES Daytime sleepiness is a manifestation of multiple sleep and neurologic disorders. Few studies have assessed patterns of regional brain metabolism across different disorders of excessive daytime sleepiness. One such disorder, idiopathic hypersomnia (IH), is particularly understudied. METHODS People with IH, narcolepsy (NT1), and non-sleepy controls underwent [ 18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) with electroencephalography (EEG). Participants were instructed to resist sleep and were awoken if sleep occurred. Voxel-wise parametric analysis identified clusters that significantly differed between each pair of groups, with a minimum cluster size of 100 voxels at a cluster detection threshold of p < 0.005. Correlations between glucose metabolism and sleep characteristics were evaluated. RESULTS Participants (77% women) had IH (n = 16), NT1 (n = 14), or were non-sleepy controls (n = 9), whose average age was 33.8 (+/-10.7) years. Compared to controls, NT1 participants demonstrated hypermetabolism in fusiform gyrus, middle occipital gyrus, superior and middle temporal gyri, insula, cuneus, precuneus, pre- and post-central gyri, and culmen. Compared to controls, IH participants also demonstrated hypermetabolism in precuneus, inferior parietal lobule, superior and middle temporal gyri, and culmen. Additionally, IH participants demonstrated altered metabolism of the posterior cingulate. Most participants fell asleep. Minutes of N1 during uptake was significantly negatively correlated with metabolism of the middle temporal gyrus. CONCLUSION NT1 and IH demonstrate somewhat overlapping, but distinct, patterns of regional metabolism.
Collapse
Affiliation(s)
- Lynn Marie Trotti
- Department of Neurology, Emory University School of Medicine.,Emory Sleep Center, Emory Healthcare
| | - Prabhjyot Saini
- Department of Neurology, Emory University School of Medicine
| | - Bruce Crosson
- Department of Neurology, Emory University School of Medicine.,Alanta Veterans Affairs Center for Visual and Neurocognitive Rehabilitation
| | - Carolyn C Meltzer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
| | - David B Rye
- Department of Neurology, Emory University School of Medicine.,Emory Sleep Center, Emory Healthcare
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
| |
Collapse
|
18
|
Kora P, Meenakshi K, Swaraja K, Rajani A, Raju MS. EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review. Complement Ther Clin Pract 2021; 43:101329. [PMID: 33618287 DOI: 10.1016/j.ctcp.2021.101329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The present investigation is to study the impact of yoga and meditation on Brain waves concerning physical and mental health. There are mainly three stages (steps) in the brain wave classification:(i) preprocessing, ii) feature extraction, and iii) classification. This work provides a review of interpretation methods of Brain signals (Electroencephalogram (EEG)) EEG during yoga and meditation. Past research has revealed significant mental and physical advantages with yoga and meditation. METHODS The research topic reviewed focused on the machine learning strategies applied for the interpretation of brain waves. In addressing the research questions highlighted earlier in the general introduction, we conducted a systematic search of articles from targeted scientific and journal online databases that included PubMed, Web of Science, IEEE Xplore Digital Library (IEEE), and Arxiv databases based on their relevance to the research questions and domain topic. The survey topic is relatively nascent, and therefore, the scope of the search period was limited to the 20-year timeline that was deemed representative of the research topic under investigation. The literature search was based on the keywords "EEG", "yoga*" and "meditation*". The key phrases were concatenated using Boolean expressions and applied to search through the selected online databases yielding a total of 120 articles. The online databases were selected based on the relevancy of content with the research title, research questions, and the domain application. The literature review search, process, and classification were carefully conducted guided by two defined measures; 1.) Inclusion criteria; and 2.) Exclusion criteria. These measures define the criteria for searching and extracting relevant articles relating to the research title and domain of interest. RESULTS Our literature search and review indicate a broad spectrum of neural mechanics under a variety of meditation styles have been investigated. A detailed analysis of various mental states using Zen, CHAN, mindfulness, TM, Rajayoga, Kundalini, Yoga, and other meditation styles have been described by means of EEG bands. Classification of mental states using KNN, SVM, Random forest, Fuzzy logic, neural networks, Convolutional Neural Networks has been described. Superior research is still required to classify the EEG signatures corresponding to different mental states. CONCLUSIONS Yoga practice may be an effective adjunctive treatment for a clinical and aging population. Advanced research can examine the effects of specific branches of yoga on a designated clinical grouping. Yoga and meditation increased overall healthy brain activity.
Collapse
|
19
|
EEG Assessment in a 2-Year-Old Child with Prolonged Disorders of Consciousness: 3 Years' Follow-up. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2020; 2020:8826238. [PMID: 33293944 PMCID: PMC7718066 DOI: 10.1155/2020/8826238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
A 2-year-old girl, diagnosed with traumatic brain injury and epilepsy following car trauma, was followed up for 3 years (a total of 15 recordings taken at 0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 19, 26, and 35 months). There is still no clear guidance on the diagnosis, treatment, and prognosis of children with disorders of consciousness. At each appointment, recordings included the child's height, weight, pediatric Glasgow Coma Scale (pGCS), Coma Recovery Scale-Revised (CRS-R), Gesell Developmental Schedule, computed tomography or magnetic resonance imaging, electroencephalogram, frequency of seizures, oral antiepileptic drugs, stimulation with subject's own name (SON), and median nerve electrical stimulation (MNS). Growth and development were deemed appropriate for the age of the child. The pGCS and Gesell Developmental Schedule provided a comprehensive assessment of consciousness and mental development; the weighted Phase Lag Index (wPLI ) in the β-band (13–25 Hz) can distinguish unresponsive wakefulness syndrome from minimally conscious state and confirm that the SON and MNS were effective. The continuous increase of delta-band power indicates a poor prognosis. Interictal epileptiform discharges (IEDs) have a cumulative effect and seizures seriously affect the prognosis.
