1
|
Mansouri K, Greupner T, Hahn A. Blood Pressure Stability and Plasma Aldosterone Reduction: The Effects of a Sodium and Bicarbonate-Rich Water - A Randomized Controlled Intervention Study. Blood Press 2024; 33:2291411. [PMID: 38124675 DOI: 10.1080/08037051.2023.2291411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
Objective: Hypertension is a recognized risk factor for cardiovascular disease (CVD), and dietary sodium intake has been linked to its development. However, mineral water high in bicarbonate and sodium does not appear to have adverse effects on blood pressure.This study examines the effects of consuming a mineral water high in bicarbonate and sodium (HBS) compared to a low bicarbonate and sodium (LBS) mineral water on blood pressure and related factors.Methods: A randomized controlled intervention was conducted with 94 healthy participants, consuming 1,500 - 2,000 mL daily of either mineral water high in bicarbonate and sodium (HBS water, n = 49) or low in bicarbonate and sodium (LBS water, n = 45). Blood pressure, anthropometrics, and urinary calcium and sodium excretion were assessed at baseline and after 28 days. 3-day food protocols were assessed to evaluate possible dietary changes.Results: Blood pressure changes did not differ between the groups. Both normotensive and hypertensive subjects showed similar changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) in response to the different test waters. Serum aldosterone decreased significantly in both groups, with a greater reduction in the HBS group. Urinary calcium excretion significantly decreased (p = 0.002) and sodium excretion increased in the HBS group. Multiple linear regression analyses indicated no association between urinary sodium excretion and systolic blood pressure increase in the HBS group (B = 0.046, p = 0.170). Changes in urinary sodium excretion did not correlate with changes in serum aldosterone in the same group (r=-0.146, p = 0.350).Conclusions: The study revealed no significant differences in blood pressure changes between individuals consuming HBS water and LBS water. Notably, the additional sodium intake from the test water was effectively excreted.Trial registration: This trial was registered in the German Clinical Trials Register (DRKS00025341, https://drks.de/search/en).
Collapse
Affiliation(s)
- Katharina Mansouri
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, 30159, Hanover, Germany
| | - Theresa Greupner
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, 30159, Hanover, Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, 30159, Hanover, Germany
| |
Collapse
|
2
|
Cheng N, Josse AR. Dairy and Exercise for Bone Health: Evidence from Randomized Controlled Trials and Recommendations for Future Research. Curr Osteoporos Rep 2024; 22:502-514. [PMID: 39269594 DOI: 10.1007/s11914-024-00882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE OF REVIEW To examine evidence from randomized controlled trials (RCTs) on how modifiable factors such as exercise and nutrition, with a focus on dairy products, play a role in improving bone health across the lifespan. RECENT FINDINGS Meta-analyses of RCTs demonstrate the advantages of consuming dairy products to improve bone mineral density/content (BMD/BMC) and markers of bone metabolism and turnover (BTMs). Eighteen RCTs were conducted investigating the combined effects of dairy and exercise, with most indicating a benefit in youth and adult populations. Results were less conclusive in older adults, perhaps due to altered requirements for dairy/nutrients and exercise with increased age. RCTs demonstrate that dairy product consumption alone benefits bone health and can enhance the effects of exercise on bone. This may help improve skeletal growth and development in adolescence and prevent osteoporosis with increased age. Future RCTs should account for habitual nutrient intakes, and dairy dosage, timing, and matrix effects.
Collapse
Affiliation(s)
- Nicholas Cheng
- School of Kinesiology and Health Science, Muscle Health Research Centre, Faculty of Health, York University, 4700 Keele Street, ON, M3J 1P3, Toronto, Canada
| | - Andrea R Josse
- School of Kinesiology and Health Science, Muscle Health Research Centre, Faculty of Health, York University, 4700 Keele Street, ON, M3J 1P3, Toronto, Canada.
| |
Collapse
|
3
|
Malinowska J, Małecka-Giełdowska M, Szymura W, Ciepiela O. Disturbances of calcium, magnesium, and phosphate homeostasis: incidence, probable causes, and outcome. Clin Chem Lab Med 2024; 62:e233-e235. [PMID: 38501348 DOI: 10.1515/cclm-2024-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Justyna Malinowska
- Department of Laboratory Medicine, 37803 Medical University of Warsaw , Warsaw, Poland
- 37803 Doctoral School at Medical University of Warsaw , Warsaw, Poland
| | - Milena Małecka-Giełdowska
- Department of Laboratory Medicine, 37803 Medical University of Warsaw , Warsaw, Poland
- Central Laboratory, 37803 Central Teaching Hospital of University Clinical Center of Medical University of Warsaw , Warsaw, Poland
| | | | - Olga Ciepiela
- Department of Laboratory Medicine, 37803 Medical University of Warsaw , Warsaw, Poland
- Central Laboratory, 37803 Central Teaching Hospital of University Clinical Center of Medical University of Warsaw , Warsaw, Poland
| |
Collapse
|
4
|
Alghanem H, Liu NCP, Gupta A, Liao C, Wool GD, Rubin DS, Carll T. Ratios of calcium to citrate administration in blood transfusion for traumatic hemorrhage: A retrospective cohort study. Transfusion 2024. [PMID: 39351914 DOI: 10.1111/trf.18029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Massive transfusion with citrated blood products causes hypocalcemia, which is associated with mortality. Recognition of this problem has led to increased calcium administration; however, the optimal dosing is still unknown. STUDY DESIGN AND METHODS This retrospective, single-center study included level 1 trauma patients in 2019 and 2020 who underwent an operation within 12 h of arrival and received a transfusion. Preoperative and intraoperative administrations were totaled to calculate the ratio of administered calcium to the number of blood transfusions for each patient. The citrate content of each blood component was estimated to calculate a second ratio, the ratio of administered calcium to administered citrate. Receiver Operating Characteristic (ROC) curves were performed on both ratios to determine the optimal cutoff values for predicting severe hypocalcemia (ionized calcium <0.9 mmol/L) and hypercalcemia (>1.35 mmol/L) at the end of the intraoperative period. RESULTS A total of 506 trauma activations were included, receiving a mean of 17.4 citrated blood products and 16.3 mmol of calcium (equivalent to 2400 mg of calcium chloride). No ratio was statistically significant in differentiating severely hypocalcemic patients from the rest. A calcium to blood ratio of 0.903 mmol of administered calcium per citrated blood product differentiated hypercalcemic patients from the rest. DISCUSSION Quantifying received calcium and citrated blood products was insufficient to predict severe hypocalcemia, suggesting other contributions to hypocalcemia. We demonstrated an upper-limit ratio for calcium administration in traumatic hemorrhage; however, further studies are required to determine what calcium dosing regimen results in the best outcomes.
Collapse
Affiliation(s)
- Husam Alghanem
- Department of Anesthesiology, Pain Medicine, and Perioperative Medicine, Henry Ford Health System, Detroit, Michigan, USA
| | - Nathan Chi-Ping Liu
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Atul Gupta
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Chuanhong Liao
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | | | - Daniel Steven Rubin
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Timothy Carll
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Tan MY, Mo CY, Zhao Q. The Association between Magnesium Depletion Score and Hypertension in US Adults: Evidence from the National Health and Nutrition Examination Survey (2007-2018). Biol Trace Elem Res 2024; 202:4418-4430. [PMID: 38147232 DOI: 10.1007/s12011-023-04034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The magnesium depletion score (MDS) emerges as a new valuable predictor of the body's magnesium status index. This study aims to explore the link between MDS and hypertension (HTN) using the National Health and Nutrition Examination Survey (NHANES) data. A total of 9708 participants from NHANES (2007-2018) were enrolled to investigate MDS's connection with HTN. HTN was defined based on clinical guidelines. MDS classification (low, 0-1; middle, 2; high, 3-5) relied on alcohol consumption, diuretic use, proton-pump inhibitor (PPI) usage, and kidney disease. Multivariable logistic regression assessed MDS-HTN association. Subsequent analyses included interaction tests, subgroups, and sensitivity analysis. Each unit increase in MDS correlated with an 87% higher HTN risk (OR, 1.87; 95% CI, 1.64-2.13) after adjusting for confounders. High MDS participants exhibited significantly elevated HTN risk compared to low MDS counterparts (OR, 8.31; 95% CI, 4.81-14.36), with a significant trend across MDS groups (p < 0.001). Subgroup analyses supported a consistent positive correlation. Sensitivity analysis confirmed a robust association. The results indicated a positive correlation between MDS and the risk of developing HTN in US adults.
Collapse
Affiliation(s)
- Mo-Yao Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chao-Yue Mo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Zhao
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Stockman J. Dietary phosphorus and renal disease in cats: where are we? J Feline Med Surg 2024; 26:1098612X241283355. [PMID: 39376053 PMCID: PMC11529143 DOI: 10.1177/1098612x241283355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PRACTICAL RELEVANCE Phosphorus is an essential nutrient required for the normal function of every cell in the body and a deficiency in dietary phosphorus may lead to adverse effects. Conversely, high dietary phosphorus may cause kidney damage in otherwise healthy adult cats, particularly when provided in highly bioavailable forms and when the calcium-to-phosphorus ratio is low. For cats that have chronic kidney disease (CKD), phosphorus is the most important mineral in its pathogenesis and morbidity. As the disease progresses, elevated phosphorus may increase the risk of complications such as soft tissue mineralization, which can lead to a further decrease in renal function. Additionally, the hormones secreted in response to increased circulating phosphorus have harmful effects, such as bone resorption, and can cause cardiovascular pathology. Very low phosphorus diets can also be problematic in cats with early CKD, potentially leading to hypercalcemia. CLINICAL CHALLENGES There is currently a lack of maximum safety limits for dietary phosphorus in accepted nutritional guidelines in North American and Europe, which makes it difficult to assess the safety of some higher phosphorus cat foods. Additionally, information regarding phosphorus bioavailability is unknown for many diets and there are no commercially available tests. Similarly, there is no consensus regarding phosphorus requirement and recommended intake in cats with International Renal Interest Society stage 1-4 CKD despite there being targets for serum phosphorus. AIMS This review evaluates dietary phosphorus in healthy cats and cats with renal disease, and describes how newer research is informing evolving clinical approaches in feline nutrition. AUDIENCE The article is aimed at general practitioners, internal medicine specialists and veterinary nutritionists. EVIDENCE BASE Information provided in this article is drawn from the published literature.
