1
|
Zhou D, Zhang X, Lv J, Mei Y, Luo Y, Li F, Liu Z. Analysis of Key Differential Metabolites in Intervertebral Disc Degeneration Based on Untargeted Metabolomics. JOR Spine 2025; 8:e70032. [PMID: 39781087 PMCID: PMC11707616 DOI: 10.1002/jsp2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Background Intervertebral disc degeneration disease (IVDD) is a prevalent orthopedic condition that causes chronic lower back pain, imposing a substantial economic burden on patients and society. Despite its high incidence, the pathophysiological mechanisms of IVDD remain incompletely understood. Objective This study aimed to identify metabolomic alterations in IVDD patients and explore the key metabolic pathways and metabolites involved in its pathogenesis. Methods Serum samples from 20 IVDD patients and 20 healthy controls were analyzed using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The identified metabolites were mapped to metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results Significant alterations were observed in metabolites such as 2-methyl-1,3-cyclohexadiene, stearoyl sphingomyelin, methylcysteine, L-methionine, and cis, cis-muconic acid. These metabolites were involved in pathways including glycine, serine, and threonine metabolism, cyanoamino acid metabolism, and the citrate cycle (TCA cycle). Conclusion The identified metabolic alterations provide insights into the pathogenesis of IVDD and suggest potential therapeutic targets for future investigation.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Xingrui Zhang
- Department of OrthopedicsThe First People's Hospital of Liangshan YiAutonomous PrefectureLiangshanSichuanChina
| | - Jiale Lv
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Yingjin Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Fengjiang Li
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Luzhou Longmatan District People's HospitalLuzhouSichuanChina
| |
Collapse
|
2
|
Elrashedy A, Mousa W, Nayel M, Salama A, Zaghawa A, Elsify A, Hasan ME. Advances in bioinformatics and multi-omics integration: transforming viral infectious disease research in veterinary medicine. Virol J 2025; 22:22. [PMID: 39891257 PMCID: PMC11783962 DOI: 10.1186/s12985-025-02640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
The world is changing due to factors like bioterrorism, massive environmental changes, globalization of trade and commerce, growing urbanization, changing climate, and pollution. Numerous diseases have emerged because of these factors, especially in companion and food-producing animals. Numerous pathogens have established themselves in naïve populations, harming reproduction, productivity, and health. Bioinformatics is considered a valuable tool in infectious disease research, as it provides a comprehensive overview of the identification of pathogens, their genetic makeup, and their evolutionary relationship. Therefore, there is an urgent need for a novel bioinformatics approach to help decipher and model viral epidemiology and informatics on domestic animals and livestock. With significant advancements in bioinformatics and NGS, researchers can now identify contigs, which are contiguous sequences of DNA that are assembled from overlapping fragments, assemble a complete genome, perform phylogenetic analysis to diagnose, investigate the risk of viral diseases in animals, handle and share large biological datasets across various species. Additionally, multi-omics data integration further deepens our understanding of homology, divergence, mutations, and evolutionary relationships, providing a comprehensive perspective on the molecular mechanisms driving animal pathogens infections. This review aims to reveal the importance of utilizing the multidisciplinary areas of bioinformatics, genomics, proteomics, transcriptomics, metabolomics, and metagenomics and their roles in studying viral infectious diseases in veterinary medicine that will eventually improve the health of animals.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt.
| | - Walid Mousa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| |
Collapse
|
3
|
Orlandi C, Delaporte G, Albaret C, Joubert E, Bossée A, Debrauwer L, Jamin EL. Unveiling Impurity Profiling of Synthetic Pathways of Organophosphorus Chlorpyrifos Through LC-HRMS Metabolomics-Based Approaches. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025:e9996. [PMID: 39888204 DOI: 10.1002/rcm.9996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Sourcing in chemical forensic science refers to the attribution of a sample to a specific source using a characteristic signature. It relies on the identification of chemical attribution signatures (CAS), including chemical markers such as residual synthetic precursors, impurities, reaction by-products and degradation products, or even metabolites. Undertaking CAS for chemical threat agents (CTA) can be used to provide an evidentiary link between the use of a given chemical and its precursor(s) to support forensic investigations. Organophosphorus compounds, a class of nerve agents, can be produced by different, more or less complex synthesis routes that can lead to specific CAS. Chlorpyrifos (CPF), an organophosphorus pesticide, was selected as model compound. To assess the specificity of impurity markers originated from a chemical synthesis, untargeted fingerprints of crude CPF from different synthesis pathways were analyzed as a first use-case using metabolomics-based trace discovery strategies. Seven different CPF synthesis routes were considered, and their crude mixtures were analyzed with a minimal sample preparation. Analyses were performed on a trapped ion mobility spectrometry (TIMS) coupled to liquid chromatography (LC) and high-resolution mass spectrometry (HRMS). Chemometrics analyses were conducted with multivariate methods to extract discriminating features (i.e., relevant impurities), annotate, and identify them. Then, unknown samples were analyzed in blind conditions without any information of the synthesis pathway employed. The aim is to validate the methodology seeking some discriminating impurities identified in the first section to attribute and classify them according to the synthesis route.
Collapse
Affiliation(s)
- C Orlandi
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France
- MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Metatoul-AXIOM, Toulouse, France
| | - G Delaporte
- Analytical Chemistry Department, DGA CBRN Defence, Vert-le-Petit, France
| | - C Albaret
- Analytical Chemistry Department, DGA CBRN Defence, Vert-le-Petit, France
| | - E Joubert
- Analytical Chemistry Department, DGA CBRN Defence, Vert-le-Petit, France
| | - A Bossée
- Chemistry Division, DGA CBRN Defence, Vert-le-Petit, France
| | - L Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France
- MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Metatoul-AXIOM, Toulouse, France
| | - E L Jamin
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France
- MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Metatoul-AXIOM, Toulouse, France
| |
Collapse
|
4
|
Gupta A, Choueiry F, Reardon J, Pramod N, Kulkarni A, Shankar E, Sizemore ST, Stover DG, Zhu J, Ramaswamy B, Majumder S. Invasive lobular carcinoma integrated multi-omics analysis reveals silencing of Arginosuccinate synthase and upregulation of nucleotide biosynthesis in tamoxifen resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633236. [PMID: 39868332 PMCID: PMC11761122 DOI: 10.1101/2025.01.16.633236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Invasive Lobular Carcinoma (ILC), a distinct subtype of breast cancer is hallmarked by E-Cadherin loss, slow proliferation, and strong hormone receptor positivity. ILC faces significant challenges in clinical management due to advanced stage at diagnosis, late recurrence, and development of resistance to endocrine therapy - a cornerstone of ILC treatment. To elucidate the mechanisms underlying endocrine resistance in ILC, ILC cell lines (MDA-MB-134-VI, SUM44PE) were generated to be resistant to tamoxifen, a selective estrogen receptor modulator. The tamoxifen-resistant (TAMR) cells exhibit a 2-fold increase tamoxifen IC50 relative to parental cells. Metabolomics and RNA-sequencing revealed deregulation of alanine, aspartate, and glutamate metabolism, purine metabolism, and arginine and proline metabolism in TAMR cells. Among the fifteen commonly dysregulated genes in these pathways, low ASS1 expression was identified in the TAMR cells and was significantly correlated with poor outcome in ILC patients, specifically in the context of endocrine therapy. Our study reveals methylation mediated silencing of ASS1 in TAMR cells as a likely mechanism of downregulation. Demethylation restored ASS1 expression and correspondingly reduced tamoxifen IC50 toward parental levels. Nucleic acid biosynthesis is augmented in TAMR cells, evidenced by increase in nucleotide intermediates. Both TAMR cell lines demonstrated increased expression of several nucleic acid biosynthesis enzymes, including PAICS, PRPS1, ADSS2, CAD, and DHODH. Furthermore, CAD, the key multifunctional protein of de novo pyrimidine biosynthesis pathway is differentially activated in TAMR cells. Treating TAMR cell with Decitabine, a demethylating agent, or Farudodstat, a pyrimidine biosynthesis inhibitor, markedly augmented efficacy of tamoxifen. Collectively, our study unveils ASS1 downregulation as a novel mechanism underlying acquired tamoxifen resistance in ILC and establishes a metabolic link between ASS1 and nucleic acid biosynthesis. Restoring ASS1 expression or inhibiting pyrimidine biosynthesis restored tamoxifen sensitivity. ASS1 could be a potential biomarker and therapeutic target in tamoxifen resistant ILC patients, warranting further investigation.
Collapse
Affiliation(s)
- Annapurna Gupta
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Fouad Choueiry
- Department of Human Sciences, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jesse Reardon
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Nikhil Pramod
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Anagh Kulkarni
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Eswar Shankar
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Steven T. Sizemore
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Daniel G. Stover
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Bhuvaneswari Ramaswamy
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sarmila Majumder
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
5
|
Jiang L, Donald WA, Weston LA, Weston PA, Dumlao MC, Steel CC, Schmidtke LM. Discrimination of Healthy and Botrytis cinerea-Infected Grapes Using Untargeted Metabolomic Analysis with Direct Electrospray Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1714-1724. [PMID: 39746708 DOI: 10.1021/acs.jafc.4c08612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Botrytis cinerea infections of grapes significantly reduce yield and quality and increase phenolic compound oxidation, resulting in color loss, off-flavors, and odors in wine. In this study, metabolites were extracted from grape homogenates comprising healthy or infected grapes from different vintages, cultivars, regions, and maturity stages. Samples were randomly analyzed by direct injection into an ion trap mass spectrometer, with data collected from 50 to 2000 m/z for 1 min. Molecular feature abundances from 0.1 to 0.4 min were normalized prior to Principal Components Analysis assessment of workflow. Samples were randomly assigned to a calibration and independent test sample set, with feature reduction, a two-class model Partial Least Squares-Discriminant Analysis, cross-validation, and permutation testing performed with the calibration data set. Prediction of sample class in the independent test samples demonstrated an overall predictive error of less than 5%. Feature importance was assessed using a combined variable importance in projection and selectivity ratio plot. Annotation of important molecular features using a high-resolution LC-QTOF mass spectrometry MS/MS of selected samples enabled key metabolites palmitic, oleic, linoleic and linolenic acids, succinate, and epicatechin to be identified and associated with infection. The proposed workflow establishes sensitive high-throughput rapid MS-based methods for phytosanitary testing of grape and fruit samples.
Collapse
Affiliation(s)
- Liang Jiang
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide (Waite Campus), South Australia 5064, Australia
- School of Agricultural, Environmental and Veterinary Science, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - William A Donald
- School of Chemistry, Faculty of Science, University of New South Wales (Sydney), New South Wales 2052, Australia
| | - Leslie A Weston
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
- School of Agricultural, Environmental and Veterinary Science, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Paul A Weston
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
- School of Agricultural, Environmental and Veterinary Science, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Morphy C Dumlao
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Christopher C Steel
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
- School of Agricultural, Environmental and Veterinary Science, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Leigh M Schmidtke
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide (Waite Campus), South Australia 5064, Australia
- School of Agricultural, Environmental and Veterinary Science, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| |
Collapse
|
6
|
Rivaldi M, Frediansyah A, Aziz SAA, Nugroho AP. Active biomonitoring of stream ecosystems: untargeted metabolomic and proteomic responses and free radical scavenging activities in mussels. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-024-02846-9. [PMID: 39789405 DOI: 10.1007/s10646-024-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3). The investigation examined untargeted metabolomic and proteomic responses in the gills and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities in the gills, mantle, and digestive glands. Metabolomic analysis revealed a clear separation between mussel responses from the three stations after 28 days of exposure, with specific metabolites responding to different pollution levels. Proteomic analysis identified β-Actin protein in all stations. The β-Actin protein sequence of unexposed mussels had coverage of 17%, and increased to 23% at S1 on day 28 and 34% at S2 and S3 on day 28. All tissues showed increased DPPH and ABTS activities from day 3 to day 28, mainly in stations S2 and S3. These findings underscore the impact of pollution levels on the metabolomic and proteomic responses of S. woodiana and the importance of these discoveries as early indicators (biomarkers) of long-term aquatic environmental problems. In the face of current environmental challenges, this research raises concerns about the health of water bodies. It underscores the importance of developing robust, standardized, and dependable analytical techniques for monitoring the health of aquatic environments.
