1
|
Ulrichsen A, Tröger A, Jauhar S, Severus E, Bauer M, Cleare A. Do sleep variables predict mood in bipolar disorder: A systematic review. J Affect Disord 2025; 373:364-373. [PMID: 39740744 DOI: 10.1016/j.jad.2024.12.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Most people with bipolar disorder (BD) experience sleep disturbances across mood states and many identify sleep changes before both depressive and manic episodes. Nearly half of all patients have multiple relapses of BD and identifying early warning signs of relapse, such as sleep changes, could benefit both patients and clinicians as a preventive strategy. METHODS A systematic search of the databases Embase, APA PsychINFO, and MEDLINE was performed to identify studies that investigated the relationship between sleep changes and mood in BD. The review was registered with PROSPERO (CRD42023405950) and followed the PRISMA guidelines. Results were categorised based on the identified relationship between sleep changes and mood, e.g. sleep and depression correlation, and these are synthesised narratively. The Newcastle-Ottawa scale was used to assess the risk of bias (RoB). RESULTS The systematic literature search yielded 7159 records. 17 publications were included, describing 13 studies. Nine categories were identified describing the relationship between sleep and mood (e.g. sleep-mood correlations and comparing BD and HC on sleep duration). Regardless of sleep assessment (e.g. actigraphy), study duration or mood outcome, changes towards longer sleep, earlier onset and later wake-up were mostly followed by depressive mood, and vice versa for mania. 14 papers had a "fair" RoB rating. DISCUSSION Changes in sleep patterns appear to precede predictable mood changes in BD and could be used as early warning signs for patients and clinicians. The main limitation of the study is the high heterogeneity between study results, preventing the conduction of a meta-analysis.
Collapse
Affiliation(s)
- Andrea Ulrichsen
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London SE5 8AB, UK; Dresden University of Technology, Department of Psychiatry and Psychotherapy, University Hospital, Dresden, Germany.
| | - Anna Tröger
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London SE5 8AB, UK; Dresden University of Technology, Department of Psychiatry and Psychotherapy, University Hospital, Dresden, Germany.
| | - Sameer Jauhar
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London SE5 8AB, UK.
| | - Emanuel Severus
- Dresden University of Technology, Department of Psychiatry and Psychotherapy, University Hospital, Dresden, Germany.
| | - Michael Bauer
- Dresden University of Technology, Department of Psychiatry and Psychotherapy, University Hospital, Dresden, Germany.
| | - Anthony Cleare
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London SE5 8AB, UK.
| |
Collapse
|
2
|
Lipschitz JM, Lin S, Saghafian S, Pike CK, Burdick KE. Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology. Acta Psychiatr Scand 2025; 151:434-447. [PMID: 39397313 DOI: 10.1111/acps.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Effective treatment of bipolar disorder (BD) requires prompt response to mood episodes. Preliminary studies suggest that predictions based on passive sensor data from personal digital devices can accurately detect mood episodes (e.g., between routine care appointments), but studies to date do not use methods designed for broad application. This study evaluated whether a novel, personalized machine learning approach, trained entirely on passive Fitbit data, with limited data filtering could accurately detect mood symptomatology in BD patients. METHODS We analyzed data from 54 adults with BD, who wore Fitbits and completed bi-weekly self-report measures for 9 months. We applied machine learning (ML) models to Fitbit data aggregated over two-week observation windows to detect occurrences of depressive and (hypo)manic symptomatology, which were defined as two-week windows with scores above established clinical cutoffs for the Patient Health Questionnaire-8 (PHQ-8) and Altman Self-Rating Mania Scale (ASRM) respectively. RESULTS As hypothesized, among several ML algorithms, Binary Mixed Model (BiMM) forest achieved the highest area under the receiver operating curve (ROC-AUC) in the validation process. In the testing set, the ROC-AUC was 86.0% for depression and 85.2% for (hypo)mania. Using optimized thresholds calculated with Youden's J statistic, predictive accuracy was 80.1% for depression (sensitivity of 71.2% and specificity of 85.6%) and 89.1% for (hypo)mania (sensitivity of 80.0% and specificity of 90.1%). CONCLUSION We achieved sound performance in detecting mood symptomatology in BD patients using methods designed for broad application. Findings expand upon evidence that Fitbit data can produce accurate mood symptomatology predictions. Additionally, to the best of our knowledge, this represents the first application of BiMM forest for mood symptomatology prediction. Overall, results move the field a step toward personalized algorithms suitable for the full population of patients, rather than only those with high compliance, access to specialized devices, or willingness to share invasive data.
Collapse
Affiliation(s)
- Jessica M Lipschitz
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Sidian Lin
- Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, USA
- Harvard Kennedy School, Cambridge, Massachusetts, USA
| | | | - Chelsea K Pike
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Katherine E Burdick
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Yeom JW, Kim H, Pack SP, Lee HJ, Cheong T, Cho CH. Exploring the Psychological and Physiological Insights Through Digital Phenotyping by Analyzing the Discrepancies Between Subjective Insomnia Severity and Activity-Based Objective Sleep Measures: Observational Cohort Study. JMIR Ment Health 2025; 12:e67478. [PMID: 39869900 DOI: 10.2196/67478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Insomnia is a prevalent sleep disorder affecting millions worldwide, with significant impacts on daily functioning and quality of life. While traditionally assessed through subjective measures such as the Insomnia Severity Index (ISI), the advent of wearable technology has enabled continuous, objective sleep monitoring in natural environments. However, the relationship between subjective insomnia severity and objective sleep parameters remains unclear. OBJECTIVE This study aims to (1) explore the relationship between subjective insomnia severity, as measured by ISI scores, and activity-based objective sleep parameters obtained through wearable devices; (2) determine whether subjective perceptions of insomnia align with objective measures of sleep; and (3) identify key psychological and physiological factors contributing to the severity of subjective insomnia complaints. METHODS A total of 250 participants, including both individuals with and without insomnia aged 19-70 years, were recruited from March 2023 to November 2023. Participants were grouped based on ISI scores: no insomnia, mild, moderate, and severe insomnia. Data collection involved subjective assessments through self-reported questionnaires and objective measurements using wearable devices (Fitbit Inspire 3) that monitored sleep parameters, physical activity, and heart rate. The participants also used a smartphone app for ecological momentary assessment, recording daily alcohol consumption, caffeine intake, exercise, and stress. Statistical analyses were used to compare groups on subjective and objective measures. RESULTS Results indicated no significant differences in general sleep structure (eg, total sleep time, rapid eye movement sleep time, and light sleep time) among the insomnia groups (mild, moderate, and severe) as classified by ISI scores (all P>.05). Interestingly, the no insomnia group had longer total awake times and lower sleep quality compared with the insomnia groups. Among the insomnia groups, no significant differences were observed regarding sleep structure (all P>.05), suggesting similar sleep patterns regardless of subjective insomnia severity. There were significant differences among the insomnia groups in stress levels, dysfunctional beliefs about sleep, and symptoms of restless leg syndrome (all P≤.001), with higher severity associated with higher scores in these factors. Contrary to expectations, no significant differences were observed in caffeine intake (P=.42) and alcohol consumption (P=.07) between the groups. CONCLUSIONS The findings demonstrate a discrepancy between subjective perceptions of insomnia severity and activity-based objective sleep parameters, suggesting that factors beyond sleep duration and quality may contribute to subjective sleep complaints. Psychological factors, such as stress, dysfunctional sleep beliefs, and symptoms of restless legs syndrome, appear to play significant roles in the perception of insomnia severity. These results highlight the importance of considering both subjective and objective assessments in the evaluation and treatment of insomnia and suggest potential avenues for personalized treatment strategies that address both psychological and physiological aspects of sleep disturbances. TRIAL REGISTRATION Clinical Research Information Service KCT0009175; https://cris.nih.go.kr/cris/search/detailSearch.do?seq=26133.
Collapse
Affiliation(s)
- Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyungju Kim
- School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Taesu Cheong
- School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hassan L, Milton A, Sawyer C, Casson AJ, Torous J, Davies A, Ruiz-Yu B, Firth J. Utility of Consumer-Grade Wearable Devices for Inferring Physical and Mental Health Outcomes in Severe Mental Illness: Systematic Review. JMIR Ment Health 2025; 12:e65143. [PMID: 39773905 PMCID: PMC11751658 DOI: 10.2196/65143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Digital wearable devices, worn on or close to the body, have potential for passively detecting mental and physical health symptoms among people with severe mental illness (SMI); however, the roles of consumer-grade devices are not well understood. OBJECTIVE This study aims to examine the utility of data from consumer-grade, digital, wearable devices (including smartphones or wrist-worn devices) for remotely monitoring or predicting changes in mental or physical health among adults with schizophrenia or bipolar disorder. Studies were included that passively collected physiological data (including sleep duration, heart rate, sleep and wake patterns, or physical activity) for at least 3 days. Research-grade actigraphy methods and physically obtrusive devices were excluded. METHODS We conducted a systematic review of the following databases: Cochrane Central Register of Controlled Trials, Technology Assessment, AMED (Allied and Complementary Medicine), APA PsycINFO, Embase, MEDLINE(R), and IEEE XPlore. Searches were completed in May 2024. Results were synthesized narratively due to study heterogeneity and divided into the following phenotypes: physical activity, sleep and circadian rhythm, and heart rate. RESULTS Overall, 23 studies were included that reported data from 12 distinct studies, mostly using smartphones and centered on relapse prevention. Only 1 study explicitly aimed to address physical health outcomes among people with SMI. In total, data were included from over 500 participants with SMI, predominantly from high-income countries. Most commonly, papers presented physical activity data (n=18), followed by sleep and circadian rhythm data (n=14) and heart rate data (n=6). The use of smartwatches to support data collection were reported by 8 papers; the rest used only smartphones. There was some evidence that lower levels of activity, higher heart rates, and later and irregular sleep onset times were associated with psychiatric diagnoses or poorer symptoms. However, heterogeneity in devices, measures, sampling and statistical approaches complicated interpretation. CONCLUSIONS Consumer-grade wearables show the ability to passively detect digital markers indicative of psychiatric symptoms or mental health status among people with SMI, but few are currently using these to address physical health inequalities. The digital phenotyping field in psychiatry would benefit from moving toward agreed standards regarding data descriptions and outcome measures and ensuring that valuable temporal data provided by wearables are fully exploited. TRIAL REGISTRATION PROSPERO CRD42022382267; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=382267.
Collapse
Affiliation(s)
- Lamiece Hassan
- School for Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Alyssa Milton
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Centre of Excellence for Children and Families Over the Life Course, Australian Research Council, Sydney, Australia
| | - Chelsea Sawyer
- School for Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Alexander J Casson
- Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, United Kingdom
| | - John Torous
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Alan Davies
- School for Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Bernalyn Ruiz-Yu
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joseph Firth
- School for Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Jang S, Sun TH, Shin S, Lee HJ, Shin YB, Yeom JW, Park YR, Cho CH. A digital phenotyping dataset for impending panic symptoms: a prospective longitudinal study. Sci Data 2024; 11:1264. [PMID: 39572578 PMCID: PMC11582692 DOI: 10.1038/s41597-024-04147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
This study investigated the utilization of digital phenotypes and machine learning algorithms to predict impending panic symptoms in patients with mood and anxiety disorders. A cohort of 43 patients was monitored over a two-year period, with data collected from smartphone applications and wearable devices. This research aimed to differentiate between the day before panic (DBP) and stable days without symptoms. With RandomForest, GradientBoost, and XGBoost classifiers, the study analyzed 3,969 data points, including 254 DBP events. The XGBoost model demonstrated performance with a ROC-AUC score of 0.905, while a simplified model using only the top 10 variables maintained an ROC-AUC of 0.903. Key predictors of panic events included evaluated Childhood Trauma Questionnaire scores, increased step counts, and higher anxiety levels. These findings indicate the potential of machine learning algorithms leveraging digital phenotypes to predict panic symptoms, thereby supporting the development of proactive and personalized digital therapies and providing insights into real-life indicators that may exacerbate panic symptoms in this population.
Collapse
Affiliation(s)
- Sooyoung Jang
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Tai Hui Sun
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Seunghyun Shin
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Yu-Bin Shin
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea.
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea.