Collapse
Affiliation(s)
- Jonathan Stockman
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Long Island University, New York, USA
| |
Collapse
|
7
|
Sivagurunathan U, Izquierdo M, Tseng Y, Prabhu PAJ, Zamorano MJ, Robaina L, Domínguez D. Effects of the Interaction between Dietary Vitamin D 3 and Vitamin K 3 on Growth, Skeletal Anomalies, and Expression of Bone and Calcium Metabolism-Related Genes in Juvenile Gilthead Seabream ( Sparus aurata). Animals (Basel) 2024; 14:2808. [PMID: 39409757 PMCID: PMC11475414 DOI: 10.3390/ani14192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The interaction between vitamin D and vitamin K is crucial for regulating bone metabolism and maintaining calcium homeostasis across diverse animal species due to their complementary roles in calcium metabolism and bone health. However, research on this interaction of vitamin D and K in fish, particularly Mediterranean species like gilthead seabream, is limited or not studied. This study aimed to understand the effects of different dietary combinations of vitamin D3 and K3 on juvenile gilthead seabream. Accordingly, seabream juveniles were fed with varying combinations of vitamin D3/vitamin K3 (mg/kg diet) for 3 months: (0.07/0.01), (0.20/0.58), (0.19/1.65), (0.51/0.74), (0.56/1.00). At the end of the trial, survival, growth, body morphology, serum calcitriol, and vertebral mineral composition remained unaffected by varying vitamin levels, while gene expression patterns related to bone formation, resorption, and calcium regulation in various tissues were significantly influenced by both vitamins and their interaction. Gilthead seabream juveniles fed the 0.07/0.01 mg/kg diet upregulated calcium-regulating genes in the gills, indicating an effort to enhance calcium absorption to compensate for dietary deficiencies. Conversely, an increase in vitamin D3 and K3 up to 0.19 and 1.65 mg/kg, respectively, upregulated bone formation, bone remodeling, and calcium homeostasis-related gene expression in vertebra and other tissues. On the contrary, a dietary increase in these vitamins up to 0.56 mg/kg vitamin D3 and 1.00 mg/kg vitamin K3 downregulated calcium metabolism-related genes in tissues, suggesting an adverse interaction resulting from elevated levels of these vitamins in the diet. Hence, sustaining an equilibrium in the dietary intake of vitamin D3 and vitamin K3, in an appropriately combined form, may potentially induce interactions between the vitamins, contributing to favorable effects on bone development and calcium regulation in gilthead seabream juveniles.
Collapse
Affiliation(s)
- Ulaganathan Sivagurunathan
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Yiyen Tseng
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Philip Antony Jesu Prabhu
- Institute of Marine Research (IMR), Fish Nutrition Program, 5005 Bergen, Norway;
- Nutrition and Feed Technology Group, Nofima, 5141 Bergen, Norway
| | - María Jesús Zamorano
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - David Domínguez
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
- Institute of Marine Research (IMR), Fish Nutrition Program, 5005 Bergen, Norway;
| |
Collapse
|
8
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
9
|
Yu S, Tang C, Yu S, Li W, Wang J, Liu Z, Yan X, Wang L, Yang Y, Feng J, Wu J, Zhang K, Guan H, Liu Y, Zhang S, Sun X, Peng H. A Biodegradable Fiber Calcium Ion Sensor by Covalently Bonding Ionophores on Bioinert Nanoparticles. Adv Healthc Mater 2024; 13:e2400675. [PMID: 38843486 DOI: 10.1002/adhm.202400675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Implantable sensors, especially ion sensors, facilitate the progress of scientific research and personalized healthcare. However, the permanent retention of implants induces health risks after sensors fulfill their mission of chronic sensing. Biodegradation is highly anticipated; while; biodegradable chemical sensors are rare due to concerns about the leakage of harmful active molecules after degradation, such as ionophores. Here, a novel biodegradable fiber calcium ion sensor is introduced, wherein ionophores are covalently bonded with bioinert nanoparticles to replace the classical ion-selective membrane. The fiber sensor demonstrates comparable sensing performance to classical ion sensors and good flexibility. It can monitor the fluctuations of Ca2+ in a 4-day lifespan in vivo and biodegrade in 4 weeks. Benefiting from the stable bonding between ionophores and nanoparticles, the biodegradable sensor exhibits a good biocompatibility after degradation. Moreover, this approach of bonding active molecules on bioinert nanoparticles can serve as an effective methodology for minimizing health concerns about biodegradable chemical sensors.
Collapse
Affiliation(s)
- Sihui Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Sijia Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Wenjun Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jiajia Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Ziwei Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xinheng Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Liyuan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yiqing Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Jiaqi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kailin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Hang Guan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yue Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Songlin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
10
|
Juel Mortensen L, Kooij I, Lorenzen M, Rye Jørgensen N, Røder A, Jørgensen A, Andersson AM, Juul A, Blomberg Jensen M. Injection of luteinizing hormone or human chorionic gonadotropin increases calcium excretion and serum PTH in males. Cell Calcium 2024; 122:102908. [PMID: 38852333 DOI: 10.1016/j.ceca.2024.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024]
Abstract
Animal and human studies have suggested that sex steroids have calciotropic actions, and it has been proposed that follicle-stimulating hormone (FSH) may exert direct effects on bone. Here, we demonstrate the expression of the receptor for Luteinizing hormone (LH) and human choriogonadotropin (hCG), LHCGR, in human kidney tissue, suggesting a potential influence on calcium homeostasis. To investigate the role of LHCGR agonist on calcium homeostasis in vivo, we conducted studies in male mice and human subjects. Male mice were treated with luteinizing hormone (LH), and human extrapolation was achieved by injecting 5000 IU hCG once to healthy men or men with hypergonadotropic or hypogonadotropic hypogonadism. In mice, LH treatment significantly increased urinary calcium excretion and induced a secondary increase in serum parathyroid hormone (PTH). Similarly, hCG treatment in healthy men led to a significant increase in urinary calcium excretion, serum PTH levels, and 1,25 (OH)2D3, while calcitonin, and albumin levels were reduced, possibly to avoid development of persistent hypocalcemia. Still, the rapid initial decline in ionized calcium coincided with a significant prolongation of the cardiac QTc-interval that normalized over time. The observed effects may be attributed to LH/hCG-receptor (LHCGR) activation, considering the presence of LHCGR expression in human kidney tissue, and the increase in sex steroids occurred several hours after the changes in calcium homeostasis. Our translational study shed light on the intricate relationship between gonadotropins, sex hormones and calcium, suggesting that LHCGR may be influencing calcium homeostasis directly or indirectly.
Collapse
Affiliation(s)
- Li Juel Mortensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Ireen Kooij
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Mette Lorenzen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Medicine, Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark; Translational Research Centre, Rigshospitalet, Denmark
| | - Andreas Røder
- Department of Clinical Medicine, Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark; Department of Urology, Urological Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Anders Juul
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
11
|
Dutta P, Layton AT. Paradoxes in magnesium transport in type 1 Bartter's syndrome and Gitelman's syndrome: a modeling analysis. Am J Physiol Renal Physiol 2024; 327:F386-F396. [PMID: 38991009 DOI: 10.1152/ajprenal.00117.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Type 1 Bartter's syndrome and Gitelman's syndrome are characterized by mutations in two key renal Na+ transporters, Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC). Since these two transporters play an important role in regulating magnesium (Mg2+) and calcium (Ca2+) transport in the kidney, significant alterations in the transport of these two electrolytes are observed in type 1 Bartter's syndrome and Gitelman's syndrome. In this study, we used our sex-specific computational models of renal electrolyte transport in rats to understand the complex compensatory mechanisms, in terms of alterations in tubular dimensions and ion transporter activities, that lead to Mg2+ and Ca2+ preservation or wasting in these two genetic disorders. Given the sexual dimorphism in renal transporter patterns, we also assessed how the magnitude of these alterations may differ between males and females. Model simulations showed that in type 1 Bartter's syndrome, nephron adaptations prevent salt wasting and favor Mg2+ preservation but not Ca2+, whereas in Gitelman's syndrome, those adaptations favor Ca2+ preservation over Mg2+. In addition, our models predicted that the compensatory alterations in tubular dimensions and ion transporter activities are stronger in females than in males.NEW & NOTEWORTHY Although changes in Ca2+ excretion in type 1 Bartter's syndrome and Gitelman's syndrome are well understood, Mg2+ excretion displays an interesting paradox. This computational modeling study provides insights into how renal adaptations in these two disorders impact Ca2+ and Mg2+ transport along different nephron segments. Model simulations showed that nephron adaptations favor Mg2+ preservation over Ca2+ in Bartter's syndrome and Ca2+ preservation over Mg2+ in Gitelman's syndrome and are stronger in females than in males.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Ani OG, Medayedupin OA, Azeez AA, Gyebi GA, Boateng ID, Adebayo JO. Toxicity assessment of 3-O-[6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl]-17β-marsdenin isolated from Gongronema latifolium leaf on selected brain and kidney function indices in mice. Toxicon 2024; 247:107830. [PMID: 38936671 DOI: 10.1016/j.toxicon.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The safety of bioactive compounds, especially those isolated from medicinal plants, is a major concern for health authorities, pharmaceutical industries, and the public. Of recent, anti-tumor pregnane glycosides were isolated from Gongronema latifolium leaf, of which the toxicity of one, 3-O-[6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl]-17β-marsdenin (3DMAOM), has not been evaluated. This study, therefore, evaluated the effects of 3DMAOM on selected brain and kidney function indices in mice. Female Swiss albino mice were randomly administered 5% dimethyl sulphoxide and different doses of 3DMAOM (0.5, 1, 2, and 4 mg/kg body weight) for fourteen (14) days, and their blood, brains, and kidneys were collected for biochemical analysis. There was no significant alteration in the activities of alkaline phosphatase (ALP), acetylcholinesterase, creatine kinase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and Mg2+-ATPase in the brain of the treated groups compared to control. Also, no significant changes in the activities of ALP, gamma-glutamyltransferase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and Mg2+-ATPase in the kidney of the treated groups compared to control. The plasma concentrations of Na+, K+, Cl-, PO43-, creatinine, and urea of mice were not significantly altered at all doses of the 3DMAOM compared to controls. However, the plasma concentration of Ca2+ was significantly reduced (p < 0.05) at all doses of the 3DMAOM, and the plasma concentration of uric acid was significantly reduced (p < 0.05) at 2 mg/kg body weight of the 3DMAOM compared to controls. These findings suggest that 3DMAOM isolated from Gongronema latifolium leaf may not adversely affect brain function but may affect calcium ion homeostasis in subjects.
Collapse
Affiliation(s)
- Onyedika Gabriel Ani
- Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, MO, 65211, USA; Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| | | | - Aminat Abike Azeez
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Gideon Ampoma Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, New Karu, 961105, Nasarawa, Nigeria.
| | | | | |
Collapse
|
13
|
Torrijo-Belanche C, Moreno-Franco B, Laclaustra M, Gimeno-Ruiz S, Calvo-Galiano N, Rey-García J, Guallar-Castillón P. Urinary Phosphate and Subclinical Atherosclerosis: The AWHS Study. Nutrients 2024; 16:2780. [PMID: 39203916 PMCID: PMC11357142 DOI: 10.3390/nu16162780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
(1) Background: Atherosclerosis is a leading cause of vascular death worldwide. High urinary phosphate has recently been identified as a cardiovascular risk factor, but its role has not been fully established. The aim of this study was to investigate the association between urinary phosphate and subclinical atherosclerosis in the carotid, femoral as well as coronary territories; (2) Methods: We performed a cross-sectional analysis of a sample of 1169 middle-aged men, aged 50.9 years (SD 3.7), without previous cardiovascular disease, belonging to the Aragon Workers Health Study (AWHS). Urinary phosphate was analyzed in urine samples using the Fiske-Subbarow method. The presence of carotid plaque and femoral plaque was assessed by ultrasound and coronary artery calcium score (CACS) by computed tomography. Demographic, anthropometric and clinical data were collected at annual medical examinations. Logistic regression models were used to estimate the prevalence of adjusted atherosclerosis in the different vascular arteries; (3) Results: A significant inverse association was observed between urinary phosphate and subclinical atherosclerosis in the carotid [OR 95% CI 0.69 (0.49-0.99)] and coronary (CACS > 200) [OR 95% CI 0.46 (0.23-0.88)] arteries; however, no statistically significant association was found between urinary phosphate and the presence of atheroma plaques in the femoral territory [OR 1.02 (0.72-1.45)]; (4) Conclusions: In middle-aged men, a higher urinary phosphate concentration is associated with a lower prevalence of subclinical carotid and coronary atherosclerosis compared with those with a lower urinary phosphate concentration.
