1
|
Belete MA, Anley DT, Tsega SS, Moges N, Anteneh RM, Zemene MA, Gebeyehu AA, Dessie AM, Kebede N, Chanie ES, Alemayehu E. The potential of circulating microRNAs as novel diagnostic biomarkers of COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:1011. [PMID: 39300343 PMCID: PMC11414062 DOI: 10.1186/s12879-024-09915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION The COVID-19 pandemic has caused an unprecedented health threat globally, necessitating innovative and efficient diagnostic approaches for timely identification of infected individuals. Despite few emerging reports, the clinical utility of circulating microRNAs (miRNAs) in early and accurate diagnosis of COVID-19 is not well-evidenced. Hence, this meta-analysis aimed to explore the diagnostic potential of circulating miRNAs for COVID-19. The protocol for this study was officially recorded on PROSPERO under registration number CRD42023494959. METHODS Electronic databases including Embase, PubMed, Scopus, and other sources were exhaustively searched to recover studies published until 16th January, 2024. Pooled specificity, sensitivity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic ratio (DOR), positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) were computed from the metadata using Stata 14.0 software. Risk of bias appraisal of included articles was carried out using Review Manager (Rev-Man) 5.3 package through the modified QUADAS-2 tool. Subgroup, heterogeneity, meta-regression and sensitivity analyses were undertaken. Publication bias and clinical applicability were also evaluated via Deeks' funnel plot and Fagan nomogram (scattergram), respectively. RESULT A total of 43 studies from 13 eligible articles, involving 5175 participants (3281 COVID-19 patients and 1894 healthy controls), were analyzed. Our results depicted that miRNAs exhibit enhanced pooled specificity 0.91 (95% CI: 0.88-0.94), sensitivity 0.94 (95% CI: 0.91-0.96), DOR of 159 (95% CI: 87-288), and AUC values of 0.97 (95% CI: 0.95-0.98) with high pooled PPV 96% (95% CI: 94-97%) and NPV 88% (95% CI: 86-90%) values. Additionally, highest diagnostic capacity was observed in studies involving larger sample size (greater than 100) and those involving the African population, demonstrating consistent diagnostic effectiveness across various specimen types. Notably, a total of 12 distinct miRNAs were identified as suitable for both exclusion and confirmation of COVID-19 cases, denoting their potential clinical applicability. CONCLUSION Our study depicted that miRNAs show significantly high diagnostic accuracy in differentiating COVID-19 patients from healthy counterparts, suggesting their possible use as viable biomarkers. Nonetheless, thorough and wide-ranging longitudinal researches are necessary to confirm the clinical applicability of miRNAs in diagnosing COVID-19.
Collapse
Affiliation(s)
- Melaku Ashagrie Belete
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Denekew Tenaw Anley
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sintayehu Simie Tsega
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Natnael Moges
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Rahel Mulatie Anteneh
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melkamu Aderajew Zemene
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Asaye Alamneh Gebeyehu
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anteneh Mengist Dessie
- Department of Public Health, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Natnael Kebede
- Department of Health Promotion, School of Public Health College of Medicine Health Sciences, Wollo University, Dessie, Ethiopia
| | - Ermias Sisay Chanie
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Ermiyas Alemayehu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
2
|
Altoukhi SM, Zamkah MM, Alharbi RA, Alghamdi SK, Aldawsari LS, Tarabulsi M, Rizk H, Sandokji Y. Understanding the effects of COVID-19 on patients with diabetic nephropathy: a systematic review. Ann Med Surg (Lond) 2024; 86:3478-3486. [PMID: 38846830 PMCID: PMC11152851 DOI: 10.1097/ms9.0000000000002053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Background Diabetic nephropathy is one of the consequences of diabetes mellitus that causes a continuous decline in the eGFR. After the COVID-19 pandemic, studies have shown that patients with diabetic nephropathy who had contracted COVID-19 have higher rates of morbidity and disease progression. The aim of this study was to systematically review the literature to determine and understand the effects and complications of SARS-CoV-2 on patients with diabetic nephropathy. Materials and methods The authors' research protocol encompassed the study selection process, search strategy, inclusion/exclusion criteria, and a data extraction plan. A systematic review was conducted by a team of five reviewers, with an additional reviewer assigned to address any discrepancies. To ensure comprehensive coverage, the authors employed multiple search engines including PubMed, ResearchGate, ScienceDirect, SDL, Ovid, and Google Scholar. Results A total of 14 articles meeting the inclusion criteria revealed that COVID-19 directly affects the kidneys by utilizing ACE2 receptors for cell entry, which is significant because ACE2 receptors are widely expressed in the kidney. Conclusion COVID-19 affects kidney health, especially in individuals with diabetic nephropathy. The mechanisms include direct viral infection and immune-mediated injury. Early recognition and management are vital for improving the outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hisham Rizk
- General Surgery, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Yousif Sandokji
- General Surgery, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Hashemi Sheikhshabani S, Ghafouri-Fard S, Amini-Farsani Z, Modarres P, Khazaei Feyzabad S, Amini-Farsani Z, Shaygan N, Omrani MD. In Silico Prediction of Functional SNPs Interrupting Antioxidant Defense Genes in Relation to COVID-19 Progression. Biochem Genet 2024:10.1007/s10528-024-10705-9. [PMID: 38460087 DOI: 10.1007/s10528-024-10705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 03/11/2024]
Abstract
The excessive production of reactive oxygen species and weakening of antioxidant defense system play a pivotal role in the pathogenesis of different diseases. Extensive differences observed among individuals in terms of affliction with cancer, cardiovascular disorders, diabetes, bacterial, and viral infections, as well as response to treatments can be partly due to their genomic variations. In this work, we attempted to predict the effect of SNPs of the key genes of antioxidant defense system on their structure, function, and expression in relation to COVID-19 pathogenesis using in silico tools. In addition, the effect of SNPs on the target site binding efficiency of SNPs was investigated as a factor with potential to change drug response or susceptibility to COVID-19. According to the predicted results, only six missense SNPs with minor allele frequency (MAF) ≥ 0.1 in the coding region of genes GPX7, GPX8, TXNRD2, GLRX5, and GLRX were able to strongly affect their structure and function. Our results predicted that 39 SNPs with MAF ≥ 0.1 led to the generation or destruction of miRNA-binding sites on target antioxidant genes from GPX, PRDX, GLRX, TXN, and SOD families. The results obtained from comparing the expression profiles of mild vs. severe COVID-19 patients using GEO2R demonstrated a significant change in the expression of approximately 250 miRNAs. The binding efficiency of 21 of these miRNAs was changed due to the elimination or generation of target sites in these genes. Altogether, this study reveals the fundamental role of the SNPs of antioxidant defense genes in COVID-19 progression and susceptibility of individuals to this virus. In addition, different responses of COVID-19 patients to antioxidant defense system enhancement drugs may be due to presence of these SNPs in different individuals.