- Department of Biomedical Informatics, Korea University Medical College, Seoul, South Korea.
| |
Collapse
|
6
|
Lim D, Jeong J, Song YM, Cho CH, Yeom JW, Lee T, Lee JB, Lee HJ, Kim JK. Accurately predicting mood episodes in mood disorder patients using wearable sleep and circadian rhythm features. NPJ Digit Med 2024; 7:324. [PMID: 39557997 PMCID: PMC11574068 DOI: 10.1038/s41746-024-01333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024] Open
Abstract
Wearable devices enable passive collection of sleep, heart rate, and step-count data, offering potential for mood episode prediction in mood disorder patients. However, current models often require various data types, limiting real-world application. Here, we develop models that predict future episodes using only sleep-wake data, easily gathered through smartphones and wearables when trained on an individual's sleep-wake history and past mood episodes. Using mathematical modeling to longitudinal data from 168 patients (587 days average clinical follow-up, 267 days wearable data), we derived 36 sleep and circadian rhythm features. These features enabled accurate next-day predictions for depressive, manic, and hypomanic episodes (AUCs: 0.80, 0.98, 0.95). Notably, daily circadian phase shifts were the most significant predictors: delays linked to depressive episodes, advances to manic episodes. This prospective observational cohort study (ClinicalTrials.gov: NCT03088657, 2017-3-23) shows sleep-wake data, combined with prior mood episode history, can effectively predict mood episodes, enhancing mood disorder management.
Collapse
Affiliation(s)
- Dongju Lim
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jaegwon Jeong
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Yun Min Song
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Taek Lee
- Division of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea
| | - Jung-Been Lee
- Division of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
- Chronobiology Institute, Korea University, Seoul, Republic of Korea.
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea.
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea.
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Tonon AC, Nexha A, Mendonça da Silva M, Gomes FA, Hidalgo MP, Frey BN. Sleep and circadian disruption in bipolar disorders: From psychopathology to digital phenotyping in clinical practice. Psychiatry Clin Neurosci 2024; 78:654-666. [PMID: 39210713 DOI: 10.1111/pcn.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Sleep and biological rhythms are integral to mood regulation across the lifespan, particularly in bipolar disorder (BD), where alterations in sleep phase, structure, and duration occur in all mood states. These disruptions are linked to poorer quality of life, heightened suicide risk, impaired cognitive function, and increased relapse rates. This review highlights the pathophysiology of sleep disturbances in BD and aims to consolidate understanding and clinical applications of these phenomena. It also summarizes the evolution of sleep and biological rhythms assessment methods, including ecological momentary assessment (EMA) and digital phenotyping. It underscores the importance of recognizing circadian rhythm involvement in mood regulation, suggesting potential therapeutic targets. Future research directions include elucidating circadian clock gene mechanisms, understanding environmental impacts on circadian rhythms, and investigating the bidirectional relationship between sleep disturbances and mood regulation in BD. Standardizing assessment methods and addressing privacy concerns related to EMA technology and digital phenotyping are essential for advancing research. Collaborative efforts are crucial for enhancing clinical applicability and understanding the broader implications of biological rhythms in BD diagnosis and treatment. Overall, recognizing the significance of sleep and biological rhythms in BD offers promise for improved outcomes through targeted interventions and a deeper understanding of the disorder's underlying mechanisms.
Collapse
Affiliation(s)
- André C Tonon
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Adile Nexha
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Mariana Mendonça da Silva
- Laboratório de Cronobiologia e Sono, Porto Alegre Clinicas Hospital, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabiano A Gomes
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono, Porto Alegre Clinicas Hospital, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Benicio N Frey
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Loosen AM, Kato A, Gu X. Revisiting the role of computational neuroimaging in the era of integrative neuroscience. Neuropsychopharmacology 2024; 50:103-113. [PMID: 39242921 PMCID: PMC11525590 DOI: 10.1038/s41386-024-01946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Computational models have become integral to human neuroimaging research, providing both mechanistic insights and predictive tools for human cognition and behavior. However, concerns persist regarding the ecological validity of lab-based neuroimaging studies and whether their spatiotemporal resolution is not sufficient for capturing neural dynamics. This review aims to re-examine the utility of computational neuroimaging, particularly in light of the growing prominence of alternative neuroscientific methods and the growing emphasis on more naturalistic behaviors and paradigms. Specifically, we will explore how computational modeling can both enhance the analysis of high-dimensional imaging datasets and, conversely, how neuroimaging, in conjunction with other data modalities, can inform computational models through the lens of neurobiological plausibility. Collectively, this evidence suggests that neuroimaging remains critical for human neuroscience research, and when enhanced by computational models, imaging can serve an important role in bridging levels of analysis and understanding. We conclude by proposing key directions for future research, emphasizing the development of standardized paradigms and the integrative use of computational modeling across neuroimaging techniques.
Collapse
Affiliation(s)
- Alisa M Loosen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ayaka Kato
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Xiaosi Gu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Li R, Huang Y, Wang Y, Song C, Lai X. MRI-based deep learning for differentiating between bipolar and major depressive disorders. Psychiatry Res Neuroimaging 2024; 345:111907. [PMID: 39357171 DOI: 10.1016/j.pscychresns.2024.111907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Mood disorders, particularly bipolar disorder (BD) and major depressive disorder (MDD), manifest changes in brain structure that can be detected using structural magnetic resonance imaging (MRI). Although structural MRI is a promising diagnostic tool, prevailing diagnostic criteria for BD and MDD are predominantly subjective, sometimes leading to misdiagnosis. This challenge is compounded by a limited understanding of the underlying causes of these disorders. In response, we present SE-ResNet, a Residual Network (ResNet)-based framework designed to discriminate between BD, MDD, and healthy controls (HC) using structural MRI data. Our approach extends the traditional Squeeze-and-Excitation (SE) layer by incorporating a dedicated branch for spatial attention map generation, equipped with soft-pooling, a 7 × 7 convolution, and a sigmoid function, intended to detect complex spatial patterns. The fusion of channel and spatial attention maps through element-wise addition aims to enhance the model's ability to discriminate features. Unlike conventional methods that use max-pooling for downsampling, our methodology employs soft-pooling, which aims to preserve a richer representation of input features and reduce data loss. When evaluated on a proprietary dataset comprising 303 subjects, the SE-ResNet achieved an accuracy of 85.8 %, a recall of 85.7 %, a precision of 85.9 %, and an F1 score of 85.8 %. These performance metrics suggest that the SE-ResNet framework has potential as a tool for detecting psychiatric disorders using structural MRI data.
Collapse
Affiliation(s)
- Ruipeng Li
- Third People's Hospital of Hangzhou, Hangzhou, 310010, China.
| | - Yueqi Huang
- Seventh People's Hospital of Hangzhou, Hangzhou, 310013, China
| | - Yanbin Wang
- Third People's Hospital of Hangzhou, Hangzhou, 310010, China
| | - Chen Song
- Third People's Hospital of Hangzhou, Hangzhou, 310010, China.
| | - Xiaobo Lai
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
10
|
Jilka S, Giacco D. Digital phenotyping: how it could change mental health care and why we should all keep up. J Ment Health 2024; 33:439-442. [PMID: 39301756 DOI: 10.1080/09638237.2024.2395537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Sagar Jilka
- Warwick Applied Health, Warwick Medical School, University of Warwick, Coventry, UK
| | - Domenico Giacco
- Warwick Applied Health, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
11
|
Yeom JW, Yoon Y, Seo JY, Cho CH, Lee T, Lee JB, Jeon S, Kim L, Lee HJ. Daily Self-Monitoring and Feedback of Circadian Rhythm Measures in Major Depression and Bipolar Disorder Using Wearable Devices and Smartphones-The Circadian Rhythm for Mood (CRM®) Trial Protocol: A Randomized Sham Controlled Double-Blind Trial. Psychiatry Investig 2024; 21:918-924. [PMID: 39086163 PMCID: PMC11321874 DOI: 10.30773/pi.2024.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 08/02/2024] Open
Abstract
The circadian rhythm for mood (CRM) is a digital therapeutic, which aims to prevent mood episode and improve clinical course in patients with major mood disorders. Developed on the circadian rhythm hypothesis of mood disorder, CRM predicts the impending risk of mood episode with its built-in algorithm, utilizing wearable devices data and daily self-reports, and provides personalized feedback. In a pilot study of the CRM, the users experienced less frequent and shorter duration of mood episodes than the non-users. To investigate the efficacy of the upgraded CRM, a double-blind, randomized, sham-controlled, parallel-group trial is designed. Patients aged between 19 and 70, diagnosed with bipolar I disorder, bipolar II disorder, or major depressive disorder, in a euthymic state for more than two months, can participate. During this 12-month trial, participants are assessed for episode recurrence every three months, and the efficacy of the CRM as a potential digital therapeutic is evaluated. Trial registration: ClinicalTrials.gov Identifier: NCT05400785.
Collapse
Affiliation(s)
- Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Yeaseul Yoon
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Ju Yeon Seo
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Taek Lee
- Division of Computer Science and Engineering, College of Software and Convergence, Sun Moon University, Asan, Republic of Korea
| | - Jung-Been Lee
- Division of Computer Science and Engineering, College of Software and Convergence, Sun Moon University, Asan, Republic of Korea
| | - Sehyun Jeon
- Samsung Sleep & Mind Clinic, Seoul, Republic of Korea
| | - Leen Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Halabi R, Mulsant BH, Alda M, DeShaw A, Hintze A, Husain MI, O'Donovan C, Patterson R, Ortiz A. Not missing at random: Missing data are associated with clinical status and trajectories in an electronic monitoring longitudinal study of bipolar disorder. J Psychiatr Res 2024; 174:326-331. [PMID: 38692162 PMCID: PMC11295604 DOI: 10.1016/j.jpsychires.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
There is limited information on the association between participants' clinical status or trajectories and missing data in electronic monitoring studies of bipolar disorder (BD). We collected self-ratings scales and sensor data in 145 adults with BD. Using a new metric, Missing Data Ratio (MDR), we assessed missing self-rating data and sensor data monitoring activity and sleep. Missing data were lowest for participants in the midst of a depressive episode, intermediate for participants with subsyndromal symptoms, and highest for participants who were euthymic. Over a mean ± SD follow-up of 246 ± 181 days, missing data remained unchanged for participants whose clinical status did not change throughout the study (i.e., those who entered the study in a depressive episode and did not improve, or those who entered the study euthymic and remained euthymic). Conversely, when participants' clinical status changed during the study (e.g., those who entered the study euthymic and experienced the occurrence of a depressive episode), missing data for self-rating scales increased, but not for sensor data. Overall missing data were associated with participants' clinical status and its changes, suggesting that these are not missing at random.
Collapse
Affiliation(s)
- Ramzi Halabi
- Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | | | - Arend Hintze
- Department of MicroData Analytics, Dalarna University, Sweden
| | - Muhammad I Husain
- Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rachel Patterson
- Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Abigail Ortiz
- Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Cho CH, Son S, Lee Y, Jeong J, Yeom JW, Seo JY, Moon E, Baek JH, Park DY, Kim SJ, Ha TH, Cha B, Kang HJ, Ahn YM, An H, Lee HJ. Identifying predictive factors for mood recurrence in early-onset major mood disorders: A 4-year, multicenter, prospective cohort study. Psychiatry Res 2024; 335:115882. [PMID: 38554495 DOI: 10.1016/j.psychres.2024.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
We investigate the predictive factors of the mood recurrence in patients with early-onset major mood disorders from a prospective observational cohort study from July 2015 to December 2019. A total of 495 patients were classified into three groups according to recurrence during the cohort observation period: recurrence group with (hypo)manic or mixed features (MMR), recurrence group with only depressive features (ODR), and no recurrence group (NR). As a result, the baseline diagnosis of bipolar disorder type 1 (BDI) and bipolar disorder type 2 (BDII), along with a familial history of BD, are strong predictors of the MMR. The discrepancies in wake-up times between weekdays and weekends, along with disrupted circadian rhythms, are identified as a notable predictor of ODR. Our findings confirm that we need to be aware of different predictors for each form of mood recurrences in patients with early-onset mood disorders. In clinical practice, we expect that information obtained from the initial assessment of patients with mood disorders, such as mood disorder type, family history of BD, regularity of wake-up time, and disruption of circadian rhythms, can help predict the risk of recurrence for each patient, allowing for early detection and timely intervention.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea; Korea University Chronobiology Institute, Seoul, South Korea
| | - Serhim Son
- Department of Biostatistics, Korea University College of Medicine, Seoul, South Korea
| | - Yujin Lee
- Korea University Chronobiology Institute, Seoul, South Korea; Department of Psychiatry, Seoul Metropolitan Eunpyeong Hospital, Seoul, South Korea
| | - Jaegwon Jeong
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea; Korea University Chronobiology Institute, Seoul, South Korea
| | - Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea; Korea University Chronobiology Institute, Seoul, South Korea
| | - Ju Yeon Seo
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea; Korea University Chronobiology Institute, Seoul, South Korea
| | - Eunsoo Moon
- Department of Psychiatry, Pusan National University School of Medicine, Busan, South Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Yeon Park
- Department of Psychiatry, National Center for Mental Health, Seoul, South Korea
| | - Se Joo Kim
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hyon Ha
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Boseok Cha
- Department of Psychiatry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University College of Medicine, Gwangju, South Korea
| | - Yong-Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyonggin An
- Department of Biostatistics, Korea University College of Medicine, Seoul, South Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea; Korea University Chronobiology Institute, Seoul, South Korea.
| |
Collapse
|
14
|
Leaning IE, Ikani N, Savage HS, Leow A, Beckmann C, Ruhé HG, Marquand AF. From smartphone data to clinically relevant predictions: A systematic review of digital phenotyping methods in depression. Neurosci Biobehav Rev 2024; 158:105541. [PMID: 38215802 DOI: 10.1016/j.neubiorev.2024.105541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Smartphone-based digital phenotyping enables potentially clinically relevant information to be collected as individuals go about their day. This could improve monitoring and interventions for people with Major Depressive Disorder (MDD). The aim of this systematic review was to investigate current digital phenotyping features and methods used in MDD. METHODS We searched PubMed, PsycINFO, Embase, Scopus and Web of Science (10/11/2023) for articles including: (1) MDD population, (2) smartphone-based features, (3) validated ratings. Risk of bias was assessed using several sources. Studies were compared within analysis goals (correlating features with depression, predicting symptom severity, diagnosis, mood state/episode, other). Twenty-four studies (9801 participants) were included. RESULTS Studies achieved moderate performance. Common themes included challenges from complex and missing data (leading to a risk of bias), and a lack of external validation. DISCUSSION Studies made progress towards relating digital phenotypes to clinical variables, often focusing on time-averaged features. Methods investigating temporal dynamics more directly may be beneficial for patient monitoring. European Research Council consolidator grant: 101001118, Prospero: CRD42022346264, Open Science Framework: https://osf.io/s7ay4.
