1
|
Guo J, Krehl K, Safraou Y, Wallach I, Braun J, Meierhofer D, Sack I, Berndt N. Pregnancy alters fatty acid metabolism, glucose regulation, and detoxification of the liver in synchrony with biomechanical property changes. Heliyon 2024; 10:e39674. [PMID: 39506943 PMCID: PMC11538949 DOI: 10.1016/j.heliyon.2024.e39674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Pregnancy places a metabolic burden on the body including the liver, which is responsible for ensuring adequate nutrition for the maternal and fetal systems. To gain a better understanding of liver adaptation, this study investigates metabolic shifts occurring in livers of pregnant rats. Metabolic capacities of the livers of pregnant and non-pregnant female Wistar rats were assessed using comprehensive metabolic models. Kinetic metabolic models were generated for each animal based on protein abundance data from proteomics analysis allowing for a subject-specific assessment of hepatic metabolic functions. Data are available via ProteomeXchange with identifier PXD050758. Additionally, tissue stiffness, viscosity, and water diffusion obtained from magnetic resonance imaging and elastography were correlated with metabolic capabilities to study the relationship between metabolic function and biophysical properties. Proteome profiling revealed differences in protein expression in the livers of pregnant and non-pregnant animals. Functional analysis showed significant variations in metabolic capacities. Livers of pregnant rats had reduced capacities in carbohydrate and fatty acid metabolism, along with altered urea synthesis. Additionally, there were associations between metabolic functions and biophysical properties highlighting potential links between changes in liver structure and metabolic capacities during pregnancy. In summary, our work reveals extensive hepatic metabolic changes in pregnant rats. The liver adapts its metabolic capacities to ensure whole-body metabolic homeostasis but may struggle to counteract nutritional challenges, such as hypoglycemia. The study, employing a personalized approach combining proteomics, kinetic modeling, and advanced imaging, sheds light on the intricate interplay between hepatic adaptations and medical imaging markers, providing a foundation for further investigations into the implications for maternal and fetal health.
Collapse
Affiliation(s)
- Jing Guo
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karolina Krehl
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Yasmine Safraou
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| |
Collapse
|
2
|
McLeod M, Chang MC, Rushin A, Ragavan M, Mahar R, Sharma G, Badar A, Giacalone A, Glanz ME, Malut VR, Graham D, Sunny NE, Bankson JA, Cusi K, Merritt ME. Detecting altered hepatic lipid oxidation by MRI in an animal model of MASLD. Cell Rep Med 2024; 5:101714. [PMID: 39241774 PMCID: PMC11525016 DOI: 10.1016/j.xcrm.2024.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing annually and affects over a third of US adults. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH), characterized by severe hepatocyte injury, inflammation, and eventual advanced fibrosis or cirrhosis. MASH is predicted to become the primary cause of liver transplant by 2030. Although the etiology of MASLD/MASH is incompletely understood, dysregulated fatty acid oxidation is implicated in disease pathogenesis. Here, we develop a method for estimating hepatic β-oxidation from the metabolism of [D15]octanoate to deuterated water and detection with deuterium magnetic resonance methods. Perfused livers from a mouse model of MASLD reveal dysregulated hepatic β-oxidation, findings that corroborate in vivo imaging. The high-fat-diet-induced MASLD mouse studies indicate that decreased β-oxidative efficiency in the fatty liver could serve as an indicator of MASLD progression. Furthermore, our method provides a clinically translatable imaging approach for determining hepatic β-oxidation efficiency.
Collapse
Affiliation(s)
- Marc McLeod
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA; University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9014, USA
| | - Mario C Chang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Anna Rushin
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mukundan Ragavan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand 246174, India
| | - Gaurav Sharma
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Arshee Badar
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Anthony Giacalone
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Max E Glanz
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Vinay R Malut
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dalton Graham
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Veterans Health Administration and University of Florida, Gainesville, FL 32610, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
3
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
4
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
5
|
Rix I, Lund AB, Garvey LF, Hansen CP, Chabanova E, Hartmann B, Holst JJ, Vilsbøll T, Van Hall G, Knop FK. Increased hepatic glucagon sensitivity in totally pancreatectomised patients. Eur J Endocrinol 2024; 190:446-457. [PMID: 38781444 DOI: 10.1093/ejendo/lvae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE The metabolic phenotype of totally pancreatectomised patients includes hyperaminoacidaemia and predisposition to hypoglycaemia and hepatic lipid accumulation. We aimed to investigate whether the loss of pancreatic glucagon may be responsible for these changes. METHODS Nine middle-aged, normal-weight totally pancreatectomised patients, nine patients with type 1 diabetes (C-peptide negative), and nine matched controls underwent two separate experimental days, each involving a 150-min intravenous infusion of glucagon (4 ng/kg/min) or placebo (saline) under fasting conditions while any basal insulin treatment was continued. RESULTS Glucagon infusion increased plasma glucagon to similar high physiological levels in all groups. The infusion increased hepatic glucose production and decreased plasma concentration of most amino acids in all groups, with more pronounced effects in the totally pancreatectomised patients compared with the other groups. Glucagon infusion diminished fatty acid re-esterification and tended to decrease plasma concentrations of fatty acids in the totally pancreatectomised patients but not in the type 1 diabetes patients. CONCLUSION Totally pancreatectomised patients were characterised by increased sensitivity to exogenous glucagon at the level of hepatic glucose, amino acid, and lipid metabolism, suggesting that the metabolic disturbances characterising these patients may be rooted in perturbed hepatic processes normally controlled by pancreatic glucagon.