Collapse
|
20
|
Picolas C. Is the "Minimally Conscious State" Patient Minimally Self-Aware? Front Psychol 2020; 11:539665. [PMID: 33281657 PMCID: PMC7689014 DOI: 10.3389/fpsyg.2020.539665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Patients in a Minimally Conscious State (MCS) constitute a subgroup of awareness impaired patients who show minimal signs of awareness as opposed to patients in a Vegetative State who do not exhibit any such signs. While the empirical literature is rich in studies investigating either overt or covert signs of awareness in such patients the question of self-awareness has only scarcely been addressed. Even in the occasion where self-awareness is concerned, it is only higher-order or reflective self-awareness that is the target of such investigations. In the first part of this paper, I briefly review the relevant clinical neuroscience literature to demonstrate that the conception of self-awareness at play in such studies is indeed that of reflective self-awareness. In the second part, I present the philosophical notion of pre-reflective (or minimal) self-awareness. This is shown to primarily refer to the implicit awareness of our embodied subjectivity which essentially permeates all our experiences. As discussed, this minimal self-awareness is not specifically addressed when clinically or experimentally assessing patients in MCS. My suggestion is that neuroimaging studies targeting minimal self-awareness as in First-Person Perspective-taking paradigms could be used with MCS patients to shed light on the question of whether those individuals are minimally self-aware even in the case where they lack self-reflective abilities. Empirical evidence of this kind could have important theoretical implications for the discussion about the notion of self-awareness but also potential medical and social/legal implications for awareness impaired patients' management.
Collapse
Affiliation(s)
- Constantinos Picolas
- Department of Philosophy, University of Patras, Patras, Greece
- Department of Neurosurgery, Nicosia General Hospital, Strovolos, Cyprus
| |
Collapse
|
21
|
Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T. Selfhood triumvirate: From phenomenology to brain activity and back again. Conscious Cogn 2020; 86:103031. [DOI: 10.1016/j.concog.2020.103031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022]
|
22
|
Keshmiri S. Entropy and the Brain: An Overview. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E917. [PMID: 33286686 PMCID: PMC7597158 DOI: 10.3390/e22090917] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/25/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks' information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks' information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain's capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.
Collapse
Affiliation(s)
- Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan
| |
Collapse
|
23
|
Northoff G, Lamme V. Neural signs and mechanisms of consciousness: Is there a potential convergence of theories of consciousness in sight? Neurosci Biobehav Rev 2020; 118:568-587. [PMID: 32783969 DOI: 10.1016/j.neubiorev.2020.07.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
Various theories for the neural basis of consciousness have been proposed, suggesting a diversity of neural signs and mechanisms. We ask to what extent this diversity is real, or whether many theories share the same basic ideas with a potential for convergence towards a more unified theory of the neural basis of consciousness. For that purpose, we review and compare the various neural signs, measures, and mechanisms proposed in the different theories. We demonstrate that different theories focus on neural signs and measures of distinct aspects of neural activity including stimulus-related, prestimulus, and resting state activity as well as on distinct features of consciousness. Therefore, the various mechanisms proposed in the different theories may, in part, complement each other. Together, we provide insight into the shared basis and convergences (and, in part, discrepancies) of the different theories of consciousness. We conclude that the different theories concern distinct aspects of both neural activity and consciousness which, as we suppose, may be integrated and nested within the brain's overall temporo-spatial dynamics.
Collapse
Affiliation(s)
- Georg Northoff
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada; Centre for Research Ethics & Bioethics, University of Uppsala, Uppsala, Sweden.
| | - Victor Lamme
- Amsterdam Brain and Cognition (ABC), Department of Psychology, University of Amsterdam, the Netherlands
| |
Collapse
|
24
|
Towards a Pragmatic Approach to a Psychophysiological Unit of Analysis for Mental and Brain Disorders: An EEG-Copeia for Neurofeedback. Appl Psychophysiol Biofeedback 2020; 44:151-172. [PMID: 31098793 DOI: 10.1007/s10484-019-09440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article proposes what we call an "EEG-Copeia" for neurofeedback, like the "Pharmacopeia" for psychopharmacology. This paper proposes to define an "EEG-Copeia" as an organized list of scientifically validated EEG markers, characterized by a specific association with an identified cognitive process, that define a psychophysiological unit of analysis useful for mental or brain disorder evaluation and treatment. A characteristic of EEG neurofeedback for mental and brain disorders is that it targets a EEG markers related to a supposed cognitive process, whereas conventional treatments target clinical manifestations. This could explain why EEG neurofeedback studies encounter difficulty in achieving reproducibility and validation. The present paper suggests that a first step to optimize EEG neurofeedback protocols and future research is to target a valid EEG marker. The specificity of the cognitive skills trained and learned during real time feedback of the EEG marker could be enhanced and both the reliability of neurofeedback training and the therapeutic impact optimized. However, several of the most well-known EEG markers have seldom been applied for neurofeedback. Moreover, we lack a reliable and valid EEG targets library for further RCT to evaluate the efficacy of neurofeedback in mental and brain disorders. With the present manuscript, our aim is to foster dialogues between cognitive neuroscience and EEG neurofeedback according to a psychophysiological perspective. The primary objective of this review was to identify the most robust EEG target. EEG markers linked with one or several clearly identified cognitive-related processes will be identified. The secondary objective was to organize these EEG markers and related cognitive process in a psychophysiological unit of analysis matrix inspired by the Research Domain Criteria (RDoC) project.
