1
|
Paruch AM, Paruch L. Current status of microbial source tracking applications in constructed wetlands serving as nature-based solutions for water management and wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124076. [PMID: 38685556 DOI: 10.1016/j.envpol.2024.124076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Microbial source tracking (MST) has been recognised as an effective tool for determining the origins and sources of faecal contamination in various terrestrial and aquatic ecosystems. Thus, it has been widely applied in environmental DNA (eDNA) surveys to define specific animal- and human-associated faecal eDNA. In this context, identification of and differentiation between anthropogenic and zoogenic faecal pollution origins and sources are pivotal for the evaluation of waterborne microbial contamination transport and the associated human, animal, and environmental health risks. These concerns are particularly pertinent to diverse nature-based solutions (NBS) that are being applied specifically to secure water safety and human and ecosystem well-being, for example, constructed wetlands (CWs) for water and wastewater treatment. The research in this area has undergone a constant evolution, and there is a solid foundation of publications available across the world. Hence, there is an early opportunity to synthesise valuable information and relevant knowledge on this specific topic, which will greatly benefit future work by improving NBS design and performance. By selecting 15 representative research reports published over 20 years, we review the current state of MST technology applied for faecal-associated contamination measures in NBS/CWs throughout the world.
Collapse
Affiliation(s)
- Adam M Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research-NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway.
| | - Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research-NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| |
Collapse
|
2
|
Akadiri SA, Dada PO, Badejo AA, Adeosun OJ, Ogunrinde AT, Faloye OT. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with Phragmites karka and Typha latifolia. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1133-1143. [PMID: 38140944 DOI: 10.1080/15226514.2023.2294485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
This study focused on assessing the effectiveness of vertical subsurface constructed wetlands (VSFCW) in purifying integrated poultry and aquaculture wastewater (PAW) in a tropical region. This evaluation encompassed the treatment of physico-chemical, heavy metal, and microbiological pollutants across three distinct climatic seasons and hydraulic retention time (HRT: 21 days). Parameters such as BOD (29.50 mg/L), COD (56.67 mg/L), Zn (2.97 mg/L), Cr (0.24 mg/L), Cu (1.78 mg/L), Pb (0.21 mg/L), total fecal coliform (866.67 cfu/mL), total coliform (1666.67 cfu/mL), E. coli (1133.33 cfu/mL), and Salmonella/Shigella (700 cfu/mL) exceeded the discharge limits for wastewater into nearby surface water bodies. Significant removal efficiencies were observed for all parameters tested in the CW planted with both Phragmites karka and Typha latifolia. The macrophytes showed similar removal efficiencies for all tested parameters, and there was no significant difference in the initial concentrations of the parameters based on the experimental season, except for microbial properties. This suggests that weather conditions did not significantly impact the concentration of physical and chemical properties in the wastewater. Consequently, this study successfully demonstrates the potential of using a VSFCW for effective treatment of PAW.
Collapse
Affiliation(s)
- Shadrach A Akadiri
- Department of Agricultural and Biosystems Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
- Department of Agriculture and Natural Resources, Ondo State Local Government Service Commission, Akure, Ondo State, Nigeria
| | - Pius O Dada
- Department of Agricultural and Biosystems Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Adekunle A Badejo
- Department of Civil Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Olayemi J Adeosun
- Department of Agricultural and Biosystems Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Akinwale T Ogunrinde
- Department of Agricultural and Biosystems Engineering, Landmark University, Omu Aran, Kwara State, Nigeria
| | - Oluwaseun T Faloye
- Department of Agricultural and Biosystems Engineering, Landmark University, Omu Aran, Kwara State, Nigeria
| |
Collapse
|
3
|
Zuidema S, Wollheim WM, Kucharik CJ, Lammers RB. Existing wetland conservation programs miss nutrient reduction targets. PNAS NEXUS 2024; 3:pgae129. [PMID: 38628600 PMCID: PMC11020223 DOI: 10.1093/pnasnexus/pgae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Restoring wetlands will reduce nitrogen contamination from excess fertilization but estimates of the efficacy of the strategy vary widely. The intervention is often described as effective for reducing nitrogen export from watersheds to mediate bottom-level hypoxia threatening marine ecosystems. Other research points to the necessity of applying a suite of interventions, including wetland restoration to mitigate meaningful quantities of nitrogen export. Here, we use process-based physical modeling to evaluate the effects of two hypothetical, but plausible large-scale wetland restoration programs intended to reduce nutrient export to the Gulf of Mexico. We show that full adoption of the two programs currently in place can meet as little as 10% to as much as 60% of nutrient reduction targets to reduce the Gulf of Mexico dead zone. These reductions are lower than prior estimates for three reasons. First, net storage of leachate in the subsurface precludes interception and thereby dampens the percent decline in nitrogen export caused by the policy. Unlike previous studies, we first constrained riverine fluxes to match observed fluxes throughout the basin. Second, the locations of many restorable lands are geographically disconnected from heavily fertilized croplands, limiting interception of runoff. Third, daily resolution of the model simulations captured the seasonal and stormflow dynamics that inhibit wetland nutrient removal because peak wetland effectiveness does not coincide with the timing of nutrient inputs. To improve the health of the Gulf of Mexico efforts to eliminate excess nutrient, loading should be implemented beyond the field-margin wetland strategies investigated here.
Collapse
Affiliation(s)
- Shan Zuidema
- Earth Systems Research Center, University of New Hampshire, Durham, NH 03824, USA
| | - Wilfred M Wollheim
- Earth Systems Research Center, University of New Hampshire, Durham, NH 03824, USA
- Department of Natural Resources, University of New Hampshire, Durham, NH 03824, USA
| | - Christopher J Kucharik
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Richard B Lammers
- Earth Systems Research Center, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
4
|
Michaelis T, Kaplar F, Baumann T, Wunderlich A, Einsiedl F. High methane ebullition throughout one year in a regulated central European stream. Sci Rep 2024; 14:5359. [PMID: 38438465 PMCID: PMC11310342 DOI: 10.1038/s41598-024-54760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Ebullition transports large amounts of the potent greenhouse gas methane (CH4 ) from aquatic sediments to the atmosphere. River beds are a main source of biogenic CH4 , but emission estimates and the relative contribution of ebullition as a transport pathway are poorly constrained. This study meets a need for more direct measurements with a whole-year data set on CH4 ebullition from a small stream in southern Germany. Four gas traps were installed in a cross section in a river bend, representing different bed substrates between undercut and slip-off slope. For a comparison, diffusive fluxes were estimated from concentration gradients in the sediment and from measurements of dissolved CH4 in the surface water. The data revealed highest activity with gas fluxes above 1000 ml m- 2 d- 1 in the center of the stream, sustained ebullition during winter, and a larger contribution of ebullitive compared to diffusive CH4 fluxes. Increased gas fluxes from the center of the river may be connected to greater exchange with the surface water, thus increased carbon and nutrient supply, and a higher sediment permeability for gas bubbles. By using stable isotope fractionation, we estimated that 12-44% of the CH4 transported diffusively was oxidized. Predictors like temperature, air pressure drop, discharge, or precipitation could not or only poorly explain temporal variations of ebullitive CH4 fluxes.
Collapse
Affiliation(s)
- Tamara Michaelis
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Felicitas Kaplar
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Thomas Baumann
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Anja Wunderlich
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Florian Einsiedl
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Borgström A, Hansson LA, Klante C, Sjöstedt J. Wetlands as a potential multifunctioning tool to mitigate eutrophication and brownification. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2945. [PMID: 38286682 DOI: 10.1002/eap.2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 01/31/2024]
Abstract
Eutrophication and brownification are ongoing environmental problems affecting aquatic ecosystems. Due to anthropogenic changes, increasing amounts of organic and inorganic compounds are entering aquatic systems from surrounding catchment areas, increasing both nutrients, total organic carbon (TOC), and water color with societal, as well as ecological consequences. Several studies have focused on the ability of wetlands to reduce nutrients, whereas data on their potential to reduce TOC and water color are scarce. Here we evaluate wetlands as a potential multifunctional tool for mitigating both eutrophication and brownification. Therefore, we performed a study for 18 months in nine wetlands allowing us to estimate the reduction in concentrations of total nitrogen (TN), total phosphorus (TP), TOC and water color. We show that wetland reduction efficiency with respect to these variables was generally higher during summer, but many of the wetlands were also efficient during winter. We also show that some, but not all, wetlands have the potential to reduce TOC, water color and nutrients simultaneously. However, the generalist wetlands that reduced all four parameters were less efficient in reducing each of them than the specialist wetlands that only reduced one or two parameters. In a broader context, generalist wetlands have the potential to function as multifunctional tools to mitigate both eutrophication and brownification of aquatic systems. However, further research is needed to assess the design of the generalist wetlands and to investigate the potential of using several specialist wetlands in the same catchment.
Collapse
Affiliation(s)
- Anna Borgström
- Department of Biology/Aquatic Ecology, Lund University, Lund, Sweden
| | - Lars-Anders Hansson
- Department of Biology/Aquatic Ecology, Lund University, Lund, Sweden
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Clemens Klante
- Department of Water Resources Engineering, Faculty of Engineering, Lund University, Lund, Sweden
- Sweden Water Research, Ideon Science Park, Lund, Sweden
| | - Johanna Sjöstedt
- Department of Biology/Aquatic Ecology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Kim T, Lee C, Kwon I, Lee J, Park SY, Kim DU, Lee J, Jin G, Yousefzadeh M, Bae H, Yoo Y, Kim JJ, Noh J, Hong S, Kwon BO, Chang WK, Chang GS, Khim JS. Integrated assessment of the natural purification capacity of tidal flat for persistent toxic substances and heavy metals in contaminated sediments. ENVIRONMENT INTERNATIONAL 2024; 185:108534. [PMID: 38458115 DOI: 10.1016/j.envint.2024.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Natural purification of pollutants is highly recognized as regulating ecosystem services; however, the purification capacity of tidal flats remains largely unknown and/or unquantified. A 60-day mesocosm transplant experiment was conducted in situ to assess the purification capacity of natural tidal flats. We adopted the advanced sediment quality triad approach, monitoring 10 endpoints, including chemical reduction, toxicity changes, and community recoveries. The results indicated that contaminated sediments rapidly recovered over time, particularly > 50% within a day, then slowly recovered up to ∼ 70% in a given period (60 days). A significant early reduction of parent pollutants was evidenced across all treatments, primarily due to active bacterial decomposition. Notably, the presence of benthic fauna and vegetated halophytes in the treatments significantly enhanced the purification of pollutants in both efficacy and efficiency. A forecast linear modeling further suggested additive effects of biota on the natural purification of tidal flats, reducing a full recovery time from 500 to 300 days. Overall, the triad approach with machine learning practices successfully demonstrated quantitative insight into the integrated assessment of natural purification.