Collapse
Affiliation(s)
- Muhammad Rivaldi
- Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia
| | - Solihatun Amidan Amatul Aziz
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia
| | - Andhika Puspito Nugroho
- Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia.
| |
Collapse
|
7
|
Rosa D, Elya B, Hanafi M, Khatib A, Budiarto E, Nur S, Surya MI. Investigation of alpha-glucosidase inhibition activity of Artabotrys sumatranus leaf extract using metabolomics, machine learning and molecular docking analysis. PLoS One 2025; 20:e0313592. [PMID: 39752479 PMCID: PMC11698457 DOI: 10.1371/journal.pone.0313592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/27/2024] [Indexed: 01/06/2025] Open
Abstract
One way to treat diabetes mellitus type II is by using α-glucosidase inhibitor, that will slow down the postprandial glucose intake. Metabolomics analysis of Artabotrys sumatranus leaf extract was used in this research to predict the active compounds as α-glucosidase inhibitors from this extract. Both multivariate statistical analysis and machine learning approaches were used to improve the confidence of the predictions. After performance comparisons with other machine learning methods, random forest was chosen to make predictive model for the activity of the extract samples. Feature importance analysis (using random feature permutation and Shapley score calculation) was used to identify the predicted active compound as the important features that influenced the activity prediction of the extract samples. The combined analysis of multivariate statistical analysis and machine learning predicted 9 active compounds, where 6 of them were identified as mangiferin, neomangiferin, norisocorydine, apigenin-7-O-galactopyranoside, lirioferine, and 15,16-dihydrotanshinone I. The activities of norisocorydine, apigenin-7-O-galactopyranoside, and lirioferine as α-glucosidase inhibitors have not yet reported before. Molecular docking simulation, both to 3A4A (α-glucosidase enzyme from Saccharomyces cerevisiae, usually used in bioassay test) and 3TOP (a part of α-glucosidase enzyme in human gut) showed strong to very strong binding of the identified predicted active compounds to both receptors, with exception of neomangiferin which only showed strong binding to 3TOP receptor. Isolation based on bioassay guided fractionation further verified the metabolomics prediction by succeeding to isolate mangiferin from the extract, which showed strong α-glucosidase activity when subjected to bioassay test. The correlation analysis also showed a possibility of 3 groups in the predicted active compounds, which might be related to the biosynthesis pathway (need further research for verification). Another result from correlation analysis was that in general the α-glucosidase inhibition activity in the extract had strong correlation to antioxidant activity, which was also reflected in the predicted active compounds. Only one predicted compound had very low positive correlation to antioxidant activity.
Collapse
Affiliation(s)
- Dela Rosa
- Department of Pharmacy, Faculty of Pharmacy, Indonesia University, Depok, Indonesia
- Department of Pharmacy, Faculty of Health Science, Pelita Harapan University, Tangerang, Indonesia
| | - Berna Elya
- Department of Pharmacy, Faculty of Pharmacy, Indonesia University, Depok, Indonesia
| | - Muhammad Hanafi
- Chemistry Research Centre, National Research and Innovation Agency, Science and Technology Research Centre, Serpong, Indonesia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Eka Budiarto
- Department of Information Technology, Faculty of Engineering and Information Technology, Swiss German University, Tangerang, Indonesia
| | - Syamsu Nur
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Almarisah Madani University, Makasar, Indonesia
| | - Muhammad Imam Surya
- Research Centre for Plant Conservation, Botanic Gardens and Forestry, National Research and Innovation Agency, Bogor, Indonesia
| |
Collapse
|
8
|
Enríquez DJ, Alonso JC, Hille L, Brand S, Holzgrabe U, Vergara D, Montoya G, Ramírez YA. Unveiling Colombia's medicinal Cannabis sativa treasure trove: Phenotypic and Chemotypic diversity in legal cultivation. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:246-260. [PMID: 39169651 DOI: 10.1002/pca.3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Cannabis sativa is a highly versatile plant with a long history of cultivation and domestication. It produces multiple compounds that exert distinct and valuable therapeutic effects by modulating diverse biological systems, including the endocannabinoid system (ECS). Access to standardized, metabolically diverse, and reproducible C. sativa chemotypes and chemovars is essential for physicians to optimize individualized patient treatment and for industries to conduct drug-discovery campaigns. OBJECTIVE This study aimed to characterize and assess the phytochemical diversity of C. sativa chemotypes in diverse ecological regions of Colombia, South America. METHODOLOGY Ten cannabinoids and 23 terpenes were measured using liquid and gas chromatography, in addition to other phenotypic traits, in 156 C. sativa plants that were grown in diverse ecological regions in Colombia, a hotspot for global biodiversity. RESULTS Our results reveal significant phytochemical diversity in Colombian-grown C. sativa plants, with four distinct chemotypes based on cannabinoid profile. The significant amount of usually uncommon terpenes suggests that Colombia's environments may have unique capabilities that allow the plant to express these compounds. Colombia's diverse climates offer enormous cultivation potential, making it a key player in both domestic and international medicinal and recreational C. sativa trade. CONCLUSION These findings underscore Colombia's capacity to pioneer global C. sativa production diversification, particularly in South America with new emerging markets.
Collapse
Affiliation(s)
- Diego J Enríquez
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Julio C Alonso
- Facultad de Ciencias Administrativas y Económicas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Lucas Hille
- Institute for Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Stefan Brand
- Symrise AG, Mühlenfeldstrasse1, Holzminden, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg. Am Hubland 97074, Würzburg, Germany
| | - Daniela Vergara
- Harvest New York, Cornell Cooperative Extension, Geneva, New York, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Guillermo Montoya
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Yesid A Ramírez
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
- Institute for Pharmacy and Food Chemistry, University of Würzburg. Am Hubland 97074, Würzburg, Germany
| |
Collapse
|
9
|
Mohammed Yousuf Abdi S, Azizan KA, Syed Abdullah SS, Samsu ZA. Temperature-based investigation of rhamnolipids congeners production by the non-pathogenic Burkholderia thailandensis E264 using LC-QToF-MS metabolomics. Metabolomics 2024; 21:14. [PMID: 39738744 DOI: 10.1007/s11306-024-02205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Burkholderia thailandensis E264 is a non-pathogenic soil bacterium that produces rhamnolipids (RLs), which are utilised in various fields. Although studies have illustrated changes in RLs congeners in response to environmental factors, studies on the influence of temperature on the RLs congeners produced by B. thailandensis E264 are scarce. OBJECTIVE It was hypothesised that RL congeners will be distributed differently at different temperature, which caused the produced RL to have different properties. This brought about the idea of a tailored production of RL for specific application through temperature control. Thus, this study aimed to investigate the distribution of RLs congeners by B. thailandensis E264 in response to different temperatures. METHODOLOGY B. thailandensis E264 was grown at three different temperatures (25 °C, 30 °C, and 37 °C) for nine days and subjected to metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). RESULTS The findings indicated that temperature significantly affected the metabolomic distribution of B. thailandensis E264, with mono-rhamno-mono-lipid and mono-rhamno-di-lipid being the predominant metabolites at 37 °C and 30 °C, with relative abundances of 64.1% and 65.3%, respectively. In comparison, di-rhamno-di-lipid was detected at 25 °C with an overall relative abundance of 77.7%. CONCLUSION This investigation showed that changing the cultivation temperature of the non-pathogenic B. thailandensis E264 produces diverse rhamnolipid congeners, which could enable the targeted synthesis of specific RLs for various applications and increase the market value of biosurfactants.
Collapse
Affiliation(s)
- Sarah Mohammed Yousuf Abdi
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Sharifah Soplah Syed Abdullah
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Zainatul Asyiqin Samsu
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia.
| |
Collapse
|
10
|
Nie X, Luo J, Chen H, Pu H, Luo Q, Wang X, Yu X, Liu D, Zhao Z. The potential correlations between cell-free extracts from Rhodobacter sphaeroides grown under low-oxygen conditions and volatile organic compounds in Chinese-style sausage. Food Chem X 2024; 24:101967. [PMID: 39629282 PMCID: PMC11612774 DOI: 10.1016/j.fochx.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Limited research has explored the use of Rhodobacter sphaeroides cell-free extracts (RCFE) in meat processing. To examine the potential application of RCFE in improving the flavor quality of Chinese-style sausage, in this study, we investigated the effects and mechanisms of RCFE grown under low-oxygen conditions on the flavor development of Chinese-style sausage, using GC-MS and 4D label-free proteomics. The GC-MS analysis detected 60 volatile organic compounds, with significant increases in acids, esters, and alcohols following the addition of RCFE (p < 0.01). Fifteen differential flavor compounds were identified as potential biomarkers to distinguish sausages. From a total of 2689 proteins, 364 differentially expressed proteins were identified (p < 0.05, |Log2FC| > 1, and VIP > 1,) in RCFE grown under low- and high-oxygen conditions. KEGG pathway analysis suggested that the RCFE grown under low-oxygen conditions may enhance alcohol and acid levels by upregulating the expression of related enzymes, which subsequently increases ester levels in the sausage.
Collapse
Affiliation(s)
- Xin Nie
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Jingjing Luo
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu Univeristy, Chengdu 610106, China
| | - Haomou Pu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Qiqi Luo
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xinhui Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu Univeristy, Chengdu 610106, China
| | - Xiaoping Yu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu Univeristy, Chengdu 610106, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu Univeristy, Chengdu 610106, China
| |
Collapse
|
11
|
Amountzias V, Gikas E, Aligiannis N. HPTLC Combined with sHetCA and Multivariate Statistics for the Detection of Bioactive Compounds in Complex Mixtures. Molecules 2024; 29:6027. [PMID: 39770114 PMCID: PMC11679881 DOI: 10.3390/molecules29246027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
High-Performance Thin Layer Chromatography (HPTLC) is widely utilized in natural products research due to its simplicity, low cost, and short total analysis time, including data treatment. While bioautography can be used for rapid detection of bioactive compounds in extracts, the number of available bioautographic methods is limited mainly due to the high cost and difficulty in developing protocols that lead to accurate and reproducible results. For this reason, an alternative method for the detection of bioactive compounds in plant extracts prior to their isolation using HPTLC, combined with multivariate chemometrics, was previously explored by our lab. To evaluate this method and compare it to other chemometrics-based methods, an artificial mixture (ArtExtr) of 59 standard compounds was used as a case study. The ArtExtr was fractionated by FCPC and the inhibitory activity of all fractions against DPPH was evaluated, while their chemical profiles were recorded using HPTLC. Multivariate statistics and the heterocovariance approach (HetCA) were employed and compared, with the success rate in detecting the ArtExtr bioactive substances being 85.7% via sparse heterocovariance (sHetCA). HPTLC combined with sHetCA can serve as a valuable tool for the detection of bioactive compounds in complex mixtures when bioautography is not feasible.
Collapse
Affiliation(s)
- Vaios Amountzias
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Evagelos Gikas
- Department of Analytical Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| |
Collapse
|
12
|
Skawinski M, Schooten FJV, Smolinska A. A comprehensive guide to volatolomics data analysis. J Breath Res 2024; 19:015001. [PMID: 39642393 DOI: 10.1088/1752-7163/ad9b46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Volatolomics (or volatilomics), the study of volatile organic compounds, has emerged as a significant branch of metabolomics due to its potential for non-invasive diagnostics and disease monitoring. However, the analysis of high-resolution data from mass spectrometry and gas sensor array-based instruments remains challenging. The careful consideration of experimental design, data collection, and processing strategies is essential to enhance the quality of results obtained from subsequent analyses. This comprehensive guide provides an in-depth exploration of volatolomics data analysis, highlighting the essential steps, such as data cleaning, pretreatment, and the application of statistical and machine learning techniques, including dimensionality reduction, clustering, classification, and variable selection. The choice of these methodologies, along with data handling practices, such as missing data imputation, outlier detection, model validation, and data integration, is crucial for identifying meaningful metabolites and drawing accurate diagnostic conclusions. By offering researchers the tools and knowledge to navigate the complexities of volatolomics data analysis, this guide emphasizes the importance of understanding the strengths and limitations of each method. Such informed decision-making enhances the reliability of findings, ultimately advancing the field and improving the understanding of metabolic processes in health and disease.
Collapse
Affiliation(s)
- M Skawinski
- Department of Pharmacology and Toxicology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - A Smolinska
- Department of Pharmacology and Toxicology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Dong X, Wang Z, Fu Y, Tian Y, Xue P, Wang Y, Yang F, Li G, Wang R. From Tea to Functional Foods: Exploring Caryopteris mongolica Bunge for Anti-Rheumatoid Arthritis and Unraveling Its Potential Mechanisms. Nutrients 2024; 16:4311. [PMID: 39770932 PMCID: PMC11680032 DOI: 10.3390/nu16244311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Caryopteris mongolica Bunge (CM) shows promising potential for managing rheumatoid arthritis (RA) and digestive disorders, attributed to its rich content of bioactive compounds such as polyphenols and flavonoids. Despite its common use in herbal tea, the specific mechanisms underlying CM's anti-inflammatory and joint-protective effects remain unclear, limiting its development as a functional food. This study investigated the effects of aqueous CM extract on RA in collagen-induced arthritis (CIA) rats and explored the underlying mechanisms. METHODS Forty-eight female Sprague-Dawley rats were randomly assigned to six groups (n = 8): normal control, CIA model, methotrexate (MTX), and CM high-, middle-, and low-dose groups. Anti-inflammatory and joint-protective effects were evaluated using biochemical and histological analyses. To elucidate the mechanisms, we applied metabolomics, network pharmacology, and transcriptomics approaches. RESULTS The results demonstrated that CM extract effectively suppressed synovial inflammation in CIA rats, reducing joint degradation. CM's anti-inflammatory effects were mediated through the TNF signaling pathway, modulating glycerophospholipid and amino acid metabolism, including reduced levels of tryptophan, LysoPC, and asparagine. Molecular docking identified scutellarin and apigenin as key bioactive compounds. Additionally, immunofluorescence analysis revealed CM's therapeutic effects via TNF signaling inhibition and suppression of M1 macrophage polarization. CONCLUSIONS These findings highlight the therapeutic potential of CM for RA and support its development as a functional food or pharmaceutical product.