Collapse
Affiliation(s)
- Carolina Torrijo-Belanche
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Belén Moreno-Franco
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (M.L.); (N.C.-G.)
- CIBERCV (CIBER de Enfermedades Cardiovasculares), 28029 Madrid, Spain
| | - Martín Laclaustra
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (M.L.); (N.C.-G.)
- CIBERCV (CIBER de Enfermedades Cardiovasculares), 28029 Madrid, Spain
- Department of Medicine, Psychiatry and Dermatology, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | - Naiara Calvo-Galiano
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (M.L.); (N.C.-G.)
- Department of Medicine, Psychiatry and Dermatology, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jimena Rey-García
- Internal Medicine Department, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain;
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- CIBERESP (CIBER de Epidemiología y Salud Pública), 28029 Madrid, Spain
- IMDEA-Food Institute, CEIUAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain
| |
Collapse
|
14
|
Harahap IA, Schmidt M, Pruszyńska-Oszmałek E, Sassek M, Suliburska J. Impact of Lactobacillus acidophilus and Its Combination with Isoflavone Products on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in a Post-Menopausal Osteoporotic Rat Model. Nutrients 2024; 16:2524. [PMID: 39125403 PMCID: PMC11314490 DOI: 10.3390/nu16152524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoporosis in menopausal women requires alternatives to current medications, considering their adverse effects. In this context, probiotics and isoflavone products are promising dietary interventions. The objective of our study was to examine the impacts of Lactobacillus acidophilus and its combination with daidzein and tempeh on calcium status, calcium transporters, and bone metabolism biomarkers in a post-menopausal osteoporotic rat model. A total of 48 female Wistar rats were exposed to a two-stage experiment involving calcium deficit induction and subsequent dietary interventions across six groups. Calcium levels, the gene expression of TRPV5 and TRPV6 calcium transporters, bone histopathology, serum bone metabolism markers, and blood biochemistry were evaluated. The results revealed that, while decreasing serum calcium levels, the groups that received the probiotic L. acidophilus and isoflavone combination exhibited increased bone metabolism biomarkers and decreased calcium transporter expressions, akin to the effects of bisphosphonate. Additionally, significant improvements in bone histopathology were observed in these groups. However, the group receiving probiotic L. acidophilus alone did not exhibit significant changes in bone resorption biomarkers, calcium transporter expression, or various blood parameters. Meanwhile, the combination of probiotic L. acidophilus with tempeh positively influenced hematological parameters and reduced cholesterol and triglyceride levels, but it led to elevated blood glucose levels. Correlation analyses highlighted associations between serum calcium levels, calcium transporter expression, and bone metabolism biomarkers. In conclusion, our findings suggest that the daily consumption of probiotic L. acidophilus in combination with isoflavone products may improve bone health in ovariectomized rats, warranting further research to elucidate potential interactions with other nutrients.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| |
Collapse
|
15
|
Wang Y, Chen Y, Yu Y, Pan X, Fu G. Association of urinary calcium excretion with chronic kidney disease in patients with type 2 diabetes. Int Urol Nephrol 2024; 56:2715-2723. [PMID: 38498272 DOI: 10.1007/s11255-024-03978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Herein, we investigated the correlation between urinary calcium excretion (UCaE) and chronic kidney disease (CKD) in patients with type 2 diabetes mellitus (T2DM). METHODS From August 2018 to January 2023, a total of 2031 T2DM patients providing 24-h urine samples were included in the final analyses. Patients were separated into four cohorts, based on the UCaE quartiles. We then analyzed renal functional indicators like estimated glomerular filtration rate (eGFR) and urinary albumin excretion (UAE) among the four groups. Lastly, we utilized multivariable logistic regression models to investigate the correlation between UCaE and CKD. RESULTS After adjusting for confounding factors, we observed a decreasing trend in CKD prevalence (36.3%, 13.0%, 7.5%, and 6.6%, respectively, P < 0.001) across the UCaE quartiles. Albuminuria (55.5% vs. 40.0%, 36.5%, 37.4%) and macroalbuminuria prevalence (20.0% vs. 9.3%, 5.2%, 5.7%) in the lowest quartile were markedly elevated, compared to the remaining three quartiles (P < 0.001). Meanwhile, the eGFR level (P < 0.001) showed a clearly increasing trend across the UCaE quartiles, and patients with moderate-to-severe decreases in eGFR levels (with cutoff limits at 30-59, 15-30, and < 15 mL/min/1.73m2) were mostly found in the lowest quartile (P < 0.001). Logistic regression analysis revealed that patients in the lowest quartile experienced an enhanced prevalence of CKD, relative to those in the highest quartile (odds ratio: 5.90, 95% confidence interval: 3.60-9.67, P < 0.001). CONCLUSION Decreased UCaE was independently associated with the CKD prevalence in T2DM patients.
Collapse
Affiliation(s)
- Yanru Wang
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | - Yuxing Chen
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | - Yanping Yu
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | - Xin Pan
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | - Guoxiang Fu
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China.
| |
Collapse
|
16
|
Staruschenko A, Alexander RT, Caplan MJ, Ilatovskaya DV. Calcium signalling and transport in the kidney. Nat Rev Nephrol 2024; 20:541-555. [PMID: 38641658 DOI: 10.1038/s41581-024-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans Hospital, Tampa, FL, USA.
| | - R Todd Alexander
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
- Women's and Children's Health Institute, Edmonton, AB, Canada
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
17
|
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbæk LL, Nielsen R, Dimke H, Rieg T, Fenton RA. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2024:S0085-2538(24)00533-7. [PMID: 39089578 DOI: 10.1016/j.kint.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lena L Rosenbæk
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
18
|
Hill Gallant KM, Sprague SM, Rosenbaum DP, Spiegel DM, Kozuka K, Edelstein S, Chertow GM. Tenapanor: A Phosphate Absorption Inhibitor for the Management of Hyperphosphatemia in Patients With Kidney Failure. J Ren Nutr 2024:S1051-2276(24)00156-0. [PMID: 38992521 DOI: 10.1053/j.jrn.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Because of increased risks of cardiovascular disease and death, patients with hyperphosphatemia receiving maintenance dialysis are advised to limit phosphorus consumption and are prescribed phosphate binders in an effort to better control serum phosphate concentrations. Because of large pill size, pill burden, and tolerability issues, phosphate binder adherence is relatively poor. On ingestion, phosphate is absorbed from the intestine via transcellular or paracellular transport. Data show that inhibiting sodium-hydrogen exchanger 3 modulates paracellular phosphate absorption (the predominant pathway in humans). Tenapanor is a first-in-class, minimally absorbed, phosphate absorption inhibitor that selectively inhibits sodium-hydrogen exchanger 3, with a mechanism distinct from, and complementary to, that of phosphate binders. In phase 3 and postregistrational studies, tenapanor conferred statistically significant and clinically meaningful reductions in serum phosphate in patients receiving maintenance dialysis with hyperphosphatemia. Here, we review the available preclinical and clinical data on the effects of tenapanor on controlling intestinal phosphate absorption.
Collapse
Affiliation(s)
- Kathleen M Hill Gallant
- Associate Professor, Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota.
| | - Stuart M Sprague
- Clinical Professor of Medicine, Endeavor Health, University of Chicago, Evanston, Illinois
| | | | - David M Spiegel
- Vice President, Nephrology, Ardelyx, Inc., Waltham, Massachusetts
| | - Kenji Kozuka
- Director, Preclinical Research and Nonclinical Development, Ardelyx, Inc., Fremont, California
| | - Susan Edelstein
- Senior Vice President, Clinical Research, Ardelyx, Inc., Waltham, Massachusetts
| | - Glenn M Chertow
- Professor of Medicine - Nephrology, Departments of Medicine and Epidemiology and Population Health, Stanford University, Palo Alto, California
| |
Collapse
|
19
|
Si GF, Ge YX, Lv XP, Li YQ, Chen XM, Yuan XM. Case report: Near-fatal hypermagnesemia resulting from the use of Epsom salts in a patient with normal renal function. Front Med (Lausanne) 2024; 11:1416956. [PMID: 39021819 PMCID: PMC11251994 DOI: 10.3389/fmed.2024.1416956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Hypermagnesemia commonly occurs in patients with renal dysfunction. Diagnosing hypermagnesemia represents a challenge due to its rarity and the absence of routine monitoring of magnesium levels. Furthermore, the lack of awareness among clinicians regarding this uncommon condition frequently leads to delayed diagnoses. Few patients survive with a serum magnesium level exceeding 7 mmol/L. This article presents a case study of near-fatal hypermagnesemia resulting from the oral administration of Epsom salts in a patient with normal renal function. A 60-year-old female presented to the gastroenterology department on Oct. 6, 2023, with a 3-day history of black stools. She underwent subtotal gastrectomy in 2005 and has a stable history of nephrotic syndrome. To investigate the cause of her bleeding, electronic gastroscopy and colonoscopy were scheduled for Oct. 11, 2023. She experienced a sudden loss of consciousness 30 min after the ingestion of Epsom salts. The attending physician suspected a severe magnesium poisoning. She was promptly administered calcium gluconate, underwent tracheal intubation with ambu bag ventilation, and received early continuous renal replacement therapy (CRRT). Swift diagnosis and CRRT contributed to a reduction in her serum magnesium levels from an initial 8.71 mmol/L to 1.35 mmol/L, leading to a remarkable improvement in the toxic symptoms associated with hypermagnesemia. Subsequently, she was managed in the gastroenterology department, with gastroscopy revealing bleeding from the gastrointestinal anastomotic ulcer. Following conservative treatments including acid suppression, stomach protection, and hemostasis, her symptoms improved, and she was successfully discharged. This study aims to alert clinicians to the possibility of hypermagnesemia in individuals with normal renal function. Physicians should exercise caution when prescribing Epsom salts to patients with underlying gastrointestinal conditions. If necessary, alternative drug therapies may be considered to mitigate the risk of hypermagnesemia. Timely intervention is pivotal in averting life-threatening complications linked to hypermagnesemia.