Collapse
Affiliation(s)
- Imogen E Leaning
- Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, Nijmegen, the Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands.
| | - Nessa Ikani
- Department of Developmental Psychology, Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, the Netherlands.
| | - Hannah S Savage
- Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, Nijmegen, the Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Alex Leow
- Department of Psychiatry, Department of Biomedical Engineering and Department of Computer Science, University of Illinois Chicago, Chicago, United States
| | - Christian Beckmann
- Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, Nijmegen, the Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, Nijmegen, the Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Bidargaddi N, Leibbrandt R, Paget TL, Verjans J, Looi JCL, Lipschitz J. Remote sensing mental health: A systematic review of factors essential to clinical translation from validation research. Digit Health 2024; 10:20552076241260414. [PMID: 39070897 PMCID: PMC11282530 DOI: 10.1177/20552076241260414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/21/2024] [Indexed: 07/30/2024] Open
Abstract
Background Mental illness remains a major global health challenge largely due to the absence of definitive biomarkers applicable to diagnostics and care processes. Although remote sensing technologies, embedded in devices such as smartphones and wearables, offer a promising avenue for improved mental health assessments, their clinical integration has been slow. Objective This scoping review, following preferred reporting items for systematic reviews and meta-analyses guidelines, explores validation studies of remote sensing in clinical mental health populations, aiming to identify critical factors for clinical translation. Methods Comprehensive searches were conducted in six databases. The analysis, using narrative synthesis, examined clinical and socio-demographic characteristics of the populations studied, sensing purposes, temporal considerations and reference mental health assessments used for validation. Results The narrative synthesis of 50 included studies indicates that ten different sensor types have been studied for tracking and diagnosing mental illnesses, primarily focusing on physical activity and sleep patterns. There were many variations in the sensor methodologies used that may affect data quality and participant burden. Observation durations, and thus data resolution, varied by patient diagnosis. Currently, reference assessments predominantly rely on deficit focussed self-reports, and socio-demographic information is underreported, therefore representativeness of the general population is uncertain. Conclusion To fully harness the potential of remote sensing in mental health, issues such as reliance on self-reported assessments, and lack of socio-demographic context pertaining to generalizability need to be addressed. Striking a balance between resolution, data quality, and participant burden whilst clearly reporting limitations, will ensure effective technology use. The scant reporting on participants' socio-demographic data suggests a knowledge gap in understanding the effectiveness of passive sensing techniques in disadvantaged populations.
Collapse
Affiliation(s)
- Niranjan Bidargaddi
- Digital Health Research Lab, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Richard Leibbrandt
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Tamara L Paget
- Digital Health Research Lab, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Johan Verjans
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jeffrey CL Looi
- Academic Unit of Psychiatry & Addiction Medicine, The Australian National University School of Medicine and Psychology, Garran, Australia
| | - Jessica Lipschitz
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Lee DY, Jung I, Park SY, Yu JH, Seo JA, Kim KJ, Kim NH, Yoo HJ, Kim SG, Choi KM, Baik SH, Kim NH. Attention to Innate Circadian Rhythm and the Impact of Its Disruption on Diabetes. Diabetes Metab J 2024; 48:37-52. [PMID: 38173377 PMCID: PMC10850272 DOI: 10.4093/dmj.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Novel strategies are required to reduce the risk of developing diabetes and/or clinical outcomes and complications of diabetes. In this regard, the role of the circadian system may be a potential candidate for the prevention of diabetes. We reviewed evidence from animal, clinical, and epidemiological studies linking the circadian system to various aspects of the pathophysiology and clinical outcomes of diabetes. The circadian clock governs genetic, metabolic, hormonal, and behavioral signals in anticipation of cyclic 24-hour events through interactions between a "central clock" in the suprachiasmatic nucleus and "peripheral clocks" in the whole body. Currently, circadian rhythmicity in humans can be subjectively or objectively assessed by measuring melatonin and glucocorticoid levels, core body temperature, peripheral blood, oral mucosa, hair follicles, rest-activity cycles, sleep diaries, and circadian chronotypes. In this review, we summarized various circadian misalignments, such as altered light-dark, sleep-wake, rest-activity, fasting-feeding, shift work, evening chronotype, and social jetlag, as well as mutations in clock genes that could contribute to the development of diabetes and poor glycemic status in patients with diabetes. Targeting critical components of the circadian system could deliver potential candidates for the treatment and prevention of type 2 diabetes mellitus in the future.
Collapse
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyeong Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- BK21 FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Korea
| |
Collapse
|
17
|
Cho CH, Lee HJ, Kim YK. The New Emerging Treatment Choice for Major Depressive Disorders: Digital Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:307-331. [PMID: 39261436 DOI: 10.1007/978-981-97-4402-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The chapter provides an in-depth analysis of digital therapeutics (DTx) as a revolutionary approach to managing major depressive disorder (MDD). It discusses the evolution and definition of DTx, their application across various medical fields, regulatory considerations, and their benefits and limitations. This chapter extensively covers DTx for MDD, including smartphone applications, virtual reality interventions, cognitive-behavioral therapy (CBT) platforms, artificial intelligence (AI) and chatbot therapies, biofeedback, wearable technologies, and serious games. It evaluates the effectiveness of these digital interventions, comparing them with traditional treatments and examining patient perspectives, compliance, and engagement. The integration of DTx into clinical practice is also explored, along with the challenges and barriers to their adoption, such as technological limitations, data privacy concerns, ethical considerations, reimbursement issues, and the need for improved digital literacy. This chapter concludes by looking at the future direction of DTx in mental healthcare, emphasizing the need for personalized treatment plans, integration with emerging modalities, and the expansion of access to these innovative solutions globally.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Bufano P, Laurino M, Said S, Tognetti A, Menicucci D. Digital Phenotyping for Monitoring Mental Disorders: Systematic Review. J Med Internet Res 2023; 25:e46778. [PMID: 38090800 PMCID: PMC10753422 DOI: 10.2196/46778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 07/31/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has increased the impact and spread of mental illness and made health services difficult to access; therefore, there is a need for remote, pervasive forms of mental health monitoring. Digital phenotyping is a new approach that uses measures extracted from spontaneous interactions with smartphones (eg, screen touches or movements) or other digital devices as markers of mental status. OBJECTIVE This review aimed to evaluate the feasibility of using digital phenotyping for predicting relapse or exacerbation of symptoms in patients with mental disorders through a systematic review of the scientific literature. METHODS Our research was carried out using 2 bibliographic databases (PubMed and Scopus) by searching articles published up to January 2023. By following the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines, we started from an initial pool of 1150 scientific papers and screened and extracted a final sample of 29 papers, including studies concerning clinical populations in the field of mental health, which were aimed at predicting relapse or exacerbation of symptoms. The systematic review has been registered on the web registry Open Science Framework. RESULTS We divided the results into 4 groups according to mental disorder: schizophrenia (9/29, 31%), mood disorders (15/29, 52%), anxiety disorders (4/29, 14%), and substance use disorder (1/29, 3%). The results for the first 3 groups showed that several features (ie, mobility, location, phone use, call log, heart rate, sleep, head movements, facial and vocal characteristics, sociability, social rhythms, conversations, number of steps, screen on or screen off status, SMS text message logs, peripheral skin temperature, electrodermal activity, light exposure, and physical activity), extracted from data collected via the smartphone and wearable wristbands, can be used to create digital phenotypes that could support gold-standard assessment and could be used to predict relapse or symptom exacerbations. CONCLUSIONS Thus, as the data were consistent for almost all the mental disorders considered (mood disorders, anxiety disorders, and schizophrenia), the feasibility of this approach was confirmed. In the future, a new model of health care management using digital devices should be integrated with the digital phenotyping approach and tailored mobile interventions (managing crises during relapse or exacerbation).
Collapse
Affiliation(s)
- Pasquale Bufano
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Marco Laurino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Sara Said
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Lee DY, Kim N, Jung I, Park SY, Yu JH, Seo JA, Kim J, Kim KJ, Kim NH, Yoo HJ, Kim SG, Choi KM, Baik SH, Park SM, Kim NH. Clinical and Lifestyle Determinants of Continuous Glucose Monitoring Metrics in Insulin-Treated Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2023; 47:826-836. [PMID: 37614025 PMCID: PMC10695709 DOI: 10.4093/dmj.2022.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/21/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGRUOUND There was limited evidence to evaluate the association between lifestyle habits and continuous glucose monitoring (CGM) metrics. Thus, we aimed to depict the behavioral and metabolic determinants of CGM metrics in insulin-treated patients with type 2 diabetes mellitus (T2DM). METHODS This is a prospective observational study. We analyzed data from 122 insulin-treated patients with T2DM. Participants wore Dexcom G6 and Fitbit, and diet information was identified for 10 days. Multivariate-adjusted logistic regression analysis was performed for the simultaneous achievement of CGM-based targets, defined by the percentage of time in terms of hyper, hypoglycemia and glycemic variability (GV). Intake of macronutrients and fiber, step counts, sleep, postprandial C-peptide-to-glucose ratio (PCGR), information about glucose lowering medications and metabolic factors were added to the analyses. Additionally, we evaluated the impact of the distribution of energy and macronutrient during a day, and snack consumption on CGM metrics. RESULTS Logistic regression analysis revealed that female, participants with high PCGR, low glycosylated hemoglobin (HbA1c) and daytime step count had a higher probability of achieving all targets based on CGM (odds ratios [95% confidence intervals] which were 0.24 [0.09 to 0.65], 1.34 [1.03 to 1.25], 0.95 [0.9 to 0.99], and 1.15 [1.03 to 1.29], respectively). And participants who ate snacks showed a shorter period of hyperglycemia and less GV compared to those without. CONCLUSION We confirmed that residual insulin secretion, daytime step count, HbA1c, and women were the most relevant determinants of adequate glycemic control in insulin-treated patients with T2DM. In addition, individuals with snack consumption were exposed to lower times of hyperglycemia and GV.