Collapse
|
25
|
Lee M, Baird B, Gosseries O, Nieminen JO, Boly M, Tononi G, Lee SW. Graph Theoretical Analysis of Cortical Networks based on Conscious Experience. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3373-3376. [PMID: 31946604 DOI: 10.1109/embc.2019.8857648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the study was to investigate differences in cortical networks based on the state of consciousness. Five subjects performed a serial-awakening paradigm with electroencephalography (EEG) recordings. We considered four states of consciousness: (1) non-rapid eye movement (NREM) sleep with no conscious experience, (2) NREM sleep with conscious experience, (3) rapid eye movement (REM) sleep with conscious experience, and (4) wakefulness. We applied graph theoretical analysis to explore the cortical connectivity and network properties in five frequency bands. Connectivity between EEG channels was evaluated with the weighted phase lag index (wPLI). The characteristic path length, transitivity, and clustering coefficient were computed to evaluate functional integration and segregation of the associated brain network. There were no significant differences in wPLI among the four states of consciousness. In the beta band, functional integration in wakefulness was higher than in NREM sleep. Regarding functional segregation, in the theta band, transitivity and clustering coefficient in NREM sleep with no conscious experience were stronger than in wakefulness or REM sleep, but clustering in the beta band showed an opposite effect. The observed differences may be related to cortical bistability and add to previously observed neural correlates of consciousness.
Collapse
|
26
|
Fingelkurts AA, Fingelkurts AA. Eye movement desensitization and reprocessing for post-traumatic stress disorder from the perspective of three-dimensional model of the experiential selfhood. Med Hypotheses 2019; 131:109304. [PMID: 31443757 DOI: 10.1016/j.mehy.2019.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Eye Movement Desensitization and Reprocessing (EMDR) therapy is included in many international trauma treatment guidelines and is also shortlisted as an evidence-based practice for the treatment of psychological trauma and Post-Traumatic Stress Disorder (PTSD). However, its neurobiological mechanisms have not yet been fully understood. In this brief article we propose a hypothesis that a recently introduced neurophysiologically based three-dimensional construct model for experiential selfhood may help to fill this gap by providing the necessary neurobiological rationale of EMDR. In support of this proposal we briefly overview the neurophysiology of eye movements and the triad selfhood components, as well as EMDR therapy neuroimaging studies.
Collapse
|
27
|
Carhart-Harris RL, Friston KJ. REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacol Rev 2019; 71:316-344. [PMID: 31221820 PMCID: PMC6588209 DOI: 10.1124/pr.118.017160] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper formulates the action of psychedelics by integrating the free-energy principle and entropic brain hypothesis. We call this formulation relaxed beliefs under psychedelics (REBUS) and the anarchic brain, founded on the principle that-via their entropic effect on spontaneous cortical activity-psychedelics work to relax the precision of high-level priors or beliefs, thereby liberating bottom-up information flow, particularly via intrinsic sources such as the limbic system. We assemble evidence for this model and show how it can explain a broad range of phenomena associated with the psychedelic experience. With regard to their potential therapeutic use, we propose that psychedelics work to relax the precision weighting of pathologically overweighted priors underpinning various expressions of mental illness. We propose that this process entails an increased sensitization of high-level priors to bottom-up signaling (stemming from intrinsic sources), and that this heightened sensitivity enables the potential revision and deweighting of overweighted priors. We end by discussing further implications of the model, such as that psychedelics can bring about the revision of other heavily weighted high-level priors, not directly related to mental health, such as those underlying partisan and/or overly-confident political, religious, and/or philosophical perspectives. SIGNIFICANCE STATEMENT: Psychedelics are capturing interest, with efforts underway to bring psilocybin therapy to marketing authorisation and legal access within a decade, spearheaded by the findings of a series of phase 2 trials. In this climate, a compelling unified model of how psychedelics alter brain function to alter consciousness would have appeal. Towards this end, we have sought to integrate a leading model of global brain function, hierarchical predictive coding, with an often-cited model of the acute action of psychedelics, the entropic brain hypothesis. The resulting synthesis states that psychedelics work to relax high-level priors, sensitising them to liberated bottom-up information flow, which, with the right intention, care provision and context, can help guide and cultivate the revision of entrenched pathological priors.
Collapse
Affiliation(s)
- R L Carhart-Harris
- Centre for Psychedelic Research, Division of Brain Sciences, Imperial College London, London, United Kingdom (R.L.C.-H.); and Institute of Neurology, Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom (K.J.F.)
| | - K J Friston
- Centre for Psychedelic Research, Division of Brain Sciences, Imperial College London, London, United Kingdom (R.L.C.-H.); and Institute of Neurology, Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom (K.J.F.)
| |
Collapse
|
28
|
Default Mode Network, Meditation, and Age-Associated Brain Changes: What Can We Learn from the Impact of Mental Training on Well-Being as a Psychotherapeutic Approach? Neural Plast 2019; 2019:7067592. [PMID: 31065259 PMCID: PMC6466873 DOI: 10.1155/2019/7067592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/08/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is a physiological process accompanied by cognitive decline, principally in memory and executive functions. Alterations in the connectivity of the default mode network (DMN) have been found to participate in cognitive decline, as well as in several neurocognitive disorders. The DMN has antisynchronic activity with attentional networks (task-positive networks (TPN)), which are critical to executive function and memory. Findings pointing to the regulation of the DMN via activation of TPN suggest that it can be used as a strategy for neuroprotection. Meditation is a noninvasive and nonpharmacological technique proven to increase meta-awareness, a cognitive ability which involves the control of both networks. In this review, we discuss the possibility of facilitating healthy aging through the regulation of networks through meditation. We propose that by practicing specific types of meditation, cognitive decline could be slowed, promoting a healthy lifestyle, which may enhance the quality of life for the elderly.