Collapse
Affiliation(s)
- Gui-Fei Si
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yu-Xin Ge
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiao-Pan Lv
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yu-Quan Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xue-Mei Chen
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xue-Min Yuan
- Department of Gastroenterology, The People’s Hospital of Linyi, Linyi, Shandong, China
| |
Collapse
|
20
|
Schnell J, Miao Z, Achieng M, Fausto CC, Wang V, Kuyper FD, Thornton ME, Grubbs B, Kim J, Lindström NO. Stepwise developmental mimicry generates proximal-biased kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601028. [PMID: 39005387 PMCID: PMC11244853 DOI: 10.1101/2024.06.28.601028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of in vivo human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to in vivo proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of HAVCR1 / KIM1 , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker SOX9 . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
Collapse
|
21
|
Tang P, van den Broek DHN, Jepson RE, Geddes RF, Chang Y, Lötter N, Moniot D, Biourge V, Elliott J. Dietary magnesium supplementation in cats with chronic kidney disease: A prospective double-blind randomized controlled trial. J Vet Intern Med 2024; 38:2180-2195. [PMID: 38952053 PMCID: PMC11256178 DOI: 10.1111/jvim.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Plasma total magnesium concentration (tMg) is a prognostic indicator in cats with chronic kidney disease (CKD), shorter survival time being associated with hypomagnesemia. Whether this risk factor is modifiable with dietary magnesium supplementation remains unexplored. OBJECTIVES Evaluate effects of a magnesium-enriched phosphate-restricted diet (PRD) on CKD-mineral bone disorder (CKD-MBD) variables. ANIMALS Sixty euthyroid client-owned cats with azotemic CKD, with 27 and 33 allocated to magnesium-enriched PRD or control PRD, respectively. METHODS Prospective double-blind, parallel-group randomized trial. Cats with CKD, stabilized on a PRD, without hypermagnesemia (tMg >2.43 mg/dL) or hypercalcemia (plasma ionized calcium concentration, (iCa) >6 mg/dL), were recruited. Both intention-to-treat and per-protocol (eating ≥50% of study diet) analyses were performed; effects of dietary magnesium supplementation on clinicopathological variables were evaluated using linear mixed effects models. RESULTS In the per-protocol analysis, tMg increased in cats consuming a magnesium-enriched PRD (β, 0.25 ± .07 mg/dL/month; P < .001). Five magnesium supplemented cats had tMg >2.92 mg/dL, but none experienced adverse effects. Rate of change in iCa differed between groups (P = .01), with decreasing and increasing trends observed in cats fed magnesium-enriched PRD and control PRD, respectively. Four control cats developed ionized hypercalcemia versus none in the magnesium supplemented group. Log-transformed plasma fibroblast growth factor-23 concentration (FGF23) increased significantly in controls (β, 0.14 ± .05 pg/mL/month; P = .01), but remained stable in the magnesium supplemented group (β, 0.05±.06 pg/mL/month; P =.37). CONCLUSIONS AND CLINICAL IMPORTANCE Magnesium-enriched PRD is a novel therapeutic strategy for managing feline CKD-MBD in cats, further stabilizing plasma FGF23 and preventing hypercalcemia.
Collapse
Affiliation(s)
- Pak‐Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| | | | - Rosanne E. Jepson
- Department of Clinical Science and Services, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| | - Rebecca F. Geddes
- Department of Clinical Science and Services, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| | - Yu‐Mei Chang
- Research Support Office, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
- Present address:
Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUnited Kingdom
| | - Nicola Lötter
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| | | | | | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| |
Collapse
|
22
|
Söderlund F, Gransten J, Patterson E, Lindroos AK, Lignell S, Donat-Vargas C, Bärebring L, Larsson SC, Kippler M, Åkesson A. The Fate of Phosphate: Assessing Dietary Intake and Urinary Excretion in Swedish Adolescents. Curr Dev Nutr 2024; 8:103799. [PMID: 39045147 PMCID: PMC11264180 DOI: 10.1016/j.cdnut.2024.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Background A high total phosphorus (P) intake has been proposed to promote endothelial dysfunction and atherosclerosis. A diet rich in foods containing P additives could contribute to an excessive intake, potentially reflected as increased concentration of P in urine. Objectives This study aimed to assess the intake of total dietary P, P additives, and its sources and examine their correlation with urinary P in a cross-sectional national study in Swedish adolescents. Methods We constructed a database of P additives and applied it to the foods consumed by 3099 participants in the representative school-based dietary survey Riksmaten Adolescents 2016-17. Intake of total dietary P and P additives were assessed using two 24-h recalls. Urinary P was analyzed in a subsample of 756 participants using inductively coupled plasma mass spectrometry. Spearman rank correlation (ρ) was used to assess the association between dietary P intake and urinary P excretion. Results The mean (SD) intake of total P was 1538 (±667) mg/d. Food containing P additives were consumed by 92% of adolescents and the median (IQR) intake was 49 (22-97; range: 0.01-947) mg/d, corresponding to 5% (1%-6%; range: 0%-50%) of total P. The main contributing food to P additives was cola drinks, while the main contributing food group was sausage dishes. Total P intake was weakly correlated with urinary P (ρ = 0.12; P < 0.01) but not with intake of P additives. Conclusions Nearly, all participants consumed P additives, contributing to an average of 5% of total P intake but ranging up to 50%. The intake of total P, but not P additives, was weakly reflected in the urinary P. Access to more comprehensive information on P additives in foods would improve further evaluation of potential health consequences.
Collapse
Affiliation(s)
- Fredrik Söderlund
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Gransten
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma Patterson
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Anna Karin Lindroos
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Carolina Donat-Vargas
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- ISGlobal, Barcelona, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid-IdiPaz, CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Xu Y, Qin Y, Lu H, Liu L, Huang W, Huang A, Ye Y, Shen H, Guo Z, Chen W. The magnesium depletion score is associated with increased likelihood of kidney stone disease among female adults. J Trace Elem Med Biol 2024; 84:127432. [PMID: 38489922 DOI: 10.1016/j.jtemb.2024.127432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
OBJECT The association between magnesium depletion score (MDS) and kidney stone disease (KSD) remains unknown. This study was designed to investigate the association of MDS with KSD in adults. METHODS A total of 19,654 participants were enrolled from the National Health and Nutrition Examination Surveys (NHANES). The MDS was calculated by assessing four aspects, including alcohol assumption, renal function, and use of diuretics and proton pump inhibitor. Multivariable logistic regressions were performed to explore the associations between MDS and the prevalence of KSD. Linear correlations were conducted explore the relationship of testosterone with MDS. RESULTS In the multivariable logistic regressions with full adjustment for confounding variables, the odds ratio of MDS associating with KSD was 1.28 (95% CI: 1.04-1.58, P = 0.022) in total population, and 1.70 (95% CI: 1.16-2.50, P=0.007) in female participants. Besides, compared to the lowest MDS, the highest MDS was associated with a lower testosterone (β = -16.39, P=0.009) after full adjustment in non-menopause women. CONCLUSION This study highlighted a positive correlation of high MDS with KSD in female population, which may be associated low level of serum testosterone.
Collapse
Affiliation(s)
- Ying Xu
- Department of Nephrology, The First Affiliated Hospital of Naval Medical University (Changhai Hospital of Shanghai), Shanghai, China
| | - Yingyi Qin
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Hongtao Lu
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lulu Liu
- Department of Nephrology, The First Affiliated Hospital of Naval Medical University (Changhai Hospital of Shanghai), Shanghai, China
| | - Weiyan Huang
- Department of Nephrology, The First Affiliated Hospital of Naval Medical University (Changhai Hospital of Shanghai), Shanghai, China
| | - Anwen Huang
- Department of Nephrology, The First Affiliated Hospital of Naval Medical University (Changhai Hospital of Shanghai), Shanghai, China
| | - Yufei Ye
- Department of Nephrology, The First Affiliated Hospital of Naval Medical University (Changhai Hospital of Shanghai), Shanghai, China
| | - Hui Shen
- Department of Naval Medicine, Naval Medical University, Shanghai, China.
| | - Zhiyong Guo
- Department of Nephrology, The First Affiliated Hospital of Naval Medical University (Changhai Hospital of Shanghai), Shanghai, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital of Naval Medical University (Changhai Hospital of Shanghai), Shanghai, China.
| |
Collapse
|
24
|
Nohara-Shitama Y, Mok Y, Ballew SH, Rebholz CM, Budoff MJ, Anderson C, Ishigami J, Blaha MJ, Matsushita K. Associations of Dietary Calcium and Phosphorus With Vascular and Valvular Calcification: The ARIC Study. JACC. ADVANCES 2024; 3:100993. [PMID: 39130050 PMCID: PMC11313033 DOI: 10.1016/j.jacadv.2024.100993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 08/13/2024]
Abstract
Background High dietary calcium and phosphorus may accelerate vascular calcification, but epidemiological data are inconsistent. Most of those studies assessed diet at one point and have not been systematically evaluated. Objectives The purpose of this study was to assess the associations of dietary calcium and phosphorus intakes in middle age with coronary artery and extra-coronary calcification at older age. Methods We studied 1,914 participants from the ARIC (Atherosclerosis Risk In Communities) study (mean age 80.5 years) without coronary heart disease who underwent chest computed tomography scans at visit 7 (2018-2019) and completed a 66-item food frequency questionnaire at 2 earlier visits (visit 1 [1987-1989] and visit 3 [1993-1995]). Dietary calcium and phosphorus intakes were averaged between these 2 visits. Calcification was quantified by the Agatston score in coronary artery, ascending aorta, descending aorta, aortic valve ring, aortic valve, and mitral valve. Results Dietary calcium intake was inversely associated with coronary artery and ascending aorta calcification, whereas the association was not significant for other measures of extra-coronary calcification. For example, the highest vs lowest quartile of calcium intake showed an adjusted OR of 0.66 (95% CI: 0.45-0.98) for coronary artery calcification (Agatston score ≥75th percentile). Dietary phosphorus intake demonstrated similar results, but the magnitude of the association was weaker than dietary calcium intake. Conclusions Dietary calcium and phosphorus intakes at middle age were not positively associated with vascular and valvular calcification at over 75 years old. Our findings did not support the link between a calcium or phosphorus-rich diet and vascular and valvular calcification.
Collapse
Affiliation(s)
- Yume Nohara-Shitama
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yejin Mok
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shoshana H. Ballew
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, USA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew J. Budoff
- Department of Medicine, Lundquist Institute at Harbor UCLA Medical Center, Torrance, California, USA
| | - Cheryl Anderson
- Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, California, USA
| | - Junichi Ishigami
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael J. Blaha
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Sivaprasad M, Shalini T, Sahay M, Sahay R, Satyanarayanan M, Reddy GB. Plasma levels and dietary intake of minerals in patients with type 2 diabetes and chronic kidney disease: A case-control study. J Trace Elem Med Biol 2024; 84:127425. [PMID: 38484635 DOI: 10.1016/j.jtemb.2024.127425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND AND AIM Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease (CKD) worldwide. Altered mineral levels leading to adverse outcomes are widely reported in diabetes but limited in DKD, in the Indian scenario, hence this study was taken up to address this issue. METHODS A hospital-based case-control study was taken up with 54 healthy controls (C) and 140 subjects with type 2 diabetes wherein 74 subjects with diabetes and CKD formed the DKD group, and 66 subjects with diabetes but no CKD formed the diabetic no-chronic kidney disease (DNCKD) group. High-resolution inductively coupled plasma mass spectrometry was used to evaluate the blood levels of minerals (calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), and selenium (Se)), and a raw food-based food frequency questionnaire for dietary intakes. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation (mL/min/1.73 m2) and albuminuria. Spearman's rank correlation was used to evaluate the relationship between the categorical variables. RESULTS The median values of plasma Ca in the DKD group were significantly lower compared with the DNCKD and C groups (10.5 mg/dL vs. 11.0 mg/dL and 11.7 mg/dL, p<0.001). Furthermore, plasma Ca levels lowered with declining kidney function, as evidenced by the eGFR and albuminuria segregation. Dietary intake of minerals did not correlate with the corresponding plasma levels. However, in the DKD group, eGFR correlated positively with the plasma levels of Ca (r= 0.422, p=0.001), Cr (r= 0.351, p=0.008), Mn (r= 0.338, p=0.011), Fe (r= 0.403, p=0.002), Cu (r= 0.274, p=0.041) and negatively with Se (r= -0.486, p<0.001). CONCLUSION Plasma Ca levels are lower in the DKD group with a strong positive association with eGFR, indicating its role in predicting the onset and progression of kidney function decline.