Collapse
Affiliation(s)
- Iben Rix
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, 2900 Hellerup, Denmark
- Medical & Science, Zealand Pharma A/S, 2860 Søborg, Denmark
| | - Asger B Lund
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, 2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lars F Garvey
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, 2900 Hellerup, Denmark
| | - Carsten P Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, 2100 Copenhagen, Denmark
| | - Elizaveta Chabanova
- Department of Radiology, Copenhagen University Hospital - Herlev and Gentofte, 2730 Herlev, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, 2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gerrit Van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, 2100 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, 2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Yang RJ, Zou J, Liu JY, Dai JK, Wan JB. Click chemistry-based enrichment strategy for tracing cellular fatty acid metabolism by LC-MS/MS. J Pharm Anal 2023; 13:1221-1231. [PMID: 38024853 PMCID: PMC10657974 DOI: 10.1016/j.jpha.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 12/01/2023] Open
Abstract
Fatty acids (FAs), which were initially recognized as energy sources and essential building blocks of biomembranes, serve as the precursors of important signaling molecules. Tracing FA metabolism is essential to understanding the biochemical activity and role of FAs in physiological and pathological events. Inspired by the advances in click chemistry for protein enrichment, we herein established a click chemistry-based enrichment (CCBE) strategy for tracing the cellular metabolism of eicosapentaenoic acid (EPA, 20:5 n-3) in neural cells. Terminal alkyne-labeled EPA (EPAA) used as a surrogate was incubated with N2a, mouse neuroblastoma cells, and alkyne-labeled metabolites (ALMs) were selectively captured by an azide-modified resin via a Cu(I)-catalyzed azide-alkyne cycloaddition reaction for enrichment. After removing unlabeled metabolites, ALMs containing a triazole moiety were cleaved from solid-phase resins and subjected to liquid chromatography mass spectrometry (LC-MS) analysis. The proposed CCBE strategy is highly selective for capturing and enriching alkyne-labeled metabolites from the complicated matrices. In addition, this method can overcome current detection limits by enhancing MS sensitivity of targets, improving the chromatographic separation of sn-position glycerophospholipid regioisomers, facilitating structural characterization of ALMs by a specific MS/MS fragmentation signature, and providing versatile fluorescence detection of ALMs for cellular distribution. This CCBE strategy might be expanded to trace the metabolism of other FAs, small molecules, or drugs.
Collapse
Affiliation(s)
- Ru-Jie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jia-Yue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
7
|
Yildirim V, ter Horst KW, Gilijamse PW, van Harskamp D, Schierbeek H, Jansen H, Schimmel AW, Nieuwdorp M, Groen AK, Serlie MJ, van Riel NA, Dallinga-Thie GM. Bariatric surgery improves postprandial VLDL kinetics and restores insulin-mediated regulation of hepatic VLDL production. JCI Insight 2023; 8:e166905. [PMID: 37432744 PMCID: PMC10543721 DOI: 10.1172/jci.insight.166905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study before the surgery and 1 year later. A physiologically based computational model was developed to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin sensitivity in lipoprotein lipolysis pathways.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Public and Occupational Health, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey
| | | | | | - Dewi van Harskamp
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henk Schierbeek
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Hans Jansen
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alinda W.M. Schimmel
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Albert K. Groen
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Natal A.W. van Riel
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Geesje M. Dallinga-Thie
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Magkos F, Fabbrini E, Patterson BW, Mittendorfer B, Klein S. Physiological interindividual variability in endogenous estradiol concentration does not influence adipose tissue and hepatic lipid kinetics in women. Eur J Endocrinol 2022; 187:391-398. [PMID: 35895691 PMCID: PMC9347062 DOI: 10.1530/eje-22-0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/06/2022] [Indexed: 01/22/2023]
Abstract
Objective Increased triglyceride (TG) and apolipoprotein B-100 (apoB-100) concentrations in plasma are important risk factors for cardiovascular disease in women. Administration of some estrogen preparations raises plasma TG and apoB-100 concentrations by increasing hepatic very low-density lipoprotein (VLDL) TG and apoB-100 secretion rates. However, the influence of physiological variation in endogenous estradiol on VLDL-TG and VLDL-apoB-100 metabolism and on free fatty acid (FFA) release into plasma (the major source of fatty acids for VLDL-TG production) is not known. Design and methods We measured basal VLDL-TG, VLDL-apoB-100, and plasma FFA kinetics by using stable isotopically labeled tracers in 36 eumenorrheic, premenopausal women (age: 33 ± 2 years, BMI: 31 ± 1 kg/m2; mean ± s.e.m.) during the follicular phase of the menstrual cycle; participants were divided into two groups based on low (n = 18) or high (n = 18) plasma estradiol concentrations (defined as below or above the median value of 140 pmol/L in the whole group). Results Mean plasma estradiol concentration was >3-fold higher in the high-estradiol than in the low-estradiol group (299 ± 37 and 96 ± 7 pmol/L, P < 0.001); there was no difference in plasma progesterone concentrations between the two groups (P = 0.976). There were no significant differences in plasma FFA concentration, FFA rate of appearance in plasma, VLDL-TG and VLDL-apoB-100 concentrations, hepatic VLDL-TG and VLDL-apoB-100 secretion rates, VLDL-TG and VLDL-apoB-100 plasma clearance rates, and mean residence times (all P ≥ 0.45). No significant associations were found between plasma estradiol concentration and FFA, VLDL-TG, and VLDL-apoB-100 concentrations and kinetics (all P > 0.19). Conclusions Plasma estradiol concentration is not an important correlate of basal plasma FFA, VLDL-TG, and VLDL-apoB-100 kinetics in premenopausal women.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elisa Fabbrini
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce W. Patterson
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Smith ME, Cisbani G, Metherel AH, Bazinet RP. The Majority of Brain Palmitic Acid is Maintained by Lipogenesis from Dietary Sugars and is Augmented in Mice fed Low Palmitic Acid Levels from Birth. J Neurochem 2021; 161:112-128. [PMID: 34780089 DOI: 10.1111/jnc.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
Previously, results from studies investigating if brain palmitic acid (16:0; PAM) was maintained by either dietary uptake or lipogenesis de novo (DNL) varied. Here, we utilize naturally occurring carbon isotope ratios (13 C/12 C; δ13 C) to uncover the origin of brain PAM. Additionally, we explored brain and liver fatty acid concentration, total brain metabolomic profile, and behaviour. BALB/c dams were equilibrated onto either a low PAM diet (LP; <2%) or high PAM diet (HP; >95%) prior to producing one generation of offspring. Offspring stayed on the respective diet of the dam until 15-weeks of age, at which time the Open Field test was conducted in the offspring, prior to euthanasia and tissue lipid extraction. Although liver PAM was lower in offspring fed the LP diet, as well as female offspring, brain PAM was not affected by diet or sex. Across offspring of either sex on both diets, brain 13 C-PAM revealed compared to dietary uptake, DNL from dietary sugars contributed 68.8%-79.5% and 46.6%-58.0% to the total brain PAM pool by both peripheral and local brain DNL, and local brain DNL alone, respectively. DNL was augmented in offspring fed the LP diet, and the ability to upregulate DNL in the liver or the brain depended on sex. Anxiety-like behaviours were decreased in offspring fed the LP diet and were correlated with markers of LP diet consumption including increased liver 13 C-PAM, warranting further investigation. Altogether, our results indicate that DNL from dietary sugars is a compensatory mechanism to maintain brain PAM in response to a LP diet.