Collapse
Affiliation(s)
- Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Inha Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Junghyun Lee
- Department of Environmental Education, Kongju National University, Gongju 32588, Republic of Korea.
| | - Shin Yeong Park
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dong-U Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jongmin Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Gayoung Jin
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Mehdi Yousefzadeh
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hanna Bae
- GeoSystem Research Corporation, Gunpo 15807, Republic of Korea.
| | - Yeonjae Yoo
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Junsung Noh
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Seongjin Hong
- Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea.
| | - Won Keun Chang
- Korea Maritime Institute, Busan 49111, Republic of Korea.
| | - Gap Soo Chang
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N5E2, Canada.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Shi Q, Yuan Y, Zhou Y, Yuan Y, Liu L, Liu X, Li F, Leng C, Wang H. Pharmaceutical and personal care products (PPCPs) degradation and microbial characteristics of low-temperature operation combined with constructed wetlands. CHEMOSPHERE 2023; 341:140039. [PMID: 37660803 DOI: 10.1016/j.chemosphere.2023.140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Emerging contaminants (ECs), which are present in water bodies, could cause global environmental and human health problems. These contaminants originate from various sources such as hospitals, clinics, households, and industries. Additionally, they can also indirectly enter the water supply through runoff from agriculture and leachate from landfills. ECs, specifically Pharmaceutical and personal care products (PPCPs), are causing widespread concern due to their contribution to persistent water pollution. Traditional approaches often involve expensive chemicals and energy or result in the creation of by-products. This study developed a practical and environmentally-friendly method for removing PPCPs, which involved combining and integrating various techniques. To implement this method, it was necessary to establish and used a field simulator based on the real-life scenario. Based on the data analysis, the average removal rates of COD, TP, TN, and NH4+-N were 57%, 59%, 63%, and 73%, respectively. the removal rate of PPCPs by CCWs was found to be 82.7% after comparing samples that were not treated by constructed wetlands and those that were treated. Combined constructed wetlands (CCWs) were found to effectively remove PPCPs from water. This is due to the combined action of plant absorption, absorption, and biodegradation by microorganisms living in the wetlands. Interestingly, the wetland plant reed had been shown to play an important role in removing these pollutants. Microbial degradation was the most important pathway for PPCPs removal in CCWs. Carbamazepine was selected as a typical PPCP for analysis. In addition, the microbial community structure of the composite filler was also investigated. High-throughput sequencing confirmed that the dominant bacteria had good adaptability to PPCPs. This technique not only reduced the potential environmental impact but also served as a foundation for further research on the use of constructed wetlands for the treatment of PPCPs contaminated water bodies and its large-scale implementation.
Collapse
Affiliation(s)
- Qiushi Shi
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yonggang Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yunlong Zhou
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yue Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Lin Liu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Xuejing Liu
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Fuping Li
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Chunpeng Leng
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Hao Wang
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China.
| |
Collapse
|
8
|
Yan R, Wang F, Wang Y, Chen N. Pollution abatement reducing the river N 2O emissions although it is partially offset by a warming climate: Insights from an urbanized watershed study. WATER RESEARCH 2023; 236:119934. [PMID: 37043873 DOI: 10.1016/j.watres.2023.119934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Global nitrogen (N) pollution has resulted in increased river nitrous oxide (N2O) emissions, which contribute to climate change. However, little is known about how pollution abatement conversely reduces river N2O production in a warming climate. Here, field observations and microcosmic experiments were conducted in a coastal urbanized watershed (S.E. China) to explore the interactive effect of changing nitrate and temperature on river sediment denitrification (DNF) and N2O production. The results showed that urban river reaches (UR) with higher organic carbon content and denitrifying gene abundance in sediments have a greater DNF rate, nitrate removal efficiency (NRE), and N2O concentration than agricultural river reaches (AR). Microcosmic incubation suggested that the DNF rate and associated N2O production decreased under low nitrate addition, wherein the NRE increased. The scenario simulation illustrated a nonlinear response of N2O production to nitrate removal (i.e., ΔN2O/ΔNO3-N) from both UR and AR sediments at a given temperature, and the DNF rate and N2O production increased with increasing temperature. An increase in temperature by 1 degree Celsius would offset 18.75% of the N2O reduction by nitrate removal via DNF. These findings implied that watershed pollution abatement undoubtedly contributes to the reduction in global river N2O emissions although it is partially offset by extra N2O production caused by global warming.
Collapse
Affiliation(s)
- Ruifeng Yan
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Fenfang Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, China
| | - Yao Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Pu Y, Li Y, Zhu L, Cheng Y, Nuamah LA, Zhang H, Chen H, Du G, Wang L, Song C. Long-term assessment on performance and seasonal optimal operation of a full-scale integrated multiple constructed wetland-pond system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:161219. [PMID: 36584951 DOI: 10.1016/j.scitotenv.2022.161219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m2/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.
Collapse
Affiliation(s)
- Yashuai Pu
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiping Li
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, PR China
| | - Yu Cheng
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linda A Nuamah
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haikuo Zhang
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hongwei Chen
- Water Conservancy Bureau of Jiangsu Province, Yancheng 224002, PR China
| | - Guanchao Du
- Yanlong Lake Drinking Water Source Management Office, Yancheng 224002, PR China
| | - Ling Wang
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| | - Congqing Song
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| |
Collapse
|
10
|
Aben RCH, Velthuis M, Kazanjian G, Frenken T, Peeters ETHM, Van de Waal DB, Hilt S, de Senerpont Domis LN, Lamers LPM, Kosten S. Temperature response of aquatic greenhouse gas emissions differs between dominant plant types. WATER RESEARCH 2022; 226:119251. [PMID: 36288666 DOI: 10.1016/j.watres.2022.119251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Greenhouse gas (GHG) emissions from small inland waters are disproportionately large. Climate warming is expected to favor dominance of algae and free-floating plants at the expense of submerged plants. Through different routes these functional plant types may have far-reaching impacts on freshwater GHG emissions in future warmer waters, which are yet unknown. We conducted a 1,000 L mesocosm experiment testing the effects of plant type and warming on GHG emissions from temperate inland waters dominated by either algae, free-floating or submerged plants in controls and warmed (+4 °C) treatments for one year each. Our results show that the effect of experimental warming on GHG fluxes differs between dominance of different functional plant types, mainly by modulating methane ebullition, an often-dominant GHG emission pathway. Specifically, we demonstrate that the response to experimental warming was strongest for free-floating and lowest for submerged plant-dominated systems. Importantly, our results suggest that anticipated shifts in plant type from submerged plants to a dominance of algae or free-floating plants with warming may increase total GHG emissions from shallow waters. This, together with a warming-induced emission response, represents a so far overlooked positive climate feedback. Management strategies aimed at favouring submerged plant dominance may thus substantially mitigate GHG emissions.
Collapse
Affiliation(s)
- Ralf C H Aben
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Mandy Velthuis
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands; Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Garabet Kazanjian
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Thijs Frenken
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Edwin T H M Peeters
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, Wageningen, PB 6708, the Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands.
| |
Collapse
|
11
|
Lucia C, Laudicina VA, Badalucco L, Galati A, Palazzolo E, Torregrossa M, Viviani G, Corsino SF. Challenges and opportunities for citrus wastewater management and valorisation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115924. [PMID: 36104880 DOI: 10.1016/j.jenvman.2022.115924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Citrus wastewaters (CWWs) are by-products of the citrus fruit transformation process. Currently, more than 700 million of m³ of CWWs per year are produced worldwide. Until nowadays, the management of CWWs is based on a take-make-use-dispose model. Indeed, after being produced within a citrus processing industry, CWWs are subjected to treatment and then discharged into the environment. Now, the European Union is pushing towards a take-make-use-reuse management model, which suggests to provide for the minimization of residual pollutants simultaneously with their exploitation through a biorefinery concept. Indeed, the recovery of energy nutrients and other value-added products held by CWWs may promote environmental sustainability and close the nutrient cycles in line with the circular bio-economy perspective. Unfortunately, knowledge about the benefits and disadvantages of available technologies for the management and valorisation of CWWs are very fragmentary, thus not providing to the scientific community and stakeholders an appropriate approach. Moreover, available studies focus on a specific treatment/valorisation pathway of CWWs and an overall vision is still missing. This review aims to provide an integrated approach for the sustainable management of CWWs to be proposed to company managers and other stakeholders within the legislative boundaries and in line with the circular bio-economy perspective. To this aim, firstly, a concise analysis of citrus wastewater characteristics and the main current regulations on CWWs are reported and discussed. Then, the main technologies with a general comparison of their pros and cons, and alternative pathways for CWWs utilization are presented and discussed. Finally, a focus was paid to the economic feasibility of the solutions proposed to date relating to the recovery of the CWWs for the production of both value-added compounds and agricultural reuse. Based on literature analysis an integrated approach for a sustainable CWWs management is proposed. Such an approach suggests that after chemicals recovery by biorefinery, wastewaters should be directly used for crop irrigation if allowed by regulations or addressed to treatment plant. The latter way should be preferred when CWWs cannot be directly applied to soil due to lack of concomitance between CWWs production and crop needs. In such a way, treated wastewater should be reused after tertiary treatments for crop irrigation, whereas produced sludges should be undergone to dewatering treatment before being reused as organic amendment to improve soil fertility. Finally, this review invite European institutions and each Member State to promote common and specific legislations to overcome the fragmentation of the regulatory framework regarding CWWs reuse.
Collapse
Affiliation(s)
- Caterina Lucia
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Vito Armando Laudicina
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy.
| | - Luigi Badalucco
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Antonino Galati
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Eristanna Palazzolo
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| | - Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| |
Collapse
|
12
|
Skinner M. Wetland phosphorus dynamics and phosphorus removal potential. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10799. [PMID: 36259138 DOI: 10.1002/wer.10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Wetlands are typically defined as inundated areas with hydric soils forming a transitional zone between terrestrial and aquatic systems. Wetlands have numerous ecosystem benefits, one of which is the potential to mitigate or reverse eutrophication of surface water bodies. The physical, chemical, and biological processes governing phosphorus cycling in wetlands are nuanced and complex; understanding these has direct relevance to the restoration of wetlands, particularly for projects aimed at improving water quality in adjacent water bodies. This literature review summarizes these processes and provides recommendations relevant to restoration of permanent and semipermanent flow-through wetlands, such as those in the Upper Klamath Basin of Oregon. It also reviews several wetland restoration studies assessing phosphorus removal. In summary, appropriately designed and managed wetlands can remove 25% to 44% of inflowing total phosphorus. Deposition of particulate matter, adsorption, uptake by biomass, and peat accretion are the primary phosphorus sequestration mechanisms in wetlands, depending on site-specific conditions (e.g., growing season length, vegetation communities, and soil type). In areas with relatively short growing seasons and where wintertime loads are targeted for treatment, as in the Upper Klamath Basin, deposition of particulate matter will be the primary mechanism for phosphorus sequestration in wetlands given that two of the three remaining processes occur during the growing season. Recommendations to maximize phosphorus sequestration in wetlands include the following: designing wetlands for hydraulic residence time of several days to weeks, managing wetlands for rapid establishment of wetland vegetation with limited decomposition potential (e.g., tule [hardstem bulrush] to facilitate peat accretion), and flooding during periods with low water temperatures and initially isolating restored wetlands from adjacent water bodies (both to minimize diffusive flux of phosphorus from wetland sediment to the water column). Relevant to the Upper Klamath Basin, there is also justification to prioritize areas with relatively high particulate phosphorus load given the potential limited capacity for phosphorus treatment associated with other sequestration mechanisms. Finally, a combination of mitigation and restoration strategies is necessary to achieve water quality objectives, meaning that wetland restoration alone may not be sufficient. Monitoring is advised to facilitate application of adaptive management principles. PRACTITIONER POINTS: Appropriately designed and managed wetlands can remove 25% to 44% of inflowing total phosphorus. Deposition of particulate matter, adsorption, uptake by biomass, and peat accretion are the primary phosphorus sequestration mechanisms in wetlands, depending on site-specific conditions (e.g., growing season length, vegetation communities, and soil type). Recommendations to maximize phosphorus sequestration in wetlands include designing wetlands for hydraulic residence time of several days to weeks; managing wetlands for rapid establishment of wetland vegetation with limited decomposition potential (e.g., tule [hardstem bulrush], to facilitate peat accretion); and flooding during periods with low water temperatures and initially isolating restored wetlands from adjacent water bodies (both to minimize diffusive flux of phosphorus from wetland sediment to the water column). A combination of mitigation and restoration strategies are necessary to achieve water quality objectives, meaning that wetland restoration alone may not be sufficient. Monitoring is advised to facilitate application of adaptive management principles.