Collapse
Affiliation(s)
- Xin Dong
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.D.); (F.Y.); (G.L.)
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Zhi Wang
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Yao Fu
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Yuxin Tian
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Peifeng Xue
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Yuewu Wang
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Feiyun Yang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.D.); (F.Y.); (G.L.)
| | - Guojing Li
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.D.); (F.Y.); (G.L.)
| | - Ruigang Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.D.); (F.Y.); (G.L.)
| |
Collapse
|
14
|
de Oliveira PD, Martins ACF, da Silva Gomes R, Beatriz A, Alcantara GB, Micheletti AC. Investigation of antibacterial mode of action of ω-aminoalkoxylxanthones by NMR-based metabolomics and molecular docking. Metabolomics 2024; 21:2. [PMID: 39636460 DOI: 10.1007/s11306-024-02197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION The knowledge of the mode of action of an antimicrobial is essential for drug development and helps to fight against bacterial resistance. Thus, it is crucial to use analytical techniques to study the mechanism of action of substances that have potential to act as antibacterial agents OBJECTIVE: To use NMR-based metabolomics combined with chemometrics and molecular docking to identify the metabolic responses of Staphylococcus aureus following exposure to commercial antibiotics and some synthesized ω-aminoalkoxylxanthones. METHODS Intracellular metabolites of S. aureus were extracted after treatment with four commercial antibiotics and three synthesized ω-aminoalkoxylxanthones. NMR spectra were obtained and 1H NMR data was analyzed using both unsupervised and supervised algorithms (PCA and PLS-DA, respectively). Docking simulations on DNA topoisomerase IV protein were also performed for the ω-aminoalkoxylxanthones. RESULTS Through chemometric analysis, we distinguished between the control group and antibiotics with extracellular (ampicillin) and intracellular targets (kanamycin, tetracycline, and ciprofloxacin). We identified 21 metabolites, including important metabolites that differentiate the groups, such as betaine, acetamide, glutamate, lysine, alanine, isoleucine/leucine, acetate, threonine, proline, and ethanol. Regarding the xanthone-type derivatives (S6, S7 and S8), we observed a greater similarity between S7 and ciprofloxacin, which targets bacterial DNA replication. The molecular docking analysis showed high affinity of the ω-aminoalkoxylxanthones with the topoisomerase IV enzyme, as well as ciprofloxacin. CONCLUSION NMR-based metabolomics has shown to be an effective technique to assess the metabolic profile of S. aureus after treatment with certain antimicrobial compounds, helping the investigation of their mechanism of action.
Collapse
Affiliation(s)
- Paola Dias de Oliveira
- LP2 Laboratory, Institute of Chemistry, Federal University of Mato Grosso Do Sul, Campo Grande, Brazil
| | | | | | - Adilson Beatriz
- LP2 Laboratory, Institute of Chemistry, Federal University of Mato Grosso Do Sul, Campo Grande, Brazil
| | - Glaucia Braz Alcantara
- LP2 Laboratory, Institute of Chemistry, Federal University of Mato Grosso Do Sul, Campo Grande, Brazil.
| | - Ana Camila Micheletti
- LP2 Laboratory, Institute of Chemistry, Federal University of Mato Grosso Do Sul, Campo Grande, Brazil.
| |
Collapse
|
15
|
Lima V, Morais STB, Ferreira VG, Almeida MB, Silva MPB, de A. Lopes T, de Oliveira JM, Raimundo JRS, Furtado DZS, Fonseca FLA, Oliveira RV, Cardoso DR, Carrilho E, Assunção NA. Multiplatform Metabolomics: Enhancing the Severity Risk Prognosis of SARS-CoV-2 Infection. ACS OMEGA 2024; 9:45746-45758. [PMID: 39583673 PMCID: PMC11579725 DOI: 10.1021/acsomega.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Concerns about the SARS-CoV-2 outbreak (COVID-19) continue to persist even years later, with the emergence of new variants and the risk of disease severity. Common clinical symptoms, like cough, fever, and respiratory symptoms, characterize the noncritical patients, classifying them from mild to moderate. In a more severe and complex scenario, the virus infection can affect vital organs, resulting, for instance, in pneumonia and impaired kidney and heart function. However, it is well-known that subclinical symptoms at a metabolic level can be observed previously but require a proper diagnosis because viral replication on the host leaves a track with a different profile depending on the severity of the illness. Metabolomic profiles of mild, moderate, and severe COVID-19 patients were obtained by multiple platforms (LC-HRMS and MALDI-MS), increasing the chance to elucidate a prognosis for severity risk. A strong link was discovered between phenylalanine metabolism and increased COVID-19 severity symptoms, a pathway linked to cardiac and neurological consequences. Glycerophospholipids and sphingolipid metabolisms were also dysregulated linearly with the increasing symptom severity, which can be related to virus proliferation, immune system avoidance, and apoptosis escaping. Our data, endorsed by other literature, strengthens the notion that these pathways might play a vital role in a patient's prognosis.
Collapse
Affiliation(s)
- Vinicius
S. Lima
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Sinara T. B. Morais
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Vinicius G. Ferreira
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Mariana B. Almeida
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Manuel Pedro Barros Silva
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Thais de A. Lopes
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Juliana M. de Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | | | - Danielle Z. S. Furtado
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Fernando L. A. Fonseca
- Faculdade
de Medicina do ABC, Santo André, São Paulo 09060-870, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| | - Regina V. Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Daniel R. Cardoso
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Emanuel Carrilho
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Nilson A. Assunção
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| |
Collapse
|
16
|
Xue Y, Lin S, Chen M, Ke J, Zhang J, Fan Q, Chen Y, Chen F. Altered colonic microflora and its metabolic profile in mice with acute viral myocarditis induced by coxsackievirus B3. Virol J 2024; 21:295. [PMID: 39550578 PMCID: PMC11568606 DOI: 10.1186/s12985-024-02571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Mounting evidence suggests that the gut-heart axis is critical in the pathogenesis of cardiovascular diseases. The gut serves as the primary pathway through which Coxsackievirus B3 (CVB3) infects its host, leading to acute viral myocarditis (AVMC). However, little is known about the role of gut microflora and its metabolites in the development of AVMC. The AVMC model was established by intraperitoneal injection of CVB3 in mice. Then, 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) untargeted metabolomics profiling were performed to analyze the microflora composition and metabolic profile of colonic contents. Compared to the Control mice, the AVMC mice displayed a significant reduction in gut microflora richness and diversity, as revealed by an increased abundance of Proteobacteria and a decreased abundance of Cyanobacteria and Desulfobacterota. LEfSe analysis indicated that the main genera differing between the two groups were Escherichia-Shigella, Lactobacillus, Clostridium_sensu_stricto_1, Prevotellaceae_UCG-001, and Odoribacter. Based on the criterion of OPLS-DA VIP ≥ 1.0 and p-value < 0.05, a total of 198 differential metabolites (DMs) were identified in the gut, including 79 upregulated and 119 downregulated metabolites, of which lipids and lipid-like molecules accounted for the largest proportion. Notably, both altered gut bacterial taxa and metabolites were significantly enriched in the Lipid metabolism pathway, with Traumatic acid (TA), Alpha-Linolenic acid (ALA), Eicosapentaenoic acid (EPA), and Docosahexaenoic acid (DHA) being the key DMs in the pathway. Additionally, significant positive correlations (|r| > 0.80 and p < 0.05) were found between TA levels and Anaerotruncus and Bilophila abundance, between EPA levels and Clostridium_sensu_stricto_1 abundance, and between DHA levels and Escherichia-Shigella abundance, respectively. CVB3 infection leads to notable alterations in gut microflora composition and its metabolic profile, which may participate in AVMC development. Our findings provide important clues for future in-depth studies on AVMC etiology.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Shirong Lin
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Yimei Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
17
|
Pacheco Sanchez G, Lopez M, Velez LM, Tamburini I, Ujagar N, Ayala J, Robles GD, Choi H, Arriola J, Kapadia R, Zonderman AB, Evans MK, Jang C, Seldin MM, Nicholas DA. Comparative analysis of White and African American groups reveals unique lipid and inflammatory features of diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317202. [PMID: 39606357 PMCID: PMC11601720 DOI: 10.1101/2024.11.13.24317202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Importance African Americans have a higher prevalence of Type 2 Diabetes (T2D) compared to White groups. T2D is a health disparity clinically characterized by dysregulation of lipids and chronic inflammation. However, how the relationships among biological and sociological predictors of T2D drive this disparity remains to be addressed. Objective To determine characteristic plasma lipids and systemic inflammatory biomarkers contributing to diabetes presentation between White and African American groups. Design We performed a cross-sectional retrospective cohort study using pre-existing demographic and clinical data from two diverse studies: Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) and AllofUs. From HANDLS (N=40), we used information from wave 1 (2004). From AllofUs (N=17,339), we used data from the Registered Tier Dataset v7, available in the AllofUs researcher workbench. Setting HANDLS is a population-based cohort study involving 3720 participants in the Baltimore area supported by the Intramural Research Program of the National Institute on Aging. HANDLS is a longitudinal study designed to understand the sources of persistent health disparities in overall longevity and chronic disease in White and African American individuals. The AllofUs study is an NIH funded multicenter study consisting of patient-level data from 331,382 individuals from 35 hospitals in the United States aimed at sampling one million or more people living in the United States to provide a collection of broadly accessible data. Participants The HANDLS subcohort participants (N=40) were divided into four groups equally distributed by race, sex, and diabetes status. Groups were also matched by age, body mass index, and poverty status. The analysis pipeline consisted of evaluating the significance of the variables race and disease status using the 2-way ANOVA test and post-ANOVA comparisons using Fisher LSD test, reporting unadjusted p-values. Additionally, unsupervised (PCA) and supervised (OPLS-DA) clustering analysis was performed to determine putative biological drivers of variability and main immunological and metabolic features characterizing diabetes in White and African American groups from HANDLS. Major clinical findings were validated in a large cohort of White and African American groups with T2D in the AllofUS research study (N=17,339). AllofUs groups were of similar range in age and BMI as HANDLS. Furthermore, a linear regression model was built adjusting for age and BMI to determine differences in clinical findings between White and African American groups with T2D. Main Outcomes and Measures Primary outcomes using a HANDLS subcohort (N=40) were clinical parameters related to diabetes, plasma lipids determined by lipidomics and measured by mass spectrometry, and cytokine profiling using a customized panel of 52 cytokines and growth factors measured by Luminex. Outcomes evaluated in the AllofUs study (N=17,339) were clinical: cholesterol to HDL ratio, triglycerides, fasting glucose, insulin, and hemoglobin A1C. Results In the HANDLS subcohort, White individuals with diabetes had elevated cholesterol to HDL ratio (mean difference -1.869, p =0.0053 ) , high-sensitivity C-reactive protein (mean difference -9.135, p =0.0040), and clusters of systemic triglycerides measured by lipidomics, compared to White individuals without diabetes. These clinical markers of dyslipidemia (cholesterol to HDL ratio and triglycerides) and inflammation (hs-CRP) were not significantly elevated in diabetes in African Americans from the HANDLS subcohort. These results persisted even when controlling for statin use. Diabetes in White individuals in the HANDLS cohort was characterized by a marked elevation in plasma lipids, while an inflammatory status characterized by Th17-cytokines was predominant in the African American group from the HANDLS subcohort. We validated the key findings of elevated triglycerides and cholesterol to HDL ratio in White individuals with T2D in a sample (N=17,339) of the AllofUs study. Conclusions and Relevance Our results show that diabetes can manifest with healthy lipid profiles, particularly in these cohorts of African Americans. This study suggests that Th17-inflammation associated with diabetes is characteristic of African Americans, while a more classic inflammation is distinctive of White individuals from HANDLS cohort. Further, clinical markers of dyslipidemia seem to characterize diabetes presentation only in White groups, and not in African Americans.