Collapse
|
29
|
Placing pure experience of Eastern tradition into the neurophysiology of Western tradition. Cogn Neurodyn 2019; 13:121-123. [PMID: 30728875 DOI: 10.1007/s11571-018-9506-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 11/27/2022] Open
|
30
|
Kullberg-Turtiainen M, Vuorela K, Huttula L, Turtiainen P, Koskinen S. Individualized goal directed dance rehabilitation in chronic state of severe traumatic brain injury: A case study. Heliyon 2019; 5:e01184. [PMID: 30805564 PMCID: PMC6374582 DOI: 10.1016/j.heliyon.2019.e01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/13/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
Few long-term studies report late outcomes after severe traumatic brain injury. New rehabilitation techniques are needed for this heterogenous patient group. We present a dance intervention six and half years after an extreme severe TBI including excessive diffuse axonal injury, which disconnects the brain networks. Given the fact, that efficient brain function depends on the integrated operation of large-scale brain networks like default mode network (DMN), we created an intervention with multisensory and multimodal approach and goal-directed behavior. The intervention lasted four months including weekly one-hour dance lessons with the help of a physiotherapist and dance teacher. The measures included functional independence measure (FIM), repeated electroencephalogram (EEG) analysis of three subnets of DMN and clinical evaluations and observations. The results showed clear improvement after the intervention, and FIM stayed in elevated level during several years after the intervention. We present suggestion for further studies using larger patient groups.
Collapse
Affiliation(s)
| | | | | | | | - Sanna Koskinen
- University of Helsinki, Department of Psychology and Logopedics, Faculty of Medicine, Finland
| |
Collapse
|
31
|
Fingelkurts AA, Fingelkurts AA. Alterations in the Three Components of Selfhood in Persons with Post-Traumatic Stress Disorder Symptoms: A Pilot qEEG Neuroimaging Study. Open Neuroimag J 2018; 12:42-54. [PMID: 29785227 PMCID: PMC5958296 DOI: 10.2174/1874440001812010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 11/22/2022] Open
Abstract
Background and Objective: Understanding how trauma impacts the self-structure of individuals suffering from the Post-Traumatic Stress Disorder (PTSD) symptoms is a complex matter and despite several attempts to explain the relationship between trauma and the “Self”, this issue still lacks clarity. Therefore, adopting a new theoretical perspective may help understand PTSD deeper and to shed light on the underlying psychophysiological mechanisms. Methods: In this study, we employed the “three-dimensional construct model of the experiential selfhood” where three major components of selfhood (phenomenal first-person agency, embodiment, and reflection/narration) are related to three Operational Modules (OMs) of the self-referential brain network. These modules can be reliably estimated through operational synchrony analysis of the Electroencephalogram (EEG). Six individuals with PTSD symptoms and twenty-nine sex-, age- and demographic- (race, education, marital status) matched healthy controls underwent resting state EEG signal acquisition with the following estimation of the synchrony strength within every OM. Results: Our results indicate that subjects with PTSD symptoms had significantly stronger EEG operational synchrony within anterior and right posterior OMs as well as significantly weaker EEG operational synchrony within left posterior OM compared to healthy controls. Moreover, increased the functional integrity of the anterior OM was positively associated with hyperactivity symptoms, reduced synchrony of the left posterior OM was associated with greater avoidance, and increased right posterior OM integrity was positively correlated with intrusion and mood symptoms. Conclusion: The results are interpreted in light of the triad model of selfhood and its theoretical and clinical implications (including a new treatment approach) are discussed.
Collapse
|
32
|
Farisco M, Kotaleski JH, Evers K. Large-Scale Brain Simulation and Disorders of Consciousness. Mapping Technical and Conceptual Issues. Front Psychol 2018; 9:585. [PMID: 29740372 PMCID: PMC5928391 DOI: 10.3389/fpsyg.2018.00585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/06/2018] [Indexed: 11/15/2022] Open
Abstract
Modeling and simulations have gained a leading position in contemporary attempts to describe, explain, and quantitatively predict the human brain's operations. Computer models are highly sophisticated tools developed to achieve an integrated knowledge of the brain with the aim of overcoming the actual fragmentation resulting from different neuroscientific approaches. In this paper we investigate the plausibility of simulation technologies for emulation of consciousness and the potential clinical impact of large-scale brain simulation on the assessment and care of disorders of consciousness (DOCs), e.g., Coma, Vegetative State/Unresponsive Wakefulness Syndrome, Minimally Conscious State. Notwithstanding their technical limitations, we suggest that simulation technologies may offer new solutions to old practical problems, particularly in clinical contexts. We take DOCs as an illustrative case, arguing that the simulation of neural correlates of consciousness is potentially useful for improving treatments of patients with DOCs.