Collapse
Affiliation(s)
- Megan Skinner
- U.S. Fish and Wildlife Service, Klamath Falls Fish and Wildlife Office, Klamath Falls, Oregon, USA
| |
Collapse
|
13
|
Fowdar HS, Wong WW, Henry R, Cook PLM, McCarthy DT. Interactive effect of temperature and plant species on nitrogen cycling and treatment in stormwater biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154911. [PMID: 35364143 DOI: 10.1016/j.scitotenv.2022.154911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Stormwater biofiltration systems (also known as biofilters, bioretention, rain gardens) are engineered nature-based solutions, which help mitigate aquatic nitrogen pollution arising from storm runoff. These systems are being increasingly used in a range of climates across the world. A decline in treatment performance is frequently observed in cold weather conditions. While plant species comprise an important design factor influencing system performance, the effect of temperature on the fate of dissolved nitrogen forms, namely ammonium (NH4+) and nitrate (NO3-), in the presence of different plant species in these systems remains unclear. A large scale laboratory experiment was undertaken that measured potential rates of nitrification, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) as well as the microbial community structure to investigate nitrogen fate and hence removal under two different temperature conditions (2 °C and 15 °C) in the presence of four distinct plant species. The results indicate that lower nitrification rates (reduced by a factor of 4) coupled with potential media NH4+ desorption could be contributing to reduced NH4+ removal during cold conditions. Planting with species exhibiting good nutrient uptake capacity can reduce the extent of this performance decline. While NO3- reduction generally remains problematic during cold weather (<0 to 55% reduction), which may not be significantly different from warmer periods, the study demonstrated that the denitrification potential and gene abundance (nap, nar, NirS, norB, nosZ) to be higher than those of nitrification (amoA). Denitrification may not proceeding at optimal rates due to lack of conducive environmental conditions. Nitrogen transformation via DNRA was found to be relatively insignificant. Future studies should investigate the potential of employing cold-resilient plant species to maintain both NH4+ and NO3- removal in cold weather conditions.
Collapse
Affiliation(s)
- Harsha S Fowdar
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| | - Wei Wen Wong
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Rebekah Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Perran L M Cook
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Bliss SN, Berger K, Thieme J, Maldonado Cobos M, Nyman M. Removal of 17α-ethynylestradiol and β-estradiol using bench-scale constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3408-3418. [PMID: 35771054 DOI: 10.2166/wst.2022.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aquatic ecosystems have been devastated by the continued persistence of the synthetic estrogen compounds β-estradiol and 17α-ethynylestradiol. Common wastewater treatment methods do not reduce these compounds in effluent below problematic concentrations. An emerging cost-effective solution to this problem is the use of constructed wetlands to remove these estrogen compounds. This study analyzed the ability of duckweed (Lemna minor), water hyacinth (Eichhornia crassipes), and water cabbage (Pistia stratiotes) to remove β-estradiol and 17α-ethynylestradiol through the use of bench-scale constructed wetlands over a 15-week period. Estrogen concentration in water was collected over time along with plant nutrient content, contaminant extractions, and media extractions. Results indicated that estrogen concentration was reduced by the plants and soil media. Duckweed was the most effective at 96% removal, followed by water hyacinth at 72% removal, then water cabbage at 35% removal, and lastly sediment media at 9% removal. This study provides evidence for the ability of constructed wetlands to be used as a means to remove estrogen compounds from wastewater and demonstrates differences in plants removal efficiencies, with duckweed being the most effective of the selected plants.
Collapse
Affiliation(s)
- S N Bliss
- Civil and Environmental Engineering Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA E-mail:
| | - K Berger
- Civil and Environmental Engineering Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA E-mail:
| | - J Thieme
- Civil and Environmental Engineering Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA E-mail:
| | - M Maldonado Cobos
- Civil and Environmental Engineering Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA E-mail:
| | - M Nyman
- Civil and Environmental Engineering Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA E-mail:
| |
Collapse
|
15
|
Ahmed S, Abdul-Aziz OI. Metabolic scaling of stream dissolved oxygen across the U.S. Atlantic Coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153292. [PMID: 35066036 DOI: 10.1016/j.scitotenv.2022.153292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
We investigated the hypothesis of emergent 'biogeochemical' similitude (parametric reduction) and scaling of dissolved oxygen (DO) in coastal streams across the U.S. Atlantic Coast by employing dimensional analysis methodology from fluid mechanics and hydraulic engineering. Two mechanistically meaningful dimensionless numbers were discovered as the stream 'metabolic' number and the fraction of 'DO saturation' number. The 'metabolic' number represented the synergistic control on stream DO from various climatic, hydrologic, biochemical, and ecological drivers (e.g., water temperature, atmospheric pressure, stream width and depth, total phosphorus, pH, and salinity). A graphical exploration of the 'metabolic' versus the 'DO saturation' numbers led to collapse of data during 1998-2015 from diverse coastal streams into an emergent process diagram, indicating three metabolism regimes (high, transitional, and low). The high and low metabolism regimes were, respectively, characterized by the most and least favorable environmental conditions for stream DO depletion-through reduced dissolution and reaeration, as well as increased organic decomposition, respiration, and nitrification. The emergent process diagram led to a generalized power law scaling relationship of the 'DO saturation' number as a function of the 'metabolic' number (exponent ~ 1/3; Nash-Sutcliffe Efficiency, NSE = 0.83-0.85). The metabolic scaling law was leveraged to develop a generalized empirical model to successfully predict DO in diverse streams across the U.S. Atlantic Coast (NSE = 0.83). The emergent process diagram, metabolic scaling law, and prediction model of DO would help understand and manage water quality and ecosystem health of coastal streams in the U.S. and elsewhere.
Collapse
Affiliation(s)
- Shakil Ahmed
- Department of Civil and Environmental Engineering, West Virginia University, 395 Evansdale Drive, Morgantown, WV 26506-6103, USA; Department of Civil Engineering, East West University, Aftabnagar, Dhaka 1212, Bangladesh
| | - Omar I Abdul-Aziz
- Department of Civil and Environmental Engineering, West Virginia University, 395 Evansdale Drive, Morgantown, WV 26506-6103, USA.
| |
Collapse
|
16
|
Ruiz-Ocampo H, Tondera K, Paing J, Molle P, Chazarenc F. Long-term investigations on ammonium removal with zeolite in compact vertical flow treatment wetlands under field conditions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:746-755. [PMID: 35166697 DOI: 10.2166/wst.2022.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The scope of this study was to investigate if using zeolite as a reactive material in a vertical-flow wetland under field conditions improves ammonium removal from domestic wastewater in the long term. The experimental setup consisted of two pilot-scale first stage French vertical flow treatment wetlands (2.3 m2 surface area each), which were implemented under field scale conditions inside a wastewater treatment plant in the central region of France (L'Encloitre, 37360). The filters were operated during 27 months. A compact pilot containing Leca® as a main filtration layer (Ø 1-5 mm) was compared to a similar one filled with natural zeolite (Ø 2-5 mm). The pilots were fed according to regular feeding/resting periods (3½/7 days) and the nominal loading rate was of 300 g COD m-2 d-1 and 33 g·N·m-2·d-1 during operation. In both pilots, results showed a removal efficiency of more than 90 and 85% for TSS and COD, respectively. They also showed an increased NH4-N removal of 9% on average (total removal efficiency of 84%) with the use of zeolite compared to Leca®. The ion exchange capacity of zeolite seemed not to be affected after 27 months of experiments; however, the material was compacted and more friable after operation.
Collapse
Affiliation(s)
- Hernán Ruiz-Ocampo
- Institut Mines Telecom Atlantique, GEPEA, UMR CNRS 6144, 4 rue Alfred Kastler, Nantes 44307, France; CREA Step, 49 route de la Borde, Beaumont Louestault 37370, France; Circular Economy Research Center, Ecole des Ponts, Business School, Marne-la-Vallée, France
| | | | - Joëlle Paing
- CREA Step, 49 route de la Borde, Beaumont Louestault 37370, France
| | - Pascal Molle
- INRAE, REVERSAAL, Villeurbanne F-69100, France E-mail:
| | | |
Collapse
|
17
|
Detection and Removal of Priority Substances and Emerging Pollutants from Stormwater: Case Study of the Kołobrzeska Collector, Gdańsk, Poland. SUSTAINABILITY 2022. [DOI: 10.3390/su14031105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progressive urban development affects environmental balance and disrupts the hydrologic cycle, in which rainfall plays a significant role. Since rainwater is considered a valuable resource of the environment, many technical solutions are implemented that enable effective rainwater management. On the other hand, stormwater runoff from urban areas contains numerous (also toxic) substances, and therefore should be properly treated. In this study, a multistage constructed wetland (MCW) pilot installation was used to remove selected groups of priority substances and emerging pollutants from rainwater discharged from the urbanized catchment of the Kołobrzeska stormwater collector in Gdańsk, Poland. The obtained results show that rainwater runoff was characterized by a variable concentrations of heavy metals (Zn, Cd, Cu, Ni, Pb, Hg), polycyclic aromatic hydrocarbons (benzo(a)pyrene, benzo(b)fluoranthene, phenanthrene, fluoranthene and pyrene) and microplastics. Depending on the hydraulic load of the bed, the reduction efficiency for heavy metals ranged from 26.19 to 100%, and for microplastics from 77.16 to 100%, whereas for polycyclic aromatic hydrocarbons it was consistently high, and equaled 100%.
Collapse
|
18
|
Luis A, Ana Lorena EG, Amaya L, Iñaki T. Unplanted wetland-type filter for co-treatment of landfill leachate and septic tank wastewater: Analysing gravel replacement by plastic and passive (filling-emptied) aeration effects at pilot scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112940. [PMID: 34119985 DOI: 10.1016/j.jenvman.2021.112940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Nowadays, traditional residential and industrial wastewater treatment methods have been mainly developed as complex systems that consider costly infrastructure, which requires advanced control systems and highly qualified labour for their operation. The use of wetland-type infrastructure has been recognized both, by scientists and authorities, as an efficient and effective method to obtain good results in these processes. The most relevant elements in the design of horizontal subsurface filters are filtering media, as biofilm supporting material and flow control methods. Usually, these treatment systems use gravel as filling material. Despite the functionality of the stone material, its weight presents serious difficulties for its handling at source and on site. The use of a plastic support would lower transportation costs, improve manageability and reduce the probability to damage the underlying impermeable layer. In addition, it might extent the useful life of the reactor by cleaning it when clogged, and the potential use of recycled plastic would improve the sustainability of the process. To verify the possibility of using a lightweight plastic material to replace heavy gravel, an unplanted pilot scale treatment system, composed of four independent treatment units in parallel was implemented. The treatment units differed in the filtering media and the input flow regime. Two of the treatment units used gravel (Specific surface 305 m2/m3, 1475 kg/m3 apparent density) and two units used plastic material (Specific surface 750 m2/m3, 172 kg/m3 apparent density). To check the incidence level of passive aeration procedures, on the effectiveness of each material, two of the treatment lines used a continuous flow system and two of them used an automatic filling and emptying flow method that allows passive aeration of the support media. A mixture of landfill leachate and septic tank wastewater was treated, and the evolution of turbidity, chemical oxygen demand, nitrogen and phosphorus was monitored. Results showed that, in general, there are no significant differences regarding the performance of the materials tested, whereas passive aeration notably improves the abatement and solids retention performance of the pilot units. It is concluded that the plastic material tested can be used as a replacement for the stone material, without having appreciable losses in the efficiency of the system. Further research is needed to quantify the benefits associated with the use of this support in constructed wetlands-type technologies.