Collapse
Affiliation(s)
- Somayeh Hashemi Sheikhshabani
- Student Research Committee, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Student Research Committee, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Amini-Farsani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Modarres
- Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Sharareh Khazaei Feyzabad
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Amini-Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute of Statistics, Ludwig-Maximilian-Universität München, Ludwigstraße 33, 80539, Munich, Germany
| | - Nasibeh Shaygan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ayoub SE, Shaker OG, Masoud M, Hassan EA, Ezzat EM, Ahmed MI, Ahmed RI, Amin AAI, Abd El Reheem F, Khalefa AA, Mahmoud RH. Altered expression of serum lncRNA CASC2 and miRNA-21-5p in COVID-19 patients. Hum Genomics 2024; 18:18. [PMID: 38342902 PMCID: PMC10860220 DOI: 10.1186/s40246-024-00578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024] Open
Abstract
Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has a high incidence of spread. On January 30, 2020, the World Health Organization proclaimed a public health emergency of worldwide concern. More than 6.9 million deaths and more than 768 million confirmed cases had been reported worldwide as of June 18, 2023. This study included 51 patients and 50 age- and sex-matched healthy subjects. The present study aimed to identify the expression levels of lncRNA CASC2 and miRNA-21-5p (also known as miRNA-21) in COVID-19 patients and their relation to the clinicopathological characteristics of the disease. The expression levels of noncoding RNAs were measured by RT-PCR technique. Results detected that CASC2 was significantly downregulated while miRNA-21-5p was significantly upregulated in COVID-19 patients compared to healthy subjects. A significant negative correlation was found between CASC2 and miRNA-21-5p. ROC curve analysis used to distinguish COVID-19 patients from controls. MiRNA-21-p serum expression level had a significant positive association with temperature and PO2 (p = 0.04 for each). These findings indicate that CASC2 and miRNA-21-p might be used as potential diagnostic and therapeutic biomarkers in COVID-19.
Collapse
Affiliation(s)
- Shymaa E Ayoub
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt.
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Masoud
- Department of Public Health and Community Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Essam A Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman M Ezzat
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mona I Ahmed
- Department of Chest Disease and Tuberculosis, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Randa I Ahmed
- Department of Chest Disease and Tuberculosis, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Amal A Ibrahim Amin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Fadwa Abd El Reheem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Abeer A Khalefa
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania H Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
5
|
Mihaescu G, Chifiriuc MC, Filip R, Bleotu C, Ditu LM, Constantin M, Cristian RE, Grigore R, Bertesteanu SV, Bertesteanu G, Vrancianu CO. Role of interferons in the antiviral battle: from virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front Immunol 2024; 14:1273604. [PMID: 38288121 PMCID: PMC10822962 DOI: 10.3389/fimmu.2023.1273604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion. IFNs are primarily synthesized in infected cells, but their anti-infective effect is extended to the neighboring cells by autocrine and paracrine action. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019 was a stark reminder of the potential threat posed by newly emerging viruses. This pandemic has also triggered an overwhelming influx of research studies aiming to unveil the mechanisms of protective versus pathogenic host immune responses induced by SARS-CoV-2. The purpose of this review is to describe the role of IFNs as vital players in the battle against SARS-CoV-2 infection. We will briefly characterize and classify IFNs, present the inductors of IFN synthesis, their sensors, and signaling pathways, and then discuss the role of IFNs in controlling the evolution of SARS-CoV-2 infection and its clinical outcome. Finally, we will present the perspectives and controversies regarding the prophylactic and therapeutic potential of IFNs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Microbiology Department, Suceava Emergency County Hospital, Suceava, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Lia Mara Ditu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Raluca Grigore
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
6
|
Bai Y, Li Y, Qin Y, Yang X, Tseng GC, Kim S, Park HJ. The microRNA target site profile is a novel biomarker in the immunotherapy response. Front Oncol 2023; 13:1225221. [PMID: 38188295 PMCID: PMC10771317 DOI: 10.3389/fonc.2023.1225221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
MicroRNAs (miRNAs) bind on the 3' untranslated region (3'UTR) of messenger RNAs (mRNAs) and regulate mRNA expression in physiological and pathological conditions, including cancer. Thus, studies have identified miRNAs as potential biomarkers by correlating the miRNA expression with the expression of important mRNAs and/or clinical outcomes in cancers. However, tumors undergo pervasive 3'UTR shortening/lengthening events through alternative polyadenylation (APA), which varies the number of miRNA target sites in mRNA, raising the number of miRNA target sites (numTS) as another important regulatory axis of the miRNA binding effects. In this study, we developed the first statistical method, BIOMATA-APA, to identify predictive miRNAs based on numTS features. Running BIOMATA-APA on The Cancer Genome Atlas (TCGA) and independent cohort data both with immunotherapy and no immunotherapy, we demonstrated for the first time that the numTS feature 1) distinguishes different cancer types, 2) predicts tumor proliferation and immune infiltration status, 3) explains more variation in the proportion of tumor-infiltrating immune cells, 4) predicts response to immune checkpoint blockade (ICB) therapy, and 5) adds prognostic power beyond clinical and miRNA expression. To the best of our knowledge, this is the first pan-cancer study to systematically demonstrate numTS as a novel type of biomarker representing the miRNA binding effects underlying tumorigenesis and pave the way to incorporate miRNA target sites for miRNA biomarker identification. Another advantage of examining the miRNA binding effect using numTS is that it requires only RNA-Seq data, not miRNAs, thus resulting in high power in the miRNA biomarker identification.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yujia Li
- Statistics-Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - Yidi Qin
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinshuo Yang
- Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Soyeon Kim
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Castaldo M, Ebbesen BD, Fernández-DE-Las-Peñas C, Arendt-Nielsen L, Giordano R. COVID-19 and musculoskeletal pain: an overview of the current knowledge. Minerva Anestesiol 2023; 89:1134-1142. [PMID: 38019176 DOI: 10.23736/s0375-9393.23.17471-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has provoked billions of infections worldwide. Several meta-analyses have observed that up to 50% of individuals who had survived to a SARS-CoV-2 acute infection suffer from post-COVID symptoms lasting for weeks or months and up to one year after infection. The prevalence of post-COVID pain ranges between 10% to 20% when assessed with other overall post-COVID symptoms and can reach up to 50% to 60% when investigated specifically. The most common musculoskeletal manifestations of post-COVID-19 condition include fatigue, myalgia, arthralgia or back pain. Despite pain of musculoskeletal origin is one of the most prevalent post-COVID pain symptoms, the exact pathophysiological mechanisms of musculoskeletal post-COVID pain are not completely understood. Studies have reported the complexity of post-COVID pain including immune, biological, and psychological factors, and more recently, they have suggested that genetic and epigenetic factors may also play a potential role, highlighting the need for further investigation into these mechanisms. Its management is still controversial, as no specific guideline for treating musculoskeletal post-COVID pain has been proposed with only general consideration about the relevance of multidisciplinary and multimodal treatment approaches. In this paper we will highlight the clinical features, the mechanism, and the management possibilities of musculoskeletal post-COVID pain.