Collapse
|
18
|
Feng Z, Zheng Y, Pei J, Huang L. Potential mechanism of Laportea bulbifera on treating inflammation and tumor via metabolomics, network pharmacology and molecular docking. J Biomol Struct Dyn 2024:1-17. [PMID: 39522167 DOI: 10.1080/07391102.2024.2426077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/26/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to utilize metabolomics, network pharmacology, and molecular docking techniques to identify the major active components of Laportea bulbifera and investigate their anti-inflammatory and potential anti-tumor mechanisms. The metabolic constituents of L. bulbifera were examined utilizing UPLC-ESI-MS/MS. PPI networks and compound-target-pathway networks were established using resources such as TCMSP, Swiss Target Prediction, DAVID, STRING database, and Cytoscape software. Molecular docking analysis of the most important compounds and targets was conducted using Autodock4, followed by validation of the molecular docking results' stability using GROMACS. The UPLC-ESI-MS/MS analysis identified a total of 798 compounds. A network pharmacology-based analysis was conducted, revealing that eight compounds and four molecular targets-namely, TNF, IL6, PIK3CA, and HDAC1-were enriched in the network. Pathway analysis of the identified targets demonstrated enrichment in 217 KEGG pathways. Molecular docking analysis and molecular dynamics simulations demonstrated strong therapeutic potential of N-feruloyltyramine, N-feruloylagmatine, and Ellagic acid against various inflammatory and tumor diseases. This study, for the first time, employed an integrated strategy of metabolomics, network pharmacology, molecular docking, and molecular dynamics, elucidating the mechanisms underlying the anti-inflammatory and potential anti-tumor effects of L. bulbifera, laying the foundation for subsequent drug development endeavors.
Collapse
Affiliation(s)
- Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Artacho A, González-Torres C, Gómez-Cebrián N, Moles-Poveda P, Pons J, Jiménez N, Casanova MJ, Montoro J, Balaguer A, Villalba M, Chorão P, Puchades-Carrasco L, Sanz J, Ubeda C. Multimodal analysis identifies microbiome changes linked to stem cell transplantation-associated diseases. MICROBIOME 2024; 12:229. [PMID: 39511587 PMCID: PMC11542268 DOI: 10.1186/s40168-024-01948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most efficient therapeutic options available to cure many hematological malignancies. However, severe complications derived from this procedure, including graft-versus-host disease (GVHD) and infections, can limit its success and negatively impact survival. Previous studies have shown that alterations in the microbiome are associated with the development of allo-HSCT-derived complications. However, most studies relied on single techniques that can only analyze a unique aspect of the microbiome, which hinders our ability to understand how microbiome alterations drive allo-HSCT-associated diseases. RESULTS Here, we have applied multiple "omic" techniques (16S rRNA and shotgun sequencing, targeted and un-targeted metabolomics) in combination with machine learning approaches to define the most significant microbiome changes following allo-HSCT at multiple modalities (bacterial taxa, encoded functions, and derived metabolites). In addition, multivariate approaches were applied to study interactions among the various microbiome modalities (the interactome). Our results show that the microbiome of transplanted patients exhibits substantial changes in all studied modalities. These include depletion of beneficial microbes, mainly from the Clostridiales order, loss of their bacterial encoded functions required for the synthesis of key metabolites, and a reduction in metabolic end products such as short chain fatty acids (SCFAs). These changes were followed by an expansion of bacteria that frequently cause infections after allo-HSCT, including several Staphylococcus species, which benefit from the reduction of bacteriostatic SCFAs. Additionally, we found specific alterations in all microbiome modalities that distinguished those patients who subsequently developed GVHD, including depletion of anti-inflammatory commensals, protective reactive oxygen detoxifying enzymes, and immunoregulatory metabolites such as acetate or malonate. Moreover, extensive shifts in the homeostatic relationship between bacteria and their metabolic products (e.g., Faecalibacterium and butyrate) were detected mainly in patients who later developed GVHD. CONCLUSIONS We have identified specific microbiome changes at different modalities (microbial taxa, their encoded genes, and synthetized metabolites) and at the interface between them (the interactome) that precede the development of complications associated with allo-HSCT. These identified microbial features provide novel targets for the design of microbiome-based strategies to prevent diseases associated with stem cell transplantation. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Artacho
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Cintya González-Torres
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Paula Moles-Poveda
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Javier Pons
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Nuria Jiménez
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | | | - Juan Montoro
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Aitana Balaguer
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Marta Villalba
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Pedro Chorão
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | | | - Jaime Sanz
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.
- Departament de Medicina, Universitat de Valencia, Valencia, Spain.
- CIBERONC, Instituto Carlos III, Madrid, Spain.
| | - Carles Ubeda
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain.
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
20
|
Alshahrani A, Aleidi SM, Al Dubayee M, AlMalki R, Sebaa R, Zhra M, Abdel Rahman AM, Aljada A. Postprandial Metabolomic Profiling: Insights into Macronutrient-Specific Metabolic Responses in Healthy Individuals. Nutrients 2024; 16:3783. [PMID: 39519617 PMCID: PMC11547817 DOI: 10.3390/nu16213783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the metabolic responses to different macronutrients is crucial for assessing their impacts on health. This study aims to investigate the postprandial metabolomic profiles of healthy individuals following the consumption of glucose, protein, and lipids. METHODS Twenty-three healthy, normal-weight adults participated in the study, randomly assigned to consume 300 kcal from glucose, protein, or lipids after an overnight fast. Blood samples were collected at baseline and at 1, 2, and 3 h post-ingestion. An untargeted metabolomic approach using mass spectrometry was employed to analyze plasma metabolites. RESULTS In total, 21, 59, and 156 dysregulated metabolites were identified after glucose, protein, and lipid intake, respectively. Notably, 3'-O-methylguanosine levels decreased significantly after glucose consumption while remaining stable during lipid intake before increasing at 2 h. Common metabolites shared between glucose and lipid groups included 3'-O-methylguanosine, 3-oxotetradecanoic acid, poly-g-D-glutamate, and triglyceride (TG) (15:0/18:4/18:1). CONCLUSIONS The findings highlight distinct metabolic responses to macronutrient intake, emphasizing the role of specific metabolites in regulating postprandial metabolism. These insights contribute to understanding how dietary components influence metabolic health and insulin sensitivity.
Collapse
Affiliation(s)
- Awad Alshahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
| | - Shereen M. Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
| | - Reem AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
21
|
Singh A, Siddiqui MA, Pandey S, Azim A, Sinha N. Unveiling Pathophysiological Insights: Serum Metabolic Dysregulation in Acute Respiratory Distress Syndrome Patients with Acute Kidney Injury. J Proteome Res 2024; 23:4216-4228. [PMID: 39078945 DOI: 10.1021/acs.jproteome.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high mortality rates, which are further exacerbated when accompanied by acute kidney injury (AKI). Presently, there is a lack of comprehensive studies thoroughly elucidating the metabolic dysregulation in ARDS patients with AKI leading to poor outcomes. We hypothesized that metabolomics can be a potent tool to highlight the differences in the metabolic profile unraveling unidentified pathophysiological mechanisms of ARDS patients with and without AKI. 1H nuclear magnetic resonance spectroscopy was used to identify key metabolites in the serum samples of 75 patients. Distinct clusters of both groups were obtained as the study's primary outcome using multivariate analysis. Notable alternations in the levels of nine metabolites were identified. Pathway analysis revealed the dysregulation of five significant cycles, which resulted in various complications, such as hyperammonemia, higher energy requirements, and mitochondrial dysfunction causing oxidative stress. Identified metabolites also showed a significant correlation with clinical scores, indicating severity. This study shows the alterations in the metabolite concentration highlighting the difference in the pathophysiology of both patient groups and its association with outcome, pointing in the direction of a personalized medicine approach and holding significant promise for application in critical care settings to improve clinical outcomes.
Collapse
Affiliation(s)
- Anamika Singh
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohd Adnan Siddiqui
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Swarnima Pandey
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 212001, United States
| | - Afzal Azim
- Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
22
|
Chmelařová H, Catapano MC, Garrigues JC, Švec F, Nováková L. Advancing drug safety and mitigating health concerns: High-resolution mass spectrometry in the levothyroxine case study. J Pharm Anal 2024; 14:100970. [PMID: 39350965 PMCID: PMC11440252 DOI: 10.1016/j.jpha.2024.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 10/04/2024] Open
Abstract
Levothyroxine is a drug with a narrow therapeutic index. Changing the drug formulation composition or switching between pharmaceutical brands can alter the bioavailability, which can result in major health problems. However, the increased adverse drug reactions have not been fully explained scientifically yet and a thorough investigation of the formulations is needed. In this study, we used a non-targeted analytical approach to examine the various levothyroxine formulations in detail and to reveal possible chemical changes. Ultra-high-performance liquid chromatography coupled with a data-independent acquisition high-resolution mass spectrometry (UHPLC-DIA-HRMS) was employed. UHPLC-DIA-HRMS allowed not only the detection of levothyroxine degradation products, but also the presence of non-expected components in the formulations. Among these, we identified compounds resulting from reactions between mannitol and other excipients, such as citric acid, stearate, and palmitate, or from reactions between an excipient and an active pharmaceutical ingredient, such as levothyroxine-lactose adduct. In addition to these compounds, undeclared phospholipids were also found in three formulations. This non-targeted approach is not common in pharmaceutical quality control analysis. Revealing the presence of unexpected compounds in drug formulations proved that the current control mechanisms do not have to cover the full complexity of pharmaceutical formulations necessarily.
Collapse
Affiliation(s)
- Hana Chmelařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Maria Carmen Catapano
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jean-Christophe Garrigues
- Laboratoire SOFTMAT (IMRCP), Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
23
|
Clarke R, Bharucha T, Arman BY, Gangadharan B, Gomez Fernandez L, Mosca S, Lin Q, Van Assche K, Stokes R, Dunachie S, Deats M, Merchant HA, Caillet C, Walsby-Tickle J, Probert F, Matousek P, Newton PN, Zitzmann N, McCullagh JSO. Using matrix assisted laser desorption ionisation mass spectrometry combined with machine learning for vaccine authenticity screening. NPJ Vaccines 2024; 9:155. [PMID: 39198486 PMCID: PMC11358428 DOI: 10.1038/s41541-024-00946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
The global population is increasingly reliant on vaccines to maintain population health with billions of doses used annually in immunisation programmes. Substandard and falsified vaccines are becoming more prevalent, caused by both the degradation of authentic vaccines but also deliberately falsified vaccine products. These threaten public health, and the increase in vaccine falsification is now a major concern. There is currently no coordinated global infrastructure or screening methods to monitor vaccine supply chains. In this study, we developed and validated a matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) workflow that used open-source machine learning and statistical analysis to distinguish authentic and falsified vaccines. We validated the method on two different MALDI-MS instruments used worldwide for clinical applications. Our results show that multivariate data modelling and diagnostic mass spectra can be used to distinguish authentic and falsified vaccines providing proof-of-concept that MALDI-MS can be used as a screening tool to monitor vaccine supply chains.
Collapse
Affiliation(s)
- Rebecca Clarke
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Benediktus Yohan Arman
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Bevin Gangadharan
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Laura Gomez Fernandez
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation (UKRI), Harwell Campus, Didcot, OX11 0QX, UK
| | - Qianqi Lin
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation (UKRI), Harwell Campus, Didcot, OX11 0QX, UK
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500AE, Enschede, the Netherlands
| | - Kerlijn Van Assche
- Medicine Quality Research Group, NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
| | | | - Susanna Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Michael Deats
- Medicine Quality Research Group, NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Department of Bioscience, School of Health, Sport and Bioscience, University of East London, Water Lane, London, E15 4LZ, UK
| | - Céline Caillet
- Medicine Quality Research Group, NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
| | | | - Fay Probert
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation (UKRI), Harwell Campus, Didcot, OX11 0QX, UK
- Medicine Quality Research Group, NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
| | - Paul N Newton
- Medicine Quality Research Group, NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
| | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | | |
Collapse
|
24
|
Horacio López-Hoyos J, Camilo Henao-Rojas J, Osorio-Vega NW, Ramírez-Gil JG. Edaphoclimatic variation and harvest seasonality as determining factors of multidimensional quality in avocado cv. hass grown in the tropics. Heliyon 2024; 10:e34280. [PMID: 39113975 PMCID: PMC11305247 DOI: 10.1016/j.heliyon.2024.e34280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024] Open
Abstract
The increase in cultivated areas in tropical zones such as Colombia for avocado cv. Hass and the lack of knowledge on edaphoclimatic relationships with factors associated with quality led to the present research. The aim of this research was to establish the relationship of soil, climatic, spatial factors (plot location), and harvest seasonality (principal and transitory) with the multidimensional quality of avocado cv. Hass planted under tropical conditions. This research was carried out on eight farms located in three producing subregions. Soil, environmental and harvest data were recorded for three years (2015-2017) in each plot. Avocado fruit samples were used to determine the parameters of macronutrient, fatty acids, minerals, and vitamin E. Descriptive, inferential statistics, multivariate analysis, effect size, second-order exponential model, and causal relationships were used to determine variables associated with soil, climate, harvest seasonality, and spatial location, and to determine quality parameters. The results established a relationship between nutritional quality and the origin region. Similarly, it was possible to identify parameters associated with differential quality with a robust statistical methodology to propose origin as a differentiating factor for quality. This study provided useful information for the value chain that selected the best areas for avocado crops according to market expectations and nutritional quality criteria.