Collapse
Affiliation(s)
- Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Science and Society Unit, Biogem Genetic Research Centre, Ariano Irpino (AV), Italy
| | - Jeanette H. Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institute, Solna, Sweden
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Bai Y, Xia X, Wang Y, Guo Y, Yang Y, He J, Li X. Fronto-parietal coherence response to tDCS modulation in patients with disorders of consciousness. Int J Neurosci 2017; 128:587-594. [PMID: 29160761 DOI: 10.1080/00207454.2017.1403440] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yang Bai
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoyu Xia
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Yong Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yongkun Guo
- Department of Neurosurgery, Zheng Zhou Central Hospital, Zhengzhou, China
| | - Yi Yang
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
34
|
Fingelkurts AA, Fingelkurts AA. Longitudinal Dynamics of 3-Dimensional Components of Selfhood After Severe Traumatic Brain Injury: A qEEG Case Study. Clin EEG Neurosci 2017; 48:327-337. [PMID: 28771043 DOI: 10.1177/1550059417696180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this report, we describe the case of a patient who sustained extremely severe traumatic brain damage with diffuse axonal injury in a traffic accident and whose recovery was monitored during 6 years. Specifically, we were interested in the recovery dynamics of 3-dimensional components of selfhood (a 3-dimensional construct model for the complex experiential selfhood has been recently proposed based on the empirical findings on the functional-topographical specialization of 3 operational modules of brain functional network responsible for the self-consciousness processing) derived from the electroencephalographic (EEG) signal. The analysis revealed progressive (though not monotonous) restoration of EEG functional connectivity of 3 modules of brain functional network responsible for the self-consciousness processing, which was also paralleled by the clinically significant functional recovery. We propose that restoration of normal integrity of the operational modules of the self-referential brain network may underlie the positive dynamics of 3 aspects of selfhood and provide a neurobiological mechanism for their recovery. The results are discussed in the context of recent experimental studies that support this inference. Studies of ongoing recovery after severe brain injury utilizing knowledge about each separate aspect of complex selfhood will likely help to develop more efficient and targeted rehabilitation programs for patients with brain trauma.
Collapse
|
35
|
Delta coherence in resting-state EEG predicts the reduction in cigarette craving after hypnotic aversion suggestions. Sci Rep 2017; 7:2430. [PMID: 28546584 PMCID: PMC5445086 DOI: 10.1038/s41598-017-01373-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/27/2017] [Indexed: 12/26/2022] Open
Abstract
Cigarette craving is a key contributor of nicotine addiction. Hypnotic aversion suggestions have been used to help smoking cessation and reduce smoking relapse rates but its neural basis is poorly understood. This study investigated the underlying neural basis of hypnosis treatment for nicotine addiction with resting state Electroencephalograph (EEG) coherence as the measure. The sample consisted of 42 male smokers. Cigarette craving was measured by the Tobacco Craving Questionnaire. The 8-minute resting state EEG was recorded in baseline state and after hypnotic induction in the hypnotic state. Then a smoking disgust suggestion was performed. A significant increase in EEG coherence in delta and theta frequency, and significant decrease in alpha and beta frequency, between the baseline and the hypnotic state was found, which may reflect alterations in consciousness after hypnotic induction. More importantly, the delta coherence between the right frontal region and the left posterior region predicted cigarette craving reduction after hypnotic aversion suggestions. This suggests that the functional connectivity between these regions plays an important role in reducing cigarette cravings via hypnotic aversion suggestions. Thus, these brain regions may serve as an important target to treat nicotine addiction, such as stimulating these brain regions via repetitive transcranial magnetic stimulation.
Collapse
|
36
|
Fingelkurts AA, Fingelkurts AA. Three-dimensional components of selfhood in treatment-naive patients with major depressive disorder: A resting-state qEEG imaging study. Neuropsychologia 2017; 99:30-36. [DOI: 10.1016/j.neuropsychologia.2017.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/08/2017] [Accepted: 02/26/2017] [Indexed: 11/16/2022]
|
37
|
Naro A, Leo A, Manuli A, Cannavò A, Bramanti A, Bramanti P, Calabrò RS. How far can we go in chronic disorders of consciousness differential diagnosis? The use of neuromodulation in detecting internal and external awareness. Neuroscience 2017; 349:165-173. [PMID: 28285941 DOI: 10.1016/j.neuroscience.2017.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
Awareness generation and modulation may depend on a balanced information integration and differentiation across default mode network (DMN) and external awareness networks (EAN). Neuromodulation approaches, capable of shaping information processing, may highlight residual network activities supporting awareness, which are not detectable through active paradigms, thus allowing to differentiate chronic disorders of consciousness (DoC). We studied aftereffects of repetitive transcranial magnetic stimulation (rTMS) by applying graph theory within canonical frequency bands to compare the markers of these networks in the electroencephalographic data from 20 patients with DoC. We found that patients' high-frequency networks suffered from a large-scale connectivity breakdown, paralleled by a local hyperconnectivity, whereas low-frequency networks showed a preserved but dysfunctional large-scale connectivity. There was a correlation between metrics and the behavioral awareness. Interestingly, two persons with UWS showed a residual rTMS-induced modulation of the functional correlations between the DMN and the EAN, as observed in patients with MCS. Hence, we may hypothesize that the patients with UWS who demonstrate evidence of residual DMN-EAN functional correlation may be misdiagnosed, given that such residual network correlations could support covert consciousness.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Antonino Leo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | | | - Alessia Bramanti
- Institute of Applied Sciences and Intelligent Systems "Edoardo Caianello", National Research Council of Italy, Messina, Italy
| | | | | |
Collapse
|
38
|
|
39
|
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. Long-Term (Six Years) Clinical Outcome Discrimination of Patients in the Vegetative State Could be Achieved Based on the Operational Architectonics EEG Analysis: A Pilot Feasibility Study. Open Neuroimag J 2016; 10:69-79. [PMID: 27347266 PMCID: PMC4894941 DOI: 10.2174/1874440001610010069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/22/2022] Open
Abstract
Electroencephalogram (EEG) recordings are increasingly used to evaluate patients with disorders of consciousness (DOC) or assess their prognosis outcome in the short-term perspective. However, there is a lack of information concerning the effectiveness of EEG in classifying long-term (many years) outcome in chronic DOC patients. Here we tested whether EEG operational architectonics parameters (geared towards consciousness phenomenon detection rather than neurophysiological processes) could be useful for distinguishing a very long-term (6 years) clinical outcome of DOC patients whose EEGs were registered within 3 months post-injury. The obtained results suggest that EEG recorded at third month after sustaining brain damage, may contain useful information on the long-term outcome of patients in vegetative state: it could discriminate patients who remain in a persistent vegetative state from patients who reach a minimally conscious state or even recover a full consciousness in a long-term perspective (6 years) post-injury. These findings, if confirmed in further studies, may be pivotal for long-term planning of clinical care, rehabilitative programs, medical-legal decisions concerning the patients, and policy makers.