Collapse
Affiliation(s)
- Matteo Castaldo
- School of Medicine, Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark -
| | - Brian D Ebbesen
- School of Medicine, Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - César Fernández-DE-Las-Peñas
- School of Medicine, Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Lars Arendt-Nielsen
- School of Medicine, Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Rocco Giordano
- School of Medicine, Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
8
|
Soltane R, Almulla N, Alasiri A, Elashmawy NF, Qumsani AT, Alshehrei FM, Keshek DEG, Alqadi T, AL-Ghamdi SB, Allayeh AK. A Comparative Analysis of MicroRNA Expression in Mild, Moderate, and Severe COVID-19: Insights from Urine, Serum, and Nasopharyngeal Samples. Biomolecules 2023; 13:1681. [PMID: 38136554 PMCID: PMC10742216 DOI: 10.3390/biom13121681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, manifests with a wide range of clinical symptoms that vary from mild respiratory issues to severe respiratory distress. To effectively manage and predict the outcomes of the disease, it is important to understand the molecular mechanisms underlying its severity. This study focuses on analyzing and comparing the expression patterns of microRNAs (miRNAs) in serum, urine, and nasopharyngeal samples from patients with mild, moderate, and severe COVID-19. The aim is to identify potential associations with disease progression and discover suitable markers for diagnosis and prognosis. Our findings indicate the consistent upregulation of miR-21, miR-146a, and miR-155 in urine, serum, and nasopharyngeal samples from patients with mild COVID-19. In moderate cases, there were more significant changes in miRNA expression compared to mild cases. Specifically, miR-let-7 demonstrated upregulation, while miR-146b exhibited downregulation. The most notable alterations in miRNA expression profiles were observed in severe COVID-19 cases, with a significant upregulation of miR-223. Moreover, our analysis using Receiver-operating characteristic (ROC) curves demonstrated that miR-155, miR-let-7, and miR-223 exhibited high sensitivity and specificity, suggesting their potential as biomarkers for distinguishing COVID-19 patients from healthy individuals. Overall, this comparative analysis revealed distinct patterns in miRNA expression. The overlapping expression patterns of miRNAs in urine, serum, and nasopharyngeal samples suggest their potential utility in discriminating disease status.
Collapse
Affiliation(s)
- Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Nabila F. Elashmawy
- Biology Department, College of Science, Jazan University, Jazan 82817, Saudi Arabia;
| | - Alaa T. Qumsani
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
| | - Fatimah M. Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
| | - Doaa El-Ghareeb Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza 12512, Egypt
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | | | - Abdou Kamal Allayeh
- Virology Lab 176, Environment and Climate Change Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
9
|
Yang YF, Singh S. Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID. Int J Mol Sci 2023; 24:15471. [PMID: 37895148 PMCID: PMC10607042 DOI: 10.3390/ijms242015471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
COVID-19 pandemic has caused widespread panic and fear among the global population. As such, repurposing drugs are being used as viable therapeutic options due to the limited effective treatments for Long COVID symptoms. Ivermectin is one of the emerging repurposed drugs that has been shown effective to have antiviral effects in clinical trials. In addition, antioxidant compounds are also gaining attention due to their capabilities of reducing inflammation and severity of symptoms. Due to the absence of knowledge in pharmacogenomics and modes of actions in the human body for these compounds, this study aims to provide a pharmacogenomic profile for the combination of ivermectin and six selected antioxidants (epigallocatechin gallate (EGCG), curcumin, sesamin, anthocyanins, quercetin, and N-acetylcysteine (NAC)) as potentially effective regimens for long COVID symptoms. Results showed that there were 12 interacting genes found among the ivermectin, 6 antioxidants, and COVID-19. For network pharmacology, the 12 common interacting genes/proteins had the highest associations with Pertussis pathway, AGE-RAGE signaling pathway in diabetic complications, and colorectal cancer in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Disease analyses also revealed that the top three relevant diseases with COVID-19 infections were diabetes mellitus, ischemia, reperfusion injury. We also identified 6 potential target microRNAs (miRNAs) of the 12 commonly curated genes used as molecular biomarkers for COVID-19 treatments. The established pharmacogenomic network, disease analyses, and identified miRNAs could facilitate developments of effective regimens for chronic sequelae of COVID-19 especially in this post-pandemic era. However, further studies and clinical trials are needed to substantiate the effectiveness and dosages for COVID-19 treatments.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Sher Singh
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
10
|
Omer A. MicroRNAs as powerful tool against COVID-19: Computational perspective. WIREs Mech Dis 2023; 15:e1621. [PMID: 37345625 DOI: 10.1002/wsbm.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is the virus that is responsible for the current pandemic, COVID-19 (SARS-CoV-2). MiRNAs, a component of RNAi technology, belong to the family of short, noncoding ssRNAs, and may be crucial in the battle against this global threat since they are involved in regulating complex biochemical pathways and may prevent viral proliferation, translation, and host expression. The complicated metabolic pathways are modulated by the activity of many proteins, mRNAs, and miRNAs working together in miRNA-mediated genetic control. The amount of omics data has increased dramatically in recent years. This massive, linked, yet complex metabolic regulatory network data offers a wealth of opportunity for iterative analysis; hence, extensive, in-depth, but time-efficient screening is necessary to acquire fresh discoveries; this is readily performed with the use of bioinformatics. We have reviewed the literature on microRNAs, bioinformatics, and COVID-19 infection to summarize (1) the function of miRNAs in combating COVID-19, and (2) the use of computational methods in combating COVID-19 in certain noteworthy studies, and (3) computational tools used by these studies against COVID-19 in several purposes. This article is categorized under: Infectious Diseases > Computational Models.
Collapse
Affiliation(s)
- Ankur Omer
- Government College Silodi, MPHED, Katni, Madhya Pradesh, India
| |
Collapse
|
11
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
He Q, Qiao W, Fang H, Bao Y. Improving the identification of miRNA-disease associations with multi-task learning on gene-disease networks. Brief Bioinform 2023; 24:bbad203. [PMID: 37287133 DOI: 10.1093/bib/bbad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of non-coding RNA molecules with vital roles in regulating gene expression. Although researchers have recognized the importance of miRNAs in the development of human diseases, it is very resource-consuming to use experimental methods for identifying which dysregulated miRNA is associated with a specific disease. To reduce the cost of human effort, a growing body of studies has leveraged computational methods for predicting the potential miRNA-disease associations. However, the extant computational methods usually ignore the crucial mediating role of genes and suffer from the data sparsity problem. To address this limitation, we introduce the multi-task learning technique and develop a new model called MTLMDA (Multi-Task Learning model for predicting potential MicroRNA-Disease Associations). Different from existing models that only learn from the miRNA-disease network, our MTLMDA model exploits both miRNA-disease and gene-disease networks for improving the identification of miRNA-disease associations. To evaluate model performance, we compare our model with competitive baselines on a real-world dataset of experimentally supported miRNA-disease associations. Empirical results show that our model performs best using various performance metrics. We also examine the effectiveness of model components via ablation study and further showcase the predictive power of our model for six types of common cancers. The data and source code are available from https://github.com/qwslle/MTLMDA.