Collapse
Affiliation(s)
| | - Giulia Cisbani
- University of Toronto, Department of Nutritional Sciences, Toronto
| | - Adam H Metherel
- University of Toronto, Department of Nutritional Sciences, Toronto
| | | |
Collapse
|
10
|
Polymorphisms in the stearoyl-CoA desaturase gene modify blood glucose response to dietary oils varying in MUFA content in adults with obesity. Br J Nutr 2021; 127:503-512. [PMID: 33829984 DOI: 10.1017/s0007114521001264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diets varying in SFA and MUFA content can impact glycaemic control; however, whether underlying differences in genetic make-up can influence blood glucose responses to these dietary fatty acids is unknown. We examined the impact of dietary oils varying in SFA/MUFA content on changes in blood glucose levels (primary outcome) and whether these changes were modified by variants in the stearoyl-CoA desaturase (SCD) gene (secondary outcome). Obese men and women participating in the randomised, crossover, isoenergetic, controlled-feeding Canola Oil Multicenter Intervention Trial II consumed three dietary oils for 6 weeks, with washout periods of ˜6 weeks between each treatment. Diets studied included a high SFA/low MUFA Control oil (36·6 % SFA/28·2 % MUFA), a conventional canola oil (6·2 % SFA/63·1 % MUFA) and a high-oleic acid canola oil (5·8 % SFA/74·7 % MUFA). No differences in fasting blood glucose were observed following the consumption of the dietary oils. However, when stratified by SCD genotypes, significant SNP-by-treatment interactions on blood glucose response were found with additive models for rs1502593 (P = 0·01), rs3071 (P = 0·02) and rs522951 (P = 0·03). The interaction for rs3071 remained significant (P = 0·005) when analysed with a recessive model, where individuals carrying the CC genotype showed an increase (0·14 (sem 0·09) mmol/l) in blood glucose levels with the Control oil diet, but reductions in blood glucose with both MUFA oil diets. Individuals carrying the AA and AC genotypes experienced reductions in blood glucose in response to all three oils. These findings identify a potential new target for personalised nutrition approaches aimed at improving glycaemic control.
Collapse
|
11
|
Roumans KH, Basset Sagarminaga J, Peters HP, Schrauwen P, Schrauwen-Hinderling VB. Liver fat storage pathways: methodologies and dietary effects. Curr Opin Lipidol 2021; 32:9-15. [PMID: 33234776 PMCID: PMC7810416 DOI: 10.1097/mol.0000000000000720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver is the result of an imbalance between lipid storage [from meal, de novo lipogenesis (DNL) and fatty acid (FA) uptake] and disposal (oxidation and VLDL output). Knowledge on the contribution of each of these pathways to liver fat content in humans is essential to develop tailored strategies to prevent and treat nonalcoholic fatty liver. Here, we review the techniques available to study the different storage pathways and review dietary modulation of these pathways. RECENT FINDINGS The type of carbohydrate and fat could be of importance in modulating DNL, as complex carbohydrates and omega-3 FAs have been shown to reduce DNL. No effects were found on the other pathways, however studies investigating this are scarce. SUMMARY Techniques used to assess storage pathways are predominantly stable isotope techniques, which require specific expertise and are costly. Validated biomarkers are often lacking. These methodological limitations also translate into a limited number of studies investigating to what extent storage pathways can be modulated by diet. Further research is needed to elucidate in more detail the impact that fat and carbohydrate type can have on liver fat storage pathways and content.
Collapse
Affiliation(s)
- Kay H.M. Roumans
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht
| | | | | | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht
| | - Vera B. Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
12
|
Jiang J, Cai X, Pan Y, Du X, Zhu H, Yang X, Zheng D, Gaisano H, Wei T, He Y. Relationship of obesity to adipose tissue insulin resistance. BMJ Open Diabetes Res Care 2020; 8:8/1/e000741. [PMID: 32245824 PMCID: PMC7254100 DOI: 10.1136/bmjdrc-2019-000741] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/05/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS This study aimed to examine the association of different anatomical forms of obesity with adipose tissue insulin resistance and to assess the diagnostic value and contribution of obesity to adipose tissue insulin resistance. METHODS This cross-sectional study included a total of 499 subjects aged 50 years or over. Multivariate regression analysis was conducted to clarify the association of different forms of obesity with adipose tissue insulin resistance (calculated as fasting insulin level×fasting free fatty acids level). Receiver operating characteristic cure analyses were used to assess the diagnostic value of each anthropometric indicator for adipose tissue insulin resistance. Attributable risk per cent and population attributable risk per cent were calculated to assess the contribution of obesity to adipose tissue insulin resistance. RESULTS After adjustment for potential confounders, we showed that anthropometric indicators were all positively associated with adipose tissue insulin resistance. In males, waist circumference (WC) was the strongest associated factor (OR, 3.43 (95% CI 2.03 to 5.82)) and indicator (area under the curve (AUC): 0.79) of adipose tissue insulin resistance among those indicators. Here, abdominal obesity (WC≥90 cm) accounted for 64.9% of adipose tissue insulin resistance in the abdominal obese males. Accordingly, body mass index (BMI) was the strongest associated factor (OR,3.08 (95% CI 2.04 to 4.66)) and indicator (AUC: 0.78) of adipose tissue insulin resistance in females. Here, general obesity of BMI≥25 kg/m2 accounted for 66.2% of the adipose tissue insulin resistance in the general obese females. We further demonstrated that adipose tissue insulin resistance was associated or trended to be associated with the metabolic diseases of cardiovascular disease, type 2 diabetes and fatty liver in subjects with normal BMI and WC. CONCLUSIONS Maintaining WC in males and BMI in females to a normal range could be an important strategy to significantly reduce the occurrence of adipose tissue insulin resistance and the subsequent metabolic diseases.