Collapse
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Namho Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jihee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyeong Jin Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- BK21 FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Korea
| |
Collapse
|
20
|
Malgaroli M, Tseng E, Hull TD, Jennings E, Choudhury TK, Simon NM. Association of Health Care Work With Anxiety and Depression During the COVID-19 Pandemic: Structural Topic Modeling Study. JMIR AI 2023; 2:e47223. [PMID: 38875560 PMCID: PMC11041488 DOI: 10.2196/47223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 06/16/2024]
Abstract
BACKGROUND Stressors for health care workers (HCWs) during the COVID-19 pandemic have been manifold, with high levels of depression and anxiety alongside gaps in care. Identifying the factors most tied to HCWs' psychological challenges is crucial to addressing HCWs' mental health needs effectively, now and for future large-scale events. OBJECTIVE In this study, we used natural language processing methods to examine deidentified psychotherapy transcripts from telemedicine treatment during the initial wave of COVID-19 in the United States. Psychotherapy was delivered by licensed therapists while HCWs were managing increased clinical demands and elevated hospitalization rates, in addition to population-level social distancing measures and infection risks. Our goal was to identify specific concerns emerging in treatment for HCWs and to compare differences with matched non-HCW patients from the general population. METHODS We conducted a case-control study with a sample of 820 HCWs and 820 non-HCW matched controls who received digitally delivered psychotherapy in 49 US states in the spring of 2020 during the first US wave of the COVID-19 pandemic. Depression was measured during the initial assessment using the Patient Health Questionnaire-9, and anxiety was measured using the General Anxiety Disorder-7 questionnaire. Structural topic models (STMs) were used to determine treatment topics from deidentified transcripts from the first 3 weeks of treatment. STM effect estimators were also used to examine topic prevalence in patients with moderate to severe anxiety and depression. RESULTS The median treatment enrollment date was April 15, 2020 (IQR March 31 to April 27, 2020) for HCWs and April 19, 2020 (IQR April 5 to April 27, 2020) for matched controls. STM analysis of deidentified transcripts identified 4 treatment topics centered on health care and 5 on mental health for HCWs. For controls, 3 STM topics on pandemic-related disruptions and 5 on mental health were identified. Several STM treatment topics were significantly associated with moderate to severe anxiety and depression, including working on the hospital unit (topic prevalence 0.035, 95% CI 0.022-0.048; P<.001), mood disturbances (prevalence 0.014, 95% CI 0.002-0.026; P=.03), and sleep disturbances (prevalence 0.016, 95% CI 0.002-0.030; P=.02). No significant associations emerged between pandemic-related topics and moderate to severe anxiety and depression for non-HCW controls. CONCLUSIONS The study provides large-scale quantitative evidence that during the initial wave of the COVID-19 pandemic, HCWs faced unique work-related challenges and stressors associated with anxiety and depression, which required dedicated treatment efforts. The study further demonstrates how natural language processing methods have the potential to surface clinically relevant markers of distress while preserving patient privacy.
Collapse
Affiliation(s)
- Matteo Malgaroli
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, United States
| | - Emily Tseng
- Ann S Bowers College of Computing and Information Science, Cornell University, Ithaca, NY, United States
| | - Thomas D Hull
- Research and Development, Talkspace, New York, NY, United States
| | - Emma Jennings
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, United States
| | - Tanzeem K Choudhury
- Ann S Bowers College of Computing and Information Science, Cornell University, Ithaca, NY, United States
| | - Naomi M Simon
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
21
|
Oudin A, Maatoug R, Bourla A, Ferreri F, Bonnot O, Millet B, Schoeller F, Mouchabac S, Adrien V. Digital Phenotyping: Data-Driven Psychiatry to Redefine Mental Health. J Med Internet Res 2023; 25:e44502. [PMID: 37792430 PMCID: PMC10585447 DOI: 10.2196/44502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
The term "digital phenotype" refers to the digital footprint left by patient-environment interactions. It has potential for both research and clinical applications but challenges our conception of health care by opposing 2 distinct approaches to medicine: one centered on illness with the aim of classifying and curing disease, and the other centered on patients, their personal distress, and their lived experiences. In the context of mental health and psychiatry, the potential benefits of digital phenotyping include creating new avenues for treatment and enabling patients to take control of their own well-being. However, this comes at the cost of sacrificing the fundamental human element of psychotherapy, which is crucial to addressing patients' distress. In this viewpoint paper, we discuss the advances rendered possible by digital phenotyping and highlight the risk that this technology may pose by partially excluding health care professionals from the diagnosis and therapeutic process, thereby foregoing an essential dimension of care. We conclude by setting out concrete recommendations on how to improve current digital phenotyping technology so that it can be harnessed to redefine mental health by empowering patients without alienating them.
Collapse
Affiliation(s)
- Antoine Oudin
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Redwan Maatoug
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Alexis Bourla
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, Public Hospitals of Sorbonne University, Paris, France
- Medical Strategy and Innovation Department, Clariane, Paris, France
- NeuroStim Psychiatry Practice, Paris, France
| | - Florian Ferreri
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Olivier Bonnot
- Department of Child and Adolescent Psychiatry, Nantes University Hospital, Nantes, France
- Pays de la Loire Psychology Laboratory, Nantes University, Nantes, France
| | - Bruno Millet
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Félix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Stéphane Mouchabac
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Vladimir Adrien
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, Public Hospitals of Sorbonne University, Paris, France
| |
Collapse
|
22
|
Lee HJ, Cho CH, Lee T, Jeong J, Yeom JW, Kim S, Jeon S, Seo JY, Moon E, Baek JH, Park DY, Kim SJ, Ha TH, Cha B, Kang HJ, Ahn YM, Lee Y, Lee JB, Kim L. Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study. Psychol Med 2023; 53:5636-5644. [PMID: 36146953 DOI: 10.1017/s0033291722002847] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones. METHODS The study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy. RESULTS Two hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively. CONCLUSIONS We predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
Collapse
Affiliation(s)
- Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Taek Lee
- Department of Convergence Security Engineering, Sungshin University, Seoul, Republic of Korea
| | - Jaegwon Jeong
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Sojeong Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Sehyun Jeon
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Ju Yeon Seo
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Eunsoo Moon
- Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Yeon Park
- Department of Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Se Joo Kim
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hyon Ha
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Boseok Cha
- Department of Psychiatry, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University College of Medicine, Gwangju, Republic of Korea
| | - Yong-Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yujin Lee
- Seoul Metropolitan Eunpyeong Hospital, Seoul, Republic of Korea
| | - Jung-Been Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Leen Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
ZhuParris A, de Goede AA, Yocarini IE, Kraaij W, Groeneveld GJ, Doll RJ. Machine Learning Techniques for Developing Remotely Monitored Central Nervous System Biomarkers Using Wearable Sensors: A Narrative Literature Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115243. [PMID: 37299969 DOI: 10.3390/s23115243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Central nervous system (CNS) disorders benefit from ongoing monitoring to assess disease progression and treatment efficacy. Mobile health (mHealth) technologies offer a means for the remote and continuous symptom monitoring of patients. Machine Learning (ML) techniques can process and engineer mHealth data into a precise and multidimensional biomarker of disease activity. OBJECTIVE This narrative literature review aims to provide an overview of the current landscape of biomarker development using mHealth technologies and ML. Additionally, it proposes recommendations to ensure the accuracy, reliability, and interpretability of these biomarkers. METHODS This review extracted relevant publications from databases such as PubMed, IEEE, and CTTI. The ML methods employed across the selected publications were then extracted, aggregated, and reviewed. RESULTS This review synthesized and presented the diverse approaches of 66 publications that address creating mHealth-based biomarkers using ML. The reviewed publications provide a foundation for effective biomarker development and offer recommendations for creating representative, reproducible, and interpretable biomarkers for future clinical trials. CONCLUSION mHealth-based and ML-derived biomarkers have great potential for the remote monitoring of CNS disorders. However, further research and standardization of study designs are needed to advance this field. With continued innovation, mHealth-based biomarkers hold promise for improving the monitoring of CNS disorders.
Collapse
Affiliation(s)
- Ahnjili ZhuParris
- Centre for Human Drug Research (CHDR), Zernikedreef 8, 2333 CL Leiden, The Netherlands
- Leiden Institute of Advanced Computer Science (LIACS), Snellius Gebouw, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
- Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Annika A de Goede
- Centre for Human Drug Research (CHDR), Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Iris E Yocarini
- Leiden Institute of Advanced Computer Science (LIACS), Snellius Gebouw, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
| | - Wessel Kraaij
- Leiden Institute of Advanced Computer Science (LIACS), Snellius Gebouw, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
- The Netherlands Organisation for Applied Scientific Research (TNO), Anna van Buerenplein 1, 2595 DA, Den Haag, The Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research (CHDR), Zernikedreef 8, 2333 CL Leiden, The Netherlands
- Leiden Institute of Advanced Computer Science (LIACS), Snellius Gebouw, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
| | - Robert Jan Doll
- Centre for Human Drug Research (CHDR), Zernikedreef 8, 2333 CL Leiden, The Netherlands
| |
Collapse
|
24
|
Cho E, Kim S, Heo SJ, Shin J, Hwang S, Kwon E, Lee S, Kim S, Kang B. Machine learning-based predictive models for the occurrence of behavioral and psychological symptoms of dementia: model development and validation. Sci Rep 2023; 13:8073. [PMID: 37202454 DOI: 10.1038/s41598-023-35194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/14/2023] [Indexed: 05/20/2023] Open
Abstract
The behavioral and psychological symptoms of dementia (BPSD) are challenging aspects of dementia care. This study used machine learning models to predict the occurrence of BPSD among community-dwelling older adults with dementia. We included 187 older adults with dementia for model training and 35 older adults with dementia for external validation. Demographic and health data and premorbid personality traits were examined at the baseline, and actigraphy was utilized to monitor sleep and activity levels. A symptom diary tracked caregiver-perceived symptom triggers and the daily occurrence of 12 BPSD classified into seven subsyndromes. Several prediction models were also employed, including logistic regression, random forest, gradient boosting machine, and support vector machine. The random forest models revealed the highest area under the receiver operating characteristic curve (AUC) values for hyperactivity, euphoria/elation, and appetite and eating disorders; the gradient boosting machine models for psychotic and affective symptoms; and the support vector machine model showed the highest AUC. The gradient boosting machine model achieved the best performance in terms of average AUC scores across the seven subsyndromes. Caregiver-perceived triggers demonstrated higher feature importance values across the seven subsyndromes than other features. Our findings demonstrate the possibility of predicting BPSD using a machine learning approach.
Collapse
Affiliation(s)
- Eunhee Cho
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sujin Kim
- Department of Nursing, Yong-In Arts and Science University, Gyeonggi-do, Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Jinhee Shin
- College of Nursing, Woosuk University, Jeollabuk-do, Korea
| | - Sinwoo Hwang
- Korea Armed Forces Nursing Academy, Daejeon, Korea
| | - Eunji Kwon
- Korea Armed Forces Nursing Academy, Daejeon, Korea
| | | | | | - Bada Kang
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
25
|
Abd-Alrazaq A, AlSaad R, Shuweihdi F, Ahmed A, Aziz S, Sheikh J. Systematic review and meta-analysis of performance of wearable artificial intelligence in detecting and predicting depression. NPJ Digit Med 2023; 6:84. [PMID: 37147384 PMCID: PMC10163239 DOI: 10.1038/s41746-023-00828-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
Given the limitations of traditional approaches, wearable artificial intelligence (AI) is one of the technologies that have been exploited to detect or predict depression. The current review aimed at examining the performance of wearable AI in detecting and predicting depression. The search sources in this systematic review were 8 electronic databases. Study selection, data extraction, and risk of bias assessment were carried out by two reviewers independently. The extracted results were synthesized narratively and statistically. Of the 1314 citations retrieved from the databases, 54 studies were included in this review. The pooled mean of the highest accuracy, sensitivity, specificity, and root mean square error (RMSE) was 0.89, 0.87, 0.93, and 4.55, respectively. The pooled mean of lowest accuracy, sensitivity, specificity, and RMSE was 0.70, 0.61, 0.73, and 3.76, respectively. Subgroup analyses revealed that there is a statistically significant difference in the highest accuracy, lowest accuracy, highest sensitivity, highest specificity, and lowest specificity between algorithms, and there is a statistically significant difference in the lowest sensitivity and lowest specificity between wearable devices. Wearable AI is a promising tool for depression detection and prediction although it is in its infancy and not ready for use in clinical practice. Until further research improve its performance, wearable AI should be used in conjunction with other methods for diagnosing and predicting depression. Further studies are needed to examine the performance of wearable AI based on a combination of wearable device data and neuroimaging data and to distinguish patients with depression from those with other diseases.
Collapse
Affiliation(s)
- Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Rawan AlSaad
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Computing and Information Technology, University of Doha for Science and Technology, Doha, Qatar
| | - Farag Shuweihdi
- School of Medicine, Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Arfan Ahmed
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sarah Aziz
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Javaid Sheikh
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
26
|
Kalisperakis E, Karantinos T, Lazaridi M, Garyfalli V, Filntisis PP, Zlatintsi A, Efthymiou N, Mantas A, Mantonakis L, Mougiakos T, Maglogiannis I, Tsanakas P, Maragos P, Smyrnis N. Smartwatch digital phenotypes predict positive and negative symptom variation in a longitudinal monitoring study of patients with psychotic disorders. Front Psychiatry 2023; 14:1024965. [PMID: 36993926 PMCID: PMC10040533 DOI: 10.3389/fpsyt.2023.1024965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionMonitoring biometric data using smartwatches (digital phenotypes) provides a novel approach for quantifying behavior in patients with psychiatric disorders. We tested whether such digital phenotypes predict changes in psychopathology of patients with psychotic disorders.MethodsWe continuously monitored digital phenotypes from 35 patients (20 with schizophrenia and 15 with bipolar spectrum disorders) using a commercial smartwatch for a period of up to 14 months. These included 5-min measures of total motor activity from an accelerometer (TMA), average Heart Rate (HRA) and heart rate variability (HRV) from a plethysmography-based sensor, walking activity (WA) measured as number of total steps per day and sleep/wake ratio (SWR). A self-reporting questionnaire (IPAQ) assessed weekly physical activity. After pooling phenotype data, their monthly mean and variance was correlated within each patient with psychopathology scores (PANSS) assessed monthly.ResultsOur results indicate that increased HRA during wakefulness and sleep correlated with increases in positive psychopathology. Besides, decreased HRV and increase in its monthly variance correlated with increases in negative psychopathology. Self-reported physical activity did not correlate with changes in psychopathology. These effects were independent from demographic and clinical variables as well as changes in antipsychotic medication dose.DiscussionOur findings suggest that distinct digital phenotypes derived passively from a smartwatch can predict variations in positive and negative dimensions of psychopathology of patients with psychotic disorders, over time, providing ground evidence for their potential clinical use.