Collapse
Affiliation(s)
- Qiang He
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China
| | - Wei Qiao
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China
| | - Hui Fang
- Research Institute for Interdisciplinary Science and School of Information Management and Engineering, Shanghai University of Finance and Economics, 200434 Shanghai, China
| | - Yang Bao
- Antai College of Economics and Management, Shanghai Jiao Tong University, 200030 Shanghai, China
| |
Collapse
|
13
|
Wu H, Han F. Investigation of shared genes and regulatory mechanisms associated with coronavirus disease 2019 and ischemic stroke. Front Neurol 2023; 14:1151946. [PMID: 37090981 PMCID: PMC10115163 DOI: 10.3389/fneur.2023.1151946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
ObjectiveClinical associations between coronavirus disease (COVID-19) and ischemic stroke (IS) have been reported. This study aimed to investigate the shared genes between COVID-19 and IS and explore their regulatory mechanisms.MethodsPublished datasets for COVID-19 and IS were downloaded. Common differentially expressed genes (DEGs) in the two diseases were identified, followed by protein–protein interaction (PPI) network analysis. Moreover, overlapping module genes associated with the two diseases were investigated using weighted correlation network analysis (WGCNA). Through intersection analysis of PPI cluster genes and overlapping module genes, hub-shared genes associated with the two diseases were obtained, followed by functional enrichment analysis and external dataset validation. Moreover, the upstream miRNAs and transcription factors (TFs) of the hub-shared genes were predicted.ResultsA total of 91 common DEGs were identified from the clusters of the PPI network, and 129 overlapping module genes were screened using WGCNA. Based on further intersection analysis, four hub-shared genes in IS and COVID-19 were identified, including PDE5A, ITGB3, CEACAM8, and BPI. These hub-shared genes were remarkably enriched in pathways such as ECM-receptor interaction and focal adhesion pathways. Moreover, ITGB3, PDE5A, and CEACAM8 were targeted by 53, 32, and 3 miRNAs, respectively, and these miRNAs were also enriched in the aforementioned pathways. Furthermore, TFs, such as lactoferrin, demonstrated a stronger predicted correlation with the hub-shared genes.ConclusionThe four identified hub-shared genes may participate in crucial mechanisms underlying both COVID-19 and IS and may exhibit the potential to be biomarkers or therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Fei Han,
| |
Collapse
|
14
|
Mohamed HA, Abdelkafy AE, Khairy RMM, Abdelraheim SR, Kamel BA, Marey H. MicroRNAs and cytokines as potential predictive biomarkers for COVID-19 disease progression. Sci Rep 2023; 13:3531. [PMID: 36864077 PMCID: PMC9979137 DOI: 10.1038/s41598-023-30474-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Host microRNAs can influence the cytokine storm associated SARS-CoV-2 infection and proposed as biomarkers for COVID-19 disease. In the present study, serum MiRNA-106a and miRNA-20a were quantified by real time-PCR in 50 COVID-19 patients hospitalized at Minia university hospital and 30 healthy volunteers. Profiles of serum inflammatory cytokines (TNF-α, IFN-γ, and IL-10) and TLR4 were analyzed by Eliza in patients and controls. A highly significant decrease (P value = 0.0001) in the expressions of miRNA-106a and miRNA-20a was reported in COVID-19 patients compared to controls. A significant decrease in the levels of miRNA-20a was also reported in patients with lymphopenia, patients having chest CT severity score (CSS) > 19 and in patients having O2 saturation less than 90%. Significantly higher levels of TNF-α, IFN-γ, IL-10 and TLR4 were reported in patients compared to controls. IL-10 and TLR4 levels were significantly higher in patients having lymphopenia. TLR-4 level was higher in patients with CSS > 19 and in patients with hypoxia. Using univariate logistic regression analysis, miRNA-106a, miRNA-20a, TNF-α, IFN-γ, IL-10 and TLR4 were identified as good predictors of disease. Receiver operating curve showed that the downregulation of miRNA-20a in patients having lymphopenia, patients with CSS > 19 and patients with hypoxia could be a potential biomarker with AUC = 0.68 ± 0.08, AUC = 0.73 ± 0.07 and AUC = 0.68 ± 0.07 respectively. Also, ROC curve showed accurate association between the increase of serum IL-10 and TLR-4 and lymphopenia among COVID-19 patients with AUC = 0.66 ± 0.08 and AUC = 0.73 ± 0.07 respectively. ROC curve showed also that serum TLR-4 could be a potential marker for high CSS with AUC = 0.78 ± 0.06. A negative correlation was detected between miRNA-20a with TLR-4 (r = - 0.30, P value = 0.03). We concluded that, miR-20a, is a potential biomarker of COVID-19 severity and blockade of IL-10 and TLR4 may constitute a novel therapy for COVID-19 patients.
Collapse
Affiliation(s)
- Hatem A. Mohamed
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Aya Eid Abdelkafy
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rasha M. M. Khairy
- grid.411806.a0000 0000 8999 4945Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511 Egypt
| | - Salama R. Abdelraheim
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Bothina Ahmed Kamel
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba Marey
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
15
|
Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mohd Hayrie Mohd Hatta
- Centre for Research and Development Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Juan Matmin
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Farah Hidayah Kamisan
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Aishah Badruzzaman
- Centre for Foundation, Language and General Studies Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Siew Ling Lee
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
16
|
Capistrano KJ, Richner J, Schwartz J, Mukherjee SK, Shukla D, Naqvi AR. Host microRNAs exhibit differential propensity to interact with SARS-CoV-2 and variants of concern. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166612. [PMID: 36481486 PMCID: PMC9721271 DOI: 10.1016/j.bbadis.2022.166612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
A significant number of SARS-CoV-2-infected individuals naturally overcome viral infection, suggesting the existence of a potent endogenous antiviral mechanism. As an innate defense mechanism, microRNA (miRNA) pathways in mammals have evolved to restrict viruses, besides regulating endogenous mRNAs. In this study, we systematically examined the complete repertoire of human miRNAs for potential binding sites on SARS-CoV-2 Wuhan-Hu-1, Beta, Delta, and Omicron. Human miRNA and viral genome interaction were analyzed using RNAhybrid 2.2 with stringent parameters to identify highly bonafide miRNA targets. Using publicly available data, we filtered for miRNAs expressed in lung epithelial cells/tissue and oral keratinocytes, concentrating on the miRNAs that target SARS-CoV-2 S protein mRNAs. Our results show a significant loss of human miRNA and SARS-CoV-2 interactions in Omicron (130 miRNAs) compared to Wuhan-Hu-1 (271 miRNAs), Beta (279 miRNAs), and Delta (275 miRNAs). In particular, hsa-miR-3150b-3p and hsa-miR-4784 show binding affinity for S protein of Wuhan strain but not Beta, Delta, and Omicron. Loss of miRNA binding sites on N protein was also observed for Omicron. Through Ingenuity Pathway Analysis (IPA), we examined the experimentally validated and highly predicted functional role of these miRNAs. We found that hsa-miR-3150b-3p and hsa-miR-4784 have several experimentally validated or highly predicted target genes in the Toll-like receptor, IL-17, Th1, Th2, interferon, and coronavirus pathogenesis pathways. Focusing on the coronavirus pathogenesis pathway, we found that hsa-miR-3150b-3p and hsa-miR-4784 are highly predicted to target MAPK13. Exploring miRNAs to manipulate viral genome/gene expression can provide a promising strategy with successful outcomes by targeting specific VOCs.