Collapse
Affiliation(s)
- Mudili Sivaprasad
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Tattari Shalini
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Manisha Sahay
- Nephrology Division, Osmania General Hospital and Medical College, Hyderabad, India
| | - Rakesh Sahay
- Endocrinology Division, Osmania General Hospital and Medical College, Hyderabad, India
| | | | | |
Collapse
|
26
|
de Oliveira Madeira JL, Antoneli F. Homeostasis in networks with multiple inputs. J Math Biol 2024; 89:17. [PMID: 38902549 PMCID: PMC11190020 DOI: 10.1007/s00285-024-02117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Homeostasis, also known as adaptation, refers to the ability of a system to counteract persistent external disturbances and tightly control the output of a key observable. Existing studies on homeostasis in network dynamics have mainly focused on 'perfect adaptation' in deterministic single-input single-output networks where the disturbances are scalar and affect the network dynamics via a pre-specified input node. In this paper we provide a full classification of all possible network topologies capable of generating infinitesimal homeostasis in arbitrarily large and complex multiple inputs networks. Working in the framework of 'infinitesimal homeostasis' allows us to make no assumption about how the components are interconnected and the functional form of the associated differential equations, apart from being compatible with the network architecture. Remarkably, we show that there are just three distinct 'mechanisms' that generate infinitesimal homeostasis. Each of these three mechanisms generates a rich class of well-defined network topologies-called homeostasis subnetworks. More importantly, we show that these classes of homeostasis subnetworks provides a topological basis for the classification of 'homeostasis types': the full set of all possible multiple inputs networks can be uniquely decomposed into these special homeostasis subnetworks. We illustrate our results with some simple abstract examples and a biologically realistic model for the co-regulation of calcium ( Ca ) and phosphate ( PO 4 ) in the rat. Furthermore, we identify a new phenomenon that occurs in the multiple input setting, that we call homeostasis mode interaction, in analogy with the well-known characteristic of multiparameter bifurcation theory.
Collapse
Affiliation(s)
| | - Fernando Antoneli
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| |
Collapse
|
27
|
Xu L, Yuan P, Liu W, Liu L, Li X, Xie L. Magnesium status modulating the effect of serum vitamin D levels on retinopathy: National Health and Nutrition Examination Survey 2005 to 2008. Front Nutr 2024; 11:1408497. [PMID: 38895658 PMCID: PMC11183295 DOI: 10.3389/fnut.2024.1408497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Aim Magnesium levels may influence the effect of vitamin D levels on the body. This study aimed to assess the combined effect of magnesium status as reflected by magnesium depletion score (MDS) and vitamin D status on the risk of retinopathy. Methods This cross-sectional study included participants aged 40 years and older with complete information on vitamin D, MDS, and retinopathy assessment from the 2005-2008 National Health and Nutrition Examination Survey (NHANES). Logistic regression analysis was utilized to analyze the relationship of MDS and vitamin D with retinopathy and expressed as odds ratio (OR) and 95% confidence interval (CI). Results Of these 4,953 participants included, 602 (9.53%) participants had retinopathy. Serum vitamin D levels ≤30 nmol/L (vs. >30 nmol/L) (OR = 1.38, 95%CI: 1.05-1.81) and MDS >2 points (vs. ≤2 points) (OR = 1.47, 95%CI: 1.01-2.16) were associated with higher odds of retinopathy. There was an interaction between MDS and vitamin D on the increased odds of retinopathy (OR = 2.29, 95%CI: 1.12-4.68, P interaction = 0.025). In different MDS groups, serum vitamin D levels ≤30 nmol/L increased the odds of retinopathy only in the MDS >2 group (OR = 2.90, 95%CI: 1.16-7.24), but not in the MDS ≤2 group (p = 0.293). Subgroups analyses demonstrated that the interaction between MDS and serum vitamin D on retinopathy was observed in males (OR = 6.88, 95%CI: 1.41-33.66, P interaction = 0.019), people with diabetes (OR = 3.43, 95%CI: 1.78-6.63, P interaction < 0.001), and people with body mass index (BMI) ≥25 kg/m2 (OR = 2.46, 95%CI: 1.11-5.44, P interaction = 0.028). Conclusion Magnesium plays a moderating role in the relationship between serum vitamin D and retinopathy. The protective effect of vitamin D against retinopathy was primarily present among those with inadequate magnesium levels.
Collapse
Affiliation(s)
- Lei Xu
- Department of Ophthalmology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Penghua Yuan
- Department of Ophthalmology, Yudu County People’s Hospital, Ganzhou, Jiangxi, China
| | - Wanrong Liu
- Department of Ophthalmology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Linlin Liu
- Department of Ophthalmology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiongfeng Li
- Department of Ophthalmology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lianfeng Xie
- Department of Ophthalmology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
28
|
Arcidiacono GP, Camozzi V, Zaninotto M, Tripepi G, Fusaro M, Torres MO, Zanchetta F, Cannito M, Cecchinato A, Diogo M, Peleg Falb M, Plebani M, Simioni P, Sella S, Giannini S. Tubular phosphate transport: a comparison between different methods of urine sample collection in FGF23-dependent hypophosphatemic syndromes. Clin Chem Lab Med 2024; 62:1126-1132. [PMID: 38295343 DOI: 10.1515/cclm-2023-1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVES Tubular maximum phosphate reabsorption per glomerular filtration rate (TmP/GFR) is used to evaluate renal phosphate reabsorption and it is a useful tool for the differential diagnosis of hypophosphatemic syndromes. TmP/GFR is typically calculated from fasting plasma and second morning void urine samples, obtained 2 h after the first void (TmP/GFR 2 h). The purpose of this study was to evaluate if TmP/GFR calculated from 24 h urine collection (TmP/GFR 24 h) can be used as an alternative for TmP/GFR 2 h in patients with urine phosphate wasting. METHODS We enrolled adult patients with X-linked hypophosphatemia (XLH) or tumor-induced osteomalacia (TIO). All patients underwent blood and urine sample collections, to calculate TmP/GFR 24 h and TmP/GFR 2 h. RESULTS Twenty patients (17 XLH and 3 TIO), aged 24-78 years, were included. All patients had low TmP/GFR 2 h (0.35 mmol/L, IQR 0.24-0.47 mmol/L) and TmP/GFR 24 h (0.31 mmol/L, IQR 0.22-0.43 mmol/L). The concordance correlation coefficient between TmP/GFR 2 h and TmP/GFR 24 h was 0.86 (95 % CI: 0.69-0.93), with a systematic bias of 0.05 mmol/L (95 % limits of agreement: -0.10 to 0.20). Furthermore, in 70 % (i.e., 14 patients out of 20) and 80 % (i.e., 16 patients out of 20) of cases the difference between TmP/GFR 2 h and TmP/GFR 24 h was within ±30 % and ±35 %, respectively. CONCLUSIONS Despite TmP/GFR 2 and 24 h show a relatively suboptimal agreement, the difference between the two parameters appears to be small and not clinically significant in the setting of adult patients with FGF23-dependent urine phosphate wasting and secondary hypophosphatemia.
Collapse
Affiliation(s)
| | - Valentina Camozzi
- Department of Medicine, Endocrinology Unit, University of Padova, Padova, Italy
| | - Martina Zaninotto
- Department of Medicine, Laboratory Medicine Unit, University of Padova, Padova, Italy
| | - Giovanni Tripepi
- National Research Council (CNR), Institute of Clinical Physiology (IFC), Clinical Epidemiology of Renal Diseases and Hypertension, Ospedali Riuniti, Reggio Calabria, Italy
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
| | | | - Francesca Zanchetta
- Department of Medicine, Clinica Medica 1, University of Padova, Padova, Italy
| | - Michele Cannito
- Department of Medicine, Endocrinology Unit, University of Padova, Padova, Italy
| | - Alberta Cecchinato
- Department of Medicine, Clinica Medica 1, University of Padova, Padova, Italy
| | - Martin Diogo
- Department of Medicine, Clinica Medica 1, University of Padova, Padova, Italy
| | - Mor Peleg Falb
- Department of Medicine, Clinica Medica 1, University of Padova, Padova, Italy
| | - Mario Plebani
- Department of Medicine, Laboratory Medicine Unit, University of Padova, Padova, Italy
| | - Paolo Simioni
- Department of Medicine, General Medicine and Thrombotic and Hemorrhagic Diseases Unit, University of Padova, Padova, Italy
| | - Stefania Sella
- Department of Medicine, Clinica Medica 1, University of Padova, Padova, Italy
| | - Sandro Giannini
- Department of Medicine, Clinica Medica 1, University of Padova, Padova, Italy
| |
Collapse
|
29
|
Jones-Isaac KA, Lidberg KA, Yeung CK, Yang J, Bain J, Ruiz M, Koenig G, Koenig P, Countryman S, Himmelfarb J, Kelly EJ. Development of a kidney microphysiological system hardware platform for microgravity studies. NPJ Microgravity 2024; 10:54. [PMID: 38734683 PMCID: PMC11088639 DOI: 10.1038/s41526-024-00398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Determining the physiological effects of microgravity on the human kidney is limited to relatively insensitive tests of biofluids (blood and urine) that do not return abnormal results until more than 50% of kidney function is lost. We have developed an "organ on chip" microphysiological model of the human kidney proximal tubule (PT-MPS) that can recapitulate many kidney functions and disease states and could play a critical role in determining mechanisms of early kidney dysfunction in microgravity. However, the ground-based PT-MPS system is incompatible with spaceflight as it requires a large pneumatic system coupled to a cell incubator for perfusion and intensive hand-on manipulation. Herein, we report the hardware engineering and performance of the Kidney Chip Perfusion Platform (KCPP), a small, advanced, semi-autonomous hardware platform to support kidney microphysiological model experiments in microgravity. The KCPP is composed of five components, the kidney MPS, the MPS housing and valve block, media cassettes, fixative cassettes, and the programable precision syringe pump. The system has been deployed twice to the ISSNL (aboard CRS-17 and CRS-22). From each set of ISSNL experiments and ground-based controls, we were able to recover PT-MPS effluent for biomarker analysis and RNA suitable for transcriptomics analysis demonstrating the usability and functionality of the KCPP.