Collapse
Affiliation(s)
- Aranibar Luis
- Department of Sciences and Techniques of Water and the Environment, School of Civil Engineering, University of Cantabria, Santander, Spain.
| | - Esteban-García Ana Lorena
- Department of Sciences and Techniques of Water and the Environment, School of Civil Engineering, University of Cantabria, Santander, Spain
| | - Lobo Amaya
- Department of Sciences and Techniques of Water and the Environment, School of Civil Engineering, University of Cantabria, Santander, Spain
| | - Tejero Iñaki
- Department of Sciences and Techniques of Water and the Environment, School of Civil Engineering, University of Cantabria, Santander, Spain
| |
Collapse
|
19
|
Lin X, Eguchi S, Maeda S, Yoshida K, Kuroda H. Combined effects of oxygen and temperature on nitrogen removal in a nitrate-rich ex-paddy wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146254. [PMID: 33744563 DOI: 10.1016/j.scitotenv.2021.146254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Temperature is generally considered to be the primary factor controlling the nitrogen removal rate (NR) in nitrate (NO3-)-rich submerged sediments. Temperature stimulates both sediment oxygen (O2) respiration, to create anaerobic conditions, and microbial photosynthetic activity, to provide the organic carbon required for denitrification and expand the uppermost aerobic layer, i.e., the O2 penetration depth (OPD). The OPD serves as a diffusion barrier for NO3- to the underlying anaerobic layer for denitrification. The complex effects of O2 and temperature on the NR are unclear under field conditions with a wide range of temperatures and O2 suppliers. This study aimed to determine the combined effects of O2 and temperature on the NR in an NO3--rich, riparian ex-paddy wetland ("yatsu" environment) under long-term bare soil conditions. We used three years of field monitoring with occasional O2 microprofile measurements from undisturbed submerged soil cores. We observed vertical supersaturated O2 concentration plateaus up to 4.2 mm depth, which confirmed the presence of underground O2 producers, i.e., photosynthetic microorganisms forming habitat in the soil, and very large OPDs of up to 42.9 mm. A multiple regression analysis showed that temperature and dissolved O2 concentration in the flooded water were the key positive and negative influences, respectively, on the NR (332 kg N ha-1 year-1 on average), in association with the total N input. Microbial photosynthesis appeared to remain active regardless of the season, providing O2 to increase OPD and partly suppress the NR; however, photosynthesis has increased the soil C content and appears to have positively contributed to a sustained NR during the 20 years of bare soil conditions. Our results suggest that temporal no vegetation-shade (bare soil) conditions with periodic weed cutting is recommended to effectively remove N from the watershed, while maintaining high temperatures and soil organic C in yatsu environments.
Collapse
Affiliation(s)
- Xiaolan Lin
- The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8538, Japan; Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8604, Japan.
| | - Sadao Eguchi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8604, Japan.
| | - Shigeya Maeda
- College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki 300-0393, Japan.
| | - Koshi Yoshida
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan.
| | - Hisao Kuroda
- College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki 300-0393, Japan.
| |
Collapse
|
20
|
Sharma R, Vymazal J, Malaviya P. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146044. [PMID: 33689897 DOI: 10.1016/j.scitotenv.2021.146044] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Floating treatment wetlands (FTWs) are increasingly gaining popularity due to a set of valuable features like wastewater remediation under varied conditions, ecosystem quality preservation, landscape conservation, and aesthetic benefits. FTW is a phyto-technology in which macrophytes grow on a floating raft with their roots in permanent contact with water and remove pollutants via several physicochemical-biological processes. FTW is highly capable of overcoming technical and operational challenges that come way in stormwater treatment due to the erratic nature of hydrologic and input pollutant loads because this innovative buoyant hydroponic design can move up and down with fluctuating water levels in the stormwater pond and can treat highly variable flows. Plants and biofilms attached to the roots hanging beneath the floating mat play a pivotal role in FTWs. The present review encompasses the concept of FTWs, their structural designs, relevance in stormwater management, and mechanism of plant uptake for pollutant removal. The role of FTWs to remove heavy metals and nutrients is also critically analyzed. Understanding hydraulics and other parameters of FTW is vital to effective design. Hence, the role of vegetation coverage, vegetation type, sorption media, aeration frequency, and intensity, and plant density to enhance system efficiency is also highlighted. Due to their operational flexibility and environmentally friendly working with no additional burden on existing urban land use, FTWs entice broad international interest and offer a coherent solution for stormwater management. MAIN FINDINGS: The review delivers state-of-the-art analysis of the current understanding of hydraulics and other parameters of FTWs, and associated mechanisms to enhance the treatment efficiency of FTWs for nutrients and heavy metals removal.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu 180006, J&K, India
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, 16521 Praha 6, Czech Republic
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu 180006, J&K, India.
| |
Collapse
|
21
|
Salimi S, Scholz M. Impact of future climate scenarios on peatland and constructed wetland water quality: A mesocosm experiment within climate chambers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112459. [PMID: 33799066 DOI: 10.1016/j.jenvman.2021.112459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Water purification is one of the most essential services provided by wetlands. A lot of concerns regarding wetlands subjected to climate change relate to their susceptibility to hydrological change and the increase in temperature as a result of global warming. A warmer condition may accelerate the rate of decomposition and release of nutrients, which can be exported downstream and cause serious ecological challenges; e.g., eutrophication and acidification. The aim of this study is to investigate the effect of climate change on water quality in peatland and constructed wetland ecosystems subject to water level management. For this purpose, the authors simulated the current climate scenario base on the database from Malmö station (Scania, Sweden) for 2016 and 2017 as well as the future climate scenarios for the last 30 years of the century based on the Representative Concentration Pathway (RCP) and different regional climate models (RCM) for a region wider than Scania County. For future climate change, the authors simulated low (RCP 2.6), moderate (RCP 4.5) and extreme (RCP 8.5) climate scenarios. All simulations were conducted within climate chambers for experimental peatland and constructed wetland mesocosms. Our results demonstrate that the effect of climate scenario is significantly different for peatlands and constructed wetlands (interactive effect) for the combined chemical variables. The warmest climate scenario RCP 8.5 is linked to a higher water purification function for constructed wetlands, but to a lower water purification function and a subsequent deterioration of peatland water qualities, even if subjected to water level management. The explanation for the different response of constructed wetlands and peatlands to climate change could be due to the fact that the substrate in the constructed wetland mesocosms and peatlands was different in terms of the organic matter quality and quantity. The utilization of nutrients by the plants and microbial community readily exceed the mineralization under a limited nutrient content (as we had in constructed wetland) when the temperature rises. However, concerning the extreme scenario RCP 8.5, the peatlands have shown a tendency to have reverse processes.
Collapse
Affiliation(s)
- Shokoufeh Salimi
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden.
| | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden; Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, PO Box 524, Aukland Park, 2006, Johannesburg, South Africa; Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), 76, Lenin prospekt, Chelyabinsk, 454080, Russian Federation.
| |
Collapse
|
22
|
Kumar S, Pratap B, Dubey D, Dutta V. Interspecific competition and their impacts on the growth of macrophytes and pollutants removal within constructed wetland microcosms treating domestic wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:76-87. [PMID: 34053380 DOI: 10.1080/15226514.2021.1926910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Eight free water surface constructed wetland microcosm (CWM) units are designed with single as well as mixed planting of Pistia stratiotes, Phragmites karka, and Typha latifolia with control to assess their competitive value (CV), relative growth rates (RGR), and pollutants removal efficiency. Further, the total dry biomass production and other growth parameters such as number of macrophytes, above-ground biomass, below-ground biomass, and root length were also measured to understand the dominant characteristics of the macrophytes. The CWM units with species mixture out-performed species monocultures. Removal of BOD, TP, SRP, NH4+-N, NO3--N, and NO2--N by mixed planting of P. stratiotes and P. karka was higher at most of the time. Typha latifolia was the superior competitor against both P. stratiotes and P. karka due to its aggressive characteristics that inhibits the growth of neighboring macrophytes. However, P. karka was the superior competitor against P. stratiotes. The RGR of T. latifolia in all experimental units was almost two times more than that of P. karka. Novelty Statement The CWM units with species mixture out-performed species monocultures. CWMs with more than one macrophytic species are less vulnerable to seasonal fluctuations and more effective in contaminants removal as compared to single macrophyte wetlands. Removal of BOD, TP, SRP, NH4+-N, NO3--N, and NO2--N by mixed planting of P. stratiotes and P. karka was higher at most of the time. The CWMs with P. stratiotes and P. karka are superior choice due to their higher wastewater nutrients removal capacity. The application of these three macrophytes in mixed cultures in free water surface constructed wetland is rare. The results are useful in designing large-scale multi-species wetlands which are less susceptible to seasonal variation and more effective in pollutants removal than single-species wetlands.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Bhanu Pratap
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Divya Dubey
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Venkatesh Dutta
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
23
|
Nsenga Kumwimba M, Batool A, Li X. How to enhance the purification performance of traditional floating treatment wetlands (FTWs) at low temperatures: Strengthening strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142608. [PMID: 33082049 DOI: 10.1016/j.scitotenv.2020.142608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Pollution of freshwaters poses a major threat to water quality and human health and thus, nutrients have been targeted for mitigation. One such control measure is floating treatment wetlands (FTWs), which are designed to employ vigorous macrophytes above the water surface and extensive plant root system below the water surface to increase plant uptake of nutrients. The efficacy of FTWs in purifying different water systems has been widely studied and reviewed, but most studies have been performed in warm periods when FTW macrophytes are actively growing. In low-temperature conditions, the metabolic processes of macrophytes and microbial activity are usually weakened or reduced by the winter months and are not actively assimilating pollutants. These circumstances hamper the purification ability of FTWs to perform as designed. Furthermore, decayed macrophytes could release pollutants into the water column. Hence, this paper aimed to systematically summarize strategies for use of enhanced FTWs in eutrophic water improvement at low temperature and identify future directions to be addressed in intensifying FTW performance in low-temperature conditions. Low-temperature FTW show variable nutrient removal efficiencies ranging from 22% to 98%. Current amendments to enhance FTW purification performance, ranging from direct strategies for internal components to indirect enhancement of external operation environments encourage the FTW efficacy to some extent. However, the sustainability and sufficiency of water purification efficiency remain a great challenge. Keeping in mind the need for optimizing the FTW components and dealing with high organic and inorganic chemicals, future research should be carried out at the large field-scale and focus on macrophyte- benthos- microorganism synergistic enhancement, breeding of cold-tolerant macrophytes, and combination of FTWs with many strategies, as well as rational design and operational approaches under cold conditions.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Ammara Batool
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
The Kinetics of Pollutant Removal through Biofiltration from Stormwater Containing Airport De-Icing Agents. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aimed to determine the kinetics of pollutant removal in biofilters with LECA filling (used as a buffer to prevent de-icing agents from being released into the environment with stormwater runoff). It demonstrated a significant effect of temperature and a C/N ratio on the rate of nitrification, denitrification, and organic compound removal. The nitrification rate was the highest (0.32 mg N/L·h) at 25 °C and C/N = 0.5, whereas the lowest (0.18 mg N/L·h) at 0 °C and C/N = 2.5 and 5.0. Though denitrification rate is mainly affected by the available quantity of organic substrate, it actually decreased as the C/N increased and was positively correlated with the temperature levels. Its value was found to be the highest (0.31 mg N/L·h) at 25 °C and C/N = 0.5, and the lowest (0.18 mg N/L·h) at 0 °C and C/N = 5.0. As the C/N increased, so did the content of organic compounds in the treated effluent. The lowest organic removal rates were noted for C/N = 0.5, ranging between 11.20 and 18.42 mg COD/L·h at 0 and 25 °C, respectively. The highest rates, ranging between 27.83 and 59.43 mg COD/L·h, were recorded for C/N = 0.5 at 0 and 25 °C, respectively.