Collapse
Affiliation(s)
- Kristelle J Capistrano
- Mucosal Immunology Lab, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Justin Richner
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Joel Schwartz
- Molecular Pathology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sunil K Mukherjee
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Deepak Shukla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago 60612, IL, USA; Department of Ophthalmology and Visual Sciences, Ocular Virology Laboratory, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
17
|
Jeyananthan P. Role of different types of RNA molecules in the severity prediction of SARS-CoV-2 patients. Pathol Res Pract 2023; 242:154311. [PMID: 36657221 PMCID: PMC9840815 DOI: 10.1016/j.prp.2023.154311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 pandemic is the current threat of the world with enormous number of deceases. As most of the countries have constraints on resources, particularly for intensive care and oxygen, severity prediction with high accuracy is crucial. This prediction will help the medical society in the selection of patients with the need for these constrained resources. Literature shows that using clinical data in this study is the common trend and molecular data is rarely utilized in this prediction. As molecular data carry more disease related information, in this study, three different types of RNA molecules ( lncRNA, miRNA and mRNA) of SARS-COV-2 patients are used to predict the severity stage and treatment stage of those patients. Using seven different machine learning algorithms along with several feature selection techniques shows that in both phenotypes, feature importance selected features provides the best accuracy along with random forest classifier. Further to this, it shows that in the severity stage prediction miRNA and lncRNA give the best performance, and lncRNA data gives the best in treatment stage prediction. As most of the studies related to molecular data uses mRNA data, this is an interesting finding.
Collapse
|
18
|
Srivastava S, Garg I, Singh Y, Meena R, Ghosh N, Kumari B, Kumar V, Eslavath MR, Singh S, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Varshney R, Ganju L. Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon 2023; 9:e13388. [PMID: 36743852 PMCID: PMC9889280 DOI: 10.1016/j.heliyon.2023.e13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Outbreak of COVID-19 pandemic in December 2019 affected millions of people globally. After substantial research, several biomarkers for COVID-19 have been validated however no specific and reliable biomarker for the prognosis of patients with COVID-19 infection exists. Present study was designed to identify specific biomarkers to predict COVID-19 severity and tool for formulating treatment. A small cohort of subjects (n = 43) were enrolled and categorized in four study groups; Dead (n = 16), Severe (n = 10) and Moderate (n = 7) patients and healthy controls (n = 10). Small RNA sequencing was done on Illumina platform after isolation of microRNA from peripheral blood. Differential expression (DE) of miRNA (patients groups compared to control) revealed 118 down-regulated and 103 up-regulated known miRNAs with fold change (FC) expression ≥2 folds and p ≤ 0.05. DE miRNAs were then subjected to functional enrichment and network analysis. Bioinformatic analysis resulted in 31 miRNAs (24 Down-regulated; 7 up-regulated) significantly associated with COVID-19 having AUC>0.8 obtained from ROC curve. Seventeen out of 31 DE miRNAs have been linked to COVID-19 in previous studies. Three miRNAs, hsa-miR-147b-5p and hsa-miR-107 (down-regulated) and hsa-miR-1299 (up-regulated) showed significant unique DE in Dead patients. Another set of 4 miRNAs, hsa-miR-224-5p (down-regulated) and hsa-miR-4659b-3p, hsa-miR-495-3p and hsa-miR-335-3p were differentially up-regulated uniquely in Severe patients. Members of three miRNA families, hsa-miR-20, hsa-miR-32 and hsa-miR-548 were significantly down-regulated in all patients group in comparison to healthy controls. Thus a distinct miRNA expression profile was observed in Dead, Severe and Moderate COVID-19 patients. Present study suggests a panel of miRNAs which identified in COVID-19 patients and could be utilized as potential diagnostic biomarkers for predicting COVID-19 severity.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Yamini Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Meena
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Babita Kumari
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vinay Kumar
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Malleswara Rao Eslavath
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sayar Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Rajeev Varshney
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
19
|
Saiyed AN, Vasavada AR, Johar SRK. Employing in silico investigations to determine the cross-kingdom approach for Curcuma longa miRNAs and their human targets. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:3. [PMID: 36644780 PMCID: PMC9823259 DOI: 10.1186/s43088-022-00330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
Background Plant elements and extracts have been used for centuries to treat a wide range of diseases, from cancer to modern lifestyle ailments like viral infections. These plant-based miRNAs have the capacity to control physiological and pathological conditions in both humans and animals, and they might be helpful in the detection and treatment of a variety of diseases. The present study investigates the miRNA of the well-known spice Curcuma Longa and its prospective targets using a variety of bioinformatics techniques. Results Using the integrative database of animal, plant, and viral microRNAs known as miRNEST 2.0, nine C. longa miRNAs were predicted. psRNA target service foretells the presence of 23 human target genes linked to a variety of disorders. By interacting with a variety of cellular and metabolic processes, miRNAs 167, 1525, and 756 have been found to be critical regulators of tumour microenvironment. SARS-cov2 and influenza A virus regulation have been connected to ZFP36L1 from miRNA 1525 and ETV5 from miRNA 756, respectively. Conclusions The current cross-kingdom study offers fresh knowledge about how to increase the effectiveness of plant-based therapies for disease prevention and serves as a platform for in vitro and in vivo research development. Graphical abstract
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. Scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
20
|
Hatam S. MicroRNAs Improve Cancer Treatment Outcomes Through Personalized Medicine. Microrna 2023; 12:92-98. [PMID: 36733205 DOI: 10.2174/2211536612666230202113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that repress or degrade mRNA targets to downregulate genes. In cancer occurrence, the expression of miRNAs is altered. Depending on the involvement of a certain miRNA in the pathogenetic growth of a tumor, It may be up or downregulated. The "oncogenic" action of miRNAs corresponds with upregulation, which leads to tumor proliferation and spread meanwhile the miRNAs that have been downregulated bring tumorsuppressive outcomes. Oncogenes and tumor suppressor genes are among the genes whose expression is under their control, demonstrating that classifying them solely as oncogenes or tumor suppressor genes alone is not only hindering but also incorrect. Apart from basic tumors, miRNAs may be found in nearly all human fluids and can be used for cancer diagnosis as well as clinical outcome prognostics and better response to treatment strategies. The overall variance of these tiny noncoding RNAs influences patient-specific pharmacokinetics and pharmacodynamics of anti-cancer medicines, driving a growing demand for personalized medicine. By now, microRNAs from tumor biopsies or blood are being widely investigated as substantial biomarkers for cancer in time diagnosis, prognosis, and, progression. With the rise of COVID-19, this paper also attempts to study recent research on miRNAs involved with deaths in lung cancer COVID patients. With the discovery of single nucleotide polymorphisms, personalized treatment via microRNAs has lately become a reality. The present review article describes the highlights of recent knowledge of miRNAs in various cancers, with a focus on miRNA translational applications as innovative potential diagnostic and prognostic indicators that expand person-to-person therapy options.