Collapse
Affiliation(s)
- Jiajia Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Xueli Cai
- Department of Neurology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
- Department of Statistics, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoyan Du
- Department of Laboratory Animal, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huiping Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xinghua Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Herbert Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tiemin Wei
- Department of Neurology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, China
| | - Yan He
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
13
|
Shokry E, Raab R, Kirchberg FF, Hellmuth C, Klingler M, Demmelmair H, Koletzko B, Uhl O. Prolonged monitoring of postprandial lipid metabolism after a western meal rich in linoleic acid and carbohydrates. Appl Physiol Nutr Metab 2019; 44:1189-1198. [PMID: 30893569 DOI: 10.1139/apnm-2018-0798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Today, awareness has been raised regarding high consumption of n-6 polyunsaturated fatty acids (PUFA) in western diets. A comprehensive analysis of total and individual postprandial fatty acids profiles would provide insights into metabolic turnover and related health effects. After an overnight fast, 9 healthy adults consumed a mixed meal comprising 97 g carbohydrate and 45 g fat, of which 26.4 g was linoleic acid (LA). Nonesterified fatty acids (NEFA), phospholipid fatty acids (PL-FA) and triacylglycerol fatty acids (TG-FA) were monitored in plasma samples, at baseline and hourly over a 7-h postprandial period. Total TG-FA concentration peaked at 2 h after the meal and steadily decreased thereafter. LA from TG18:2n-6 and behenic acid from TG22:0 showed the highest response among TG-FA, with a biphasic response detected for the former. PL-FA exhibited no change. Total NEFA initially decreased to nadir at 1 h, then increased to peak at 7 h. The individual NEFA showed the same response curve except LA and some very-long-chain saturated fatty acids (VLCSFA, ≥20 carbon chain length) that markedly increased shortly after the meal intake. The similarities and dissimilarities in lipid profiles between study subjects at different time points were visualized using nonmetric multi-dimensional scaling. Overall, the results indicate that postprandial levels of LA and VLCSFA, either as NEFA or TG, were most affected by the test meal, which might provide an explanation for the health effects of this dietary lifestyle characterized by high intake of mixed meals rich in n-6 PUFA.
Collapse
Affiliation(s)
- Engy Shokry
- Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.,Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Roxana Raab
- Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.,Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Franca F Kirchberg
- Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.,Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Christian Hellmuth
- Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.,Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Mario Klingler
- Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.,Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Hans Demmelmair
- Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.,Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Berthold Koletzko
- Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.,Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Olaf Uhl
- Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany.,Ludwig-Maximilians-Universität (LMU) München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| |
Collapse
|
14
|
Lane AN, Higashi RM, Fan TWM. NMR and MS-based Stable Isotope-Resolved Metabolomics and Applications in Cancer Metabolism. Trends Analyt Chem 2018; 120. [PMID: 32523238 DOI: 10.1016/j.trac.2018.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is considerable interest in defining metabolic reprogramming in human diseases, which is recognized as a hallmark of human cancer. Although radiotracers have a long history in specific metabolic studies, stable isotope-enriched precursors coupled with modern high resolution mass spectrometry and NMR spectroscopy have enabled systematic mapping of metabolic networks and fluxes in cells, tissues and living organisms including humans. These analytical platforms are high in information content, are complementary and cross-validating in terms of compound identification, quantification, and isotope labeling pattern analysis of a large number of metabolites simultaneously. Furthermore, new developments in chemoselective derivatization and in vivo spectroscopy enable tracking of labile/low abundance metabolites and metabolic kinetics in real-time. Here we review developments in Stable Isotope Resolved Metabolomics (SIRM) and recent applications in cancer metabolism using a wide variety of stable isotope tracers that probe both broad and specific aspects of cancer metabolism required for proliferation and survival.
Collapse
Affiliation(s)
- Andrew N Lane
- Center for Environmental and Systems Biochemistry, Dept. Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536 USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Dept. Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536 USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Dept. Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536 USA
| |
Collapse
|
15
|
Asghar R, Chondronikola M, Dillon EL, Durham WJ, Porter C, Wu Z, Camacho-Hughes M, Andersen CR, Spratt H, Volpi E, Sheffield-Moore M, Sidossis L, Wolfe RR, Abate N, Tuvdendorj DR. Quantification of muscle triglyceride synthesis rate requires an adjustment for total triglyceride content. J Lipid Res 2018; 59:2018-2024. [PMID: 30131344 DOI: 10.1194/jlr.d082321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/18/2018] [Indexed: 01/06/2023] Open
Abstract
Intramyocellular triglyceride (imTG) in skeletal muscle plays a significant role in metabolic health, and an infusion of [13C16]palmitate can be used to quantitate the in vivo fractional synthesis rate (FSR) and absolute synthesis rate (ASR) of imTGs. However, the extramyocellular TG (emTG) pool, unless precisely excised, contaminates the imTG pool, diluting the imTG-bound tracer enrichment and leading to underestimation of FSR. Because of the difficulty of excising the emTGs precisely, it would be advantageous to be able to calculate the imTG synthesis rate without dissecting the emTGs from each sample. Here, we tested the hypothesis that the ASR of total TGs (tTGs), a combination of imTGs and emTGs, calculated as "FSR × tTG pool," reasonably represents the imTG synthesis. Muscle lipid parameters were measured in nine healthy women at 90 and 170 min after the start of [13C16]palmitate infusion. While the measurements of tTG content, enrichment, and FSR did not correlate (P > 0.05), those of the tTG ASR were significantly correlated (r = 0.947, P < 0.05). These results demonstrate that when imTGs and emTGs are pooled, the resulting underestimation of imTG FSR is balanced by the overestimation of the imTG content. We conclude that imTG metabolism is reflected by the measurement of the tTG ASR.