Collapse
|
25
|
Varma M, Gupta AK, Ghosal PS, Majumder A. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142540. [PMID: 33038812 DOI: 10.1016/j.scitotenv.2020.142540] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 05/12/2023]
Abstract
Constructed wetlands (CWs) are one of the most promising and sustainable alternatives for wastewater treatment that are being successfully implemented in several countries, especially in tropical and sub-tropical regions. The predominant mechanisms of removal of contaminants in CWs are microbial degradation, phytodegradation, phytoextraction, filtration, sedimentation, and adsorption, etc. Vertical flow subsurface CWs and hybrid CWs demonstrated promising results in terms of TN, BOD, and COD removal, while horizontal flow subsurface CWs were proficient in removal of TP. The performance of the CWs depends upon a various factors, such as hydraulic loading rate, pH, dissolved oxygen, temperature, etc. Among these, low temperature had the most antagonistic effect on the performance of the CWs because freezing ambient temperature lead to ice formation, hydraulic imperfections, malfunctioning of biotic and abiotic components, etc. Over the past three decades, thousands of studies have been conducted involving treatment of wastewater using CWs, among which only few have addressed the issues and concerns of cold climate representing a significant research gap in this field. Furthermore, the performance of CWs in terms of TN, TP, and COD removal was significantly lower in cold climates than that in tropical and sub-tropical climates. In order to find suitable remedies to overcome the challenges faced in cold climate various modifications, such as incorporating greenhouse structure, providing insulating materials, bio-augmentation, identification of suitable macrophytes, etc., in around 20 different scenarios have been studied. Greenhouse construction led to 20% increase in removal of TN and COD, while plant collocation accounted for up to 18% increase in the removal of COD. Artificial aeration, insulation and bio-augmentation also enhanced the performance of the CWs in low temperatures.
Collapse
Affiliation(s)
- Mahesh Varma
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
26
|
Wang G, Xia X, Liu S, Zhang L, Zhang S, Wang J, Xi N, Zhang Q. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions. WATER RESEARCH 2021; 189:116654. [PMID: 33242789 DOI: 10.1016/j.watres.2020.116654] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 05/25/2023]
Abstract
The evasions of methane (CH4) and carbon dioxide (CO2) from inland waters represent substantial fluxes of greenhouse gases into the atmosphere, offsetting a large part of the continental carbon sink. However, the CH4 and CO2 emissions from urban inland waters are less constrained. In particular, ebullitive CH4 emissions from these waters are poorly understood. Here, we measured the concentrations and fluxes of CH4 and CO2 in rivers and lakes in the megacity of Beijing, China, between 2018 and 2019. The CH4 concentration ranged from 0.08 to 70.2 µmol L-1 with an average of 2.5 ± 5.9 µmol L-1. The average CH4 ebullition was 11.3 ± 30.4 mmol m-2 d-1 and was approximately 6 times higher than the global average. The average total CH4 flux (14.2 ± 35.1 mmol m-2 d-1) was 3 times higher than the global average, with ebullition accounting for 80% of the flux. The high surface water CH4 concentrations and ebullitive fluxes were caused by high sediment organic carbon/dissolved organic carbon contents, high aquatic primary productivity and shallow water depths in the urban inland waters. The CH4 emissions accounted for 20% of CO2 emissions in terms of the carbon release and were 1.7 times higher in terms of CO2 equivalent emissions from Beijing inland waters. Furthermore, the CH4 ebullition and its contribution to the total carbon gas emissions increased exponentially with the water temperature, suggesting a positive feedback probably occurs between the greenhouse gas emissions from urban inland waters and climate warming. This study confirms the major role of CH4 ebullition from urban inland waters in the global carbon budget under the rapid progress of global urbanization.
Collapse
Affiliation(s)
- Gongqin Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China.
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Ling Zhang
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
| | - Sibo Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Nannan Xi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
27
|
Li M, Duan R, Hao W, Li Q, Arslan M, Liu P, Qi X, Huang X, El-Din MG, Liang P. High-rate nitrogen removal from carbon limited wastewater using sulfur-based constructed wetland: Impact of sulfur sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140969. [PMID: 32721681 DOI: 10.1016/j.scitotenv.2020.140969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
This study aims to explore the application of sulfur-based constructed wetlands (CWs) for effective nitrogen (N) removal from wastewater. Two solid sulfur sources namely elemental sulfur (S0) and pyrite (FeS2) were used as substrates in two CWs, i.e. S-CW and P-CW, respectively. The CWs were vegetated with a common wetland plant Iris pseudacorus, and were operated to investigate the effects of hydraulic retention time (HRT) and temperature on N removal. The use of S0 resulted in the highest denitrification rate (19.0 ± 7.5 g m-2 d-1), whereas up to 20 times slower total inorganic nitrogen (TIN) removal was observed with FeS2. Different sulfur sources had negligible effects on the growth of I. pseudacorus, but the element contents (e.g., N, S, and P) within the plant tissues were different. Iris roots in S-CW had higher S content compared with those in P-CW, which resulted in the difference in shoots colors. The characteristics of rhizospheric microbial communities were closely related to the sulfur and nitrogen sources. Briefly, denitrifying and sulfur-oxidizing genera (e.g., Denitratisoma, Sulfurimonas, Thiobacillus) were dominating in the S-CW, suggesting the occurrence of both autotrophic and heterotrophic denitrification processes in the wetland. On the other hand, nitrifying bacteria were more abundant (e.g. Nitrospira, Piscinibacter) in the P-CW. S0 layer and rhizosphere accounted for 99.3% of nitrogen removal and the former part most likely played important roles with a decrease in HRT. Low temperature strongly affected the rate and efficiency of denitrification but recovered to 49.2 ± 25.8% when added with 30 mg L-1 sodium acetate. This study broadens the applications of sulfur-based CWs and provides a promising management strategy for denitrification at low temperatures.
Collapse
Affiliation(s)
- Meng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, PR China
| | - Rui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, PR China
| | - Qingcheng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Panpan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
28
|
Ma Y, Dai W, Zheng P, Zheng X, He S, Zhao M. Iron scraps enhance simultaneous nitrogen and phosphorus removal in subsurface flow constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122612. [PMID: 32361175 DOI: 10.1016/j.jhazmat.2020.122612] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
In rural domestic wastewater treatment using subsurface constructed wetland system (SFCWs), the lack of a carbon source for denitrification and limited phosphorus uptake are responsible for low removal of nitrogen and phosphorus, and a suitable substrate is therefore, necessary. Iron is an important component in nitrogen and phosphorus biogeochemical cycles. Few studies have addressed the application of iron in SFCWs. Therefore, we constructed SFCWs that used iron scraps as a substrate. Enhanced nitrification, denitrification and removal of phosphorus were observed. The large proportion of nitrite-oxidising bacteria present in CWs with iron scraps (CW-T) compared to gravel beds indicated that iron may enhance ammonium (NH4+) oxidation. More nitrate-reducing bacteria related to Fe and autotrophic denitrifying bacteria were discovered in the back zone of CW-T and these enhanced denitrification process. Phosphate (PO43-) reacted with ferrous ion (Fe2+) and ferric ion (Fe3+) to generate the precipitant. Moreover, Fe3+ reacted with water to generate iron oxide (FeOOH) that had a large adsorption capacity for phosphorus. After six months of operation, average NH4+-N, total nitrogen and total phosphorus removal rates were 66.98 ± 13.37 %, 71.26 ± 13.57 % and 93.54 ± 6.64 %, respectively. Iron scraps can potentially be utilised in SFCWs in rural domestic wastewater treatment.
Collapse
Affiliation(s)
- Yuhui Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqing Dai
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Peiru Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China.
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| |
Collapse
|
29
|
Li Y, Zhang H, Zhu L, Chen H, Du G, Gao X, Pu Y. Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland-pond system: A case study. BIORESOURCE TECHNOLOGY 2020; 309:123310. [PMID: 32325377 DOI: 10.1016/j.biortech.2020.123310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland-pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMn), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMn and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMn and TN.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haikuo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, China.
| | - Hongwei Chen
- Yancheng Water Conservancy Bureau of Jiangsu Province, Yancheng 224001, China
| | - Guanchao Du
- Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
| | - Xu Gao
- Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
| | - Yashuai Pu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
30
|
Suanon F, Tang L, Sheng H, Fu Y, Xiang L, Wang Z, Shao X, Mama D, Jiang X, Wang F. Organochlorine pesticides contaminated soil decontamination using TritonX-100-enhanced advanced oxidation under electrokinetic remediation. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122388. [PMID: 32120218 DOI: 10.1016/j.jhazmat.2020.122388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 05/22/2023]
Abstract
Remediation of organochlorine pesticides (OCPs)-contaminated soils is urgently required especially in China. Surfactants have emerged as reliable and efficient co-solvent for the treatment of hardly soluble organic pollutants in contaminated soil. Here, we report the use of TritonX-100 (TX-100) in advanced oxidation under electrokinetic technology (EK) for OCPs removal from a historically contaminated soil from a former pharmaceutical industrial wasteland. Result shows that TX-100 (10%) played a key role in soil remediation. In effect, after a treatment period of 15 days, pollutants washed ranged from 50.68% (4,4'-DDT) to 76.07% (HCB), when TX-100 was used as the electrolyte (EK-TX-100). A simple advanced oxidation of the soil using sodium persulfate (PS) under EK approach (EK-PS) was limited to achieve good removal efficiency of the pollutants; as the result of OCPs' hardly dissolvable nature. The achieved removal efficiency were comprised between 22.62% (2,4-DDT) and 55.78% (1,2,4,5-TCB). With the application of TX-100 as co-solvent (EK-TX-100/PS), the pollutants removal efficiency significantly improved (p < 0.05). The treatment efficiency was shifted and up to 88.05% (1,2,4-TCB) was achieved, while the lowest removal efficiency was 56.36% (4,4'-DDE). We come to the conclusion that the use of TX-100-enhanced advanced oxidation (EK-TX-100/PS) as a reliable treatment for remediating organochlorine contaminated soil.
Collapse
Affiliation(s)
- Fidèle Suanon
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Institute of Water, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Liu Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - Hongjie Sheng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhao Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziquan Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangwen Shao
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - Daouda Mama
- National Institute of Water, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Liang MY, Han YC, Easa SM, Chu PP, Wang YL, Zhou XY. New solution to build constructed wetland in cold climatic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137124. [PMID: 32120092 DOI: 10.1016/j.scitotenv.2020.137124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Constructed wetland is an efficient and convenient wastewater treatment technology that has been widely used in China and elsewhere. However, seasonal frozen soil is easily formed in the cold regions of northern China. The local wetlands are in the frozen soil layer, causing the pollutants from wastewater not to be removed well. Therefore, a new constructed wetland structure that uses shallow geothermal energy to keep the wetland not frozen in the winter is proposed in this paper. The results of the experiment show that the average removal rates of total nitrogen, ammonium ion, and total phosphorus in the multistage constructed wetland system are 54.8%, 44.5%, and 77.7%, respectively. This performance is substantially better than that of conventional wetlands in winter. The proposed wetland structure can be applied to conventional wetlands and avoid the conventional wetlands being idle during cold seasons, which is conducive to the popularization of constructed wetlands (CWs) in cold regions.
Collapse
Affiliation(s)
- Meng-Yuan Liang
- Department of Hydraulic Engineering, School of Water Conservancy and Environment, Univ. of Jinan, Jinan 250022, China
| | - Yan-Cheng Han
- Department of Hydraulic Engineering, School of Water Conservancy and Environment, Univ. of Jinan, Jinan 250022, China.
| | - Said M Easa
- Dept. of Civil Engineering, Ryerson Univ., Toronto, ON M5B 2K3, Canada
| | - Ping-Ping Chu
- Department of Hydraulic Engineering, School of Water Conservancy and Environment, Univ. of Jinan, Jinan 250022, China
| | - Yue-Lei Wang
- Department of Hydraulic Engineering, School of Water Conservancy and Environment, Univ. of Jinan, Jinan 250022, China
| | - Xin-Yue Zhou
- Department of Hydraulic Engineering, School of Water Conservancy and Environment, Univ. of Jinan, Jinan 250022, China
| |
Collapse
|
32
|
Heiderscheidt E, Khan UA, Kujala K, Ronkanen AK, Postila H. Design, construction and monitoring of pilot systems to evaluate the effect of freeze-thaw cycles on pollutant retention in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134713. [PMID: 31734501 DOI: 10.1016/j.scitotenv.2019.134713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Due to the complexity of soil freeze/thaw processes and a variety of factors affecting pollutant removal in treatment wetlands, laboratory pilot systems are powerful tools offering a rare opportunity to observe processes that have a significant impact on year-round purification. This paper describes the design, construction, monitoring and operation of two replicate pilot peat-based wetlands subjected to two simulated freeze-thaw cycles. Undisturbed peat soil and pre-treated gold mine process wastewater were collected from a full-scale treatment wetland operating at a mining site in Northern Finland. The wastewater (pH ~7.8, electric conductivity ~3.6 mS/cm) contained a mix of metals/metalloids (e.g. arsenic 12 µg/L, antimony 19 µg/L) and other contaminants e.g. sulphate (~2 g/L). Fluctuations in removal efficiency of target compounds due to freezing and thawing conditions were observed. Overall, removal of sulphate and arsenic decreased during frost periods, while removal of antimony increased. Monitoring data from the full-scale treatment wetland were used to assess the representativeness of the results obtained. Comparisons of seasonal variations in pollutant concentrations in outflow samples from the full-scale wetland and those measured in the pilot wetlands revealed similar fluctuations in removal efficiency during frost and frost-free periods, suggesting that the pilot wetlands simulated the real system rather well. Carefully designed pilot systems can thus be valuable tools for assessing the effect of harsh winter conditions on wetland processes and operation.