Collapse
Affiliation(s)
- Jaime Horacio López-Hoyos
- Corporación Colombiana de Investigación Agropecuaria–Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia
| | - Juan Camilo Henao-Rojas
- Corporación Colombiana de Investigación Agropecuaria–Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia
| | | | - Joaquín Guillermo Ramírez-Gil
- Laboratorio de Agrocomputación y Análisis Epidemiológico, Center of Excellence in Scientific Computing, Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, sede Bogotá, Colombia
| |
Collapse
|
25
|
Chen K, Alexander LE, Mahgoub U, Okazaki Y, Higashi Y, Perera AM, Showman LJ, Loneman D, Dennison TS, Lopez M, Claussen R, Peddicord L, Saito K, Lauter N, Dorman KS, Nikolau BJ, Yandeau-Nelson MD. Dynamic relationships among pathways producing hydrocarbons and fatty acids of maize silk cuticular waxes. PLANT PHYSIOLOGY 2024; 195:2234-2255. [PMID: 38537616 PMCID: PMC11213258 DOI: 10.1093/plphys/kiae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 06/30/2024]
Abstract
The hydrophobic cuticle is the first line of defense between aerial portions of plants and the external environment. On maize (Zea mays L.) silks, the cuticular cutin matrix is infused with cuticular waxes, consisting of a homologous series of very long-chain fatty acids (VLCFAs), aldehydes, and hydrocarbons. Together with VLC fatty-acyl-CoAs (VLCFA-CoAs), these metabolites serve as precursors, intermediates, and end-products of the cuticular wax biosynthetic pathway. To deconvolute the potentially confounding impacts of the change in silk microenvironment and silk development on this pathway, we profiled cuticular waxes on the silks of the inbreds B73 and Mo17, and their reciprocal hybrids. Multivariate interrogation of these metabolite abundance data demonstrates that VLCFA-CoAs and total free VLCFAs are positively correlated with the cuticular wax metabolome, and this metabolome is primarily affected by changes in the silk microenvironment and plant genotype. Moreover, the genotype effect on the pathway explains the increased accumulation of cuticular hydrocarbons with a concomitant reduction in cuticular VLCFA accumulation on B73 silks, suggesting that the conversion of VLCFA-CoAs to hydrocarbons is more effective in B73 than Mo17. Statistical modeling of the ratios between cuticular hydrocarbons and cuticular VLCFAs reveals a significant role of precursor chain length in determining this ratio. This study establishes the complexity of the product-precursor relationships within the silk cuticular wax-producing network by dissecting both the impact of genotype and the allocation of VLCFA-CoA precursors to different biological processes and demonstrates that longer chain VLCFA-CoAs are preferentially utilized for hydrocarbon biosynthesis.
Collapse
Affiliation(s)
- Keting Chen
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Liza E Alexander
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Umnia Mahgoub
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Yozo Okazaki
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Higashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ann M Perera
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Lucas J Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Derek Loneman
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Tesia S Dennison
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Miriam Lopez
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, USA
| | - Reid Claussen
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Layton Peddicord
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Nick Lauter
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, USA
| | - Karin S Dorman
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA 50011, USA
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
26
|
Condori LDM, Vivas CV, Barreto YB, Gomes LF, Alencar AM, Bloise AC. Effects of Hypoxia and Reoxygenation on Metabolic Profiles of Cardiomyocytes. Cell Biochem Biophys 2024; 82:969-985. [PMID: 38498099 DOI: 10.1007/s12013-024-01249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
In vitro cellular models provide valuable insights into the adaptive biochemical mechanisms triggered by cells to cope with the stress situation induced by hypoxia and reoxygenation cycles. The first biological data generated in studies based on this micrometric life-scale has the potential to provide us a global overview about the main biochemical phenomena presented in some reported preconditioning therapies in life-scale of higher dimensions. Thus, in this study, a cell incubator was designed and manufactured to produce a cellular model of heart hypoxia followed by reoxygenation (HfR) through consecutive repetitions of hypoxia-normoxia gas exchange. Samples of cellular extracts and culture media were obtained from non-proliferative cardiomyocytes (CMs) cultivated under challenging HfR (stressed CMs) and regular cultivation (unstressed CMs) in rounds of four days for each case. Metabolomic based on proton magnetic resonance spectroscopy (1H-MRS) was used as an analytical approach to identify and quantify the metabolomes of these samples, the endo- and exo-metabolome. Despite the stressed CMs presented over 90% higher cellular death rate compared to the unstressed CMs, the metabolic profiles indicates that the surviving cells up-regulate their amino acid metabolism either by active protein degradation or by the consumption of culture media components to increase coenzyme A-dependent metabolic pathways. This cell auto-regulation mechanism could be well characterized in the first two days when the difference smears off under once the metabolomes become similar. The metabolic adaptations of stressed CMs identified the relevance of the cyclic oxidation/reduction reactions of nicotinamide adenine dinucleotide phosphate molecules, NADP+/NADPH, and the increased tricarboxylic acid cycle activity in an environment overloaded with such a powerful antioxidant agent to survive an extreme HfR challenge. Thus, the combination of cellular models based on CMs, investigative methods, such as metabolomic and 1H-MRS, and the instrumental development of hypoxia incubator shown in this work were able to provide the first biochemical evidences behind therapies of gaseous exchanges paving the way to future assays.
Collapse
Affiliation(s)
| | | | - Yan Borges Barreto
- Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao 1371, Sao Paulo, Brazil
| | - Ligia Ferreira Gomes
- Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao 1371, Sao Paulo, Brazil.
| | | | - Antonio Carlos Bloise
- Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao 1371, Sao Paulo, Brazil.
| |
Collapse
|
27
|
Yulianti Y, Adawiyah DR, Herawati D, Indrasti D, Andarwulan N. Identification of antioxidant and flavour marker compounds in Kalosi-Enrekang Arabica brewed coffee processed using different postharvest treatment methods. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1165-1179. [PMID: 38562591 PMCID: PMC10981654 DOI: 10.1007/s13197-024-05948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
This research aims to predict the presence of marker compounds that differentiate tubruk brew from coffee beans with different postharvest processing. This research also aims to predict compounds correlating with antioxidant activity and sensory flavour attributes. This research used Kalosi-Enrekang Arabica coffee beans, which were processed with three different postharvest processing (honey, full-washed and natural), roasted at medium level, and brewed using the tubruk method. Each brew was analyzed for chemical profiles using LC-MS and GC-MS, antioxidant analysis using the DPPH IC50 and FRAP methods, and sensory analysis for flavour using the QDA and SCAA methods for cupping scores. OPLS-DA analysis revealed the presence of marker compounds from each brew, and the dried fruit flavour attribute was to be an inter-process marker. After that, OPLS analysis showed marker compounds that correlate to antioxidant activity and flavour attributes. Rhaponticin is thought to be one of the marker compounds in natural coffee brews and is one of the compounds that correlates to the antioxidant activity of the DPPH method (IC50); prunin is thought to be one of the marker compounds for full-washed coffee brews and is one of the compounds that correlates to the activity antioxidants of FRAP method. Triacetin, which is thought to be a marker compound in natural brewed coffee, correlates with fruity flavour. 3-acetylpyridine, as a marker in honey-brewed coffee, correlates with nutty flavour. Even though there are differences in dominant flavours, the cupping score shows the brew is categorized as a specialty. This research shows that different post-harvest processing processes influence the compound profile, antioxidant activity and flavour attributes of Tubruk brewed coffee. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05948-8.
Collapse
Affiliation(s)
- Yulianti Yulianti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
- Department of Agricultural Technology, Faculty of Agriculture, Gorontalo University, Gorontalo, 96211 Indonesia
| | - Dede Robiatul Adawiyah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Dian Herawati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Dias Indrasti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, IPB Dramaga Campus, Bogor, 16680 Indonesia
- South-East Asia Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Jl. Ulin No.1 IPB Dramaga Campus, Bogor, 16680 Indonesia
| |
Collapse
|
28
|
Wang H, Feng X, Blank I, Zhu Y, Liu Z, Ni L, Lin CC, Zhang Y, Liu Y. Differences of Typical Wuyi Rock Tea in Taste and Nonvolatiles Profile Revealed by Multisensory Analysis and LC-MS-Based Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8715-8730. [PMID: 38564531 DOI: 10.1021/acs.jafc.3c08694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Wuyi Rock tea, specifically Shuixian and Rougui, exhibits distinct sensory characteristics. In this study, we investigated the sensory and metabolite differences between Shuixian and Rougui. Quantitative description analysis revealed that Rougui exhibited higher intensity in bitter, thick, harsh, and numb tastes, while Shuixian had stronger salty and umami tastes. Nontargeted metabolomics identified 151 compounds with 66 compounds identified as key differential metabolites responsible for metabolic discrimination. Most of the catechins and flavonoids were enriched in Rougui tea, while epigallocatechin-3,3'-di-O-gallate, epigallocatechin-3,5-di-O-gallate, gallocatechin-3,5-di-O-gallate, isovitexin, and theaflavanoside I were enriched in Shuixian tea. Catechins, kaempferol, quercetin, and myricetin derivatives were positively correlated with bitter taste and numb sensation. Sour taste was positively correlated to organic acids. Amino acids potentially contributed to salty and umami tastes. These results provide further insights into the taste characteristics and the relationship between taste attributes and specific metabolites in Wuyi Rock tea.
Collapse
Affiliation(s)
- Haoli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imre Blank
- IBK Food & Beverage Consultancy Sàrl, 1073 Savigny, Switzerland
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhibin Liu
- Institute of Food Science &Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- Institute of Food Science &Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan 30015, China
| | - Yin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Chen Z, Yuan ZW, Luo WX, Wu X, Pan JL, Yin YQ, Shao HC, Xu K, Li WZ, Hu YL, Wang Z, Gao KS, Chen XW. UV-A radiation increases biomass yield by enhancing energy flow and carbon assimilation in the edible cyanobacterium Nostoc sphaeroides. Appl Environ Microbiol 2024; 90:e0211023. [PMID: 38391210 PMCID: PMC10952460 DOI: 10.1128/aem.02110-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 μmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.
Collapse
Affiliation(s)
- Zhen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Zu-Wen Yuan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wei-Xin Luo
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Xun Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Jin-Long Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yong-Qi Yin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Hai-Chen Shao
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wei-Zhi Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yuan-Liang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Zhe Wang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei, China
| | - Kun-Shan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Xiong-Wen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| |
Collapse
|
30
|
Fiorante A, Ye LA, Tata A, Kiyota T, Woolman M, Talbot F, Farahmand Y, Vlaminck D, Katz L, Massaro A, Ginsberg H, Aman A, Zarrine-Afsar A. A Workflow for Meaningful Interpretation of Classification Results from Handheld Ambient Mass Spectrometry Analysis Probes. Int J Mol Sci 2024; 25:3491. [PMID: 38542461 PMCID: PMC10970785 DOI: 10.3390/ijms25063491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 11/11/2024] Open
Abstract
While untargeted analysis of biological tissues with ambient mass spectrometry analysis probes has been widely reported in the literature, there are currently no guidelines to standardize the workflows for the experimental design, creation, and validation of molecular models that are utilized in these methods to perform class predictions. By drawing parallels with hurdles that are faced in the field of food fraud detection with untargeted mass spectrometry, we provide a stepwise workflow for the creation, refinement, evaluation, and assessment of the robustness of molecular models, aimed at meaningful interpretation of mass spectrometry-based tissue classification results. We propose strategies to obtain a sufficient number of samples for the creation of molecular models and discuss the potential overfitting of data, emphasizing both the need for model validation using an independent cohort of test samples, as well as the use of a fully characterized feature-based approach that verifies the biological relevance of the features that are used to avoid false discoveries. We additionally highlight the need to treat molecular models as "dynamic" and "living" entities and to further refine them as new knowledge concerning disease pathways and classifier feature noise becomes apparent in large(r) population studies. Where appropriate, we have provided a discussion of the challenges that we faced in our development of a 10 s cancer classification method using picosecond infrared laser mass spectrometry (PIRL-MS) to facilitate clinical decision-making at the bedside.
Collapse
Affiliation(s)
- Alexa Fiorante
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Lan Anna Ye
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Fiume, 78, 36100 Vicenza, Italy; (A.T.); (A.M.)
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada; (T.K.); (A.A.)
| | - Michael Woolman
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Francis Talbot
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
| | - Yasamine Farahmand
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
| | - Darah Vlaminck
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Lauren Katz
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrea Massaro
- Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Fiume, 78, 36100 Vicenza, Italy; (A.T.); (A.M.)
| | - Howard Ginsberg
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada;
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada; (T.K.); (A.A.)