Collapse
Affiliation(s)
- Rabia Asghar
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Maria Chondronikola
- Departments of Surgery, University of Texas Medical Branch, Galveston, TX.,Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
| | - Edgar L Dillon
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - William J Durham
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Craig Porter
- Departments of Surgery, University of Texas Medical Branch, Galveston, TX.,Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
| | | | - Maria Camacho-Hughes
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Clark R Andersen
- Departments of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX
| | - Heidi Spratt
- Departments of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX
| | - Elena Volpi
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | | | - Labros Sidossis
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX.,Metabolism Unit, Shriners Hospitals for Children, Galveston, TX
| | - Robert R Wolfe
- Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Nicola Abate
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | | |
Collapse
|
16
|
Green CJ, Parry SA, Gunn PJ, Ceresa CDL, Rosqvist F, Piché ME, Hodson L. Studying non-alcoholic fatty liver disease: the ins and outs of in vivo, ex vivo and in vitro human models. Horm Mol Biol Clin Investig 2018; 41:/j/hmbci.ahead-of-print/hmbci-2018-0038/hmbci-2018-0038.xml. [PMID: 30098284 DOI: 10.1515/hmbci-2018-0038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing. Determining the pathogenesis and pathophysiology of human NAFLD will allow for evidence-based prevention strategies, and more targeted mechanistic investigations. Various in vivo, ex situ and in vitro models may be utilised to study NAFLD; but all come with their own specific caveats. Here, we review the human-based models and discuss their advantages and limitations in regards to studying the development and progression of NAFLD. Overall, in vivo whole-body human studies are advantageous in that they allow for investigation within the physiological setting, however, limited accessibility to the liver makes direct investigations challenging. Non-invasive imaging techniques are able to somewhat overcome this challenge, whilst the use of stable-isotope tracers enables mechanistic insight to be obtained. Recent technological advances (i.e. normothermic machine perfusion) have opened new opportunities to investigate whole-organ metabolism, thus ex situ livers can be investigated directly. Therefore, investigations that cannot be performed in vivo in humans have the potential to be undertaken. In vitro models offer the ability to perform investigations at a cellular level, aiding in elucidating the molecular mechanisms of NAFLD. However, a number of current models do not closely resemble the human condition and work is ongoing to optimise culturing parameters in order to recapitulate this. In summary, no single model currently provides insight into the development, pathophysiology and progression across the NAFLD spectrum, each experimental model has limitations, which need to be taken into consideration to ensure appropriate conclusions and extrapolation of findings are made.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Siôn A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Pippa J Gunn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Carlo D L Ceresa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fredrik Rosqvist
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Marie-Eve Piché
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Quebec Heart and Lung Institute, Laval University, Quebec, Canada
| | - Leanne Hodson
- University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital,Old Road Headington, Oxford OX3 7LE, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
17
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Christensen NL, Jakobsen S, Schacht AC, Munk OL, Alstrup AKO, Tolbod LP, Harms HJ, Nielsen S, Gormsen LC. Whole-Body Biodistribution, Dosimetry, and Metabolite Correction of [ 11C]Palmitate: A PET Tracer for Imaging of Fatty Acid Metabolism. Mol Imaging 2018; 16:1536012117734485. [PMID: 29073808 PMCID: PMC5665104 DOI: 10.1177/1536012117734485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Despite the decades long use of [11C]palmitate positron emission tomography (PET)/computed tomography in basic metabolism studies, only personal communications regarding dosimetry and biodistribution data have been published. METHODS Dosimetry and biodistribution studies were performed in 2 pigs and 2 healthy volunteers by whole-body [11C]palmitate PET scans. Metabolite studies were performed in 40 participants (healthy and with type 2 diabetes) under basal and hyperinsulinemic conditions. Metabolites were estimated using 2 approaches and subsequently compared: Indirect [11C]CO2 release and parent [11C]palmitate measured by a solid-phase extraction (SPE) method. Finally, myocardial fatty acid uptake was calculated in a patient cohort using input functions derived from individual metabolite correction compared with population-based metabolite correction. RESULTS In humans, mean effective dose was 3.23 (0.02) µSv/MBq, with the liver and myocardium receiving the highest absorbed doses. Metabolite correction using only [11C]CO2 estimates underestimated the fraction of metabolites in studies lasting more than 20 minutes. Population-based metabolite correction showed excellent correlation with individual metabolite correction in the cardiac PET validation cohort. CONCLUSION First, mean effective dose of [11C]palmitate is 3.23 (0.02) µSv/MBq in humans allowing multiple scans using ∼300 MBq [11C]palmitate, and secondly, population-based metabolite correction compares well with individual correction.
Collapse
Affiliation(s)
- Nana L Christensen
- 1 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Steen Jakobsen
- 1 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Anna C Schacht
- 1 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Ole L Munk
- 1 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Aage K O Alstrup
- 1 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Lars P Tolbod
- 1 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Hendrik J Harms
- 1 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Søren Nielsen
- 2 Department of Endocrinology, Aarhus University Hospital, Aarhus C, Denmark
| | - Lars C Gormsen
- 1 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
19
|
Qasem RJ. Single-tube biosynthesis and extraction of U-13C and U-14C arachidonic acid from microcultures of Mortierella alpina for in vivo pharmacology and metabolic tracing studies. J Pharmacol Toxicol Methods 2018; 92:1-12. [DOI: 10.1016/j.vascn.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 11/24/2022]
|
20
|
Vink RG, Roumans NJ, van der Kolk BW, Fazelzadeh P, Boekschoten MV, Mariman EC, van Baak MA. Adipose Tissue Meal-Derived Fatty Acid Uptake Before and After Diet-Induced Weight Loss in Adults with Overweight and Obesity. Obesity (Silver Spring) 2017. [PMID: 28639346 DOI: 10.1002/oby.21903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study investigated whether diet-induced weight loss alters indices of in vivo postprandial fat uptake in adipose tissue (AT) and whether these changes are associated with weight regain in adults with overweight and obesity. METHODS In this randomized controlled trial, 16 (6 male) individuals (BMI: 28-35 kg/m2 ) were randomized to either a low-calorie diet (1,250 kcal/d) for 12 weeks or a very-low-calorie diet (500 kcal/d) for 5 weeks (weight loss [WL] period) followed by a 4-week weight-stable (WS) period (together, the dietary intervention [DI] period) and a 9-month follow-up period. Arteriovenous difference measurements combined with stable isotope labeling ([U-13 C] palmitate) of a mixed meal were used to determine postprandial fatty acid uptake in AT. RESULTS Body weight was significantly reduced during the WL period (-8.2 ± 0.6 kg, P < 0.001), remained stable during the WS period (0.4 ± 0.3 kg, P = 0.150), and increased during follow-up (3.5 ± 0.8 kg, P = 0.001). Meal-derived in vivo fatty acid uptake dynamics across AT and expression of genes important for fatty acid uptake, storage, and release were not significantly changed during the DI period. CONCLUSIONS Subcutaneous AT does not appear prone to enhanced meal-derived fatty acid uptake after weight loss, nor were fatty acid uptake dynamics detected as related to weight regain.