Collapse
Affiliation(s)
- Emmanouil Kalisperakis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Karantinos
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
| | - Marina Lazaridi
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Garyfalli
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis P. Filntisis
- School of Electrical and Computer Engineering (ECE), National Technical University of Athens, Athens, Greece
| | - Athanasia Zlatintsi
- School of Electrical and Computer Engineering (ECE), National Technical University of Athens, Athens, Greece
| | - Niki Efthymiou
- School of Electrical and Computer Engineering (ECE), National Technical University of Athens, Athens, Greece
| | - Asimakis Mantas
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
| | - Leonidas Mantonakis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Panayotis Tsanakas
- School of Electrical and Computer Engineering (ECE), National Technical University of Athens, Athens, Greece
| | - Petros Maragos
- School of Electrical and Computer Engineering (ECE), National Technical University of Athens, Athens, Greece
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 2nd Department of Psychiatry, Medical School, University General Hospital “ATTIKON”, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Nikolaos Smyrnis,
| |
Collapse
|
27
|
The comfort of adolescent patients and their parents with mobile sensing and digital phenotyping. COMPUTERS IN HUMAN BEHAVIOR 2023. [DOI: 10.1016/j.chb.2022.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Kim WP, Kim HJ, Pack SP, Lim JH, Cho CH, Lee HJ. Machine Learning-Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children. JAMA Netw Open 2023; 6:e233502. [PMID: 36930149 PMCID: PMC10024208 DOI: 10.1001/jamanetworkopen.2023.3502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
IMPORTANCE Early detection of attention-deficit/hyperactivity disorder (ADHD) and sleep problems is paramount for children's mental health. Interview-based diagnostic approaches have drawbacks, necessitating the development of an evaluation method that uses digital phenotypes in daily life. OBJECTIVE To evaluate the predictive performance of machine learning (ML) models by setting the data obtained from personal digital devices comprising training features (ie, wearable data) and diagnostic results of ADHD and sleep problems by the Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version for Diagnostic and Statistical Manual of Mental Disorders, 5th edition (K-SADS) as a prediction class from the Adolescent Brain Cognitive Development (ABCD) study. DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, wearable data and K-SADS data were collected at 21 sites in the US in the ABCD study (release 3.0, November 2, 2020, analyzed October 11, 2021). Screening data from 6571 patients and 21 days of wearable data from 5725 patients collected at the 2-year follow-up were used, and circadian rhythm-based features were generated for each participant. A total of 12 348 wearable data for ADHD and 39 160 for sleep problems were merged for developing ML models. MAIN OUTCOMES AND MEASURES The average performance of the ML models was measured using an area under the receiver operating characteristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In addition, the Shapley Additive Explanations value was used to calculate the importance of features. RESULTS The final population consisted of 79 children with ADHD problems (mean [SD] age, 144.5 [8.1] months; 55 [69.6%] males) vs 1011 controls and 68 with sleep problems (mean [SD] age, 143.5 [7.5] months; 38 [55.9%] males) vs 3346 controls. The ML models showed reasonable predictive performance for ADHD (AUC, 0.798; sensitivity, 0.756; specificity, 0.716; PPV, 0.159; and NPV, 0.976) and sleep problems (AUC, 0.737; sensitivity, 0.743; specificity, 0.632; PPV, 0.036; and NPV, 0.992). CONCLUSIONS AND RELEVANCE In this diagnostic study, an ML method for early detection or screening using digital phenotypes in children's daily lives was developed. The results support facilitating early detection in children; however, additional follow-up studies can improve its performance.
Collapse
Affiliation(s)
- Won-Pyo Kim
- LumanLab Inc, R&D Center, Seoul, South Korea
| | - Hyun-Jin Kim
- Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, South Korea
| | | | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Chronobiology Institute, Korea University, Seoul, South Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
- Chronobiology Institute, Korea University, Seoul, South Korea
| |
Collapse
|
29
|
Ross MK, Tulabandhula T, Bennett CC, Baek E, Kim D, Hussain F, Demos AP, Ning E, Langenecker SA, Ajilore O, Leow AD. A Novel Approach to Clustering Accelerometer Data for Application in Passive Predictions of Changes in Depression Severity. SENSORS (BASEL, SWITZERLAND) 2023; 23:1585. [PMID: 36772625 PMCID: PMC9920816 DOI: 10.3390/s23031585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The treatment of mood disorders, which can become a lifelong process, varies widely in efficacy between individuals. Most options to monitor mood rely on subjective self-reports and clinical visits, which can be burdensome and may not portray an accurate representation of what the individual is experiencing. A passive method to monitor mood could be a useful tool for those with these disorders. Some previously proposed models utilized sensors from smartphones and wearables, such as the accelerometer. This study examined a novel approach of processing accelerometer data collected from smartphones only while participants of the open-science branch of the BiAffect study were typing. The data were modeled by von Mises-Fisher distributions and weighted networks to identify clusters relating to different typing positions unique for each participant. Longitudinal features were derived from the clustered data and used in machine learning models to predict clinically relevant changes in depression from clinical and typing measures. Model accuracy was approximately 95%, with 97% area under the ROC curve (AUC). The accelerometer features outperformed the vast majority of clinical and typing features, which suggested that this new approach to analyzing accelerometer data could contribute towards unobtrusive detection of changes in depression severity without the need for clinical input.
Collapse
Affiliation(s)
- Mindy K. Ross
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Theja Tulabandhula
- Department of Information and Decision Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Casey C. Bennett
- Department of Intelligence Computing, Hanyang University, Seoul 04763, Republic of Korea
- Department of Computing, DePaul University, Chicago, IL 60604, USA
| | - EuGene Baek
- Department of Intelligence Computing, Hanyang University, Seoul 04763, Republic of Korea
| | - Dohyeon Kim
- Department of Intelligence Computing, Hanyang University, Seoul 04763, Republic of Korea
| | - Faraz Hussain
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexander P. Demos
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emma Ning
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
30
|
Moura I, Teles A, Viana D, Marques J, Coutinho L, Silva F. Digital Phenotyping of Mental Health using multimodal sensing of multiple situations of interest: A Systematic Literature Review. J Biomed Inform 2023; 138:104278. [PMID: 36586498 DOI: 10.1016/j.jbi.2022.104278] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Many studies have used Digital Phenotyping of Mental Health (DPMH) to complement classic methods of mental health assessment and monitoring. This research area proposes innovative methods that perform multimodal sensing of multiple situations of interest (e.g., sleep, physical activity, mobility) to health professionals. In this paper, we present a Systematic Literature Review (SLR) to recognize, characterize and analyze the state of the art on DPMH using multimodal sensing of multiple situations of interest to professionals. We searched for studies in six digital libraries, which resulted in 1865 retrieved published papers. Next, we performed a systematic process of selecting studies based on inclusion and exclusion criteria, which selected 59 studies for the data extraction phase. First, based on the analysis of the extracted data, we describe an overview of this field, then presenting characteristics of the selected studies, the main mental health topics targeted, the physical and virtual sensors used, and the identified situations of interest. Next, we outline answers to research questions, describing the context data sources used to detect situations, the DPMH workflow used for multimodal sensing of situations, and the application of DPMH solutions in the mental health assessment and monitoring process. In addition, we recognize trends presented by DPMH studies, such as the design of solutions for high-level information recognition, association of features with mental states/disorders, classification of mental states/disorders, and prediction of mental states/disorders. We also recognize the main open issues in this research area. Based on the results of this SLR, we conclude that despite the potential and continuous evolution for using these solutions as medical decision support tools, this research area needs more work to overcome technology and methodological rigor issues to adopt proposed solutions in real clinical settings.
Collapse
Affiliation(s)
- Ivan Moura
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil.
| | - Ariel Teles
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil; Federal Institute of Maranhão, Brazil
| | - Davi Viana
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil
| | - Jean Marques
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil
| | - Luciano Coutinho
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil
| | - Francisco Silva
- Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil
| |
Collapse
|
31
|
Gomes SRBS, von Schantz M, Leocadio-Miguel M. Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach. Sleep Med 2023; 102:123-131. [PMID: 36641929 DOI: 10.1016/j.sleep.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. METHODS We used the National Health and Nutrition Examination Survey (NHANES) 2015-2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. RESULTS XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. CONCLUSIONS Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.
Collapse
Affiliation(s)
| | | | - Mario Leocadio-Miguel
- Department of Physiology and Behavior, Federal University of Rio Grande Do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
32
|
Abd-Alrazaq A, AlSaad R, Aziz S, Ahmed A, Denecke K, Househ M, Farooq F, Sheikh J. Wearable Artificial Intelligence for Anxiety and Depression: Scoping Review. J Med Internet Res 2023; 25:e42672. [PMID: 36656625 PMCID: PMC9896355 DOI: 10.2196/42672] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anxiety and depression are the most common mental disorders worldwide. Owing to the lack of psychiatrists around the world, the incorporation of artificial intelligence (AI) into wearable devices (wearable AI) has been exploited to provide mental health services. OBJECTIVE This review aimed to explore the features of wearable AI used for anxiety and depression to identify application areas and open research issues. METHODS We searched 8 electronic databases (MEDLINE, PsycINFO, Embase, CINAHL, IEEE Xplore, ACM Digital Library, Scopus, and Google Scholar) and included studies that met the inclusion criteria. Then, we checked the studies that cited the included studies and screened studies that were cited by the included studies. The study selection and data extraction were carried out by 2 reviewers independently. The extracted data were aggregated and summarized using narrative synthesis. RESULTS Of the 1203 studies identified, 69 (5.74%) were included in this review. Approximately, two-thirds of the studies used wearable AI for depression, whereas the remaining studies used it for anxiety. The most frequent application of wearable AI was in diagnosing anxiety and depression; however, none of the studies used it for treatment purposes. Most studies targeted individuals aged between 18 and 65 years. The most common wearable device used in the studies was Actiwatch AW4 (Cambridge Neurotechnology Ltd). Wrist-worn devices were the most common type of wearable device in the studies. The most commonly used category of data for model development was physical activity data, followed by sleep data and heart rate data. The most frequently used data set from open sources was Depresjon. The most commonly used algorithm was random forest, followed by support vector machine. CONCLUSIONS Wearable AI can offer great promise in providing mental health services related to anxiety and depression. Wearable AI can be used by individuals for the prescreening assessment of anxiety and depression. Further reviews are needed to statistically synthesize the studies' results related to the performance and effectiveness of wearable AI. Given its potential, technology companies should invest more in wearable AI for the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Rawan AlSaad
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sarah Aziz
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Arfan Ahmed
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kerstin Denecke
- Institute for Medical Informatics, Bern University of Applied Science, Bern, Switzerland
| | - Mowafa Househ
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Farooq
- Qatar Computing Research Institute, Hamad bin Khalifa University, Doha, Qatar
| | - Javaid Sheikh
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
33
|
Peerenboom N, Aryal S, Blankenship JM, Swibas T, Zhai Y, Clay I, Lyden K. The Case for the Patient-Centric Development of Novel Digital Sleep Assessment Tools in Major Depressive Disorder. Digit Biomark 2023; 7:124-131. [PMID: 37901365 PMCID: PMC10601929 DOI: 10.1159/000533523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 10/31/2023] Open
Abstract
Background Depression imposes a major burden on public health as the leading cause of disability worldwide. Sleep disturbance is a core symptom of depression that affects the vast majority of patients. Nonetheless, it is frequently not resolved by depression treatment and may even be worsened through some pharmaceutical interventions. Disturbed sleep negatively impact patients' quality of life, and persistent sleep disturbance increases the risk of recurrence, relapse, and even suicide. However, the development of novel treatments that might improve sleep problems is hindered by the lack of reliable low-burden objective measures that can adequately assess disturbed sleep in this population. Summary Developing improved digital measurement tools that are fit for use in clinical trials for major depressive disorder could promote the inclusion of sleep as a focus for treatment, clinical drug development, and research. This perspective piece explores the path toward the development of novel digital measures, reviews the existing evidence on the meaningfulness of sleep in depression, and summarizes existing methods of sleep assessments, including the use of digital health technologies. Key Messages Our objective was to make a clear call to action and path forward for the qualification of new digital outcome measures which would enable assessment of sleep disturbance as an aspect of health that truly matters to patients, promoting sleep as an important outcome for clinical development, and ultimately ensure that disturbed sleep will not remain the forgotten symptom of depression.