Collapse
Affiliation(s)
| | - Kevin A Lidberg
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- RayzeBio, San Diego, CA, USA
| | - Catherine K Yeung
- Department of Pharmacy, University of Washington, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
| | - Jade Yang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Jacelyn Bain
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Micaela Ruiz
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Greta Koenig
- BioServe Space Technologies, University of Colorado, Boulder, CO, USA
| | - Paul Koenig
- BioServe Space Technologies, University of Colorado, Boulder, CO, USA
| | | | | | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
| |
Collapse
|
30
|
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024; 12:978. [PMID: 38790940 PMCID: PMC11118768 DOI: 10.3390/biomedicines12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
31
|
Heurtault J, Hiscocks S, Létourneau-Montminy MP, Schlegel P. Dynamics of bone mineralization in primiparous sows as a function of dietary phosphorus and calcium during lactation. Animal 2024; 18:101130. [PMID: 38579665 DOI: 10.1016/j.animal.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
To maximize the efficiency of dietary P utilization in swine production, understanding the mechanisms of P utilization in lactating sows is relevant due to their high P requirement and the resulting high inorganic P intake. Gaining a better knowledge of the Ca and P quantities that can be mobilized from bones during lactation, and subsequently replenished during the following gestation, would enable the development of more accurate P requirements incorporating this process of bone dynamics. The objective was to measure the amount of body mineral reserves mobilized during lactation, depending on dietary digestible P and phytase addition and to measure the amount recovered during the following gestation. Body composition of 24 primiparous sows was measured by dual-energy x-ray absorptiometry 2, 14, 26, 70 and 110 days after farrowing. Four lactation diets were formulated to cover nutritional requirements, with the exception of Ca and digestible P: 100% (Lact100; 9.9 g Ca and 3.0 g digestible P/kg), 75% (Lact75), 50% without added phytase (Lact50) and 50% with added phytase (Lact50 + FTU). The gestation diet was formulated to cover the nutritional requirements of Ca and digestible P (8.2 g Ca and 2.6 g digestible P/kg). During the 26 days of lactation, each sow mobilized body mineral reserves. The mean amount of mobilized bone mineral content (BMC) was 664 g, representing 240 g Ca and 113 g P. At weaning, the BMC (g/kg of BW) of Lact50 sows tended to be lower than Lact100 sows (-12.8%, linear Ca and P effect × quadratic time effect) while the BMC of Lact50 + FTU sows remained similar to that of Lact100 sows. During the following gestation, BMC returned to similar values among treatments. Therefore, the sows fed Lact50 could recover from the higher bone mineral mobilization that occurred during lactation. The P excretion was reduced by 40 and 43% in sows fed Lact50 and Lact50 + FTU, respectively, relative to sows fed Lact100. In conclusion, the quantified changes in body composition during the lactation and following gestation of primiparous sows show that bone mineral reserves were mobilized and recovered and that its degree was dependent on the dietary P content and from phytase supplementation during lactation. In the future, considering this potential of the sows' bone mineralization dynamics within the factorial assessment of P requirement and considering the digestible P equivalency of microbial phytase could greatly limit the dietary use of inorganic phosphates and, thus, reduce P excretion.
Collapse
Affiliation(s)
- J Heurtault
- Agroscope, Swine Research Group, 1725 Posieux, Switzerland; Department of Animal Sciences, Laval University, Quebec G1V 1A6, Canada
| | - S Hiscocks
- AB Vista, Marlborough, Wiltshire SN8 4AN, United Kingdom
| | | | - P Schlegel
- Agroscope, Swine Research Group, 1725 Posieux, Switzerland.
| |
Collapse
|
32
|
Walker E, Hayes W, Bockenhauer D. Inherited non-FGF23-mediated phosphaturic disorders: A kidney-centric review. Best Pract Res Clin Endocrinol Metab 2024; 38:101843. [PMID: 38042745 DOI: 10.1016/j.beem.2023.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Phosphate is freely filtered by the glomerulus and reabsorbed exclusively in the proximal tubule by two key transporters, NaPiIIA and NaPiIIC, encoded by SLC34A1 and SLC34A3, respectively. Regulation of these transporters occurs primarily through the hormone FGF23 and, to a lesser degree, PTH. Consequently, inherited non-FGF23 mediated phosphaturic disorders are due to generalised proximal tubular dysfunction, loss-of-function variants in SLC34A1 or SLC34A3 or excess PTH signalling. The corresponding disorders are Renal Fanconi Syndrome, Infantile Hypercalcaemia type 2, Hereditary Hypophosphataemic Rickets with Hypercalciuria and Familial Hyperparathyroidism. Several inherited forms of Fanconi renotubular syndrome (FRTS) have also been described with the underlying genes encoding for GATM, EHHADH, HNF4A and NDUFAF6. Here, we will review their pathophysiology, clinical manifestations and the implications for treatment from a kidney-centric perspective, focussing on those disorders caused by dysfunction of renal phosphate transporters. Moreover, we will highlight specific genetic aspects, as the availability of large population genetic databases has raised doubts about some of the originally proposed gene-disease associations concerning phosphate transporters or their associated proteins.
Collapse
Affiliation(s)
- Emma Walker
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Wesley Hayes
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Department of Renal Medicine, University College London, London, UK.
| |
Collapse
|
33
|
Eassawy MMT, Ismail AFM. Protective effect of chicory and/or artichoke leaves extracts on carbon tetrachloride and gamma-irradiation-induced chronic nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1666-1681. [PMID: 38031637 DOI: 10.1002/tox.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1β, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-β1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and β-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/β-catenin protein expressions.
Collapse
Affiliation(s)
- Mamdouh M T Eassawy
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
34
|
Khan AA, Abbott LG, Ahmed I, Ayodele O, Gagnon C, Finkelman RD, Mezosi E, Rejnmark L, Takacs I, Yin S, Ing SW. Open-label extension of a randomized trial investigating safety and efficacy of rhPTH(1-84) in hypoparathyroidism. JBMR Plus 2024; 8:ziad010. [PMID: 38741607 PMCID: PMC11090130 DOI: 10.1093/jbmrpl/ziad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 05/16/2024] Open
Abstract
Hypoparathyroidism (HypoPT) is a rare disease, often inadequately controlled by conventional treatment. PARALLAX was a mandatory post-marketing trial assessing pharmacokinetics and pharmacodynamics of different dosing regimens of recombinant human parathyroid hormone 1-84 (rhPTH[1-84]) for treating HypoPT. The present study (NCT03364738) was a phase 4, 1-yr open-label extension of PARALLAX. Patients received only 2 doses of rhPTH(1-84) in PARALLAX and were considered treatment-naive at the start of the current study. rhPTH(1-84) was initiated at 50 μg once daily, with doses adjusted based on albumin-corrected serum calcium levels. Albumin-corrected serum calcium (primary outcome measure), health-related quality of life (HRQoL), adverse events, and healthcare resource utilization (HCRU) were assessed. The mean age of the 22 patients included was 50.0 yr; 81.8% were women, and 90.9% were White. By the end of treatment (EOT), 95.5% of patients had albumin-corrected serum calcium values in the protocol-defined range of 1.88 mmol/L to the upper limit of normal. Serum phosphorus was within the healthy range, and albumin-corrected serum calcium-phosphorus product was below the upper healthy limit throughout, while mean 24-h urine calcium excretion decreased from baseline to EOT. Mean supplemental doses of calcium and active vitamin D were reduced from baseline to EOT (2402-855 mg/d and 0.8-0.2 μg/d, respectively). Mean serum bone turnover markers, bone-specific alkaline phosphatase, osteocalcin, procollagen type I N-terminal propeptide, and type I collagen C-telopeptide increased 2-5 fold from baseline to EOT. The HCRU, disease-related symptoms and impact on HRQoL improved numerically between baseline and EOT. Nine patients (40.9%) experienced treatment-related adverse events; no deaths were reported. Treatment with rhPTH(1-84) once daily for 1 yr improved HRQoL, maintained eucalcemia in 95% of patients, normalized serum phosphorus, and decreased urine calcium excretion. The effects observed on urine calcium and the safety profile are consistent with previous findings. Clinical trial identifier NCT03364738.
Collapse
Affiliation(s)
- Aliya A Khan
- Divisions of Endocrinology and Metabolism and Geriatric Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Lisa G Abbott
- Northern Nevada Endocrinology, Reno, NV 89511, United States
- University of Nevada, Reno, NV 89557, United States
| | - Intekhab Ahmed
- Department of Endocrinology and Metabolism, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Olulade Ayodele
- Takeda Development Center Americas Inc., Lexington, MA, 02421, United States
| | - Claudia Gagnon
- Department of Medicine, CHU de Québec-Université Laval Research Centre, Quebec G1V 4G2, Canada
- Department of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | | | - Emese Mezosi
- Department of Internal Medicine, University of Pécs, 7624 Pécs, Hungary
| | - Lars Rejnmark
- Department of Clinical Medicine – Department of Endocrinology and Internal Medicine, Aarhus University, 8200, Aarhus, Denmark
| | - Istvan Takacs
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| | - Shaoming Yin
- Takeda Development Center Americas Inc., Lexington, MA, 02421, United States
| | - Steven W Ing
- Division of Endocrinology, Diabetes, and Metabolism, Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
35
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
36
|
Majumdar S, Tiwari A, Mallick D, Patel DK, Trigun SK, Krishnamurthy S. Oral Release Kinetics, Biodistribution, and Excretion of Dopants from Barium-Containing Bioactive Glass in Rats. ACS OMEGA 2024; 9:7188-7205. [PMID: 38371771 PMCID: PMC10870265 DOI: 10.1021/acsomega.3c09250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Background: Inorganic biomaterials are biologically active and are used as implants and drug delivery system. They have therapeutically active elements present in their framework that are released in the physiological milieu. Release of these dopants above the supraphysiological limit may produce adverse effects and physicochemical interactions with the loaded drugs. Therefore, this necessitates evaluating the in vivo release kinetics, biodistribution, and excretion profiles of dopants from barium-doped bioglass (BaBG) that has potential anti-inflammatory, antiulcer, and regenerative properties. Methods: In vitro leaching of Ca, Si, and Ba from BaBG was analyzed in simulated body fluid. Release kinetics post single-dose oral administration (1, 5, and 10 mg/kg) was performed in rats. Blood was collected at different time points, and pharmacokinetic parameters of released elements were calculated. The routes of excretion and biodistribution in major organs were evaluated using ICP-MS. Results: Elements were released after the oral administration of BaBG into the plasma. They showed dose-dependent release kinetics and mean residence time. Cmax was observed at 24 h for all elements, followed by a downhill fall. There was also a dose-dependent increase in the volume of distribution, and the clearance of dopants was mostly through feces. Ba and Si were biodistributed significantly in the liver, spleen, and kidneys. However, by the end of day 7, there was a leveling-off effect observed for all elements. Conclusion: All of the dopants exhibited a dose-dependent increase in release kinetics and biodistribution in vital organs. This study will help in dose optimization and understanding of various physicochemical and pharmacokinetic interactions when BaBG is used for future pharmacological studies.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Anshul Tiwari
- Analytical
Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Debasmit Mallick
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Devendra K. Patel
- Analytical
Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Surendra Kumar Trigun
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
37
|
Salcedo-Betancourt JD, Moe OW. The Effects of Acid on Calcium and Phosphate Metabolism. Int J Mol Sci 2024; 25:2081. [PMID: 38396761 PMCID: PMC10889523 DOI: 10.3390/ijms25042081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
A variety of changes in mineral metabolism aiming to restore acid-base balance occur in acid loading and metabolic acidosis. Phosphate plays a key role in defense against metabolic acidosis, both as an intracellular and extracellular buffer, as well as in the renal excretion of excess acid in the form of urinary titratable acid. The skeleton acts as an extracellular buffer in states of metabolic acidosis, as the bone matrix demineralizes, leading to bone apatite dissolution and the release of phosphate, calcium, carbonate, and citrate into the circulation. The renal handling of calcium, phosphate and citrate is also affected, with resultant hypercalciuria, hyperphosphaturia and hypocitraturia.
Collapse
Affiliation(s)
- Juan D. Salcedo-Betancourt
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Orson W. Moe
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
38
|
Escobedo-Monge MF, Marcos-Temprano M, Parodi-Román J, Escobedo-Monge MA, Alonso-Vicente C, Torres-Hinojal MC, Marugán-Miguelsanz JM. Calcium, Phosphorus, and Vitamin D Levels in a Series of Cystic Fibrosis Patients: A Cross-Sectional Study. Int J Mol Sci 2024; 25:1900. [PMID: 38339178 PMCID: PMC10856093 DOI: 10.3390/ijms25031900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease with different types of mutations that mainly affect the respiratory-digestive system. Calcium (Ca), phosphorus (P), and vitamin D (Vit-D) are essential nutrients for maintaining adequate growth and development, as well as key components in crucial metabolic pathways. Proper diagnosis, treatment, and response are decisive components of precision medicine. Therefore, we conducted a cross-sectional study to evaluate Ca, P, and Vit-D levels along with health and nutritional indicators, regarding their non-skeletal functions, in a series of CF patients. Anthropometric and clinical evaluation, biochemical analysis, dietary survey, and respiratory and pancreatic status were performed. Even though the results showed that all patients had normal dietary and serum Ca levels, 47% of patients had deficient Vit-D intake, 53% of patients had hypovitaminosis D, 35% had insufficient Vit-D levels, 18% had hypophosphatemia, 76% had elevated alkaline phosphate levels, 29% had hypercalciuria, and 65% had hyperphosphaturia. There were no significant differences between homozygous and compound heterozygous patients. Ca, P, and Vit-D levels were associated with body mass index; body composition; physical activity; diet; growth hormones; and the immune, liver, and kidney systems. We suggest a periodically evaluation of Ca and P losses.