Collapse
Affiliation(s)
- Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland.
| | - Uzair Akbar Khan
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| | - Katharina Kujala
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| | - Anna-Kaisa Ronkanen
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| |
Collapse
|
33
|
Magwaza ST, Magwaza LS, Odindo AO, Mditshwa A. Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134154. [PMID: 31505342 DOI: 10.1016/j.scitotenv.2019.134154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Water scarcity, nutrient-depleted soils and pollution continue to be a major challenge worldwide and these are likely to worsen with increasing global populations particularly, in urban areas. As a result, environmental and public health problems may arise from the insufficient provision of sanitation and wastewater disposal facilities. Because of this, a paradigm shifts with regard to the sustainable management of waste disposal in a manner that could protect the environment at the same time benefits society by allowing nutrient recovery and reuse for food production is required. Hence, the use of urban wastewater for agricultural irrigation has more potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for crop production. Among the current treatment technologies applied in urban wastewater reuse for agriculture, hydroponic system is identified as one of the alternative technology that can be integrated with wastewater treatment. The integration of hydroponic system with municipal wastewater treatment has the advantage of reducing costs in terms of pollutants removal while reducing maintenance and energy costs required for conventional wastewater treatment. The efficiency of a hydroponic system with regard to municipal wastewater reuse is mainly linked to its capacity to allow continuous use of wastewater through the production of agricultural crops and the removal of pollutants/nutrients (nitrogen and phosphorus), resulting to increased food security and environmental protection. Moreover, the suitability of hydroponic system for wastewater treatment is derived from its capacity to minimize associated health risks to farmers, harvested crop and consumers, that may arise through contact with wastewater.
Collapse
Affiliation(s)
- Shirly Tentile Magwaza
- Discipline of Crop and Horticultural Sciences, School of Agricultural, Earth and Environmental Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa
| | - Lembe Samukelo Magwaza
- Discipline of Crop and Horticultural Sciences, School of Agricultural, Earth and Environmental Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa.
| | - Alfred Oduor Odindo
- Discipline of Crop and Horticultural Sciences, School of Agricultural, Earth and Environmental Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa
| | - Asanda Mditshwa
- Discipline of Crop and Horticultural Sciences, School of Agricultural, Earth and Environmental Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa
| |
Collapse
|
34
|
Macek CL, Hale RL, Baxter CV. Dry Wetlands: Nutrient Dynamics in Ephemeral Constructed Stormwater Wetlands. ENVIRONMENTAL MANAGEMENT 2020; 65:32-45. [PMID: 31761956 DOI: 10.1007/s00267-019-01227-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Constructed stormwater wetlands (CSWs) are used to address contaminants in urban stormwater such as nitrogen (N) and phosphorus (P), but their performance is variable. Ephemeral CSWs tend to be less effective than perennial CSWs at removing N and P. We asked: How does wetland vegetation and sediment affect nutrient cycling/release from sediment and vegetation in ephemeral CSWs? We focused on two ephemeral urban CSWs in Pocatello, ID, USA, one densely vegetated and the other nearly bare. We rewetted intact cores of dry wetland sediments and, separately, senesced vegetation for 1 week at the end of the summer dry period to assess whether wetland sediments and vegetation acted as sources or sinks of N and P. For both CSWs, there was a pulse of nutrients immediately following rewetting, but the magnitude of that pulse and subsequent changes in nutrient concentrations suggest different processes dominate at each wetland, driven by differences in wetland vegetation and associated sediment characteristics. There was evidence of denitrification between and during events at the vegetated wetland, but larger fluxes of P at this site suggests a tradeoff between denitrification and P release. While the experimental results suggested specific biogeochemical controls, CSW nutrient concentrations during three events were more dynamic and suggested more biogeochemical complexity than that represented in our experiment, both within events and seasonally. Ephemeral CSWs may create unique biogeochemical conditions and require careful design to ensure N and P retention. Managers will also need to consider whether perennial water sources would improve CSW function.
Collapse
Affiliation(s)
- Carolyn L Macek
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA
| | - Rebecca L Hale
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA.
| | - Colden V Baxter
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA
| |
Collapse
|
35
|
Cizek AR, Johnson JP, Birgand F, Hunt WF, McLaughlin RA. Insights from using in-situ ultraviolet-visible spectroscopy to assess nitrogen treatment and subsurface dynamics in a regenerative stormwater conveyance (RSC) system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109656. [PMID: 31614259 DOI: 10.1016/j.jenvman.2019.109656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/06/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Regenerative stormwater conveyance (RSC) is a recently developed stormwater control measure that marries the concepts of bioretention and stream restoration. RSC mitigates stormwater runoff by converting surface flow to subsurface seepage using a series of pools and riffles built over a sand media bed. Subsurface seepage flows through media and exits the RSC beneath the outlet weir. Previous studies on RSC pollutant mitigation have focused on surface flow discharges from the RSC. To date, no known research has been conducted on the potential pollutant contributions of RSC seepage, despite the fact that this water also enters receiving waters. This research used Multi-Point Sampling coupled with in-situ ultraviolet-visual spectroscopy to measure nitrogen in seepage during simulated storm events (n = 9) at a field-scale RSC in Raleigh, North Carolina. Calibrations between light absorbance and concentrations were acceptable (Nash-Sutcliffe coefficient > 0.65) for nitrate and total ammoniacal nitrogen (TAN) and very good (Nash-Sutcliffe coefficient > 0.90) for total Kjehdahl nitrogen (TKN). Early storm simulations revealed some initial nutrient flushing from the substrate, which subsided by the third simulation. Overall, subsurface seepage nitrate, TAN, and TKN concentrations were lower by 29%, 57%, and 4% relative to storm inflow concentrations, respectively. Computed subsurface nitrogen concentrations demonstrated temporal variability, highlighting dynamic transport and biogeochemical transformations in saturated and unsaturated conditions. Nitrogen concentrations were lower in seepage than in surface flow; however, due to the high volume of runoff converted to seepage, nitrogen loads discharged in seepage can be larger than those of surface flow. Further research is needed to examine subsurface pollutant reductions under varying hydrologic and seasonal conditions.
Collapse
Affiliation(s)
| | - Jeffrey P Johnson
- Department of Biological and Agricultural Engineering, Campus Box 7625, North Carolina State University, Raleigh, NC, 27695, USA.
| | - François Birgand
- Department of Biological and Agricultural Engineering, Campus Box 7625, North Carolina State University, Raleigh, NC, 27695, USA.
| | - William F Hunt
- Department of Biological and Agricultural Engineering, Campus Box 7625, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Richard A McLaughlin
- Department of Crop and Soil Sciences, Campus Box 7620, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
36
|
Wastewater Treatment by Constructed Wetland Eco-Technology: Influence of Mineral and Plastic Materials as Filter Media and Tropical Ornamental Plants. WATER 2019. [DOI: 10.3390/w11112344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Constructed wetlands (CWs) are sustainable technologies where the channels are filled with porous material and plants, which collectively remove pollutants, depending on the type of substrate and vegetation. This study evaluated CWs and their functionality by comparing three ornamental plants (Canna indica, Cyperus papyrus, and Hedychium coronarium) as a phytoremediation process of wastewater, in CWs filled with layers of porous stone–tepezil–plastic residues–soil (S-A), or in microcosms with layers of porous stone–tepezil–soil without the presence of plastic (S-B). The findings during 180 days showed that the removals of pollutants (chemical oxygen demand (COD), total solids suspended (TSS), nitrogen as ammonium (N-NH4), as nitrate (N-NO3), and phosphate (P-PO4) were 20%–60% higher in microcosms with plants than in the absence of plants. Statistical differences were not observed when comparing removal effects among S-A and S-B, indicating that plastic residues as filter material in CWs did not affect the pollutant removal, growth, flowering, and shoots of plants. The use of plastic residues as filter may represent a less costly alternative in CW establishments. Dependence on N-NH4 and TSS removal was observed according to plant species. The three species used are suitable for using in CWs as wastewater treatment. In addition, the ornamental plants could generate interest for a commercial option.
Collapse
|
37
|
Hong SH, Lee JI, Lee CG, Park SJ. Effect of temperature on capping efficiency of zeolite and activated carbon under fabric mats for interrupting nutrient release from sediments. Sci Rep 2019; 9:15754. [PMID: 31673036 PMCID: PMC6823541 DOI: 10.1038/s41598-019-52393-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/16/2019] [Indexed: 11/09/2022] Open
Abstract
We investigated the influence of temperature on the capping efficiency to interrupt the release of nutrients from lake sediments. A 3-cm layer of Zeolite (ZL) or activated carbon (AC) was placed on the contaminated sediments, and nonwoven fabric mats (NWFM) were placed on top of these capping materials. Laboratory incubation experiments were performed under three different temperatures, namely 4, 15, and 30 °C. Under the uncapped condition at 30 °C, dissolved oxygen (DO) was depleted after 30 days, while at 4 °C and 15 °C, DO was present until the end of this experiment. DO concentration in overlying water was more dependent on the temperature than capping condition. ZL/NWFM effectively blocked the release of N from the sediments, and the capping efficiencies of ZL/NWFM for NH4-N at 4, 15, and 30 °C were 98%, 96%, and 94%, respectively. For the interruption of P release, both ZL/NWFM and AC/NWFM were not effective at 4 and 15 °C. At 30 °C, however, AC/NWFM was effective, and its capping efficiencies at 30 °C for PO4-P and T-P were 74.0% and 79.9%, respectively. In summary, nutrient release from sediments was accelerated at higher temperatures, and the effect of capping was significant at high temperature.
Collapse
Affiliation(s)
- Seung-Hee Hong
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, South Korea
| | - Jae-In Lee
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, South Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, South Korea.
| |
Collapse
|
38
|
Besold J, Eberle A, Noël V, Kujala K, Kumar N, Scheinost AC, Pacheco JL, Fendorf S, Planer-Friedrich B. Antimonite Binding to Natural Organic Matter: Spectroscopic Evidence from a Mine Water Impacted Peatland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10792-10802. [PMID: 31436960 DOI: 10.1021/acs.est.9b03924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peatlands and other wetlands are sinks for antimony (Sb), and solid natural organic matter (NOM) may play an important role in controlling Sb binding. However, direct evidence of Sb sequestration in natural peat samples is lacking. Here, we analyzed solid phase Sb, iron (Fe), and sulfur (S) as well as aqueous Sb speciation in three profiles up to a depth of 80 cm in a mine water impacted peatland in northern Finland. Linear combination fittings of extended X-ray absorption fine structure spectra showed that Sb binding to Fe phases was of minor importance and observed only in the uppermost layers of the peatland. Instead, the dominant (to almost exclusive) sequestration mechanism was Sb(III) binding to oxygen-containing functional groups, and at greater depths, increasingly Sb(III) binding to thiol groups of NOM. Aqueous Sb speciation was dominated by antimonate, while antimonite concentrations were low, further supporting our findings of much higher reactivity of Sb(III) than Sb(V) toward peat surfaces. Insufficient residence time for efficient reduction of antimonate to antimonite currently hinders higher Sb removal in the studied peatland. Overall, our findings imply that Sb(III) binding to solid NOM acts as an important sequestration mechanism under reducing conditions in peatlands and other high-organic matter environments.