Collapse
Affiliation(s)
| | | | | | | | - Yaya Zhai
- Vivosense Inc., Newport Coast, CA, USA
| | | | | |
Collapse
|
34
|
The importance of sleep studies in improving the health indices of a nation. Sleep Med X 2022; 4:100049. [PMID: 35669384 PMCID: PMC9163577 DOI: 10.1016/j.sleepx.2022.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
|
35
|
Ren B, Xia CH, Gehrman P, Barnett I, Satterthwaite T. Measuring Daily Activity Rhythms in Young Adults at Risk of Affective Instability Using Passively Collected Smartphone Data: Observational Study. JMIR Form Res 2022; 6:e33890. [PMID: 36103225 PMCID: PMC9520392 DOI: 10.2196/33890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/18/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Irregularities in circadian rhythms have been associated with adverse health outcomes. The regularity of rhythms can be quantified using passively collected smartphone data to provide clinically relevant biomarkers of routine. OBJECTIVE This study aims to develop a metric to quantify the regularity of activity rhythms and explore the relationship between routine and mood, as well as demographic covariates, in an outpatient psychiatric cohort. METHODS Passively sensed smartphone data from a cohort of 38 young adults from the Penn or Children's Hospital of Philadelphia Lifespan Brain Institute and Outpatient Psychiatry Clinic at the University of Pennsylvania were fitted with 2-state continuous-time hidden Markov models representing active and resting states. The regularity of routine was modeled as the hour-of-the-day random effects on the probability of state transition (ie, the association between the hour-of-the-day and state membership). A regularity score, Activity Rhythm Metric, was calculated from the continuous-time hidden Markov models and regressed on clinical and demographic covariates. RESULTS Regular activity rhythms were associated with longer sleep durations (P=.009), older age (P=.001), and mood (P=.049). CONCLUSIONS Passively sensed Activity Rhythm Metrics are an alternative to existing metrics but do not require burdensome survey-based assessments. Low-burden, passively sensed metrics based on smartphone data are promising and scalable alternatives to traditional measurements.
Collapse
Affiliation(s)
- Benny Ren
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Cedric Huchuan Xia
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Philip Gehrman
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Michael J Crescenz VA Medical Center, Philadelphia, PA, United States
| | - Ian Barnett
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Theodore Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
36
|
Anmella G, Faurholt‐Jepsen M, Hidalgo‐Mazzei D, Radua J, Passos IC, Kapczinski F, Minuzzi L, Alda M, Meier S, Hajek T, Ballester P, Birmaher B, Hafeman D, Goldstein T, Brietzke E, Duffy A, Haarman B, López‐Jaramillo C, Yatham LN, Lam RW, Isometsa E, Mansur R, McIntyre RS, Mwangi B, Vieta E, Kessing LV. Smartphone-based interventions in bipolar disorder: Systematic review and meta-analyses of efficacy. A position paper from the International Society for Bipolar Disorders (ISBD) Big Data Task Force. Bipolar Disord 2022; 24:580-614. [PMID: 35839276 PMCID: PMC9804696 DOI: 10.1111/bdi.13243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The clinical effects of smartphone-based interventions for bipolar disorder (BD) have yet to be established. OBJECTIVES To examine the efficacy of smartphone-based interventions in BD and how the included studies reported user-engagement indicators. METHODS We conducted a systematic search on January 24, 2022, in PubMed, Scopus, Embase, APA PsycINFO, and Web of Science. We used random-effects meta-analysis to calculate the standardized difference (Hedges' g) in pre-post change scores between smartphone intervention and control conditions. The study was pre-registered with PROSPERO (CRD42021226668). RESULTS The literature search identified 6034 studies. Thirteen articles fulfilled the selection criteria. We included seven RCTs and performed meta-analyses comparing the pre-post change in depressive and (hypo)manic symptom severity, functioning, quality of life, and perceived stress between smartphone interventions and control conditions. There was significant heterogeneity among studies and no meta-analysis reached statistical significance. Results were also inconclusive regarding affective relapses and psychiatric readmissions. All studies reported positive user-engagement indicators. CONCLUSION We did not find evidence to support that smartphone interventions may reduce the severity of depressive or manic symptoms in BD. The high heterogeneity of studies supports the need for expert consensus to establish ideally how studies should be designed and the use of more sensitive outcomes, such as affective relapses and psychiatric hospitalizations, as well as the quantification of mood instability. The ISBD Big Data Task Force provides preliminary recommendations to reduce the heterogeneity and achieve more valid evidence in the field.
Collapse
Affiliation(s)
- Gerard Anmella
- Digital Innovation Group, Bipolar and Depressive Disorders Unit, Institute of NeuroscienceHospital Clinic, University of Barcelona, IDIBAPS, CIBERSAMBarcelonaCataloniaSpain
| | - Maria Faurholt‐Jepsen
- Copenhagen Affective Disorder research Center (CADIC)Psychiatric Center CopenhagenCopenhagenDenmark
| | - Diego Hidalgo‐Mazzei
- Digital Innovation Group, Bipolar and Depressive Disorders Unit, Institute of NeuroscienceHospital Clinic, University of Barcelona, IDIBAPS, CIBERSAMBarcelonaCataloniaSpain
| | - Joaquim Radua
- Imaging of Mood‐ and Anxiety‐Related Disorders (IMARD) groupIDIBAPS, CIBERSAMBarcelonaSpain,Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK,Centre for Psychiatric Research and Education, Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ives C. Passos
- Laboratory of Molecular Psychiatry and Bipolar Disorder Program, Programa de Pós‐Graduação em Psiquiatria e Ciências do Comportamento, Centro de Pesquisa Experimental do Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonONCanada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonONCanada
| | - Martin Alda
- Department of PsychiatryDalhousie UniversityHalifaxNSCanada
| | - Sandra Meier
- Department of PsychiatryDalhousie UniversityHalifaxNSCanada
| | - Tomas Hajek
- Department of PsychiatryDalhousie UniversityHalifaxNSCanada,National Institute of Mental HealthKlecanyCzech Republic
| | - Pedro Ballester
- Neuroscience Graduate ProgramMcMaster UniversityHamiltonCanada
| | - Boris Birmaher
- Department of Psychiatry, Western Psychiatric Institute and ClinicUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Danella Hafeman
- Department of Psychiatry, Western Psychiatric Institute and ClinicUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Tina Goldstein
- Department of Psychiatry, Western Psychiatric Institute and ClinicUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Elisa Brietzke
- Department of PsychiatryQueen's UniversityKingstonONCanada
| | - Anne Duffy
- Department of PsychiatryQueen's UniversityKingstonONCanada
| | - Benno Haarman
- Department of PsychiatryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry, Department of Psychiatry, Faculty of MedicineUniversity of AntioquiaMedellínColombia,Mood Disorders ProgramHospital Universitario San Vicente FundaciónMedellínColombia
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverBCCanada
| | - Raymond W. Lam
- Department of PsychiatryUniversity of British ColumbiaVancouverBCCanada
| | - Erkki Isometsa
- Department of PsychiatryUniversity of Helsinki and Helsinki University Central HospitalHelsinkiFinland
| | - Rodrigo Mansur
- Mood Disorders Psychopharmacology Unit (MDPU)University Health Network, University of TorontoTorontoONCanada
| | | | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, UT Center of Excellence on Mood Disorders, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Eduard Vieta
- Digital Innovation Group, Bipolar and Depressive Disorders Unit, Institute of NeuroscienceHospital Clinic, University of Barcelona, IDIBAPS, CIBERSAMBarcelonaCataloniaSpain
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder research Center (CADIC)Psychiatric Center CopenhagenCopenhagenDenmark,Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
37
|
Milne-Ives M, Selby E, Inkster B, Lam C, Meinert E. Artificial intelligence and machine learning in mobile apps for mental health: A scoping review. PLOS DIGITAL HEALTH 2022; 1:e0000079. [PMID: 36812623 PMCID: PMC9931284 DOI: 10.1371/journal.pdig.0000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
Mental health conditions can have significant negative impacts on wellbeing and healthcare systems. Despite their high prevalence worldwide, there is still insufficient recognition and accessible treatments. Many mobile apps are available to the general population that aim to support mental health needs; however, there is limited evidence of their effectiveness. Mobile apps for mental health are beginning to incorporate artificial intelligence and there is a need for an overview of the state of the literature on these apps. The purpose of this scoping review is to provide an overview of the current research landscape and knowledge gaps regarding the use of artificial intelligence in mobile health apps for mental health. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) and Population, Intervention, Comparator, Outcome, and Study types (PICOS) frameworks were used to structure the review and the search. PubMed was systematically searched for randomised controlled trials and cohort studies published in English since 2014 that evaluate artificial intelligence- or machine learning-enabled mobile apps for mental health support. Two reviewers collaboratively screened references (MMI and EM), selected studies for inclusion based on the eligibility criteria and extracted the data (MMI and CL), which were synthesised in a descriptive analysis. 1,022 studies were identified in the initial search and 4 were included in the final review. The mobile apps investigated incorporated different artificial intelligence and machine learning techniques for a variety of purposes (risk prediction, classification, and personalisation) and aimed to address a wide range of mental health needs (depression, stress, and suicide risk). The studies' characteristics also varied in terms of methods, sample size, and study duration. Overall, the studies demonstrated the feasibility of using artificial intelligence to support mental health apps, but the early stages of the research and weaknesses in the study designs highlight the need for more research into artificial intelligence- and machine learning-enabled mental health apps and stronger evidence of their effectiveness. This research is essential and urgent, considering the easy availability of these apps to a large population.
Collapse
Affiliation(s)
- Madison Milne-Ives
- Centre for Health Technology, University of Plymouth, Plymouth, United Kingdom
| | - Emma Selby
- Wysa, 22 Wenlock Road, London, United Kingdom
| | - Becky Inkster
- Wysa, 22 Wenlock Road, London, United Kingdom
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge, United Kingdom
| | - Ching Lam
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Edward Meinert
- Centre for Health Technology, University of Plymouth, Plymouth, United Kingdom
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Avenue, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Grant AD, Erickson EN. Birth, love, and fear: Physiological networks from pregnancy to parenthood. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100138. [PMID: 35757173 PMCID: PMC9227990 DOI: 10.1016/j.cpnec.2022.100138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Pregnancy and childbirth are among the most dramatic physiological and emotional transformations of a lifetime. Despite their central importance to human survival, many gaps remain in our understanding of the temporal progression of and mechanisms underlying the transition to new parenthood. The goal of this paper is to outline the physiological and emotional development of the maternal-infant dyad from late pregnancy to the postpartum period, and to provide a framework to investigate this development using non-invasive timeseries. We focus on the interaction among neuroendocrine, emotional, and autonomic outputs in the context of late pregnancy, parturition, and post-partum. We then propose that coupled dynamics in these outputs can be leveraged to map both physiologic and pathologic pregnancy, parturition, and parenthood. This approach could address gaps in our knowledge and enable early detection or prediction of problems, with both personalized depth and broad population scale.