Collapse
Affiliation(s)
- Saeid Hatam
- Department of Innovation and Industry, Science and Technology Park of Fars, ExirBitanic Co., Shiraz, Iran
- Department of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
- Department of Biological Sciences, Azad University, Zarghan Branch, Shiraz, Iran
| |
Collapse
|
21
|
Demongeot J, Fougère C. mRNA COVID-19 Vaccines-Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines (Basel) 2022; 11:40. [PMID: 36679885 PMCID: PMC9864138 DOI: 10.3390/vaccines11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The adventure of the mRNA vaccine began thirty years ago in the context of influenza. This consisted in encapsulating the mRNA coding for a viral protein in a lipid particle. We show how the mRNA encoding S protein has been modified for that purpose in the context of the anti-SARS-CoV-2 vaccination. RESULTS by using data coming from genetic and epidemiologic databases, we show the theoretical possibility of fragmentation of this mRNA into small RNA sequences capable of inhibiting important bio-syntheses such as the production of beta-globin. DISCUSSION we discuss two aspects related to mRNA vaccine: (i) the plausibility of mRNA fragmentation, and (ii) the role of liposomal nanoparticles (LNPs) used in the vaccine and their impact on mRNA biodistribution. CONCLUSION we insist on the need to develop lipid nanoparticles allowing personalized administration of vaccines and avoiding adverse effects due to mRNA fragmentation and inefficient biodistribution. Hence, we recommend (i) adapting the mRNA of vaccines to the least mutated virus proteins and (ii) personalizing its administration to the categories of chronic patients at risk most likely to suffer from adverse effects.
Collapse
Affiliation(s)
- Jacques Demongeot
- AGEIS & Telecom4Health, Faculty of Medicine, University Grenoble Alpes, 38700 La Tronche, France
| | | |
Collapse
|
22
|
Pharmacological Mechanism of NRICM101 for COVID-19 Treatments by Combined Network Pharmacology and Pharmacodynamics. Int J Mol Sci 2022; 23:ijms232315385. [PMID: 36499711 PMCID: PMC9740625 DOI: 10.3390/ijms232315385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Symptom treatments for Coronavirus disease 2019 (COVID-19) infection and Long COVID are one of the most critical issues of the pandemic era. In light of the lack of standardized medications for treating COVID-19 symptoms, traditional Chinese medicine (TCM) has emerged as a potentially viable strategy based on numerous studies and clinical manifestations. Taiwan Chingguan Yihau (NRICM101), a TCM designed based on a medicinal formula with a long history of almost 500 years, has demonstrated its antiviral properties through clinical studies, yet the pharmacogenomic knowledge for this formula remains unclear. The molecular mechanism of NRICM101 was systematically analyzed by using exploratory bioinformatics and pharmacodynamics (PD) approaches. Results showed that there were 434 common interactions found between NRICM101 and COVID-19 related genes/proteins. For the network pharmacology of the NRICM101, the 434 common interacting genes/proteins had the highest associations with the interleukin (IL)-17 signaling pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Moreover, the tumor necrosis factor (TNF) was found to have the highest association with the 30 most frequently curated NRICM101 chemicals. Disease analyses also revealed that the most relevant diseases with COVID-19 infections were pathology, followed by cancer, digestive system disease, and cardiovascular disease. The 30 most frequently curated human genes and 2 microRNAs identified in this study could also be used as molecular biomarkers or therapeutic options for COVID-19 treatments. In addition, dose-response profiles of NRICM101 doses and IL-6 or TNF-α expressions in cell cultures of murine alveolar macrophages were constructed to provide pharmacodynamic (PD) information of NRICM101. The prevalent use of NRICM101 for standardized treatments to attenuate common residual syndromes or chronic sequelae of COVID-19 were also revealed for post-pandemic future.
Collapse
|
23
|
Han I, Mumtaz S, Choi EH. Nonthermal Biocompatible Plasma Inactivation of Coronavirus SARS-CoV-2: Prospects for Future Antiviral Applications. Viruses 2022; 14:2685. [PMID: 36560689 PMCID: PMC9785490 DOI: 10.3390/v14122685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications. We searched for papers on NBP virus inactivation in PubMed ePubs, Scopus, and Web of Science databases. The data and relevant information were gathered in order to establish a mechanism for NBP-based viral inactivation. NBP has been developed as a new, effective, and safe strategy for viral inactivation. NBP may be used to inactivate viruses in an ecologically friendly way as well as activate animal and plant viruses in a number of matrices. The reactive species have been shown to be the cause of viral inactivation. NBP-based disinfection techniques provide an interesting solution to many of the problems since they are simply deployable and do not require the resource-constrained consumables and reagents required for traditional decontamination treatments. Scientists are developing NBP technology solutions to assist the medical community in dealing with the present COVID-19 outbreak. NBP is predicted to be the most promising strategy for battling COVID-19 and other viruses in the future.