Collapse
Affiliation(s)
- Johannes Besold
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
| | - Anne Eberle
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
| | - Vincent Noël
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Katharina Kujala
- Water Resources and Environmental Engineering Research Unit , University of Oulu , FI-90014 , Oulu , Finland
| | - Naresh Kumar
- Department of Geological Sciences, School of Earth, Energy, and Environmental Sciences , Stanford University , Stanford , California 94305 , United States
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science , University of Vienna , 1090 Vienna , Austria
| | - Andreas C Scheinost
- The Rossendorf Beamline (ROBL) at ESRF, 38043 Grenoble, France and Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Juan Lezama Pacheco
- Department of Earth System Science, School of Earth, Energy, and Environmental Sciences , Stanford University , Stanford , California 94305 , United States
| | - Scott Fendorf
- Department of Earth System Science, School of Earth, Energy, and Environmental Sciences , Stanford University , Stanford , California 94305 , United States
| | - Britta Planer-Friedrich
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
| |
Collapse
|
39
|
Garcia Chance LM, Van Brunt SC, Majsztrik JC, White SA. Short- and long-term dynamics of nutrient removal in floating treatment wetlands. WATER RESEARCH 2019; 159:153-163. [PMID: 31091480 DOI: 10.1016/j.watres.2019.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Floating treatment wetlands (FTWs) are a plant-based treatment technology shown to remove excess nutrients and metals from surface waters under a variety of conditions. Plants established in FTWs can accumulate and store nutrients within their tissues, but the amount of uptake and storage is dependent on plant species and nutrient influent concentration. This research was designed to quantify the influence of nutrient load and two plant species on nutrient uptake and partitioning patterns within plant tissues (shoots and roots) so that management recommendations for FTWs can be developed to better protect surface water quality. Treatments consisted of (1) two nutrient loads: a high concentration of 15 mg⋅L-1 nitrogen (N) and a low concentration of 5 mg⋅L-1 N supplied as water soluble fertilizer, and (2) four mesocosm treatments: (a) open water, (b) artificial mat only, no plants, (c) artificial mats planted with Pontederia cordata L., and (d) artificial mats planted with Juncus effusus L.. Plant growth, N, and phosphorus (P) uptake of both P. cordata and J. effusus were greater in the high nutrient treatment than in the low. Pontederia cordata facilitated the highest rates of N (0.31 mg.L.day-1) and P (0.34 mg.L.day-1) removal. The nutrient removal rates facilitated by Juncus effusus in the high nutrient treatment were much lower for both N (0.03 mg.L.day-1) and P (0.02 mg.L.day-1). Peak N and P accumulation in J. effusus occurred in September within both root (50 g N and 4.8 g P) and shoot tissues (98 g N and 12.5 g P). The uptake of N and P in P. cordata was highest in root tissues in August (307 g N and 30.5 g P) and in shoot tissues in September (1490 g N and 219.5 g P). In both species, shoots accumulated more N and P than the roots, resulting in a small root:shoot ratio at all stages of the experiment. Harvest of plants from FTWs should occur before plants senesce in the fall, which using P. cordata and J. effusus as model species, occurred from mid- to late-September in USDA Hardiness Zone 8a in the Southeastern United States.
Collapse
Affiliation(s)
- Lauren M Garcia Chance
- Water Treatment Technology Laboratory, South Carolina Water Resources Center, Clemson University, 509 Westinghouse Rd., Pendleton, SC, 29670, United States
| | - Sarah C Van Brunt
- Water Treatment Technology Laboratory, South Carolina Water Resources Center, Clemson University, 509 Westinghouse Rd., Pendleton, SC, 29670, United States
| | - John C Majsztrik
- Department of Plant and Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC, 29634-0310, United States
| | - Sarah A White
- Department of Plant and Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC, 29634-0310, United States.
| |
Collapse
|
40
|
Zhang X, Zha L, Jiang P, Wang X, Lu K, He S, Huang J, Zhou W. Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23696-23706. [PMID: 31203550 DOI: 10.1007/s11356-019-05580-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Excessive nitrogen accumulated from wastewater with low C/N ratio is a new threat to water ecosystem. In this study, surface flow constructed wetland (SFCW) and floating treatment wetland (FTW) planted with Iris pseudacorus were set in parallel for nitrogen removal. The nitrogen removal efficiencies and pathways, as well as the abundance and functional diversities of the microbial community, were investigated. The results demonstrated that SFCW generally had better nitrogen removal performance than FTW did over four seasons. The average total nitrogen removal efficiency was 66.0% and 43.8% in SFCW and FTW, respectively. The plant uptake played a vital role in nitrogen reduction, which accounted for 29.3% and 7.7% of the total removed nitrogen in SFCW and FTW, respectively. A combination of high-throughput sequencing and quantitative polymerase chain reaction analysis revealed that the two wetland systems had complete nitrogen cycling, and the narG gene was the dominant nitrogen-transformation functional gene in both systems. More abundant denitrifying genes in SFCW than in FTW were also responsible for higher removal capacity of nitrogen. The results suggest that the planting pattern of wetland vegetation has an important impact on nitrogen removal efficiency by influencing the plant absorption and the development of microbial communities.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lina Zha
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Panyu Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiayu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kewei Lu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
41
|
Effect of Ornamental Plants, Seasonality, and Filter Media Material in Fill-and-Drain Constructed Wetlands Treating Rural Community Wastewater. SUSTAINABILITY 2019. [DOI: 10.3390/su11082350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of Canna indica (P1), Pontederia sagittata (P2), and Spathiphyllum wallisii (P3) growing in different filter media materials (12 using porous river rock and 12 using tepezyl) on the seasonal removal of pollutants of wastewater using fill-and-drain constructed wetlands (FD-CWs) were investigated during 12 months. Three units of every media were planted with one plant of P1, P2, and P3, and three were kept unplanted. C. indica was the plant with higher growth than the other species, in both filter media. The species with more flower production were: C. indica > P. sagittate > S. wallisii. Reflecting similarly in the biomass of the plants, C. indica and P. sagittata showed more quantity of aerial and below ground biomass productivity than S. wallisii. With respect to the removal efficiency, both porous media were efficient in terms of pollutant removal performance (p > 0.05). However, removal efficiency showed a dependence on ornamental plants. The higher removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total kjeldahl nitrogen (TKN), nitrates (NO3−-N), ammonium (NH4+-N), and phosphates (PO4−3-P) oscillated between 81% to 83%, 80% to 84%, 61% to 69%, 61% to 68%, 65% to 71%, 62% to 68%, and 66% to 69%, respectively, in P1 and P2, removals 15% to 30% higher than P3. The removal in planted microcosms was significantly higher than the unplanted control units (p = 0.023). Nitrogen and phosphorous compounds were highly removed (60%–80%) because in typical CWs, such pollutant removals are usually smaller, indicating the importance of FD-CWs on wastewater treatments using porous river rock and tepezyl as porous filter media. (BOD5), chemical oxygen demand (COD), (NO3−-N), (NH4+-N), (TKN), and (PO4−3-P).
Collapse
|
42
|
Khan UA, Kujala K, Nieminen SP, Räisänen ML, Ronkanen AK. Arsenic, antimony, and nickel leaching from northern peatlands treating mining influenced water in cold climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1161-1172. [PMID: 30677883 DOI: 10.1016/j.scitotenv.2018.11.455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Increased metal mining in the Arctic region has caused elevated loads of arsenic (As), antimony (Sb), nickel (Ni), and sulfate (SO42-) to recipient surface or groundwater systems. The need for cost-effective active and passive mine water treatment methods has also increased. Natural peatlands are commonly used as a final step for treatment of mining influenced water. However, their permanent retention of harmful substances is affected by influent concentrations and environmental conditions. The effects of dilution, pH, temperature, oxygen availability, and contaminant accumulation on retention and leaching of As, Sb, Ni, and sulfate from mine process water and drainage water obtained from treatment peatlands in Finnish Lapland were studied in batch sorption experiments, and discussed in context of field data and environmental impacts. The results, while demonstrating effectiveness of peat to remove the target contaminants from mine water, revealed the risk of leaching of As, Sb, and SO42- from treatment peatlands when diluted mine water was introduced. Sb was more readily leached compared to As while leaching of both was supported by higher pH of 9. No straightforward effect of temperature and oxygen availability in controlling removal and leaching was evident from the results. The results also showed that contaminant accumulation in treatment peatlands after long-term use can lead to decreased removal and escalated leaching of contaminants, with the effect being more pronounced for As and Ni.
Collapse
Affiliation(s)
- Uzair Akbar Khan
- Water Resources and Environmental Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland.
| | - Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| | - Soile P Nieminen
- Center for Economic Development, Transport and the Environment for Kainuu (Kainuu ELY Centre), P.O. Box 2000 (North Savo ELY Centre), Kallanranta 11, FI-70101 Kuopio, Finland.
| | - Marja Liisa Räisänen
- Geological Survey of Finland (GTK), Neulaniementie 5, P.O. Box 1237, FI-70211, Kuopio, Finland.
| | - Anna-Kaisa Ronkanen
- Water Resources and Environmental Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| |
Collapse
|
43
|
Russo N, Marzo A, Randazzo C, Caggia C, Toscano A, Cirelli GL. Constructed wetlands combined with disinfection systems for removal of urban wastewater contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:558-566. [PMID: 30529960 DOI: 10.1016/j.scitotenv.2018.11.417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The removal efficiency of an urban wastewater treatment plant (WWTP) to obtain an effluent suitable for agriculture reuse was evaluated in a one-year period, taking into account the Italian wastewater limits and the recent European proposal for the minimum requirements water quality for agricultural irrigation. The secondary effluent of WWTP was treated by three full-scale horizontal sub-surface flow (H-SSF) constructed wetlands (CWs), working in parallel, planted with different macrophytes species, and combined with a UV device and a lagooning system running in series. The H-SSF CW system effectively reduced physico-chemical pollutants and its efficiency was steady over the investigation period, while, Escherichia coli densities always exceed the Italian limits required for wastewater reuse in agriculture. The UV system significantly reduced the microbiological indicators, eliminating E. coli, in compliance with the Italian regulation, and somatic coliphages, although a variable efficacy against total coliforms and enterococci, especially in winter season, was achieved. Although the lagooning unit provides a high removal of the main microbial groups, it did not reduce physico-chemical parameters. Even if the overall performance target, for the whole treatment chain, met the recent log10 reduction (≥5.0), required by the European Commission, the persistence of enterococci, especially in winter season, poses a matter of concern for public health, for the potential risk to serve as a genetic reservoir of transferable antibiotic-resistance.