Collapse
Affiliation(s)
- Azure D. Grant
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Levels Health Inc., 228 Park Ave. South, PMB 63877, New York, NY, 10003, United States
| | - Elise N. Erickson
- Oregon Health and Science University, Portland, OR, 97239, United States
| |
Collapse
|
39
|
Cotes RO, Boazak M, Griner E, Jiang Z, Kim B, Bremer W, Seyedi S, Bahrami Rad A, Clifford GD. Multimodal Assessment of Schizophrenia and Depression Utilizing Video, Acoustic, Locomotor, Electroencephalographic, and Heart Rate Technology: Protocol for an Observational Study. JMIR Res Protoc 2022; 11:e36417. [PMID: 35830230 PMCID: PMC9330209 DOI: 10.2196/36417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Background Current standards of psychiatric assessment and diagnostic evaluation rely primarily on the clinical subjective interpretation of a patient’s outward manifestations of their internal state. While psychometric tools can help to evaluate these behaviors more systematically, the tools still rely on the clinician’s interpretation of what are frequently nuanced speech and behavior patterns. With advances in computing power, increased availability of clinical data, and improving resolution of recording and sensor hardware (including acoustic, video, accelerometer, infrared, and other modalities), researchers have begun to demonstrate the feasibility of cutting-edge technologies in aiding the assessment of psychiatric disorders. Objective We present a research protocol that utilizes facial expression, eye gaze, voice and speech, locomotor, heart rate, and electroencephalography monitoring to assess schizophrenia symptoms and to distinguish patients with schizophrenia from those with other psychiatric disorders and control subjects. Methods We plan to recruit three outpatient groups: (1) 50 patients with schizophrenia, (2) 50 patients with unipolar major depressive disorder, and (3) 50 individuals with no psychiatric history. Using an internally developed semistructured interview, psychometrically validated clinical outcome measures, and a multimodal sensing system utilizing video, acoustic, actigraphic, heart rate, and electroencephalographic sensors, we aim to evaluate the system’s capacity in classifying subjects (schizophrenia, depression, or control), to evaluate the system’s sensitivity to within-group symptom severity, and to determine if such a system can further classify variations in disorder subtypes. Results Data collection began in July 2020 and is expected to continue through December 2022. Conclusions If successful, this study will help advance current progress in developing state-of-the-art technology to aid clinical psychiatric assessment and treatment. If our findings suggest that these technologies are capable of resolving diagnoses and symptoms to the level of current psychometric testing and clinician judgment, we would be among the first to develop a system that can eventually be used by clinicians to more objectively diagnose and assess schizophrenia and depression with the possibility of less risk of bias. Such a tool has the potential to improve accessibility to care; to aid clinicians in objectively evaluating diagnoses, severity of symptoms, and treatment efficacy through time; and to reduce treatment-related morbidity. International Registered Report Identifier (IRRID) DERR1-10.2196/36417
Collapse
Affiliation(s)
- Robert O Cotes
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Mina Boazak
- Animo Sano Psychiatry, Durham, NC, United States
| | - Emily Griner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zifan Jiang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Bona Kim
- Visual Medical Education, Emory School of Medicine, Atlanta, GA, United States
| | - Whitney Bremer
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States
| | - Salman Seyedi
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ali Bahrami Rad
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
40
|
Digital tools for the assessment of pharmacological treatment for depressive disorder: State of the art. Eur Neuropsychopharmacol 2022; 60:100-116. [PMID: 35671641 DOI: 10.1016/j.euroneuro.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/23/2022]
Abstract
Depression is an invalidating disorder, marked by phenotypic heterogeneity. Clinical assessments for treatment adjustments and data-collection for pharmacological research often rely on subjective representations of functioning. Better phenotyping through digital applications may add unseen information and facilitate disentangling the clinical characteristics and impact of depression and its pharmacological treatment in everyday life. Researchers, physicians, and patients benefit from well-understood digital phenotyping approaches to assess the treatment efficacy and side-effects. This review discusses the current possibilities and pitfalls of wearables and technology for the assessment of the pharmacological treatment of depression. Their applications in the whole spectrum of treatment for depression, including diagnosis, treatment of an episode, and monitoring of relapse risk and prevention are discussed. Multiple aspects are to be considered, including concerns that come with collecting sensitive data and health recordings. Also, privacy and trust are addressed. Available applications range from questionnaire-like apps to objective assessment of behavioural patterns and promises in handling suicidality. Nonetheless, interpretation and integration of this high-resolution information with other phenotyping levels, remains challenging. This review provides a state-of-the-art description of wearables and technology in digital phenotyping for monitoring pharmacological treatment in depression, focusing on the challenges and opportunities of its application in clinical trials and research.
Collapse
|
41
|
Kang YW, Sun TH, Kim GY, Jung HY, Kim HJ, Lee S, Park YR, Tu J, Lee JH, Choi KY, Cho CH. Design and Methods of a Prospective Smartphone App-Based Study for Digital Phenotyping of Mood and Anxiety Symptoms Mixed With Centralized and Decentralized Research Form: The Search Your Mind (S.Y.M., ) Project. Psychiatry Investig 2022; 19:588-594. [PMID: 35903061 PMCID: PMC9334802 DOI: 10.30773/pi.2022.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022] Open
Abstract
In this study, the Search Your Mind (S.Y.M., ) project aimed to collect prospective digital phenotypic data centered on mood and anxiety symptoms across psychiatric disorders through a smartphone application (app) platform while using both centralized and decentralized research designs: the centralized research design is a hybrid of a general prospective observational study and a digital platform-based study, and it includes face-to-face research such as informed written consent, clinical evaluation, and blood sampling. It also includes digital phenotypic assessment through an application-based platform using wearable devices. Meanwhile, the decentralized research design is a non-face-to-face study in which anonymous participants agree to electronic informed consent forms on the app. It also exclusively uses an application-based platform to acquire individualized digital phenotypic data. We expect to collect clinical, biological, and digital phenotypic data centered on mood and anxiety symptoms, and we propose a possible model of centralized and decentralized research design.
Collapse
Affiliation(s)
- Ye-Won Kang
- Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Tai Hui Sun
- Department of Psychiatry, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Ga-Yeong Kim
- Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ho-Young Jung
- Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyun-Jin Kim
- Department of Psychiatry, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Seulki Lee
- Department of Psychiatry, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaiden Tu
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jae-Hon Lee
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Kwang-Yeon Choi
- Department of Psychiatry, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| |
Collapse
|
42
|
Zarate D, Stavropoulos V, Ball M, de Sena Collier G, Jacobson NC. Exploring the digital footprint of depression: a PRISMA systematic literature review of the empirical evidence. BMC Psychiatry 2022; 22:421. [PMID: 35733121 PMCID: PMC9214685 DOI: 10.1186/s12888-022-04013-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This PRISMA systematic literature review examined the use of digital data collection methods (including ecological momentary assessment [EMA], experience sampling method [ESM], digital biomarkers, passive sensing, mobile sensing, ambulatory assessment, and time-series analysis), emphasizing on digital phenotyping (DP) to study depression. DP is defined as the use of digital data to profile health information objectively. AIMS Four distinct yet interrelated goals underpin this study: (a) to identify empirical research examining the use of DP to study depression; (b) to describe the different methods and technology employed; (c) to integrate the evidence regarding the efficacy of digital data in the examination, diagnosis, and monitoring of depression and (d) to clarify DP definitions and digital mental health records terminology. RESULTS Overall, 118 studies were assessed as eligible. Considering the terms employed, "EMA", "ESM", and "DP" were the most predominant. A variety of DP data sources were reported, including voice, language, keyboard typing kinematics, mobile phone calls and texts, geocoded activity, actigraphy sensor-related recordings (i.e., steps, sleep, circadian rhythm), and self-reported apps' information. Reviewed studies employed subjectively and objectively recorded digital data in combination with interviews and psychometric scales. CONCLUSIONS Findings suggest links between a person's digital records and depression. Future research recommendations include (a) deriving consensus regarding the DP definition and (b) expanding the literature to consider a person's broader contextual and developmental circumstances in relation to their digital data/records.
Collapse
Affiliation(s)
- Daniel Zarate
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | - Vasileios Stavropoulos
- grid.1019.90000 0001 0396 9544Institute for Health and Sport, Victoria University, Melbourne, Australia ,grid.5216.00000 0001 2155 0800Department of Psychology, University of Athens, Athens, Greece
| | - Michelle Ball
- grid.1019.90000 0001 0396 9544Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Gabriel de Sena Collier
- grid.1019.90000 0001 0396 9544Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nicholas C. Jacobson
- grid.254880.30000 0001 2179 2404Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Hanover, USA ,grid.254880.30000 0001 2179 2404Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, USA ,grid.254880.30000 0001 2179 2404Department of Psychiatry, Geisel School of Medicine, Dartmouth College, Hanover, USA ,grid.254880.30000 0001 2179 2404Quantitative Biomedical Sciences Program, Dartmouth College, Hanover, USA
| |
Collapse
|
43
|
Kim KJ, Lee JB, Choi J, Seo JY, Yeom JW, Cho CH, Bae JH, Kim SG, Lee HJ, Kim NH. Identification of Healthy and Unhealthy Lifestyles by a Wearable Activity Tracker in Type 2 Diabetes: A Machine Learning-Based Analysis. Endocrinol Metab (Seoul) 2022; 37:547-551. [PMID: 35798553 PMCID: PMC9262687 DOI: 10.3803/enm.2022.1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Lifestyle is a critical aspect of diabetes management. We aimed to define a healthy lifestyle using objectively measured parameters obtained from a wearable activity tracker (Fitbit) in patients with type 2 diabetes. This prospective observational study included 24 patients (mean age, 46.8 years) with type 2 diabetes. Expectation-maximization clustering analysis produced two groups: A (n=9) and B (n=15). Group A had a higher daily step count, lower resting heart rate, longer sleep duration, and lower mean time differences in going to sleep and waking up than group B. A Shapley additive explanation summary analysis indicated that sleep-related factors were key elements for clustering. The mean hemoglobin A1c level was 0.3 percentage points lower at the end of follow-up in group A than in group B. Factors related to regular sleep patterns could be possible determinants of lifestyle clustering in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kyoung Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of MedicineSeoul, Seoul, Korea
| | - Jung-Been Lee
- Department of Computer Science, Korea University College of Information, Seoul, Korea
| | - Jimi Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of MedicineSeoul, Seoul, Korea
| | - Ju Yeon Seo
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Jae Hyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of MedicineSeoul, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of MedicineSeoul, Seoul, Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of MedicineSeoul, Seoul, Korea
- Corresponding author: Nam Hoon Kim Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Korea Tel: +82-2-920-5421, Fax: +82-2-953-9355, E-mail:
| |
Collapse
|
44
|
Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology 2022; 47:805-816. [PMID: 34837078 PMCID: PMC8626287 DOI: 10.1038/s41386-021-01241-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
A growing number of epidemiological and experimental studies has established that circadian disruption is strongly associated with psychiatric disorders, including major depressive disorder (MDD). This association is becoming increasingly relevant considering that modern lifestyles, social zeitgebers (time cues) and genetic variants contribute to disrupting circadian rhythms that may lead to psychiatric disorders. Circadian abnormalities associated with MDD include dysregulated rhythms of sleep, temperature, hormonal secretions, and mood which are modulated by the molecular clock. Rapid-acting antidepressants such as subanesthetic ketamine and sleep deprivation therapy can improve symptoms within 24 h in a subset of depressed patients, in striking contrast to conventional treatments, which generally require weeks for a full clinical response. Importantly, animal data show that sleep deprivation and ketamine have overlapping effects on clock gene expression. Furthermore, emerging data implicate the circadian system as a critical component involved in rapid antidepressant responses via several intracellular signaling pathways such as GSK3β, mTOR, MAPK, and NOTCH to initiate synaptic plasticity. Future research on the relationship between depression and the circadian clock may contribute to the development of novel therapeutic strategies for depression-like symptoms. In this review we summarize recent evidence describing: (1) how the circadian clock is implicated in depression, (2) how clock genes may contribute to fast-acting antidepressants, and (3) the mechanistic links between the clock genes driving circadian rhythms and neuroplasticity.
Collapse
|
45
|
Maatoug R, Oudin A, Adrien V, Saudreau B, Bonnot O, Millet B, Ferreri F, Mouchabac S, Bourla A. Digital phenotype of mood disorders: A conceptual and critical review. Front Psychiatry 2022; 13:895860. [PMID: 35958638 PMCID: PMC9360315 DOI: 10.3389/fpsyt.2022.895860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mood disorders are commonly diagnosed and staged using clinical features that rely merely on subjective data. The concept of digital phenotyping is based on the idea that collecting real-time markers of human behavior allows us to determine the digital signature of a pathology. This strategy assumes that behaviors are quantifiable from data extracted and analyzed through digital sensors, wearable devices, or smartphones. That concept could bring a shift in the diagnosis of mood disorders, introducing for the first time additional examinations on psychiatric routine care. OBJECTIVE The main objective of this review was to propose a conceptual and critical review of the literature regarding the theoretical and technical principles of the digital phenotypes applied to mood disorders. METHODS We conducted a review of the literature by updating a previous article and querying the PubMed database between February 2017 and November 2021 on titles with relevant keywords regarding digital phenotyping, mood disorders and artificial intelligence. RESULTS Out of 884 articles included for evaluation, 45 articles were taken into account and classified by data source (multimodal, actigraphy, ECG, smartphone use, voice analysis, or body temperature). For depressive episodes, the main finding is a decrease in terms of functional and biological parameters [decrease in activities and walking, decrease in the number of calls and SMS messages, decrease in temperature and heart rate variability (HRV)], while the manic phase produces the reverse phenomenon (increase in activities, number of calls and HRV). CONCLUSION The various studies presented support the potential interest in digital phenotyping to computerize the clinical characteristics of mood disorders.