Collapse
Affiliation(s)
- Roel G Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nadia J Roumans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Birgitta W van der Kolk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Parastoo Fazelzadeh
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Edwin C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen A van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
21
|
Charidemou E, Ashmore T, Griffin JL. The use of stable isotopes in the study of human pathophysiology. Int J Biochem Cell Biol 2017; 93:102-109. [PMID: 28736244 DOI: 10.1016/j.biocel.2017.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022]
Abstract
The growing prevalence of metabolic diseases including fatty liver disease and Type 2 diabetes has increased the emphasis on understanding metabolism at the mechanistic level and how it is perturbed in disease. Metabolomics is a continually expanding field that seeks to measure metabolites in biological systems during a physiological stimulus or a genetic alteration. Typically, metabolomics studies provide total pool sizes of metabolites rather than dynamic flux measurements. More recently there has been a resurgence in approaches that use stable isotopes (e.g. 2H and 13C) for the unambiguous tracking of individual atoms through compartmentalised metabolic networks in humans to determine underlying mechanisms. This is known as metabolic flux analysis and enables the capture of a dynamic picture of the metabolome and its interactions with the genome and proteome. In this review, we describe current approaches using stable isotope labelling in the field of metabolomics and provide examples of studies that led to an improved understanding of glucose, fatty acid and amino acid metabolism in humans, particularly in relation to metabolic disease. Examples include the use of stable isotopes of glucose to study tumour bioenergetics as well as brain metabolism during traumatic brain injury. Lipid tracers have also been used to measure non-esterified fatty acid production whilst amino acid tracers have been used to study the rate of protein digestion on whole body postprandial protein metabolism. In addition, we illustrate the use of stable isotopes for measuring flux in human physiology by providing examples of breath tests to measure insulin resistance and gastric emptying rates.
Collapse
Affiliation(s)
- Evelina Charidemou
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
22
|
Yin H, Skrydstrup T. Access to Perfluoroalkyl-Substituted Enones and Indolin-2-ones via Multicomponent Pd-Catalyzed Carbonylative Reactions. J Org Chem 2017; 82:6474-6481. [DOI: 10.1021/acs.joc.7b00942] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hongfei Yin
- Carbon Dioxide Activation
Center (CADIAC), Department of Chemistry and the Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation
Center (CADIAC), Department of Chemistry and the Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
23
|
Methods for quantifying adipose tissue insulin resistance in overweight/obese humans. Int J Obes (Lond) 2017; 41:1288-1294. [PMID: 28465607 DOI: 10.1038/ijo.2017.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. SUBJECTS/METHODS We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3-2H5]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m-2). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. RESULTS Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area under the curve ⩾0.801, P<0.001). CONCLUSIONS Adipose tissue insulin sensitivity (that is, the antilipolytic action of insulin) can be reliably quantified in overweight and obese humans by simplified index methods. The sensitivity and specificity of the Adipo-IR index and the fasting plasma insulin-glycerol product, combined with their simplicity and acceptable agreement, suggest that these may be most useful in clinical practice.
Collapse
|
24
|
Paglialunga S, Dehn CA. Clinical assessment of hepatic de novo lipogenesis in non-alcoholic fatty liver disease. Lipids Health Dis 2016; 15:159. [PMID: 27640119 PMCID: PMC5027077 DOI: 10.1186/s12944-016-0321-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is heralded as the next big global epidemic. Hepatic de novo lipogenesis (DNL), the synthesis of new fatty acids from non-lipid sources, is thought to play a pivotal role in the development of NAFLD. While there is currently no NAFLD-specific therapeutic agent available, pharmaceutical drugs aimed at reducing hepatic fat accretion may prove to be a powerful ally in the treatment and management of this disease. With a focus on NAFLD, the present review summarizes current techniques examining DNL from a clinical perspective, and describes the merits and limitations of three commonly used assays; stable-label isotope tracer studies, fatty acid indexes and indirect calorimetry as non-invasive measures of hepatic DNL. Finally, the application of DNL assessments in the pharmacological and nutraceutical treatment of NAFLD/NASH is summarized. In a clinical research setting, measures of DNL are an important marker in the development of anti-NAFLD treatments.
Collapse
Affiliation(s)
- Sabina Paglialunga
- Global Clinical Research, Celerion, 2420 West Baseline Road, Tempe, AZ, 85283, USA.
| | - Clayton A Dehn
- Global Clinical Research, Celerion, 2420 West Baseline Road, Tempe, AZ, 85283, USA.,Current affiliation: Umbrella Corporation, San Antonio, TX, USA
| |
Collapse
|
25
|
Fabbrini E, Magkos F. Hepatic Steatosis as a Marker of Metabolic Dysfunction. Nutrients 2015; 7:4995-5019. [PMID: 26102213 PMCID: PMC4488828 DOI: 10.3390/nu7064995] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of the complex metabolic derangements associated with obesity. NAFLD is characterized by excessive deposition of fat in the liver (steatosis) and develops when hepatic fatty acid availability from plasma and de novo synthesis exceeds hepatic fatty acid disposal by oxidation and triglyceride export. Hepatic steatosis is therefore the biochemical result of an imbalance between complex pathways of lipid metabolism, and is associated with an array of adverse changes in glucose, fatty acid, and lipoprotein metabolism across all tissues of the body. Intrahepatic triglyceride (IHTG) content is therefore a very good marker (and in some cases may be the cause) of the presence and the degree of multiple-organ metabolic dysfunction. These metabolic abnormalities are likely responsible for many cardiometabolic risk factors associated with NAFLD, such as insulin resistance, type 2 diabetes mellitus, and dyslipidemia. Understanding the factors involved in the pathogenesis and pathophysiology of NAFLD will lead to a better understanding of the mechanisms responsible for the metabolic complications of obesity, and hopefully to the discovery of novel effective treatments for their reversal.