Collapse
Affiliation(s)
- Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
24
|
Periwal N, Bhardwaj U, Sarma S, Arora P, Sood V. In silico analysis of SARS-CoV-2 genomes: Insights from SARS encoded non-coding RNAs. Front Cell Infect Microbiol 2022; 12:966870. [PMID: 36519126 PMCID: PMC9742375 DOI: 10.3389/fcimb.2022.966870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 has resulted in enormous deaths around the world. Clues from genomic sequences of parent and their mutants can be obtained to understand the evolving pathogenesis of this virus. Apart from the viral proteins, virus-encoded microRNAs (miRNAs) have been shown to play a vital role in regulating viral pathogenesis. Thus we sought to investigate the miRNAs encoded by SARS-CoV-2, its mutants, and the host. Here, we present the results obtained using a dual approach i.e (i) identifying host-encoded miRNAs that might regulate viral pathogenesis and (ii) identifying viral-encoded miRNAs that might regulate host cell signaling pathways and aid in viral pathogenesis. Analysis utilizing the first approach resulted in the identification of ten host-encoded miRNAs that could target the SARS, SARS-CoV-2, and its mutants. Interestingly our analysis revealed that there is a significantly higher number of host miRNAs that could target the SARS-CoV-2 genome as compared to the SARS reference genome. Results from the second approach resulted in the identification of a set of virus-encoded miRNAs which might regulate host signaling pathways. Our analysis further identified a similar "GA" rich motif in the SARS-CoV-2 and its mutant genomes that was shown to play a vital role in lung pathogenesis during severe SARS infections. In summary, we have identified human and virus-encoded miRNAs that might regulate the pathogenesis of SARS coronaviruses and describe similar non-coding RNA sequences in SARS-CoV-2 that were shown to regulate SARS-induced lung pathology in mice.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | | | - Sankritya Sarma
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India,*Correspondence: Vikas Sood,
| |
Collapse
|
25
|
Kanapeckaitė A, Mažeikienė A, Geris L, Burokienė N, Cottrell GS, Widera D. Computational pharmacology: New avenues for COVID-19 therapeutics search and better preparedness for future pandemic crises. Biophys Chem 2022; 290:106891. [PMID: 36137310 PMCID: PMC9464258 DOI: 10.1016/j.bpc.2022.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic created an unprecedented global healthcare emergency prompting the exploration of new therapeutic avenues, including drug repurposing. A large number of ongoing studies revealed pervasive issues in clinical research, such as the lack of accessible and organised data. Moreover, current shortcomings in clinical studies highlighted the need for a multi-faceted approach to tackle this health crisis. Thus, we set out to explore and develop new strategies for drug repositioning by employing computational pharmacology, data mining, systems biology, and computational chemistry to advance shared efforts in identifying key targets, affected networks, and potential pharmaceutical intervention options. Our study revealed that formulating pharmacological strategies should rely on both therapeutic targets and their networks. We showed how data mining can reveal regulatory patterns, capture novel targets, alert about side-effects, and help identify new therapeutic avenues. We also highlighted the importance of the miRNA regulatory layer and how this information could be used to monitor disease progression or devise treatment strategies. Importantly, our work bridged the interactome with the chemical compound space to better understand the complex landscape of COVID-19 drugs. Machine and deep learning allowed us to showcase limitations in current chemical libraries for COVID-19 suggesting that both in silico and experimental analyses should be combined to retrieve therapeutically valuable compounds. Based on the gathered data, we strongly advocate for taking this opportunity to establish robust practices for treating today's and future infectious diseases by preparing solid analytical frameworks.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- AK Consulting, Laisvės g. 7, LT 12007 Vilnius, Lithuania,Corresponding author
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital 11 (B34), Liège 4000, Belgium,Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C (2419), Leuven 3001, Belgium,Skeletel Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Herestraat 49 (813), Leuven 3000, Belgium
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Graeme S. Cottrell
- University of Reading, School of Pharmacy, Hopkins Building, Reading RG6 6UB, United Kingdom
| | - Darius Widera
- University of Reading, School of Pharmacy, Hopkins Building, Reading RG6 6UB, United Kingdom
| |
Collapse
|
26
|
Hardin LT, Xiao N. miRNAs: The Key Regulator of COVID-19 Disease. Int J Cell Biol 2022; 2022:1645366. [PMID: 36345541 PMCID: PMC9637033 DOI: 10.1155/2022/1645366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2024] Open
Abstract
As many parts of the world continue to fight the innumerable waves of COVID-19 infection, SARS-CoV-2 continues to sculpt its antigenic determinants to enhance its virulence and evolvability. Several vaccines were developed and used around the world, and oral antiviral medications are being developed against SARS-CoV-2. However, studies showed that the virus is mutating in line with the antibody's neutralization escape; thus, new therapeutic alternatives are solicited. We hereby review the key role that miRNAs can play as epigenetic mediators of the cross-talk between SARS-CoV-2 and the host cells. The limitations resulting from the "virus intelligence" to escape and antagonize the host miRNAs as well as the possible mechanisms that could be used in the viral evasion strategies are discussed. Lastly, we suggest new therapeutic approaches based on viral miRNAs.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| | - Nan Xiao
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| |
Collapse
|
27
|
Hasan MM, Murtaz SB, Islam MU, Sadeq MJ, Uddin J. Robust and efficient COVID-19 detection techniques: A machine learning approach. PLoS One 2022; 17:e0274538. [PMID: 36107971 PMCID: PMC9477266 DOI: 10.1371/journal.pone.0274538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.
Collapse
Affiliation(s)
- Md. Mahadi Hasan
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Saba Binte Murtaz
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Muhammad Usama Islam
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Muhammad Jafar Sadeq
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Jasim Uddin
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Roustai Geraylow K, Hemmati R, Kadkhoda S, Ghafouri-Fard S. miRNA expression in COVID-19. GENE REPORTS 2022; 28:101641. [PMID: 35875722 PMCID: PMC9288248 DOI: 10.1016/j.genrep.2022.101641] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/25/2022] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is regarded as a challenge in health system. Several studies have assessed the immune-related aspect of this disorder to identify the host-related factors that affect the course of COVID-19. microRNAs (miRNAs) as potent regulators of immune responses have gained much attention in this regard. Recent studies have shown aberrant expression of miRNAs in COVID-19 in association with disease course. Differentially expressed miRNAs have been enriched in pathways related with inflammation and antiviral immune response. miRNAs have also been regarded as potential therapeutic targets in COVID-19, particularly for management of pathological consequences of COVID-19. In the current review, we summarize the data about dysregulation of miRNAs in COVID-19.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- ARDS, Acute respiratory distress syndrome
- COVID-19
- COVID-19, Coronavirus disease 2019
- HDAC, Histone deacetylate
- HMVEC, Human Lung Microvascular Endothelial Cells
- ORF, Open reading frame
- ROC, Receiver operating characteristic
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- TLR, Toll-like receptor
- TMPRSS2, Transmembrane protease serine 2
- UTR, Untranslated region
- hBMEC, Human brain microvascular endothelial cells
- miRNA
- miRNAs, microRNAs
Collapse
Affiliation(s)
| | - Romina Hemmati
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
30
|
McCollum CR, Courtney CM, O’Connor NJ, Aunins TR, Ding Y, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Nanoligomers Targeting Human miRNA for the Treatment of Severe COVID-19 Are Safe and Nontoxic in Mice. ACS Biomater Sci Eng 2022; 8:3087-3106. [PMID: 35729709 PMCID: PMC9236218 DOI: 10.1021/acsbiomaterials.2c00510] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The devastating effects of the coronavirus disease 2019 (COVID-19) pandemic have made clear a global necessity for antiviral strategies. Most fatalities associated with infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) result at least partially from uncontrolled host immune response. Here, we use an antisense compound targeting a previously identified microRNA (miRNA) linked to severe cases of COVID-19. The compound binds specifically to the miRNA in question, miR-2392, which is produced by human cells in several disease states. The safety and biodistribution of this compound were tested in a mouse model via intranasal, intraperitoneal, and intravenous administration. The compound did not cause any toxic responses in mice based on measured parameters, including body weight, serum biomarkers for inflammation, and organ histopathology. No immunogenicity from the compound was observed with any administration route. Intranasal administration resulted in excellent and rapid biodistribution to the lungs, the main site of infection for SARS-CoV-2. Pharmacokinetic and biodistribution studies reveal delivery to different organs, including lungs, liver, kidneys, and spleen. The compound was largely cleared through the kidneys and excreted via the urine, with no accumulation observed in first-pass organs. The compound is concluded to be a safe potential antiviral treatment for COVID-19.