Collapse
Affiliation(s)
| | - Marianela Marcos-Temprano
- Castilla y León Cystic Fibrosis Unit, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain;
| | - Joaquín Parodi-Román
- Science Faculty, University of Cadiz, Paseo de Carlos III, 28, 11003 Cádiz, Spain;
| | | | - Carmen Alonso-Vicente
- Department of Pediatrics of the Faculty of Medicine, University of Valladolid; Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain; (C.A.-V.); (J.M.M.-M.)
| | | | - José Manuel Marugán-Miguelsanz
- Department of Pediatrics of the Faculty of Medicine, University of Valladolid; Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain; (C.A.-V.); (J.M.M.-M.)
| |
Collapse
|
39
|
Genc S, Taghizadehghalehjoughi A, Naldan ME, Gülcü O, Caglayan C, Spanakis M, Nikolouzakis TK, Alegakis A, Docea AO, Drocas AI, Mitrut R, Hatzidaki E, Spandidos DA, Tsatsakis A. Evaluation of various blood biomarkers associated with the outcomes of patients with COVID‑19 treated in intensive care units. Exp Ther Med 2024; 27:82. [PMID: 38274343 PMCID: PMC10809360 DOI: 10.3892/etm.2024.12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/10/2023] [Indexed: 01/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (COVID-19) represented a global public health crisis and the most significant pandemic in modern times. Transmission characteristics, and the lack of effective antiviral treatment protocol and protective vaccines, pushed healthcare systems, particularly intensive care units (ICUs), to their limits and led to extreme quarantine measures to control the pandemic. It was evident from an early stage that patient stratification approaches needed to be developed to better predict disease progression. In the present study, the predictive value of clinical and blood biomarkers for the outcomes of patients with COVID-19 hospitalized in the ICU were investigated, taking age and sex into consideration. The present study analyzed blood samples from 3,050 patients with COVID-19 hospitalized in the ICU. The analysis revealed that the levels of procalcitonin, N-terminal pro-B-type natriuretic peptide, D-dimer, ferritin, liver enzymes, C-reactive protein and lactate dehydrogenase were increased and were associated with disease progression, resulting in a prolonged hospitalization period and severe COVID-19 related complications. Additionally, significant age and sex disparities among these biomarkers were documented and discussed in specific cases. On the whole, the results of the present study suggest a potential association of the demographic characteristics and blood biomarkers with prolonged hospitalization in the ICU and the mortality of patients with COVID-19.
Collapse
Affiliation(s)
- Sidika Genc
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Muhammet E. Naldan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Oktay Gülcü
- Department of Cardiology, Educational and Research Hospital, Faculty of Medicine, Health Science University, Erzurum 25240, Turkey
| | - Cüneyt Caglayan
- Department of Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Marios Spanakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | | | - Athanasios Alegakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Andrei Ioan Drocas
- Department of Urology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, Bucharest 050098, Romania
| | - Eleftheria Hatzidaki
- Department of Neonatology, University Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
40
|
Oh GJ, Butani L. Nephrocalcinosis in Neonates. Neoreviews 2024; 25:e88-e98. [PMID: 38296790 DOI: 10.1542/neo.25-2-e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Nephrocalcinosis occurs in as many as 40% of preterm neonates. Many causes and contributors predispose neonates to develop nephrocalcinosis, including metabolic, genetic, and iatrogenic factors. Because nephrocalcinosis can be a manifestation of an underlying genetic disorder, neonates with nephrocalcinosis must undergo an evaluation to identify and address contributors, to prevent further renal calcium deposition that can potentially lead to renal dysfunction. In this article, we review the epidemiology, pathogenesis, diagnosis, and evaluation of nephrocalcinosis in neonates. We also summarize the natural history of nephrocalcinosis of prematurity as well as the management of this condition.
Collapse
Affiliation(s)
- Gia J Oh
- Department of Pediatrics, Division of Pediatric Nephrology, University of California, Davis, Children's Hospital, Sacramento, CA
| | - Lavjay Butani
- Department of Pediatrics, Division of Pediatric Nephrology, University of California, Davis, Children's Hospital, Sacramento, CA
| |
Collapse
|
41
|
Ahuja A, Agrawal S, Daiya V, Batra N, Agarwal A. Unraveling Neurological Shades: Vitamin D Toxication and Central Pontine Myelinolysis Exposed. Cureus 2024; 16:e53806. [PMID: 38465127 PMCID: PMC10924149 DOI: 10.7759/cureus.53806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
This case report is about a middle-aged female who presented with complaints of pain in the abdomen with intractable vomiting for three months, pain and weakness in bilateral lower limbs for two months, and irritability for three days. She was previously treated for lumbar disc bulge and severe narrowing of the spinal cord whose treatment also included vitamin D supplements. After taking high doses of a vitamin D supplement daily for approximately four months, it resulted in vitamin D toxicity. The sodium level of the patient was in the normal range throughout the treatment. Her magnetic resonance imaging brain revealed features of central pontine myelinolysis. The development of central pontine myelinolysis due to vitamin D toxicity, with normal sodium levels, makes this a rare case for discussion.
Collapse
Affiliation(s)
- Abhinav Ahuja
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Agrawal
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Varun Daiya
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nitish Batra
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aaditi Agarwal
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
42
|
Al-Shebel A, Michel G, Breiderhoff T, Müller D. Urinary Acidification Does Not Explain the Absence of Nephrocalcinosis in a Mouse Model of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC). Int J Mol Sci 2024; 25:1779. [PMID: 38339056 PMCID: PMC10855382 DOI: 10.3390/ijms25031779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with mutations in Cldn16 suffer from familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) which can lead to renal insufficiency. Mice lacking claudin-16 show hypomagnesemia and hypercalciuria, but no nephrocalcinosis. Calcium oxalate and calcium phosphate are the most common insoluble calcium salts that accumulate in the kidney in the case of nephrocalcinosis, however, the formation of these salts is less favored in acidic conditions. Therefore, urine acidification has been suggested to limit the formation of calcium deposits in the kidney. Assuming that urine acidification is causative for the absence of nephrocalcinosis in the claudin-16-deficient mouse model, we aimed to alkalinize the urine of these mice by the ablation of the subunit B1 of the vesicular ATPase in addition to claudin-16. In spite of an increased urinary pH in mice lacking claudin-16 and the B1 subunit, nephrocalcinosis did not develop. Thus, urinary acidification is not the only factor preventing nephrocalcinosis in claudin-16 deficient mice.
Collapse
Affiliation(s)
- Amr Al-Shebel
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Augustenburger Platz 1, 13353 Berlin, Germany; (T.B.); (D.M.)
| | - Geert Michel
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Research Institutes for Experimental Medicine, Transgenic Technologies, Robert Rössle Str. 10, 13125 Berlin, Germany;
| | - Tilman Breiderhoff
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Augustenburger Platz 1, 13353 Berlin, Germany; (T.B.); (D.M.)
| | - Dominik Müller
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Augustenburger Platz 1, 13353 Berlin, Germany; (T.B.); (D.M.)
| |
Collapse
|
43
|
Oost LJ, Slieker RC, Blom MT, 't Hart LM, Hoenderop JGJ, Beulens JWJ, de Baaij JHF. Genome-wide association study of serum magnesium in type 2 diabetes. GENES & NUTRITION 2024; 19:2. [PMID: 38279093 PMCID: PMC10811844 DOI: 10.1186/s12263-024-00738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
People with type 2 diabetes have a tenfold higher prevalence of hypomagnesemia, which is suggested to be caused by low dietary magnesium intake, medication use, and genetics. This study aims to identify the genetic loci that influence serum magnesium concentration in 3466 people with type 2 diabetes. The GWAS models were adjusted for age, sex, eGFR, and HbA1c. Associated traits were identified using publicly available data from GTEx consortium, a human kidney eQTL atlas, and the Open GWAS database. The GWAS identified a genome-wide significant locus in TAF3 (p = 2.9 × 10-9) in people with type 2 diabetes. In skeletal muscle, loci located in TAF3 demonstrate an eQTL link to ATP5F1C, a gene that is involved in the formation of Mg2+-ATP. Serum Mg2+ levels were associated with MUC1/TRIM46 (p = 2.9 × 10-7), SHROOM3 (p = 4.0 × 10-7), and SLC22A7 (p = 1.0 × 10-6) at nominal significance, which is in combination with the eQTL data suggesting that they are possible candidates for renal failure. Several genetic loci were in agreement with previous genomic studies which identified MUC1/TRIM46 (Pmeta = 6.9 × 10-29, PQ = 0.81) and SHROOM3 (Pmeta = 2.9 × 10-27, PQ = 0.04) to be associated with serum Mg2+ in the general population. In conclusion, serum magnesium concentrations are associated with genetic variability around the regions of TAF3, MUC1/TRIM46, SHROOM3, and SLC22A7 in type 2 diabetes.