Collapse
Affiliation(s)
- Elisa Fabbrini
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Faidon Magkos
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
McCue MD, Voigt CC, Jefimow M, Wojciechowski MS. Thermal acclimation and nutritional history affect the oxidation of different classes of exogenous nutrients in Siberian hamsters, Phodopus sungorus. ACTA ACUST UNITED AC 2014; 321:503-14. [PMID: 25045129 DOI: 10.1002/jez.1882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/05/2014] [Accepted: 06/16/2014] [Indexed: 11/06/2022]
Abstract
During acclimatization to winter, changes in morphology and physiology combined with changes in diet may affect how animals use the nutrients they ingest. To study (a) how thermal acclimation and (b) nutritional history affect the rates at which Siberian hamsters (Phodopus sungorus) oxidize different classes of dietary nutrients, we conducted two trials in which we fed hamsters one of three (13) C-labeled compounds, that is, glucose, leucine, or palmitic acid. We predicted that under acute cold stress (3 hr at 2°C) hamsters previously acclimated to cold temperatures (10°C) for 3 weeks would have higher resting metabolic rate (RMR) and would oxidize a greater proportion of dietary fatty acids than animals acclimated to 21°C. We also investigated how chronic nutritional stress affects how hamsters use dietary nutrients. To examine this, hamsters were fed four different diets (control, low protein, low lipid, and low-glycemic index) for 2 weeks. During cold challenges, hamsters previously acclimated to cold exhibited higher thermal conductance and RMR, and also oxidized more exogenous palmitic acid during the postprandial phase than animals acclimated to 21°C. In the nutritional stress trial, hamsters fed the low protein diet oxidized more exogenous glucose, but not more exogenous palmitic acid than the control group. The use of (13) C-labeled metabolic tracers combined with breath testing demonstrated that both thermal and nutritional history results in significant changes in the extent to which animals oxidize dietary nutrients during the postprandial period.
Collapse
Affiliation(s)
- Marshall D McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas
| | | | | | | |
Collapse
|
27
|
Previs SF, McLaren DG, Wang SP, Stout SJ, Zhou H, Herath K, Shah V, Miller PL, Wilsie L, Castro-Perez J, Johns DG, Cleary MA, Roddy TP. New methodologies for studying lipid synthesis and turnover: looking backwards to enable moving forwards. Biochim Biophys Acta Mol Basis Dis 2013; 1842:402-13. [PMID: 23707557 DOI: 10.1016/j.bbadis.2013.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Our ability to understand the pathogenesis of problems surrounding lipid accretion requires attention towards quantifying lipid kinetics. In addition, studies of metabolic flux should also help unravel mechanisms that lead to imbalances in inter-organ lipid trafficking which contribute to dyslipidemia and/or peripheral lipid accumulation (e.g. hepatic fat deposits). This review aims to outline the development and use of novel methods for studying lipid kinetics in vivo. Although our focus is directed towards some of the approaches that are currently reported in the literature, we include a discussion of the older literature in order to put "new" methods in better perspective and inform readers of valuable historical research. Presumably, future advances in understanding lipid dynamics will benefit from a careful consideration of the past efforts, where possible we have tried to identify seminal papers or those that provide clear data to emphasize essential points. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Stephen F Previs
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - David G McLaren
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Sheng-Ping Wang
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Steven J Stout
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Haihong Zhou
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Kithsiri Herath
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Vinit Shah
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Paul L Miller
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Larissa Wilsie
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Jose Castro-Perez
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Douglas G Johns
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Michele A Cleary
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Thomas P Roddy
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
28
|
Getting the label in: practical research strategies for tracing dietary fat. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2012; 2:S43-50. [PMID: 27152153 DOI: 10.1038/ijosup.2012.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The observation that events occurring after consumption of a meal can directly affect metabolic risk has been gaining interest over the past 40 years. As a result, the desire for investigators to conduct postprandial studies has also increased. Study design decisions pertaining to the choice of meal quantity and composition are more difficult than may be readily apparent, and there is now ample evidence available in the literature to suggest that what is fed on the test day significantly affects postprandial metabolism and can therefore influence interpretation of results. In addition, events occurring before the testing day (food intake and activities) can also have an impact on the observed postprandial response. The goal of this review is to present aspects of study design critical to the investigation of postprandial metabolism. These details include subject preparation, meal quantity, form and composition, as well as sampling protocols for measuring metabolites. Key factors and practical examples are provided to minimize the impact of nonresearch variables on subject variability. Finally, aspects related to using stable isotope tracers to measure metabolism of meal fat are discussed, including choice of tracer form, dose and delivery in food. Given that fed-state events contribute significantly to chronic disease risk, improved methods to study the absorption and disposal of food energy will support the development of strategies designed to prevent and treat diseases associated with overconsumption of nutrients.
Collapse
|
29
|
Magkos F, Fabbrini E, Korenblat K, Okunade AL, Patterson BW, Klein S. Reproducibility of glucose, fatty acid and VLDL kinetics and multi-organ insulin sensitivity in obese subjects with non-alcoholic fatty liver disease. Int J Obes (Lond) 2010; 35:1233-40. [PMID: 21179000 DOI: 10.1038/ijo.2010.265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities in basal glucose and free fatty acid (FFA) metabolism, multi-organ insulin resistance and alterations in lipoprotein kinetics. These metabolic outcomes can be evaluated in vivo by using stable isotopically labeled tracer methods. An understanding of the reproducibility of these measures is necessary to ensure adequate statistical power in studies designed to evaluate metabolic function in subjects with NAFLD. METHODS We determined the degree of intra-individual variability of skeletal muscle, adipose tissue, and hepatic insulin sensitivity and basal plasma glucose, FFA, and very-low-density lipoprotein triglyceride and apolipoprotein B-100 (apoB-100) kinetics in eight obese subjects with NAFLD (age: 44 ± 3 years; body mass index: 38.2 ± 1.7 kg m(-2); intrahepatic triglyceride content: 24.5 ± 3.9%), by using the hyperinsulinemic-euglycemic clamp technique and stable isotope-labeled tracer methods and mathematical modeling on two separate occasions ∼2 months apart. RESULTS The intra-individual variability (coefficient of variation) ranged from 6% for basal glucose production to 21% for insulin-stimulated glucose disposal (percentage increase from basal). We estimated that a 25% difference in any outcome measure can be detected with a sample size of ≤ 8 subjects for paired studies and ≤ 15 subjects per group for unpaired studies, assuming an α value of 0.05 and a β value of 0.20 (that is, 80% power). CONCLUSION These results demonstrate that only a small number of subjects are needed to detect clinically relevant effects in insulin sensitivity and hepatic lipoprotein metabolism in obese subjects with NAFLD, and will be useful to determine appropriate sample size for future metabolic studies.