Collapse
Affiliation(s)
- Redwan Maatoug
- Service de Psychiatrie Adulte de la Pitié-Salpêtrière, Institut du Cerveau (ICM), Sorbonne Université, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.,iCRIN (Infrastructure for Clinical Research in Neurosciences), Paris Brain Institute (ICM), Sorbonne Université, INSERM, CNRS, Paris, France
| | - Antoine Oudin
- Service de Psychiatrie Adulte de la Pitié-Salpêtrière, Institut du Cerveau (ICM), Sorbonne Université, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.,iCRIN (Infrastructure for Clinical Research in Neurosciences), Paris Brain Institute (ICM), Sorbonne Université, INSERM, CNRS, Paris, France
| | - Vladimir Adrien
- iCRIN (Infrastructure for Clinical Research in Neurosciences), Paris Brain Institute (ICM), Sorbonne Université, INSERM, CNRS, Paris, France.,Department of Psychiatry, Sorbonne Université, Hôpital Saint Antoine-Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Bertrand Saudreau
- iCRIN (Infrastructure for Clinical Research in Neurosciences), Paris Brain Institute (ICM), Sorbonne Université, INSERM, CNRS, Paris, France.,Département de Psychiatrie de l'Enfant et de l'Adolescent, Assistance Publique des Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Olivier Bonnot
- CHU de Nantes, Department of Child and Adolescent Psychiatry, Nantes, France.,Pays de la Loire Psychology Laboratory, Nantes, France
| | - Bruno Millet
- Service de Psychiatrie Adulte de la Pitié-Salpêtrière, Institut du Cerveau (ICM), Sorbonne Université, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.,iCRIN (Infrastructure for Clinical Research in Neurosciences), Paris Brain Institute (ICM), Sorbonne Université, INSERM, CNRS, Paris, France
| | - Florian Ferreri
- iCRIN (Infrastructure for Clinical Research in Neurosciences), Paris Brain Institute (ICM), Sorbonne Université, INSERM, CNRS, Paris, France.,Department of Psychiatry, Sorbonne Université, Hôpital Saint Antoine-Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Stephane Mouchabac
- iCRIN (Infrastructure for Clinical Research in Neurosciences), Paris Brain Institute (ICM), Sorbonne Université, INSERM, CNRS, Paris, France.,Department of Psychiatry, Sorbonne Université, Hôpital Saint Antoine-Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Alexis Bourla
- iCRIN (Infrastructure for Clinical Research in Neurosciences), Paris Brain Institute (ICM), Sorbonne Université, INSERM, CNRS, Paris, France.,Department of Psychiatry, Sorbonne Université, Hôpital Saint Antoine-Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.,INICEA Korian, Paris, France
| |
Collapse
|
46
|
Wu C, McMahon M, Fritz H, Schnyer DM. circadian rhythms are not captured equal: Exploring Circadian metrics extracted by differentcomputational methods from smartphone accelerometer and GPS sensors in daily life tracking. Digit Health 2022; 8:20552076221114201. [PMID: 35874860 PMCID: PMC9297448 DOI: 10.1177/20552076221114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To identify the differences between circadian rhythm (CR) metrics characterized by different mobile sensors and computational methods. Methods We used smartphone tracking and daily survey data from 225 college student participants, applied four methods (survey construct automation, cosinor regression, non-parametric method, Fourier analysis) on two types of smartphone sensor data (GPS, accelerometer) to characterize CR. We explored the inter-relations among the extracted circadian metrics as well as between the circadian metrics and participants’ self-reported mood and sleep outcomes. Results Compared to GPS signals, smartphone accelerometer activity follows an intradaily distribution that starts earlier in the day, winds down later, reaches half cumulative activity about the same time, conforms less to a sinusoidal wave, and exhibits more intradaily fragmentation but higher CR strength and lower interdaily disruption. We found a notable negative correlation between intradaily variability and CR strength especially pronounced in GPS activity. Self-reported sleep and mood outcomes showed significant correlations with particular CR metrics. Conclusions We revealed significant inter-relations and discrepancies in the circadian metrics discovered from two smartphone sensors and four CR algorithms and their bearings on wellbeing indicators such as sleep quality and loneliness.
Collapse
Affiliation(s)
- Congyu Wu
- Department of Psychology, University of Texas at Austin, USA
| | - Megan McMahon
- Department of Psychology, University of Texas at Austin, USA
| | - Hagen Fritz
- Department of Civil, Environmental, and Architectural Engineering, University of Texas at Austin, USA
| | | |
Collapse
|
47
|
Davidson BI. The crossroads of digital phenotyping. Gen Hosp Psychiatry 2022; 74:126-132. [PMID: 33653612 DOI: 10.1016/j.genhosppsych.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
The term 'Digital Phenotyping' has started to appear with increasing regularity in medical research, especially within psychiatry. This aims to bring together digital traces (e.g., from smartphones), medical data (e.g., electronic health records), and lived experiences (e.g., daily activity, location, social contact), to better monitor, intervene, and diagnose various psychiatric conditions. However, is this notion any different from digital traces or the quantified self? While digital phenotyping has the potential to transform and revolutionize medicine as we know it; there are a number of challenges that must be addressed if research is to blossom. At present, these issues include; (1) methodological issues, for example, the lack of clear theoretical links between digital markers (e.g., battery life, interactions with smartphones) and condition relapses, (2) the current tools being employed, where they typically have a number of security or privacy issues, and are invasive by nature, (3) analytical methods and approaches, where I question whether research should start in larger-scale epidemiological scale or in smaller (and potentially highly vulnerable) patient populations as is the current norm, (4) the current lack of security and privacy regulation adherence of apps used, and finally, (5) how do such technologies become integrated into various healthcare systems? This aims to provide deep insight into how the Digital Phenotyping could provide huge promise if we critically reflect now and gather clinical insights with a number of other disciplines such as epidemiology, computer- and the social sciences to move forward.
Collapse
Affiliation(s)
- Brittany I Davidson
- Information, Decisions, and Operations Division, School of Management, University of Bath, United Kingdom; Department of Computer Science, University of Bristol, United Kingdom.
| |
Collapse
|
48
|
Guo P, Fang Y, Feng M, Shen Y, Yang S, Wang S, Qian M. Study on the Changes in Circadian Rhythm Before and After Treatment and the Influencing Factors in Patients with Depression. Neuropsychiatr Dis Treat 2022; 18:2661-2669. [PMID: 36387948 PMCID: PMC9661990 DOI: 10.2147/ndt.s384879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To investigate the circadian rhythms of patients with major depressive disorder (MDD) pre-treatment and post-treatment to analyse possible influencing factors. METHODS In this study, we recruited 154 patients in the acute phase of MDD from 10 psychiatric centers in the province. The patients were divided into a morning chronotype group (16-41 points), an intermediate chronotype group (42-58 points) and an evening chronotype group (59-86 points), according to the total scores obtained from the morningness-eveningness questionnaire (MEQ). They were treated randomly with antidepressants, either selective serotonin reuptake inhibitors or agomelatine, for 12 weeks and were evaluated using the MEQ, the 17-item Hamilton Depression Rating Scale (HAMD-17), the Hamilton anxiety scale, the Snaith-Hamilton pleasure scale (SHAPS), the multidimensional fatigue inventory (MFI-20) and the Pittsburgh sleep quality index at the baseline and then at 2, 4, 8 and 12 weeks. The results were analysed by Logistic regression analysis and repeated-measures analysis of variance. RESULTS The baseline detection rates for the evening, intermediate and morning types were 14.93%, 56.5% and 28.57%, respectively. HAMD-17 scores were significantly lower at weeks 2, 4, 8, and 12 after treatment in patients with different concurrent phenotypes compared with those before treatment (P<0.05). There were significant differences in gender, age, body mass index, whether depression was first-episode, type of medication, baseline-MEQ and baseline-SHAPS in the chronotype change group compared with the post-treatment chronotype unchanged group (p<0.05). Logistic regression analysis showed that medication type (P=0.047), baseline MEQ (P=0.001) and baseline SHAPS (P=0.001) were risk factors for improvement in circadian rhythm after treatment for depression. CONCLUSION Circadian rhythm disturbances can be adjusted to a normal pattern with effective antidepressant therapy. The medication type, baseline MEQ and baseline SHAPS scores were the influencing factors for the recovery of circadian rhythm disorders.
Collapse
Affiliation(s)
- Ping Guo
- Department of Psychosomatic Medicine, Huzhou Third Municipal Hospital, Huzhou, People's Republic of China.,Huzhou Third Municipal Hospital Affiliated with Huzhou University, Huzhou, People's Republic of China
| | - Yu Fang
- Department of Psychosomatic Medicine, Huzhou Third Municipal Hospital, Huzhou, People's Republic of China
| | - Min Feng
- Department of Psychosomatic Medicine, Huzhou Third Municipal Hospital, Huzhou, People's Republic of China
| | - Yue Shen
- Department of Psychosomatic Medicine, Huzhou Third Municipal Hospital, Huzhou, People's Republic of China
| | - Shengliang Yang
- Department of Psychosomatic Medicine, Huzhou Third Municipal Hospital, Huzhou, People's Republic of China
| | - Shikai Wang
- Department of Psychosomatic Medicine, Huzhou Third Municipal Hospital, Huzhou, People's Republic of China
| | - Mincai Qian
- Department of Psychosomatic Medicine, Huzhou Third Municipal Hospital, Huzhou, People's Republic of China
| |
Collapse
|
49
|
Gruichich TS, Gomez JCD, Zayas-Cabán G, McInnis MG, Cochran AL. A digital self-report survey of mood for bipolar disorder. Bipolar Disord 2021; 23:810-820. [PMID: 33587813 PMCID: PMC8364560 DOI: 10.1111/bdi.13058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 02/02/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Bipolar disorder (BP) is commonly researched in digital settings. As a result, standardized digital tools are needed to measure mood. We sought to validate a new survey that is brief, validated in digital form, and able to separately measure manic and depressive severity. METHODS We introduce a 6-item digital survey, called digiBP, for measuring mood in BP. It has three depressive items (depressed mood, fidgeting, fatigue), two manic items (increased energy, rapid speech), and one mixed item (irritability); and recovers two scores (m and d) to measure manic and depressive severity. In a secondary analysis of individuals with BP who monitored their symptoms over 6 weeks (n = 43), we perform a series of analyses to validate the digiBP survey internally, externally, and as a longitudinal measure. RESULTS We first verify a conceptual model for the survey in which items load onto two factors ("manic" and "depressive"). We then show weekly averages of m and d scores from digiBP can explain significant variation in weekly scores from the Young Mania Rating Scale (R2 = 0.47) and SIGH-D (R2 = 0.58). Lastly, we examine the utility of the survey as a longitudinal measure by predicting an individual's future m and d scores from their past m and d scores. CONCLUSIONS While further validation is warranted in larger, diverse populations, these validation analyses should encourage researchers to consider digiBP for their next digital study of BP.
Collapse
|
50
|
Ortiz A, Maslej MM, Husain MI, Daskalakis ZJ, Mulsant BH. Apps and gaps in bipolar disorder: A systematic review on electronic monitoring for episode prediction. J Affect Disord 2021; 295:1190-1200. [PMID: 34706433 DOI: 10.1016/j.jad.2021.08.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/18/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Long-term clinical monitoring in bipolar disorder (BD) is an important therapeutic tool. The availability of smartphones and wearables has sparked the development of automated applications to remotely monitor patients. This systematic review focus on the current state of electronic (e-) monitoring for episode prediction in BD. METHODS We systematically reviewed the literature on e-monitoring for episode prediction in adult BD patients. The systematic review was done according to the guidelines for reporting of systematic reviews and meta-analyses (PRISMA) and was registered in PROSPERO on April 29, 2020 (CRD42020155795). We conducted a search of Web of Science, MEDLINE, EMBASE, and PsycINFO (all 2000-2020) databases. We identified and extracted data from 17 published reports on 15 relevant studies. RESULTS Studies were heterogeneous and most had substantial methodological and technical limitations. Models varied widely in their performance. Published metrics were too heterogeneous to lend themselves to a meta-analysis. Four studies reported sensitivity (range: 0.21 - 0.95); and two reported specificity for prediction of mood episodes (range: 0.36 - 0.99). Two studies reported accuracy (range: 0.64 - 0.88) and four reported area under the curve (AUC; range: 0.52-0.95). Overall, models were better in predicting manic or hypomanic episodes, but their performance depended on feature type. LIMITATIONS Our conclusions are tempered by the lack of appropriate information impeding our ability to synthesize the available evidence. CONCLUSIONS Given the clinical variability in BD, predicting mood episodes remains a challenging task. Emerging e-monitoring technology for episode prediction in BD requires more development before it can be adopted clinically.
Collapse
Affiliation(s)
- Abigail Ortiz
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Marta M Maslej
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - M Ishrat Husain
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of California San Diego, United States
| | - Benoit H Mulsant
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|