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Arash Zarrine-Afsar
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada;
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
31
|
Gouveia GJ, Head T, Cheng LL, Clendinen CS, Cort JR, Du X, Edison AS, Fleischer CC, Hoch J, Mercaldo N, Pathmasiri W, Raftery D, Schock TB, Sumner LW, Takis PG, Copié V, Eghbalnia HR, Powers R. Perspective: use and reuse of NMR-based metabolomics data: what works and what remains challenging. Metabolomics 2024; 20:41. [PMID: 38480600 DOI: 10.1007/s11306-024-02090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/12/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse. AIM OF REVIEW The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies. KEY SCIENTIFIC CONCEPTS OF REVIEW We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.
Collapse
Affiliation(s)
- Goncalo Jorge Gouveia
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
| | - Thomas Head
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Leo L Cheng
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Pathology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chaevien S Clendinen
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Earth and Biological Sciences Directorate, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - John R Cort
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Earth and Biological Sciences Directorate, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiuxia Du
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9291 University City Blvd, Charlotte, NC, 28223, USA
| | - Arthur S Edison
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Biochemistry, University of Georgia, Athens, GA, USA
| | - Candace C Fleischer
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeffrey Hoch
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA
| | - Nathaniel Mercaldo
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wimal Pathmasiri
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Nutrition, School of Public Health, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Daniel Raftery
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Anesthesia and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tracey B Schock
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Charleston, SC, 29412, USA
| | - Lloyd W Sumner
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Biochemistry, MU Metabolomics Center, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Panteleimon G Takis
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, W12 0NN, UK
| | - Valérie Copié
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717-3400, USA
| | - Hamid R Eghbalnia
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA
| | - Robert Powers
- Metabolomics Association of North America (MANA), NMR Special Interest Group, Edmonton, Canada.
- Department of Chemistry, Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE, 68588-0304, USA.
| |
Collapse
|
32
|
Huang Y, Lin Q, Zhou Y, Zhu J, Ma Y, Wu K, Ning Z, Zhang Z, Liu N, Li M, Liu Y, Tu T, Liu Q. Amino acid profile alteration in age-related atrial fibrillation. J Transl Med 2024; 22:259. [PMID: 38461346 PMCID: PMC10925006 DOI: 10.1186/s12967-024-05028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/24/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Amino acids (AAs) are one of the primary metabolic substrates for cardiac work. The correlation between AAs and both atrial fibrillation (AF) and aging has been documented. However, the relationship between AAs and age-related AF remains unclear. METHODS Initially, the plasma AA levels of persistent AF patients and control subjects were assessed, and the correlations between AA levels, age, and other clinical indicators were explored. Subsequently, the age-related AF mouse model was constructed and the untargeted myocardial metabolomics was conducted to detect the level of AAs and related metabolites. Additionally, the gut microbiota composition associated with age-related AF was detected by a 16S rDNA amplicon sequencing analysis on mouse fecal samples. RESULTS Higher circulation levels of lysine (Student's t-test, P = 0.001), tyrosine (P = 0.002), glutamic acid (P = 0.008), methionine (P = 0.008), and isoleucine (P = 0.014), while a lower level of glycine (P = 0.003) were observed in persistent AF patients. The feature AAs identified by machine learning algorithms were glutamic acid and methionine. The association between AAs and age differs between AF and control subjects. Distinct patterns of AA metabolic profiles were observed in the myocardial metabolites of aged AF mice. Aged AF mice had lower levels of Betaine, L-histidine, L-alanine, L-arginine, L-Pyroglutamic acid, and L-Citrulline compared with adult AF mice. Aged AF mice also presented a different gut microbiota pattern, and its functional prediction analysis showed AA metabolism alteration. CONCLUSION This study provided a comprehensive network of AA disturbances in age-related AF from multiple dimensions, including plasma, myocardium, and gut microbiota. Disturbances of AAs may serve as AF biomarkers, and restoring their homeostasis may have potential benefits for the management of age-related AF.
Collapse
Affiliation(s)
- Yunying Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jiayi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Zuodong Ning
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Zixi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Na Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Mohan Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Department of Geriatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yaozhong Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China.
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China.
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China.
- Cardiovascular Disease Research Center of Hunan Province, Changsha, 410011, Hunan, People's Republic of China.
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Li Q, Yin YH, Liu ZW, Liu LF, Xin GZ. FNICM: A New Methodology To Identify Core Metabolites Based on Significantly Perturbed Metabolic Subnetworks. Anal Chem 2024; 96:3335-3344. [PMID: 38363654 DOI: 10.1021/acs.analchem.3c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Metabolomics has emerged as a powerful tool in biomedical research to understand the pathophysiological processes and metabolic biomarkers of diseases. Nevertheless, it is a significant challenge in metabolomics to identify the reliable core metabolites that are closely associated with the occurrence or progression of diseases. Here, we proposed a new research framework by integrating detection-based metabolomics with computational network biology for function-guided and network-based identification of core metabolites, namely, FNICM. The proposed FNICM methodology is successfully utilized to uncover ulcerative colitis (UC)-related core metabolites based on the significantly perturbed metabolic subnetwork. First, seed metabolites were screened out using prior biological knowledge and targeted metabolomics. Second, by leveraging network topology, the perturbations of the detected seed metabolites were propagated to other undetected ones. Ultimately, 35 core metabolites were identified by controllability analysis and were further hierarchized into six levels based on confidence level and their potential significance. The specificity and generalizability of the discovered core metabolites, used as UC's diagnostic markers, were further validated using published data sets of UC patients. More importantly, we demonstrated the broad applicability and practicality of the FNICM framework in different contexts by applying it to multiple clinical data sets, including inflammatory bowel disease, colorectal cancer, and acute coronary syndrome. In addition, FNICM was also demonstrated as a practicality methodology to identify core metabolites correlated with the therapeutic effects of Clematis saponins. Overall, the FNICM methodology is a new framework for identifying reliable core metabolites for disease diagnosis and drug treatment from a systemic and a holistic perspective.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ying-Hao Yin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Zi-Wei Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
34
|
Xu N, Qin XQ, Li DB, Hou YJ, Fang C, Zhang SW, You JY, Li HL, Qiu HY. Comparative transcriptome and metabolome profiles of the leaf and fruits of a Xianjinfeng litchi budding mutant and its mother plant. Front Genet 2024; 15:1360138. [PMID: 38463170 PMCID: PMC10920226 DOI: 10.3389/fgene.2024.1360138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Background: Litchi (Litchi chinensis) is an important sub-tropical fruit in the horticulture market in China. Breeding for improved fruit characteristics is needed for satisfying consumer demands. Budding is a sustainable method for its propagation. During our ongoing breeding program, we observed a litchi mutant with flat leaves and sharp fruit peel cracking in comparison to the curled leaves and blunt fruit peel cracking fruits of the mother plant. Methods: To understand the possible molecular pathways involved, we performed a combined metabolome and transcriptome analysis. Results: We identified 1,060 metabolites in litchi leaves and fruits, of which 106 and 101 were differentially accumulated between the leaves and fruits, respectively. The mutant leaves were richer in carbohydrates, nucleotides, and phenolic acids, while the mother plant was rich in most of the amino acids and derivatives, flavonoids, lipids and organic acids and derivatives, and vitamins. Contrastingly, mutant fruits had higher levels of amino acids and derivatives, carbohydrates and derivatives, and organic acids and derivatives. However, the mother plant's fruits contained higher levels of flavonoids, scopoletin, amines, some amino acids and derivatives, benzamidine, carbohydrates and derivatives, and some organic acids and derivatives. The number of differentially expressed genes was consistent with the metabolome profiles. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway-enriched gene expressions showed consistent profiles as of metabolome analysis. Conclusion: These results provide the groundwork for breeding litchi for fruit and leaf traits that are useful for its taste and yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong-Li Li
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Hong-ye Qiu
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
35
|
Gao P, Qi Y, Li L, Yang S, Guo J, Liu J, Wei H, Huang F, Yu L. Phenylpropane biosynthesis and alkaloid metabolism pathways involved in resistance of Amorphophallus spp. against soft rot disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1334996. [PMID: 38444534 PMCID: PMC10912172 DOI: 10.3389/fpls.2024.1334996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Soft rot of konjac (Amorphophallus spp.) is a devastating disease caused by the bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc) with serious adverse effects on plantation development, corm quality and crop yield due to the current lack of effective control measures. The main objective of the present study was to elucidate the mechanisms underlying plant resistance to soft rot disease. A combination of transcriptomic and metabolomic analyses demonstrated significant enrichment of differentially expressed genes (DEG) and differentially accumulated metabolites (DAM) associated with plant hormones, phenylpropanoid biosynthesis and, in particular, alkaloid metabolism, in Amorphophallus muelleri following Pcc infection compared with A. konjac, these data implicate alkaloid metabolism as the dominant mechanism underlying disease resistance of A. muelleri. Quantitative real-time polymerase chain reaction analysis further revealed involvement of PAL, CYP73A16, CCOAOMT1, RBOHD and CDPK20 genes in the response of konjac to Pcc. Analysis of the bacteriostatic activities of total alkaloid from A. muelleri validated the assumption that alkaloid metabolism positively regulates disease resistance of konjac. Our collective results provide a foundation for further research on the resistance mechanisms of konjac against soft rot disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feiyan Huang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| |
Collapse
|
36
|
Kaplan O, Ertürk Aksakal S, Fidan BB, Engin-Üstün Y, Çelebier M. Plasma metabolomics for diagnostic biomarkers on ectopic pregnancy. Scand J Clin Lab Invest 2024; 84:44-52. [PMID: 38402583 DOI: 10.1080/00365513.2024.2317763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/23/2023] [Accepted: 01/14/2024] [Indexed: 02/27/2024]
Abstract
Metabolomics is a relatively novel omics tool to provide potential biomarkers for early diagnosis of the diseases and to insight the pathophysiology not having discussed ever before. In the present study, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was employed to the plasma samples of Group T1: Patients with ectopic pregnancy diagnosed using ultrasound, and followed-up with beta-hCG level (n = 40), Group T2: Patients with ectopic pregnancy diagnosed using ultrasound, underwent surgical treatment and confirmed using histopathology (n = 40), Group P: Healthy pregnant women (n = 40) in the first prenatal visit of pregnancy, Group C: Healthy volunteers (n = 40) scheduling a routine gynecological examination. Metabolite extraction was performed using 3 kDa pores - Amicon® Ultra 0.5 mL Centrifugal Filters. A gradient elution program (mobile phase composition was water and acetonitrile consisting of 0.1% formic acid) was applied using a C18 column (Agilent Zorbax 1.8 μM, 100 x 2.1 mm). Total analysis time was 25 min when the flow rate was 0.2 mL/min. The raw data was processed through XCMS - R program language edition where the optimum parameters detected using Isotopologue Parameter Optimization (IPO). The potential metabolites were identified using MetaboAnalyst 5.0 and finally 27 metabolites were evaluated to be proposed as potential biomarkers to be used for the diagnosis of ectopic pregnancy.
Collapse
Affiliation(s)
- Ozan Kaplan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| | - Sezin Ertürk Aksakal
- Department of Obstetrics and Gynecology, University of Health Sciences, Etlik Zubeyde Women's Health Training and Research Hospital, Ankara, Turkiye
| | - Bilge Başak Fidan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| | - Yaprak Engin-Üstün
- Department of Obstetrics and Gynecology, University of Health Sciences, Etlik Zubeyde Women's Health Training and Research Hospital, Ankara, Turkiye
| | - Mustafa Çelebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| |
Collapse
|
37
|
Daubney ER, D'Urso S, Cuellar-Partida G, Rajbhandari D, Peach E, de Guzman E, McArthur C, Rhodes A, Meyer J, Finfer S, Myburgh J, Cohen J, Schirra HJ, Venkatesh B, Evans DM. A Genome-Wide Association Study of Serum Metabolite Profiles in Septic Shock Patients. Crit Care Explor 2024; 6:e1030. [PMID: 38239409 PMCID: PMC10796137 DOI: 10.1097/cce.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVES We sought to assess whether genetic associations with metabolite concentrations in septic shock patients could be used to identify pathways of potential importance for understanding sepsis pathophysiology. DESIGN Retrospective multicenter cohort studies of septic shock patients. SETTING All participants who were admitted to 27 participating hospital sites in three countries (Australia, New Zealand, and the United Kingdom) were eligible for inclusion. PATIENTS Adult, critically ill, mechanically ventilated patients with septic shock (n = 230) who were a subset of the Adjunctive Corticosteroid Treatment in Critically Ill Patients with Septic Shock trial (ClinicalTrials.gov number: NCT01448109). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A genome-wide association study was conducted for a range of serum metabolite levels for participants. Genome-wide significant associations (p ≤ 5 × 10-8) were found for the two major ketone bodies (3-hydroxybutyrate [rs2456680] and acetoacetate [rs2213037] and creatinine (rs6851961). One of these single-nucleotide polymorphisms (SNPs) (rs2213037) was located in the alcohol dehydrogenase cluster of genes, which code for enzymes related to the metabolism of acetoacetate and, therefore, presents a plausible association for this metabolite. None of the three SNPs showed strong associations with risk of sepsis, 28- or 90-day mortality, or Acute Physiology and Chronic Health Evaluation score (a measure of sepsis severity). CONCLUSIONS We suggest that the genetic associations with metabolites may reflect a starvation response rather than processes involved in sepsis pathophysiology. However, our results require further investigation and replication in both healthy and diseased cohorts including those of different ancestry.