Collapse
Affiliation(s)
- F Magkos
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
30
|
Byun HS, Bittman R. Selective deuterium labeling of the sphingoid backbone: facile syntheses of 3,4,5-trideuterio-d-erythro-sphingosine and 3-deuterio-d-erythro-sphingomyelin. Chem Phys Lipids 2010; 163:809-13. [PMID: 20836998 DOI: 10.1016/j.chemphyslip.2010.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 01/06/2023]
Abstract
Deuteration at C-4 and C-5 of sphingosine was achieved via a hydrogen-deuterium exchange reaction of a β-ketophosphonate intermediate catalyzed by ND₄Cl in D₂O/tetrahydrofuran. To install deuterium at C-3 of sphingosine and sphingomyelin, sodium borodeuteride reduction/cerium(III) chloride reduction of an α,β-enone in perdeuteromethanol was used.
Collapse
Affiliation(s)
- Hoe-Sup Byun
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, NY 11367-1597, USA
| | | |
Collapse
|
31
|
Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S. Increased whole-body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction. Obesity (Silver Spring) 2010; 18:1510-5. [PMID: 20395947 PMCID: PMC3319734 DOI: 10.1038/oby.2010.90] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim of this study was to determine whether an increase in adiposity, without a concomitant increase in intrahepatic triglyceride (IHTG) content, is associated with a deterioration in metabolic function. To this end, multiorgan insulin sensitivity, assessed by using a two-stage hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled tracer infusion, and very low-density lipoprotein (VLDL) kinetics, assessed by using stable isotopically labeled tracer infusion and mathematical modeling, were determined in 10 subjects with class I obesity (BMI: 31.6 +/- 0.3 kg/m(2); 37 +/- 2% body fat; visceral adipose tissue (VAT): 1,225 +/- 144 cm(3)) and 10 subjects with class III obesity (BMI: 41.5 +/- 0.5 kg/m(2); 43 +/- 2% body fat; VAT: 2,121 +/- 378 cm(3)), matched on age, sex, and IHTG content (14 +/- 4 and 14 +/- 3%, respectively). No differences between class I and class III obese groups were detected in insulin-mediated suppression of palmitate (67 +/- 3 and 65 +/- 3%, respectively; P = 0.635) and glucose (67 +/- 3 and 73 +/- 5%, respectively; P = 0.348) rates of appearance in plasma, and the insulin-mediated increase in glucose disposal (218 +/- 18 and 193 +/- 30%, respectively; P = 0.489). In addition, no differences between class I and class III obese groups were detected in secretion rates of VLDL-triglyceride (6.5 +/- 1.0 and 6.0 +/- 1.4 micromol/l x min, respectively; P = 0.787) and VLDL-apolipoprotein B-100 (0.40 +/- 0.05 and 0.41 +/- 0.04 nmol/l x min, respectively; P = 0.866), and plasma clearance rates of VLDL-triglyceride (31 (16-59) and 29 (18-46) ml/min, respectively; P = 0.888) and VLDL-apolipoprotein B-100 (15 (11-19) and 17 (11-25) ml/min, respectively; P = 0.608). We conclude that increased adiposity without a concomitant increase in IHTG content does not cause additional abnormalities in adipose tissue, skeletal muscle, and hepatic insulin sensitivity, or VLDL metabolism.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Elisa Fabbrini
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
- Center for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele, Rome, Italy
| | - B. Selma Mohammed
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce W. Patterson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
32
|
Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S, Mittendorfer B. Estrogen deficiency after menopause does not result in male very-low-density lipoprotein metabolism phenotype. J Clin Endocrinol Metab 2010; 95:3377-84. [PMID: 20444912 PMCID: PMC2928893 DOI: 10.1210/jc.2010-0341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Sex differences in lipid metabolism result in a less proatherogenic plasma lipid profile in premenopausal women than men. The mechanisms responsible for this are unclear but are thought to be related to differences in the sex hormone milieu in men and women. OBJECTIVE Our objective was to evaluate the effect of endogenous sex hormones on very-low-density lipoprotein (VLDL) triglyceride (TG) and apolipoprotein B-100 (apoB-100) metabolism. EXPERIMENTAL DESIGN AND MAIN OUTCOME MEASURES: We measured basal VLDL-TG and VLDL-apoB-100 concentrations and kinetics by using stable isotope-labeled tracers. SETTING AND PARTICIPANTS Eight premenopausal women [age, 43 + or - 8 yr; body mass index (BMI), 35 + or - 4 kg/m(2); mean + or - sd], eight postmenopausal women (age, 55 + or - 4 yr; BMI, 34 + or - 4 kg/m(2)), and eight men (age, 41 + or - 13 yr; BMI, 34 + or - 4 kg/m(2)) were studied at Washington University School of Medicine, St. Louis, MO. RESULTS VLDL-TG secretion rate was approximately double (P < 0.05) in postmenopausal women and men compared with premenopausal women but not different in postmenopausal women and men. The secretion rate of VLDL-apoB-100 was not different in pre- and postmenopausal women but was greater (P < 0.05) in men than in women. CONCLUSIONS Endogenous ovarian sex steroids are responsible for sexual dimorphism in VLDL-TG secretion, whereas VLDL-apoB-100 secretion is not regulated by female reproductive hormones.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
33
|
Magkos F, Mittendorfer B. Gender differences in lipid metabolism and the effect of obesity. Obstet Gynecol Clin North Am 2009; 36:245-65, vii. [PMID: 19501312 DOI: 10.1016/j.ogc.2009.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There are many differences between men and women, and between lean and obese subjects, in fatty acid and very low-density lipoprotein triglyceride and apolipoprotein B-100 metabolism. Currently, observations in this area are predominantly descriptive. The mechanisms responsible for sexual dimorphism in lipid metabolism are largely unknown.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition, Division of Geriatrics & Nutritional Science, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|