Collapse
Affiliation(s)
| | | | - Sergio Bagnato
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| | - Cristina Boccagni
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| | - Giuseppe Galardi
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| |
Collapse
|
40
|
Forgacs PB, Fridman EA, Goldfine AM, Schiff ND. Isolation Syndrome after Cardiac Arrest and Therapeutic Hypothermia. Front Neurosci 2016; 10:259. [PMID: 27375420 PMCID: PMC4899438 DOI: 10.3389/fnins.2016.00259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022] Open
Abstract
Here, we present the first description of an isolation syndrome in a patient who suffered prolonged cardiac arrest and underwent a standard therapeutic hypothermia protocol. Two years after the arrest, the patient demonstrated no motor responses to commands, communication capabilities, or visual tracking at the bedside. However, resting neuronal metabolism and electrical activity across the entire anterior forebrain was found to be normal despite severe structural injuries to primary motor, parietal, and occipital cortices. In addition, using quantitative electroencephalography, the patient showed evidence for willful modulation of brain activity in response to auditory commands revealing covert conscious awareness. A possible explanation for this striking dissociation in this patient is that altered neuronal recovery patterns following therapeutic hypothermia may lead to a disproportionate preservation of anterior forebrain cortico-thalamic circuits even in the setting of severe hypoxic injury to other brain areas. Compared to recent reports of other severely brain-injured subjects with such dissociation of clinically observable (overt) and covert behaviors, we propose that this case represents a potentially generalizable mechanism producing an isolation syndrome of blindness, motor paralysis, and retained cognition as a sequela of cardiac arrest and therapeutic hypothermia. Our findings further support that highly-preserved anterior cortico-thalamic integrity is associated with the presence of conscious awareness independent from the degree of injury to other brain areas.
Collapse
Affiliation(s)
- Peter B Forgacs
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical CollegeNew York, NY, USA; Department of Neurology, Weill Cornell Medical CollegeNew York, NY, USA; The Rockefeller UniversityNew York, NY, USA
| | - Esteban A Fridman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Andrew M Goldfine
- Department of Neurology, SUNY Stony Brook Medical Center Stony Brook, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical CollegeNew York, NY, USA; Department of Neurology, Weill Cornell Medical CollegeNew York, NY, USA; The Rockefeller UniversityNew York, NY, USA
| |
Collapse
|
41
|
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. The Chief Role of Frontal Operational Module of the Brain Default Mode Network in the Potential Recovery of Consciousness from the Vegetative State: A Preliminary Comparison of Three Case Reports. Open Neuroimag J 2016; 10:41-51. [PMID: 27347264 PMCID: PMC4894863 DOI: 10.2174/1874440001610010041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/23/2022] Open
Abstract
It has been argued that complex subjective sense of self is linked to the brain default-mode network (DMN). Recent discovery of heterogeneity between distinct subnets (or operational modules - OMs) of the DMN leads to a reconceptualization of its role for the experiential sense of self. Considering the recent proposition that the frontal DMN OM is responsible for the first-person perspective and the sense of agency, while the posterior DMN OMs are linked to the continuity of 'I' experience (including autobiographical memories) through embodiment and localization within bodily space, we have tested in this study the hypothesis that heterogeneity in the operational synchrony strength within the frontal DMN OM among patients who are in a vegetative state (VS) could inform about a stable self-consciousness recovery later in the course of disease (up to six years post-injury). Using EEG operational synchrony analysis we have demonstrated that among the three OMs of the DMN only the frontal OM showed important heterogeneity in VS patients as a function of later stable clinical outcome. We also found that the frontal DMN OM was characterized by the process of active uncoupling (stronger in persistent VS) of operations performed by the involved neuronal assemblies.
Collapse
Affiliation(s)
| | | | - Sergio Bagnato
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| | - Cristina Boccagni
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| | - Giuseppe Galardi
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| |
Collapse
|
42
|
Schorr B, Schlee W, Arndt M, Bender A. Coherence in resting-state EEG as a predictor for the recovery from unresponsive wakefulness syndrome. J Neurol 2016; 263:937-953. [PMID: 26984609 DOI: 10.1007/s00415-016-8084-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 12/27/2022]
Abstract
We investigated differences of EEG coherence within (short-range), and between (long-range) specified brain areas as diagnostic markers for different states in disorders of consciousness (DOC), and their predictive value for recovery from unresponsive wakefulness syndrome (UWS). EEGs of 73 patients and 24 controls were recorded and coma recovery scale- revised (CRS-R) scores were assessed. CRS-R of UWS patients was collected after 12 months and divided into two groups (improved/unimproved). Frontal, parietal, fronto-parietal, fronto-temporal, and fronto-occipital coherence was computed, as well as EEG power over frontal, parietal, occipital, and temporal areas. Minimally conscious patients (MCS) and UWS patients could not be differentiated based on their coherence patterns or on EEG power. Fronto-parietal and parietal coherence could positively predict improvement of UWS patients, i.e. recovery from UWS to MCS. Parietal coherence was significantly higher in delta and theta frequencies in the improved group, as well as the coherence between frontal and parietal regions in delta, theta, alpha, and beta frequencies. High parietal delta and theta, and high fronto-parietal theta and alpha coherence appear to provide strong early evidence for recovery from UWS with high predictive sensitivity and specificity. Short and long-range coherence can have a diagnostic value in the prognosis of recovery from UWS.