Collapse
Affiliation(s)
- Emily R Daubney
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Shannon D'Urso
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | | | - Elizabeth Peach
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| | - Erika de Guzman
- Australian Translational Genomics Centre, Queensland University of Technology, Brisbane, QLD, Australia
| | - Colin McArthur
- Department of Critical Care Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Andrew Rhodes
- Department of Adult Critical Care, St George's University Hospitals NHS Foundation Trust and St George's University of London, London, United Kingdom
| | - Jason Meyer
- The George Institute for Global Health, Sydney, NSW, Australia
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Simon Finfer
- The George Institute for Global Health, Sydney, NSW, Australia
- School of Public Health, Imperial College London, London, United Kingdom
| | - John Myburgh
- The George Institute for Global Health, Sydney, NSW, Australia
- St George Hospital, Sydney, NSW, Australia
| | - Jeremy Cohen
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Intensive Care Unit, The Wesley Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- Griffith School of Environment and Science-Chemical Sciences, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Balasubramanian Venkatesh
- The George Institute for Global Health, Sydney, NSW, Australia
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Intensive Care Unit, The Wesley Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Faculty of Health, University of New South Wales, Sydney, NSW, Australia
| | - David M Evans
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
| |
Collapse
|
38
|
Lakpour N, Sadeghi MR, Jafarzadeh N, Henkel R, Hajiparvaneh A, Fathi Z, Ghods R, Gilany K, Madjd Z. Metabolic Fingerprinting of Serum and Seminal Plasma of Testicular Cancer Patients Using Raman Spectroscopy: A Pilot Study. J Reprod Infertil 2024; 25:3-11. [PMID: 39157284 PMCID: PMC11330202 DOI: 10.18502/jri.v25i1.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/13/2024] [Indexed: 08/20/2024] Open
Abstract
Background Testicular cancer (TC) is a relatively rare type of cancer in men. Early diagnosis of TC remains challenging. Metabolomics holds promise in offering valuable insights in this regard. In this study, a metabolic fingerprinting approach was employed to identify potential biomarkers in both serum and seminal plasma of TC patients. Methods A total of 9 patients with testicular cancer and 10 controls were included in the study. The metabolic fingerprinting approach was utilized as a rapid diagnostic tool to analyze the metabolome in serum and seminal plasma of TC patients in comparison to fertile men. Raman spectroscopy was applied for the analysis of metabolites in these biological samples. Results Principal component analysis (PCA) and functional group analysis showed that the differentiation between serum samples from healthy men and TC patients was not possible. However, when analyzing seminal plasma, a significant difference was found between the two groups (p<0.05). Functional group analysis of serum only showed an increase in tryptophan concentration ratio in TC patients as compared to healthy men (p=0.03). In contrast, in seminal plasma of TC patients, this increase was observed in all analyzed compounds, including phenylalanine, tyrosine, lipids, proteins, phenols (p<0.001). Conclusion Our study highlights the potential of metabolic fingerprinting as a fast diagnostic tool for screening TC patients, with seminal plasma serving as a valuable biological sample. Furthermore, several potential biomarkers, particularly phenylalanine, were identified in seminal plasma. This research contributes to our understanding of TC pathogenesis and has the potential to pave the way for early detection and personalized treatment approaches.
Collapse
Affiliation(s)
- Niknam Lakpour
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Naser Jafarzadeh
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Theale, Berkshire, UK
| | | | - Zohreh Fathi
- Avicenna Fertility Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Puvvula J, Manz KE, Braun JM, Pennell KD, DeFranco EA, Ho SM, Leung YK, Huang S, Vuong AM, Kim SS, Percy ZP, Bhashyam P, Lee R, Jones DP, Tran V, Kim DV, Chen A. Maternal and newborn metabolomic changes associated with urinary polycyclic aromatic hydrocarbon metabolite concentrations at delivery: an untargeted approach. Metabolomics 2023; 20:6. [PMID: 38095785 DOI: 10.1007/s11306-023-02074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse human health outcomes. To explore the plausible associations between maternal PAH exposure and maternal/newborn metabolomic outcomes, we conducted a cross-sectional study among 75 pregnant people from Cincinnati, Ohio. METHOD We quantified 8 monohydroxylated PAH metabolites in maternal urine samples collected at delivery. We then used an untargeted high-resolution mass spectrometry approach to examine alterations in the maternal (n = 72) and newborn (n = 63) serum metabolome associated with PAH metabolites. Associations between individual maternal urinary PAH metabolites and maternal/newborn metabolome were assessed using linear regression adjusted for maternal and newborn factors while accounting for multiple testing with the Benjamini-Hochberg method. We then conducted functional analysis to identify potential biological pathways. RESULTS Our results from the metabolome-wide associations (MWAS) indicated that an average of 1% newborn metabolome features and 2% maternal metabolome features were associated with maternal urinary PAH metabolites. Individual PAH metabolite concentrations in maternal urine were associated with maternal/newborn metabolome related to metabolism of vitamins, amino acids, fatty acids, lipids, carbohydrates, nucleotides, energy, xenobiotics, glycan, and organic compounds. CONCLUSION In this cross-sectional study, we identified associations between urinary PAH concentrations during late pregnancy and metabolic features associated with several metabolic pathways among pregnant women and newborns. Further studies are needed to explore the mediating role of the metabolome in the relationship between PAHs and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jagadeesh Puvvula
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kathrine E Manz
- School of Engineering, Brown University, Providence, RI, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Emily A DeFranco
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shuk-Mei Ho
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shouxiong Huang
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Stephani S Kim
- Health Research, Battelle Memorial Institute, Columbus, OH, USA
| | - Zana P Percy
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Priyanka Bhashyam
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymund Lee
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Vilinh Tran
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Dasom V Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Jung YH, Kim JH. Feature-Based Molecular Networking Combined with Multivariate Analysis for the Characterization of Glutathione Adducts as a Smoking Gun of Bioactivation. Anal Chem 2023; 95:17450-17457. [PMID: 37976220 DOI: 10.1021/acs.analchem.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Feature-based molecular networking (FBMN) is a powerful analytical tool for mass spectrometry (MS)-based untargeted metabolomics data analysis. FBMN plays an important role in drug metabolism studies, enabling the visualization of complex metabolomics data to achieve metabolite characterization. In this study, we propose a strategy for the characterization of glutathione (GSH) adducts formed via in vitro metabolic activation using FBMN assisted by multivariate analysis (MVA). Acetaminophen was used as a model substrate for method development, and the practical potential of the method was investigated by its application to 2-aminophenol (2-AP) and 2,4-dinitrochlorobenzene (DNCB). Two 2-AP GSH adducts and one DNCB GSH adduct were successfully characterized by forming networks with GSH even though the mass spectral information obtained for the parent compound was deficient. False positives were effectively filtered out by the variable influence on projection cutoff criteria obtained from orthogonal partial least-squares-discriminant analysis. The GSH adducts formed by enzymatic or nonenzymatic reactions were intuitively distinguished by the pie chart of FBMN results. In summary, our approach effectively characterizes GSH adducts, which serve as compelling evidence of bioactivation. It can be widely utilized to enhance risk assessment in the context of drug metabolism.
Collapse
Affiliation(s)
- Young-Heun Jung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
41
|
Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:628-653. [PMID: 37005774 PMCID: PMC10948111 DOI: 10.1002/mrc.5350 10.1002/mrc.5350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/23/2024]
Abstract
Metabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics.
Collapse
Affiliation(s)
- Micah J. Jeppesen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| |
Collapse
|
42
|
Schripsema J, Augustyn W, Viljoen A. Characterisation of Sclerocarya birrea (marula) seed oil and investigation of the geographical origin by applying similarity calculations, differential NMR and hierarchical cluster analysis. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:959-969. [PMID: 37515510 DOI: 10.1002/pca.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION The marula fruit is an important indigenous African fruit since various commercial products are produced from the pulp and the seed oil. The increased demand requires methods for authentication, quality control and determination of geographical origin. OBJECTIVE The study aimed to establish a fast and reliable method for characterisation and authentication of marula seed oil. Furthermore, to identify marker compounds that can distinguish marula seed oils from other commercial oils and indicate regional differences. MATERIALS AND METHODS Metabolic profiling of 44 commercial marula seed oils was performed using proton nuclear magnetic resonance (1 H NMR). For rapid classification similarity calculations were compared with principal component analysis. Differential NMR was used to determine marker compounds. RESULTS Marula seed oil was found to be similar to macadamia and olive oils and was distinguished from these oils by the detection of minor components. Marula seed oil is differentiated from the other two oils by the absence of α-linolenic acid, relatively high levels of monoglycerides and diglycerides, and an approximately 1:1 ratio of 1,2- and 1,3-diglycerides. When comparing marula seed oils from various regions using hierarchical cluster analysis, clustering of the marula seed oils from Namibia and Zimbabwe was observed and was related to the quantities of linoleic acid and monoglycerides and diglycerides. Some samples displayed deviations in their composition which might indicate adulteration or contamination during the production process. CONCLUSION The study demonstrates the potential of NMR as a tool in the quality control of marula seed oil. This technique requires very little sample preparation, circumvents derivatisation of the oil components with fast run-times. In addition, samples with chemical profiles that differ from the general signature profile can easily be identified.
Collapse
Affiliation(s)
- Jan Schripsema
- Grupo Metabolômica, Laboratório de Ciências Quimicas, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Wilma Augustyn
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
- SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
43
|
Bosnjak M, Karpe AV, Van TTH, Kotsanas D, Jenkin GA, Costello SP, Johanesen P, Moore RJ, Beale DJ, Srikhanta YN, Palombo EA, Larcombe S, Lyras D. Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of enterococcal proliferation and Clostridioides difficile infection. Nat Commun 2023; 14:7737. [PMID: 38007555 PMCID: PMC10676382 DOI: 10.1038/s41467-023-43671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023] Open
Abstract
Hospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.
Collapse
Affiliation(s)
- Marijana Bosnjak
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avinash V Karpe
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Despina Kotsanas
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Grant A Jenkin
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Samuel P Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Priscilla Johanesen
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah Larcombe
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
44
|
Vannabhum M, Mahajaroensiri S, Pattanapholkornsakul S, Tantiwongsekunakorn A, Thippayacharoentam T, Tripatara P, Akarasereenont P. Metabolomics of Personalized Body Elements in Thai Traditional Medicine Response to Herbal Medicine for Body Elements Balancing in Healthy Volunteers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6684263. [PMID: 37954926 PMCID: PMC10640159 DOI: 10.1155/2023/6684263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Background In Thai traditional medicine (TTM), the dominant body element called "Dhat Chao Ruean" (DCR) is an integral part in the diagnostic process of Thai traditional medicine. TTM practitioners usually use Thai herbal Benjakul formula (BKF) for adjusting and balancing the body elements. However, the effects of BKF on metabolism and individual response to it have not been studied yet. Methods This study proposed to investigate the metabolic profiling in 24 volunteers categorized by their types of birth month DCR (bDCR) after the administration of BKF (450 mg, three tablets three times a day before meals) for seven days. Differences in metabolic profiling between bDCR groups were investigated by using liquid chromatography coupled with mass spectrometry for untargeted analysis, and in addition, the safety was assessed by testing the plasma biochemical level. Results This study identified 57 biomarkers in positive ESI and 12 in negative ESI. Piperine was found in varying amount among the participants but it was the highest in the earth group. In addition, this study found that elemicin, phenylpropionic acid, ricinoleic acid, and β-sitosterol are important substances in a single herb of BKF. Regarding biochemical tests, the results indicated that BKF can decrease the lipid profile and it has no toxic effects on liver and kidney functions. Conclusion The findings indicated that it is safe to use BKF which can help to improve health in chronic diseases by adjusting abnormality of the elements of the body. In addition, the information gathered from this study is valuable for further study in the field of Thai traditional medicine.