Collapse
Affiliation(s)
- Nunziatina Russo
- Department of Agricultural, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Alessia Marzo
- Center for the Conservation and Management of Nature and Agroecosystems (CUTGANA), University of Catania, via Santa Sofia 98, 95123 Catania, Italy.
| | - Cinzia Randazzo
- Department of Agricultural, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Attilio Toscano
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale Giuseppe Fanin 50, 40127 Bologna, Italy
| | - Giuseppe Luigi Cirelli
- Department of Agricultural, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| |
Collapse
|
44
|
Oldenborg KA, Steinman AD. Impact of sediment dredging on sediment phosphorus flux in a restored riparian wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1969-1979. [PMID: 30290339 DOI: 10.1016/j.scitotenv.2018.09.298] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Many riverine wetlands have been drained for the creation of agricultural land; however, global declines in freshwater biodiversity have begun to motivate wetland restoration projects around the world. Legacy phosphorus (P) increases the risk that wetland restoration may liberate excess P to the water column and connecting waterbodies, resulting in a trade-off of restored habitat for degraded water quality. To avoid this trade-off, we dredged a former agricultural parcel prior to hydrologic reconnection, and evaluated restoration success by comparing sediment P dynamics before and after dredging. First, results from P adsorption isotherm experiments suggested that after dredging, the sediment would act as a sink for dissolved P only when water column soluble reactive phosphorus (SRP) concentrations exceeded 40 μg L-1. Additionally, the dredging depth (~1 m on average) exposed sediment with significantly reduced P sorption capacities. Second, P release rates were measured in sediment cores that were incubated under two water temperatures (ambient; +2 °C) and two oxygen levels (oxic; hypoxic). Average maximum total phosphorus (TP) release rates ranged from 40 to 85 mg m-2 d-1 before dredging and from 0 to 7 mg m-2 d-1 after dredging, resulting in a 95-99% reduction in TP release rates after dredging. Similar reductions were measured also for SRP release rates. The significant reduction in sediment P release after dredging now creates a high potential for this restored wetland to reduce net P loads into downstream waters by facilitating the deposition and burial of particulate P. We conclude that sediment dredging can be a useful technique for balancing the goals of habitat restoration and water quality improvements in wetlands restored on former agricultural lands.
Collapse
Affiliation(s)
- Kimberly A Oldenborg
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA.
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA.
| |
Collapse
|
45
|
Nivala J, Kahl S, Boog J, van Afferden M, Reemtsma T, Müller RA. Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1144-1156. [PMID: 30308886 DOI: 10.1016/j.scitotenv.2018.08.339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Six pilot-scale treatment wetlands treating municipal wastewater were monitored for classical wastewater parameters and selected Emerging Organic Compounds (EOCs): caffeine (CAF), ibuprofen (IBU), naproxen (NPX), benzotriazole (BTZ), diclofenac (DCL), acesulfame (ACE) and carbamazepine (CBZ) on a weekly basis over the course of one year. Treatment efficacy of the wetland systems was compared to that of a municipal wastewater treatment plant adjacent to the research site (activated sludge technology). The aerated wetlands VAp and HAp, and the two-stage vertical flow system VGp + VSp showed the highest treatment efficacy (>70% removal on a mass basis) and comparable treatment efficacy to the conventional WWTP for removal of CAF, IBU, NPX, BTZ, and DCL. Annual mass removal of ACE in the WWTP was 50% and varied in the wetlands (depending on system design) from zero to 62%. On a mean monthly basis, ACE removal in the treatment wetlands VGp + VSp, VAp, HAp, R was high (> 90%) for six months of the year. Monthly mean mass removal of CBZ was negligible for the WWTP and all treatment wetland systems except H50p, which showed up to 49% mass removal in June. Monthly mean mass removals of classical wastewater parameters and readily biodegradable EOCs (represented by CAF, IBU, NPX) were most stable in the intensified wetland designs VAp, HAp, and R. A statistical analysis confirms that system complexity, aerobic conditions, and temperature have the highest correlation to overall pollutant removal in the treatment wetland systems, including EOCs of high to moderate biodegradability. First-order removal rate coefficents and temperature correction factors for EOCs are reported for the first time in the treatment wetland literature. Limitations on the use of these values in engineering design are discussed.
Collapse
Affiliation(s)
- Jaime Nivala
- Helmholtz Centre for Environmental Research (UFZ), Centre for Environmental Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Stefanie Kahl
- Helmholtz Centre for Environmental Research (UFZ), Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Johannes Boog
- Helmholtz Centre for Environmental Research (UFZ), Centre for Environmental Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany; Dresden University of Technology, Applied Environmental System Analysis, Helmholtzstraße 10, 01069 Dresden, Germany
| | - Manfred van Afferden
- Helmholtz Centre for Environmental Research (UFZ), Centre for Environmental Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research (UFZ), Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roland A Müller
- Helmholtz Centre for Environmental Research (UFZ), Centre for Environmental Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
46
|
Wang Q, Zhao X, Chen L, Yang Q, Chen S, Zhang W. Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingkui Wang
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Shenyang China
- Huitong Experimental Station of Forest Ecology Chinese Academy of Sciences Huitong China
| | - Xuechao Zhao
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Shenyang China
- University of Chinese Academy of Sciences Beijing China
| | - Longchi Chen
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Shenyang China
- Huitong Experimental Station of Forest Ecology Chinese Academy of Sciences Huitong China
| | - Qingpeng Yang
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Shenyang China
- Huitong Experimental Station of Forest Ecology Chinese Academy of Sciences Huitong China
| | - Shi Chen
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Shenyang China
- University of Chinese Academy of Sciences Beijing China
| | - Weidong Zhang
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Shenyang China
- Huitong Experimental Station of Forest Ecology Chinese Academy of Sciences Huitong China
| |
Collapse
|
47
|
Camaño Silvestrini NE, Maine MA, Hadad HR, Nocetti E, Campagnoli MA. Effect of feeding strategy on the performance of a pilot scale vertical flow wetland for the treatment of landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:542-549. [PMID: 30121532 DOI: 10.1016/j.scitotenv.2018.08.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Landfill leachate is one of the most challenging types of wastewater to treat using constructed wetlands. The objective of this study was to evaluate the effect of two feeding strategies on the treatment efficiency of a landfill leachate using vertical flow wetlands (VFWs) planted with Typha domingensis or Canna indica. The tolerance of these macrophytes to the leachate was also evaluated. Coarse sand and light expanded clay aggregates (LECA) were used as substrates. Two feeding strategies (FS) were applied: FSA = 1 pulse per day of 0.21 m pulse-1, FSB = 3 pulses per day of 0.07 m pulse-1. VFWs planted with T. domingensis presented removal efficiencies of 34/74% (NH4+) and 16/48% (TN) for FSA/FSB, respectively. VFWs planted with C. indica presented removal efficiencies of 27/72% (NH4+) and 18/46% (TN) for FSA/FSB, respectively. NH4+ and total nitrogen (TN) removal efficiencies were significantly higher in FSB than in FSA, but there were no significant differences between macrophyte species. COD removal showed no significant differences between FSs or between macrophyte species. T. domingensis and C. indica demonstrated to be tolerant to the leachate studied. VFWs planted with T. domingensis or C. indica are suitable to treat diluted landfill leachate with high ammonium concentrations using a feeding strategy of pulses. However, an anaerobic stage may be added after the VFW to get higher TN and COD removal.
Collapse
Affiliation(s)
- N E Camaño Silvestrini
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina.
| | - M A Maine
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - H R Hadad
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - E Nocetti
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - M A Campagnoli
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| |
Collapse
|
48
|
Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1548-1565. [PMID: 30021320 DOI: 10.1016/j.scitotenv.2018.05.376] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Humic substances (HS), a highly transformed part of non-living natural organic matter (NOM), comprise up to 70% of the soil organic matter (SOM), 50-80% of dissolved organic matter (DOM) in surface water, and 25% of DOM in groundwater. They considerably contribute to climate change (CC) by generating greenhouse gases (GHG). On the other hand, CC affects HS, their structure and reactivity. HS important role in global warming has been recognized and extensively studied. However, much less attention has been paid so far to effects on the freshwater quality, which may result from the climate induced impact on HS, and HS interactions with contaminants in soil, surface water and groundwater. It is expected that an increased temperature and enhanced biodegradation of SOM will lead to an increase in the production of DOM, while the flooding and runoff will export it from soil to rivers, lakes, and groundwater. Microbial growth will be stimulated and biodegradation of pollutants in water can be enhanced. However, there may be also negative effects, including an inhibition of solar disinfection in brown lakes. The CC induced desorption from soil and sediments, as well as re-mobilization of metals and organic pollutants are anticipated. In-situ treatment of surface water and groundwater may be affected. Quality of the source freshwater is expected to deteriorate and drinking water production may become more expensive. Many of the possible effects of CC described in this article have yet to be explored and understood. Enormous potential for interesting, multidisciplinary studies in the important research areas has been presented.
Collapse
|
49
|
Davis SE, Boucek R, Castañeda‐Moya E, Dessu S, Gaiser E, Kominoski J, Sah JP, Surratt D, Troxler T. Episodic disturbances drive nutrient dynamics along freshwater‐to‐estuary gradients in a subtropical wetland. Ecosphere 2018. [DOI: 10.1002/ecs2.2296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Stephen E. Davis
- The Everglades Foundation 18001 Old Cutler Road, Suite 625 Palmetto Bay Florida 33157 USA
| | - Ross Boucek
- Bonefish Tarpon Trust 11400 Overseas Highway Marathon Florida 33050 USA
| | - Edward Castañeda‐Moya
- Department of Biological Sciences & Southeast Environmental Research Center Florida International University Miami Florida 33199 USA
| | - Shimelis Dessu
- Department of Biological Sciences & Southeast Environmental Research Center Florida International University Miami Florida 33199 USA
| | - Evelyn Gaiser
- Department of Biological Sciences & Southeast Environmental Research Center Florida International University Miami Florida 33199 USA
| | - John Kominoski
- Department of Biological Sciences & Southeast Environmental Research Center Florida International University Miami Florida 33199 USA
| | - Jay P. Sah
- Department of Biological Sciences & Southeast Environmental Research Center Florida International University Miami Florida 33199 USA
| | - Donatto Surratt
- Everglades National Park, c/o A.R.M. Loxahatchee National Wildlife Refuge 10216 Lee Road Boynton Beach Florida 33473 USA
| | - Tiffany Troxler
- Department of Biological Sciences & Southeast Environmental Research Center Florida International University Miami Florida 33199 USA
| |
Collapse
|
50
|
Removing Organic Matter and Nutrients from Pig Farm Wastewater with a Constructed Wetland System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15051031. [PMID: 29883370 PMCID: PMC5982070 DOI: 10.3390/ijerph15051031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/23/2022]
Abstract
Pollutants from pig farms in Mexico have caused problems in many surface water reservoirs. Growing concern has driven the search for low-cost wastewater treatment solutions. The objective of this research was to evaluate the potential of an in-series constructed wetland to remove nutrients from wastewater from a pig farm. The wetland system had a horizontal flow that consisted of three cells, the first a surface water wetland, the second a sedimentation cell, and the third a subsurface flow wetland. The vegetation used was Thypa sp. and Scirpus sp. A mix of soil with red volcanic rock (10–30 mm diameter) and yellow sand (2–8 mm diameter) was used as a substrate for the vegetation. The experiments were carried out in duplicate. Water samples were collected at the inflow and outflow of the cells. Two hydraulic retention times (HRT) (5 and 10 days) and three treatments were evaluated: 400, 800, and 1200 mg·L−1 of chemical oxygen demand (COD) concentration. Data was collected in situ for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS). COD, total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3–N), and total phosphorous (TP) were analyzed in the laboratory. The results showed that the in-series constructed wetland is a feasible system for nutrient pollutant removal, with COD removal efficiency of 76% and 80% mg·L−1 for a 5- and 10-day HRT, respectively. The removal efficiency for TKN, NH3–N, and TP reached about 70% with a 5-day HRT, while a removal of 85% was obtained with a 10-day HRT. The wetland reached the maximum removal efficiency with a 10-day HRT and an inflow load of 400 mg·L−1 of organic matter. The results indicate that HRT positively affects removal efficiency of COD and TDS. On the other hand, the HRT was not the determining factor for TP removal. Treatment one, with an initial COD concentration of 400 mg·L−1, had the highest removal of the assessed pollutants, allowing for the use of water for irrigation according to Mexican regulatory standards (NOM-001). The water quality resulting from treatments two and three (T2 = 800 mg·L−1 of COD and T3 = 1200 mg·L−1 of COD) did not comply with minimal requirements for irrigation water.
Collapse
|