Collapse
Affiliation(s)
- Barbara Schorr
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany. .,Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89069, Ulm, Germany.
| | - Winfried Schlee
- Institute for Psychiatry and Psychotherapy, University of Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Marion Arndt
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany
| | - Andreas Bender
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany.,Department of Neurology, Klinikum Grosshadern, University of Munich, Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
43
|
Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T. Trait lasting alteration of the brain default mode network in experienced meditators and the experiential selfhood. SELF AND IDENTITY 2016. [DOI: 10.1080/15298868.2015.1136351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Qin P, Grimm S, Duncan NW, Fan Y, Huang Z, Lane T, Weng X, Bajbouj M, Northoff G. Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli. Soc Cogn Affect Neurosci 2016; 11:693-702. [PMID: 26796968 DOI: 10.1093/scan/nsw008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
Spontaneous activity levels prior to stimulus presentation can determine how that stimulus will be perceived. It has also been proposed that such spontaneous activity, particularly in the default-mode network (DMN), is involved in self-related processing. We therefore hypothesised that pre-stimulus activity levels in the DMN predict whether a stimulus is judged as self-related or not. Participants were presented in the MRI scanner with a white noise stimulus that they were instructed contained their name or another. They then had to respond with which name they thought they heard. Regions where there was an activity level difference between self and other response trials 2 s prior to the stimulus being presented were identified. Pre-stimulus activity levels were higher in the right temporoparietal junction, the right temporal pole and the left superior temporal gyrus in trials where the participant responded that they heard their own name than trials where they responded that they heard another. Pre-stimulus spontaneous activity levels in particular brain regions, largely overlapping with the DMN, predict the subsequent judgement of stimuli as self-related. This extends our current knowledge of self-related processing and its apparent relationship with intrinsic brain activity in what can be termed a rest-self overlap.
Collapse
Affiliation(s)
- Pengmin Qin
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan, Mind, Brain Imaging and Neuroethics Unit, University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, Canada, Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan,
| | - Simone Grimm
- Department of Psychiatry, Charité, CBF, Berlin, Germany, Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Niall W Duncan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan, Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yan Fan
- Department of Psychiatry, Charité, CBF, Berlin, Germany
| | - Zirui Huang
- Mind, Brain Imaging and Neuroethics Unit, University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, Canada
| | - Timothy Lane
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan, Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China, and
| | - Malek Bajbouj
- Department of Psychiatry, Charité, CBF, Berlin, Germany
| | - Georg Northoff
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan, Mind, Brain Imaging and Neuroethics Unit, University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, Canada, Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China, and University of Ottawa Brain and Mind Research Institute
| |
Collapse
|
45
|
EEG Derived Neuronal Dynamics during Meditation: Progress and Challenges. Adv Prev Med 2015; 2015:614723. [PMID: 26770834 PMCID: PMC4684838 DOI: 10.1155/2015/614723] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Meditation advances positivity but how these behavioral and psychological changes are brought can be explained by understanding neurophysiological effects of meditation. In this paper, a broad spectrum of neural mechanics under a variety of meditation styles has been reviewed. The overall aim of this study is to review existing scientific studies and future challenges on meditation effects based on changing EEG brainwave patterns. Albeit the existing researches evidenced the hold for efficacy of meditation in relieving anxiety and depression and producing psychological well-being, more rigorous studies are required with better design, considering client variables like personality characteristics to avoid negative effects, randomized controlled trials, and large sample sizes. A bigger number of clinical trials that concentrate on the use of meditation are required. Also, the controversial subject of epileptiform EEG changes and other adverse effects during meditation has been raised.