Collapse
Affiliation(s)
- Manmas Vannabhum
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suthatip Mahajaroensiri
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Saracha Pattanapholkornsakul
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Athippat Tantiwongsekunakorn
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thapthep Thippayacharoentam
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pinpat Tripatara
- Pharmacology Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pravit Akarasereenont
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Pharmacology Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
45
|
Rody WJ, Reuter NG, Brooks SE, Hammadi LI, Martin ML, Cagmat JG, Garrett TJ, Holliday LS. Metabolomic signatures distinguish extracellular vesicles from osteoclasts and odontoclasts. Orthod Craniofac Res 2023; 26:632-641. [PMID: 36997279 PMCID: PMC10542960 DOI: 10.1111/ocr.12658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
AIMS Pathological dental root resorption and alveolar bone loss are often detected only after irreversible damage. Biomarkers in the gingival crevicular fluid or saliva could provide a means for early detection; however, such biomarkers have proven elusive. We hypothesize that a multiomic approach might yield reliable diagnostic signatures for root resorption and alveolar bone loss. Previously, we showed that extracellular vesicles (EVs) from osteoclasts and odontoclasts differ in their protein composition. In this study, we investigated the metabolome of EVs from osteoclasts, odontoclasts and clasts (non-resorbing clastic cells). MATERIALS AND METHODS Mouse haematopoietic precursors were cultured on dentine, bone or plastic, in the presence of recombinant RANKL and CSF-1 to trigger differentiation along the clastic line. On Day 7, the cells were fixed and the differentiation state and resorptive status of the clastic cells were confirmed. EVs were isolated from the conditioned media on Day 7 and characterized by nanoparticle tracking and electron microscopy to ensure quality. Global metabolomic profiling was performed using a Thermo Q-Exactive Orbitrap mass spectrometer with a Dionex UHPLC and autosampler. RESULTS We identified 978 metabolites in clastic EVs. Of those, 79 are potential biomarkers with Variable Interdependent Parameters scores of 2 or greater. Known metabolites cytidine, isocytosine, thymine, succinate and citrulline were found at statistically higher levels in EVs from odontoclasts compared with osteoclasts. CONCLUSION We conclude that numerous metabolites found in odontoclast EVs differ from those in osteoclast EVs, and thus represent potential biomarkers for root resorption and periodontal tissue destruction.
Collapse
Affiliation(s)
- Wellington J Rody
- Department of Orthodontics and Dentofacial Orthopedics, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | - Nathan G Reuter
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Shannen E Brooks
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Lina I Hammadi
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Macey L Martin
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Joy G Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
- Department of Anatomy & Cell Biology, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
46
|
Kamal IM, Zayed A, Eissa TF, Farag MA. Aroma-based discrimination of Egyptian versus Indian guava fruits and in response to probiotics as analyzed via SPME/GC-MS and chemometric tools. Sci Rep 2023; 13:18420. [PMID: 37891358 PMCID: PMC10611719 DOI: 10.1038/s41598-023-45686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
Guava tree (Psidium guajava L., Myrtaceae) is an economic grown worldwide, particularly in tropical and subtropical regions. Guavas encompass numerous cultivars (cvs.) that were discriminated in previous studies based on leaf morphological features and profile of volatile organic compounds (VOCs). Nevertheless, fruit VOCs have also shown outstanding potential for discrimination of other plant taxa, which has not been utilized in guava. Hence, the current study investigates the various guava cvs. harvested from India and Egypt. A total of 5 samples were analyzed by solid phase microextraction coupled to gas chromatography/mass spectrometry. Results led to the detection of 42 VOCs belonging to aldehydes, alcohols, esters, ketones, aliphatic and aromatic hydrocarbons, in addition to monoterpene and sesquiterpene hydrocarbons. Butylated hydroxytoluene and β-caryophyllene were predominant reaching 77% and 41% in Egyptian and Indian guava, respectively. The impact of probiotic fermentation, i.e., Lactobacillus acidophilus and L. plantarum on aroma profile was not significantly different (p > 0.05). Multivariate data analyses were further applied for samples classification and markers determination, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). PCA score plot showed clear segregation of Egyptian from Indian specimens, whereas OPLS-DA revealed that β-caryophyllene was associated with white fruit versus 3-butenyl isothiocyanate and muurolol in red fruit type in the case of Indian guava. The richness of Egyptian guava in butylated hydroxytoluene in addition to the presence of vitamin C may potentiate its antioxidant activity, to be followed in subsequent studies regarding its health effects.
Collapse
Affiliation(s)
- Islam M Kamal
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Tarek F Eissa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt.
| |
Collapse
|
47
|
Amalia F, Irifune T, Takegami T, Yusianto, Sumirat U, Putri SP, Fukusaki E. Identification of potential quality markers in Indonesia's Arabica specialty coffee using GC/MS-based metabolomics approach. Metabolomics 2023; 19:90. [PMID: 37880543 PMCID: PMC10600306 DOI: 10.1007/s11306-023-02051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION The cupping test is a widely used method for quality assessment of Arabica coffee. However, the cupping test is limited by the low number of certified panelists and the low throughput. Therefore, an analytical-based quality assessment may be a promising tool to complement the cupping test. A present, there is no report investigating quality marker candidates, focusing only on "specialty" grade Arabica coffee from Indonesia. OBJECTIVE This study identified the potential quality marker(s) in Arabica Specialty coffee at different stages (green beans, roasted beans, and brewed coffee. METHODS The metabolite profiles of ten different Arabica specialty-grade coffees were analyzed with different cup scores using gas chromatography-mass spectrometry (GC/MS). From the ten samples, green coffee beans, roasted coffee beans, and brewed coffee were selected. In addition, an orthogonal projection to latent structure (OPLS) regression analysis was conducted to obtain a potential quality marker based on the variable importance in projection (VIP). The potential quality marker(s) were validated by GC/MS metabolome profiling and OPLS analysis of different sets of samples consisting of 35 Arabica specialty-grade coffee samples. RESULTS In Arabica coffee samples, the OPLS model of the three stages showed galactinol to have a high VIP score. Galactinol showed a consistent positive correlation with cup scores at all stages of coffee production (green beans, roasted beans, and brewed coffee). The correlation suggests galactinol is a potential quality marker after further validation using different samples. CONCLUSION GC/MS combined with OPLS regression analysis suggested galactinol as a quality marker and provide an early screening method for Arabica coffee quality that complements the cupping test performed by certified panelists.
Collapse
Affiliation(s)
- Fitri Amalia
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoya Irifune
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuji Takegami
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusianto
- Indonesian Coffee and Cocoa Research Institute, Jl. PB. Sudirman 90, Jember, East Java, 68118, Indonesia
| | - Ucu Sumirat
- Indonesian Coffee and Cocoa Research Institute, Jl. PB. Sudirman 90, Jember, East Java, 68118, Indonesia
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Osaka University Shimadzu Omics Innovation Research Laboratories, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
48
|
Crispim AC, Crispim SMA, Rocha JR, Ursulino JS, Sobrinho RR, Porto VA, Bento ES, Santana AEG, Caetano LC. Light effects on Lasiodiplodia theobromae metabolome cultured in vitro. Metabolomics 2023; 19:75. [PMID: 37580624 DOI: 10.1007/s11306-023-02041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION The present work identified and compared intracellular metabolites and metabolic networks in mycelial cultures of Lasiodiplodia theobromae grown under 12 natural light and 24 hours' dark using a 1 H NMR-based metabolomics approach. MATERIALS AND METHODS Fungal cultures were grown in potato dextrose media, and metabolites were extracted by sonication with sodium phosphate-buffered saline (pH = 6.0, 10% D2O, 0.1 mM TSP) from mycelium samples collected every week over four weeks. RESULTS Multivariate analyses revealed that the light exposure group showed a positive correlation within beta-hydroxybutyrate, acetoacetate, acetone, betaine, choline, glycerol, and phosphocholine. On the other hand, phenyl acetate, leucine, isoleucine, valine, and tyrosine were positively correlated with dark conditions. Light favored the oxidative degradation of valine, leucine, and isoleucine, leading to the accumulation of choline, phosphocholine, betaine, and ketone bodies (ketogenesis). Ketogenesis, gluconeogenesis, and the biosynthesis of choline, phosphocholine, and betaine, were considered discriminatory routes for light conditions. The light-sensing pathways were interlinked with fungal development, as verified by the increased production of mycelia biomass without fruiting bodies and stress signaling, as demonstrated by the increased production of pigments.
Collapse
Affiliation(s)
- Alessandre C Crispim
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil.
| | - Shirley M A Crispim
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Jéssica R Rocha
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Jeferson S Ursulino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Roberto R Sobrinho
- School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Viviane A Porto
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | - Edson S Bento
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Antônio E G Santana
- Campus of Engineering and Agricultural Sciences, CECA Federal University of Alagoas, Maceió, AL, Brazil
| | - Luiz C Caetano
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| |
Collapse
|
49
|
Zeiss DR, Molinaro A, Steenkamp PA, Silipo A, Piater LA, Di Lorenzo F, Dubery IA. Lipopolysaccharides from Ralstonia solanacearum induce a broad metabolomic response in Solanum lycopersicum. Front Mol Biosci 2023; 10:1232233. [PMID: 37635940 PMCID: PMC10450222 DOI: 10.3389/fmolb.2023.1232233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Ralstonia solanacearum, one of the most destructive crop pathogens worldwide, causes bacterial wilt disease in a wide range of host plants. The major component of the outer membrane of Gram-negative bacteria, lipopolysaccharides (LPS), has been shown to function as elicitors of plant defense leading to the activation of signaling and defense pathways in several plant species. LPS from a R. solanacearum strain virulent on tomato (LPSR. sol.), were purified, chemically characterized, and structurally elucidated. The lipid A moiety consisted of tetra- to hexa-acylated bis-phosphorylated disaccharide backbone, also decorated by aminoarabinose residues in minor species, while the O-polysaccharide chain consisted of either linear tetrasaccharide or branched pentasaccharide repeating units containing α-L-rhamnose, N-acetyl-β-D-glucosamine, and β-L-xylose. These properties might be associated with the evasion of host surveillance, aiding the establishment of the infection. Using untargeted metabolomics, the effect of LPSR. sol. elicitation on the metabolome of Solanum lycopersicum leaves was investigated across three incubation time intervals with the application of UHPLC-MS for metabolic profiling. The results revealed the production of oxylipins, e.g., trihydroxy octadecenoic acid and trihydroxy octadecadienoic acid, as well as several hydroxycinnamic acid amide derivatives, e.g., coumaroyl tyramine and feruloyl tyramine, as phytochemicals that exhibit a positive correlation to LPSR. sol. treatment. Although the chemical properties of these metabolite classes have been studied, the functional roles of these compounds have not been fully elucidated. Overall, the results suggest that the features of the LPSR. sol. chemotype aid in limiting or attenuating the full deployment of small molecular host defenses and contribute to the understanding of the perturbation and reprogramming of host metabolism during biotic immune responses.
Collapse
Affiliation(s)
- Dylan R. Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- Task Force on Microbiome Studies, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
50
|
Nakatsuka Y, Murase K, Sonomura K, Tabara Y, Nagasaki T, Hamada S, Matsumoto T, Minami T, Kanai O, Takeyama H, Sunadome H, Takahashi N, Nakamoto I, Tanizawa K, Handa T, Sato TA, Komenami N, Wakamura T, Morita S, Takeuchi O, Nakayama T, Hirai T, Kamatani Y, Matsuda F, Chin K. Hyperfructosemia in sleep disordered breathing: metabolome analysis of Nagahama study. Sci Rep 2023; 13:12735. [PMID: 37543666 PMCID: PMC10404271 DOI: 10.1038/s41598-023-40002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2023] [Indexed: 08/07/2023] Open
Abstract
Sleep disordered breathing (SDB), mainly obstructive sleep apnea (OSA), constitutes a major health problem due to the large number of patients. Intermittent hypoxia caused by SDB induces alterations in metabolic function. Nevertheless, metabolites characteristic for SDB are largely unknown. In this study, we performed gas chromatography-mass spectrometry-based targeted metabolome analysis using data from The Nagahama Study (n = 6373). SDB-related metabolites were defined based on their variable importance score in orthogonal partial least squares discriminant analysis and fold changes in normalized peak-intensity levels between moderate-severe SDB patients and participants without SDB. We identified 20 metabolites as SDB-related, and interestingly, these metabolites were frequently included in pathways related to fructose. Multivariate analysis revealed that moderate-severe SDB was a significant factor for increased plasma fructose levels (β = 0.210, P = 0.006, generalized linear model) even after the adjustment of confounding factors. We further investigated changes in plasma fructose levels after continuous positive airway pressure (CPAP) treatment using samples from patients with OSA (n = 60) diagnosed by polysomnography at Kyoto University Hospital, and found that patients with marked hypoxemia exhibited prominent hyperfructosemia and their plasma fructose levels lowered after CPAP treatment. These data suggest that hyperfructosemia is the abnormality characteristic to SDB, which can be reduced by CPAP treatment.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kimihiko Murase
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Tadao Nagasaki
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Hamada
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Matsumoto
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Medicine, Saiseikai Noe Hospital, Osaka, Japan
| | - Takuma Minami
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Kanai
- Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hirofumi Takeyama
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironobu Sunadome
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naomi Takahashi
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Isuzu Nakamoto
- Nursing Science, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Naoko Komenami
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Tomoko Wakamura
- Nursing Science, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeo Nakayama
- Department of Health Informatics, Kyoto University School of Public Health, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Chin
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Sleep Medicine and Respiratory Care, Division of Respiratory Medicine, Nihon University of Medicine, 1-30, Uemachi Otaniguchi Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|