Collapse
Affiliation(s)
- Lynette J Oost
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roderick C Slieker
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
| | - Marieke T Blom
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
44
|
Ren J, Rodriguez L, Johnson T, Henning A, Dhaher YY. 17β-Estradiol Effects in Skeletal Muscle: A 31P MR Spectroscopic Imaging (MRSI) Study of Young Females during Early Follicular (EF) and Peri-Ovulation (PO) Phases. Diagnostics (Basel) 2024; 14:235. [PMID: 38337751 PMCID: PMC10854839 DOI: 10.3390/diagnostics14030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
The natural variation in estrogen secretion throughout the female menstrual cycle impacts various organs, including estrogen receptor (ER)-expressed skeletal muscle. Many women commonly experience increased fatigue or reduced energy levels in the days leading up to and during menstruation, when blood estrogen levels decline. Yet, it remains unclear whether endogenous 17β-estradiol, a major estrogen component, directly affects the energy metabolism in skeletal muscle due to the intricate and fluctuating nature of female hormones. In this study, we employed 2D 31P FID-MRSI at 7T to investigate phosphoryl metabolites in the soleus muscle of a cohort of young females (average age: 28 ± 6 years, n = 7) during the early follicular (EF) and peri-ovulation (PO) phases, when their blood 17β-estradiol levels differ significantly (EF: 28 ± 18 pg/mL vs. PO: 71 ± 30 pg/mL, p < 0.05), while the levels of other potentially interfering hormones remain relatively invariant. Our findings reveal a reduction in ATP-referenced phosphocreatine (PCr) levels in the EF phase compared to the PO phase for all participants (5.4 ± 4.3%). Furthermore, we observe a linear correlation between muscle PCr levels and blood 17β-estradiol concentrations (r = 0.64, p = 0.014). Conversely, inorganic phosphate Pi and phospholipid metabolite GPC levels remain independent of 17β-estradiol but display a high correlation between the EF and PO phases (p = 0.015 for Pi and p = 0.0008 for GPC). The robust association we have identified between ATP-referenced PCr and 17β-estradiol suggests that 17β-estradiol plays a modulatory role in the energy metabolism of skeletal muscle.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luis Rodriguez
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA;
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Talon Johnson
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yasin Y. Dhaher
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA;
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
45
|
Zaslow SJ, Oliveira-Paula GH, Chen W. Magnesium and Vascular Calcification in Chronic Kidney Disease: Current Insights. Int J Mol Sci 2024; 25:1155. [PMID: 38256228 PMCID: PMC10816532 DOI: 10.3390/ijms25021155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Magnesium (Mg) plays crucial roles in multiple essential biological processes. As the kidneys are the primary organ responsible for maintaining the blood concentration of Mg, people with chronic kidney disease (CKD) may develop disturbances in Mg. While both hyper- and hypomagnesemia may lead to adverse effects, the consequences associated with hypomagnesemia are often more severe and lasting. Importantly, observational studies have shown that CKD patients with hypomagnesemia have greater vascular calcification. Vascular calcification is accelerated and contributes to a high mortality rate in the CKD population. Both in vitro and animal studies have demonstrated that Mg protects against vascular calcification via several potential mechanisms, such as inhibiting the formation of both hydroxyapatite and pathogenic calciprotein particles as well as limiting osteogenic differentiation, a process in which vascular smooth muscle cells in the media layer of the arteries transform into bone-like cells. These preclinical findings have led to several important clinical trials that have investigated the effects of Mg supplementation on vascular calcification in people with CKD. Interestingly, two major clinical studies produced contradictory findings, resulting in a state of equipoise. This narrative review provides an overview of our current knowledge in the renal handling of Mg in health and CKD and the underlying mechanisms by which Mg may protect against vascular calcification. Lastly, we evaluate the strength of evidence from clinical studies on the efficacy of Mg supplementation and discuss future research directions.
Collapse
Affiliation(s)
- Shari J. Zaslow
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gustavo H. Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Chen
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
46
|
Zhong T, Zhang J, Chen S, Chen S, Deng K, Guan J, Yang J, Lv R, Liu Z, Liu Y, Chang P, Liu Z. MAGNESIUM SULFATE AMELIORATES HISTONE-INDUCED COAGULATION DYSFUNCTION AND LUNG DAMAGE IN MICE. Shock 2024; 61:132-141. [PMID: 37988072 DOI: 10.1097/shk.0000000000002263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
ABSTRACT Introduction: Extracellular histones have been determined as significant mediators of sepsis, which can induce endothelial cell injury and promote coagulation activation, and ultimately contribute to multiorgan failure. Evidence suggests that magnesium sulfate (MgSO 4 ) exerts a potential coagulation-modulating activity; however, whether MgSO 4 ameliorates histone-induced coagulation dysfunction and organ damage remains unclear. Methods: To measure circulating histone levels, blood specimens were collected from septic patients and mice, and the relationship between circulating histone levels, coagulation parameters, and Mg 2+ levels in sepsis was investigated. Furthermore, to explore the possible protective effects of MgSO 4 , we established a histone-induced coagulation model in mice by intravenous histone injection. The survival rate of mice was assessed, and the histopathological damage of the lungs (including endothelial cell injury and coagulation status) was evaluated using various methods, including hematoxylin and eosin staining, immunohistochemistry, immunofluorescence, electron microscopy, and quantitative polymerase chain reaction. Results: The circulating histone levels in septic patients and mice were significantly associated with several coagulation parameters. In septic patients, histone levels correlated negatively with platelet counts and positively with prothrombin time and D-dimer levels. Similarly, in cecal ligation and puncture mice, histones correlated negatively with platelet counts and positively with D-dimer levels. Interestingly, we also observed a positive link between histones and Mg 2+ levels, suggesting that Mg 2+ with anticoagulant activity is involved in histone-mediated coagulation alterations in sepsis. Further animal experiments confirmed that MgSO 4 administration significantly improved survival and attenuated histone-mediated endothelial cell injury, coagulation dysfunction, and lung damage in mice. Conclusion: These results suggest that therapeutic targeting of histone-mediated endothelial cell injury, coagulation dysfunction, and lung damage, for example, with MgSO 4 , may be protective in septic individuals with elevated circulating histone levels.
Collapse
Affiliation(s)
- Tao Zhong
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Zhang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanjia Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sainan Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Deng
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbin Guan
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingjing Yang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ronggui Lv
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhifeng Liu
- Department of Medicine Intensive Care Units, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China
| | - Yong Liu
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
47
|
Perumal NL, Padidela R. Phosphate Homeostasis and Disorders of Phosphate Metabolism. Curr Pediatr Rev 2024; 20:412-425. [PMID: 36545737 DOI: 10.2174/1573396319666221221121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Phosphate is indispensable for human life and evolutionary changes over several millions of years have established tightly regulated mechanisms to ensure phosphate homeostasis. In this process, calcium and phosphate metabolism have come to be intricately linked together. Three hormones (PTH, FGF23 and Calcitriol) maintain the fine balance of calcium and phosphate metabolism through their actions at three sites (the gut, the kidneys and the skeleton). Disorders that disrupt this balance can have serious clinical consequences. Acute changes in serum phosphate levels can result in life threatening complications like respiratory failure and cardiac arrythmias. Chronic hypophosphataemia predominantly affects the musculoskeletal system and presents as impaired linear growth, rickets, osteomalacia and dental problems. Hyperphosphataemia is very common in the setting of chronic kidney disease and can be difficult to manage. A thorough understanding of calcium and phosphate homeostasis is essential to diagnose and treat conditions associated with hypo and hyperphosphataemia. In this review, we will discuss the calcium and phosphate metabolism, aetiologies and management of hypo and hyperphosphataemia.
Collapse
Affiliation(s)
| | - Raja Padidela
- Department of Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| |
Collapse
|
48
|
Tizhe EV, Igbokwe IO, Njokwu COI, Fatihu MY, Tizhe UD, Ibrahim NDG. Effect of Zinc Supplementation on Altered Calcium Homeostasis, Parathyroid Gland, Bone, and Skeletal Muscle Histology Induced by Subchronic Oral Exposure to Glyphosate-Based Herbicide (GOBARA ®) in Wistar Rats. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241265854. [PMID: 39070950 PMCID: PMC11282526 DOI: 10.1177/2632010x241265854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Objectives The study was carried out to assess the effect of zinc supplementation on changes in calcium homeostasis, and parathyroid gland, bone, and skeletal muscle histology in rats exposed to subchronic oral glyphosate-based herbicide (GBH, GOBARA®) toxicity. Methods Sixty male Wistar rats in 6 equal groups (DW, Z, G1, G2, ZG1, ZG2) were used: DW and Z were given 2 mL/kg distilled water and 50 mg/kg of zinc chloride (2%), respectively; G1 and G2 received 187.5 mg/kg and 375 mg/kg of glyphosate (in GBH), respectively; ZG1 and ZG2 were pretreated with 50 mg/kg of zinc chloride before receiving glyphosate, 1 hour later, at 187.5 and 375 mg/kg, respectively. Treatments were by gavage once daily for 16 weeks. Serum calcium, vitamin D, and parathormone were estimated. Histopathological examination of parathyroid gland, femoral bone and biceps femoris muscle was done. Results GBH exposure caused significant (P = .0038) decrease in serum calcium concentration in G1, significant (P = .0337) decrease in serum vitamin D concentration in G1, significant increases in parathormone in G1 (P = .0168) and G2 (P = .0079) compared to DW. Significant (P > .05) changes did not occur in the other parameters of G2 compared to DW. Dose-dependent effect in GBH exposure was not observed after comparing G1 and G2. Necrotic changes occurred in parathyroid gland cells, osteocytes, and muscle cells in G1 and G2. In ZG1 and ZG2, significant (P > .05) variations in the parameters were not observed and tissue lesions were absent. Conclusion Subchronic GBH exposure impaired calcium homeostasis observed as hypocalcemia, hypovitaminemia D, and secondary hyperparathyroidism and caused tissue damage in parathyroid gland, bone, and muscle of rats and these were mitigated by zinc chloride pretreatment.
Collapse
Affiliation(s)
- Emmanuel Vandi Tizhe
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Celestine Onwu-Ibe Njokwu
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Mohammed Yakasai Fatihu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ussa Delia Tizhe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Najume Dogon-Giginya Ibrahim
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
49
|
Fähndrich C, Gemperli A, Baumberger M, Harder M, Roth B, Schaefer DJ, Wettstein R, Scheel-Sailer A. Risk factors of major complications after flap surgery in the treatment of stage III and IV pressure injury in people with spinal cord injury/disorder: a retrospective cohort study. Spinal Cord 2024; 62:34-41. [PMID: 38123748 PMCID: PMC10783547 DOI: 10.1038/s41393-023-00944-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 10/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES To identify risk factors associated with major complications after flap surgery in people with spinal cord injury or disorder (SCI/D) and stage III and IV pressure injury (PI). SETTING Swiss hospital specialized in the treatment of people with SCI/D using the Basel Decubitus Approach. METHODS We examined 60 risk factors for major postoperative complications in PIs over sacrum/coccyx, ischium or trochanter between 01/2016 and 12/2021. We performed descriptive analysis and computed global p-values using likelihood ratio tests adjusted for clustering of PIs in individuals. RESULTS We included 220 PI treatment procedure from 149 individuals. The study population consisted of 163 (74%) men, 133 (60%) traumatic SCI, 136 (58%) stage IV PI, 198 (90%) individuals with paraplegia, 93 (42%) with osteomyelitis, and 85 (39%) with recurrent PI. Major complications 42 (19%) occurred more often in individuals with stage IV PI (p < 0.01), individuals without osteomyelitis (p < 0.03), and individuals with pathological blood concentrations of cystatin c (p < 0.028), calcium (p < 0.048), and vitamin B12 (p < 0.0049) as well as normal blood concentrations of HbA1c (p < 0.033). Immobilization (p < 0.0089) and hospital stay (p < 0.0001) of individuals with major complications was longer. CONCLUSION In the Basel Decubitus Approach, stage IV PI, absence of osteomyelitis, reduced vitamin B12 and calcium, elevated cystatin c, and normal HbA1c should be addressed to reduce major complications.
Collapse
Affiliation(s)
- Carina Fähndrich
- Swiss Paraplegic Research, Nottwil, Switzerland.
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland.
| | - Armin Gemperli
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Center of Primary and Community Care, University of Lucerne, Lucerne, Switzerland
| | | | | | - Bianca Roth
- Department of Infectious diseases, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, Basel, Switzerland
| | - Reto Wettstein
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, Basel, Switzerland
| | - Anke Scheel-Sailer
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Swiss Paraplegic Centre, Nottwil, Switzerland
| |
Collapse
|
50
|
Abd El-Aziz RAER, Asal MF, Maaly AM. Effectiveness of adding magnesium sulfate to bupivacaine in ultrasound guided serratus anterior plane block in patients undergoing modified radical mastectomy. EGYPTIAN JOURNAL OF ANAESTHESIA 2023. [DOI: 10.1080/11101849.2023.2168856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Rehab Abd El-Raof Abd El-Aziz
- Department of Anaesthesia and Surgical Intensive Care, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Frouk Asal
- Department of General Surgery, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ayman M. Maaly
- Department of General Surgery, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|