Collapse
|
46
|
Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T. Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state. Cogn Process 2015; 17:27-37. [DOI: 10.1007/s10339-015-0743-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023]
|
47
|
Bagnato S, Boccagni C, Prestandrea C, Galardi G. Autonomic correlates of seeing one's own face in patients with disorders of consciousness. Neurosci Conscious 2015; 2015:niv005. [PMID: 30619622 PMCID: PMC6307552 DOI: 10.1093/nc/niv005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/30/2015] [Accepted: 06/06/2015] [Indexed: 11/13/2022] Open
Abstract
The ability to recognize one's own face is a hallmark of self-awareness. In healthy subjects, the sympathetic skin response evoked by self-face recognition has a greater area under the curve of the signal than responses evoked by other visual stimuli. We evaluated the sympathetic skin responses evoked by self-face images and by six other visual stimuli (conditions) in 15 patients with severe disorders of consciousness and in 15 age-matched healthy subjects. Under all conditions, the evoked area of the sympathetic skin response was smaller in patients with unresponsive wakefulness syndrome, intermediate in patients in a minimally conscious state, and greater in healthy subjects. In patients with unresponsive wakefulness syndrome, no differences were found between the sympathetic skin response area evoked by self-face images and those evoked by other conditions. In patients in a minimally conscious state, the area of the sympathetic skin response evoked by self-face presentation was greater than those evoked by other conditions, even if statistical significance was reached only in the comparison to other stimuli not involving a real face. This finding may be due to the inability of these patients to differentiate their own face from those of others. Taken together, these results probably reflect a varying level of self-awareness between patients with unresponsive wakefulness syndrome and patients in a minimally conscious state, and suggest that the autonomic correlate of self-awareness may have some diagnostic implications for these patients.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Fondazione Istituto “San Raffaele - G. Giglio,” Viale G. Giardina, 90015 Cefalù (PA), Italy
| | - Cristina Boccagni
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Fondazione Istituto “San Raffaele - G. Giglio,” Viale G. Giardina, 90015 Cefalù (PA), Italy
| | - Caterina Prestandrea
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Fondazione Istituto “San Raffaele - G. Giglio,” Viale G. Giardina, 90015 Cefalù (PA), Italy
| | - Giuseppe Galardi
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Fondazione Istituto “San Raffaele - G. Giglio,” Viale G. Giardina, 90015 Cefalù (PA), Italy
| |
Collapse
|
48
|
Marino S, Bonanno L, Giorgio A. Functional connectivity in disorders of consciousness: methodological aspects and clinical relevance. Brain Imaging Behav 2015; 10:604-8. [DOI: 10.1007/s11682-015-9417-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Kim WH, Adluru N, Chung MK, Okonkwo OC, Johnson SC, B Bendlin B, Singh V. Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease. Neuroimage 2015; 118:103-17. [PMID: 26025289 DOI: 10.1016/j.neuroimage.2015.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 05/18/2015] [Indexed: 11/28/2022] Open
Abstract
There is significant interest, both from basic and applied research perspectives, in understanding how structural/functional connectivity changes can explain behavioral symptoms and predict decline in neurodegenerative diseases such as Alzheimer's disease (AD). The first step in most such analyses is to encode the connectivity information as a graph; then, one may perform statistical inference on various 'global' graph theoretic summary measures (e.g., modularity, graph diameter) and/or at the level of individual edges (or connections). For AD in particular, clear differences in connectivity at the dementia stage of the disease (relative to healthy controls) have been identified. Despite such findings, AD-related connectivity changes in preclinical disease remain poorly characterized. Such preclinical datasets are typically smaller and group differences are weaker. In this paper, we propose a new multi-resolution method for performing statistical analysis of connectivity networks/graphs derived from neuroimaging data. At the high level, the method occupies the middle ground between the two contrasts - that is, to analyze global graph summary measures (global) or connectivity strengths or correlations for individual edges similar to voxel based analysis (local). Instead, our strategy derives a Wavelet representation at each primitive (connection edge) which captures the graph context at multiple resolutions. We provide extensive empirical evidence of how this framework offers improved statistical power by analyzing two distinct AD datasets. Here, connectivity is derived from diffusion tensor magnetic resonance images by running a tractography routine. We first present results showing significant connectivity differences between AD patients and controls that were not evident using standard approaches. Later, we show results on populations that are not diagnosed with AD but have a positive family history risk of AD where our algorithm helps in identifying potentially subtle differences between patient groups. We also give an easy to deploy open source implementation of the algorithm for use within studies of connectivity in AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Won Hwa Kim
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA.
| | | | - Moo K Chung
- Department of Biostatistics & Med. Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ozioma C Okonkwo
- William S. Middleton Veteran's Affairs Hospital, Madison, WI 53792, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA
| | - Sterling C Johnson
- William S. Middleton Veteran's Affairs Hospital, Madison, WI 53792, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA
| | - Barbara B Bendlin
- William S. Middleton Veteran's Affairs Hospital, Madison, WI 53792, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA
| | - Vikas Singh
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biostatistics & Med. Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA.
| |
Collapse
|
50
|
Blume C, Del Giudice R, Wislowska M, Lechinger J, Schabus M. Across the consciousness continuum-from unresponsive wakefulness to sleep. Front Hum Neurosci 2015; 9:105. [PMID: 25805982 PMCID: PMC4354375 DOI: 10.3389/fnhum.2015.00105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/12/2015] [Indexed: 11/13/2022] Open
Abstract
Advances in the development of new paradigms as well as in neuroimaging techniques nowadays enable us to make inferences about the level of consciousness patients with disorders of consciousness (DOC) retain. They, moreover, allow to predict their probable development. Today, we know that certain brain responses (e.g., event-related potentials or oscillatory changes) to stimulation, circadian rhythmicity, the presence or absence of sleep patterns as well as measures of resting state brain activity can serve the diagnostic and prognostic evaluation process. Still, the paradigms we are using nowadays do not allow to disentangle VS/UWS and minimally conscious state (MCS) patients with the desired reliability and validity. Furthermore, even rather well-established methods have, unfortunately, not found their way into clinical routine yet. We here review current literature as well as recent findings from our group and discuss how neuroimaging methods (fMRI, PET) and particularly electroencephalography (EEG) can be used to investigate cognition in DOC or even to assess the degree of residual awareness. We, moreover, propose that circadian rhythmicity and sleep in brain-injured patients are promising fields of research in this context.
Collapse
Affiliation(s)
- Christine Blume
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg Salzburg, Austria ; Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg Salzburg, Austria
| | - Renata Del Giudice
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg Salzburg, Austria ; Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg Salzburg, Austria
| | - Malgorzata Wislowska
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg Salzburg, Austria
| | - Julia Lechinger
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg Salzburg, Austria ; Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg Salzburg, Austria
| | - Manuel Schabus
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg Salzburg, Austria ; Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg Salzburg, Austria
| |
Collapse
|