Collapse
Affiliation(s)
- Colleen R. McCollum
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Colleen M. Courtney
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
| | - Nolan J. O’Connor
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Thomas R. Aunins
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Yuchen Ding
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Tristan X. Jordan
- Department of Microbiology, New York
University Langone, New York, New York 10016, United
States
| | - Keegan L. Rogers
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Stephen Brindley
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Jared M. Brown
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
- Antimicrobial Regeneration
Consortium, Boulder, Colorado 80301, United
States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
- Antimicrobial Regeneration
Consortium, Boulder, Colorado 80301, United
States
| |
Collapse
|
31
|
Ahmed JQ, Maulud SQ, Dhawan M, Priyanka, Choudhary OP, Jalal PJ, Ali RK, Tayib GA, Hasan DA. MicroRNAs in the development of potential therapeutic targets against COVID-19: A narrative review. J Infect Public Health 2022; 15:788-799. [PMID: 35751930 PMCID: PMC9221922 DOI: 10.1016/j.jiph.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/12/2022] Open
Abstract
Background As the therapeutic regimens against the COVID-19 remain scarce, the microRNAs (miRNAs) can be exploited to generate efficient therapeutic targets. The miRNAs have been found to play pivotal roles in the several regulatory functions influencing the prognosis of viral infection. The miRNAs have a prospective role in the up and down regulation of the ACE2 receptors. This review examines the clinical applications, as well as the possible threats associated with the use of miRNAs to combat the deleterious consequences of SARS-CoV-2 infection. Methodology This article was compiled to evaluate how the miRNAs are involved in the SARS-CoV-2 pathogenesis and infection, and their potential functions which could help in the development of therapeutic targets against the COVID-19. The sources of the collected information include the several journals, databases and scientific search engines such as the Google scholar, Pubmed, Science direct, official website of WHO, among the other sites. The investigations on the online platform were conducted using the keywords miRNA biogenesis, miRNA and ACE2 interaction, therapeutic role of miRNAs against SARS-CoV-2 and miRNA therapy side effects. Results This review has highlighted that the miRNAs can be exploited to generate potential therapeutic targets against the COVID-19. Changes in the miRNA levels following viral replication are an essential component of the host response to infection. The collection and modification of miRNA modulates may help to minimize the deleterious consequences of SARS-CoV-2 infection, such as by controlling or inhibiting the generation of cytokines and chemokines. The degradation of viral RNA by the cellular miRNAs, along with the reduced expression of ACE2 receptors, can substantially reduce the viral load. Specific miRNAs have been found to have an antiviral influence, allowing the immune system to combat the infection or forcing the virus into a latency stage. Conclusion This review summarizes several studies revealing the involvement of miRNAs in diverse and complex processes during the infection process of SARS-CoV-2. The miRNAs can substantially reduce the viral load by degradation of viral RNA and reduced expression of ACE2 receptors, besides mitigating the deleterious consequences of the exaggerated secretion of cytokines. Extensive investigations need to be done by the scientific community to utilize the miRNA based strategies for the development of effective therapeutic targets against the COVID-19.
Collapse
Affiliation(s)
- Jivan Qasim Ahmed
- Department of Pathology and Microbiology, University of Duhok, Kurdistan Region, Iraq
| | - Sazan Qadir Maulud
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004 Punjab, India; Trafford College, Altrincham, Manchester, WA14 5PQ, UK
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, 796015, Mizoram, India.
| | - Paywast Jamal Jalal
- Department of Biology, College of Science, University of Sulaimani, Kurdistan Region, Iraq
| | - Rezhna Kheder Ali
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | | | | |
Collapse
|
32
|
Zandi M, Soltani S, Tabibzadeh A, Nasimzadeh S, Behboudi E, Zakeri A, Erfani Y, Salmanzadeh S, Abbasi S. Partial sequence conservation of SARS-CoV-2 NSP-2, NSP-12, and Spike in stool samples from Abadan, Iran. Biotechnol Appl Biochem 2022; 70:201-209. [PMID: 35396867 PMCID: PMC9082511 DOI: 10.1002/bab.2343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the clinical manifestations of the virus have undergone many changes. Recently, there have been many reports on gastrointestinal symptoms in COVID-19 patients. This study is aimed to perform a detailed phylogenetic study and assessment of different SNVs in the RNA genome of viruses isolated from fecal samples of patients with COVID-19 who have gastrointestinal symptoms, which can help better understand viral pathogenesis. In the present study, 20 fecal samples were collected by written consent from COVID-19 patients. According to the manufacturer's protocol, virus nucleic acid was extracted from stool samples and the SARS-CoV-2 genome presence in stool samples was confirmed by RT-PCR assay. Three viral genes, S, nsp12, and nsp2, were amplified using the reverse transcription polymerase chain reaction (RT-PCR) method and specific primers. Multiple sequencing alignment (MSA) was performed in the CLC word bench, and a phylogenetic tree was generated by MEGA X based on the neighbor-joining method. Of all cases, 11 (55%) were males. The mean age of the patients was 33.6 years. Diabetes (70%) and blood pressure (55%) were the most prevalent comorbidities. All 20 patients were positive for SARS-CoV-2 infection in respiratory samples. Molecular analysis investigation among 20 stool samples revealed that the SARS-CoV-2 genome was found among 10 stool samples; only three samples were used for sequencing. The polymorphism and phylogenetic analysis in SARS-CoV-2 showed great similarity among all of the evaluated genes with the Wuhan reference sequence and all of the current variants of concern (VOCs). The current study represents a great similarity in polymorphism and phylogenetic analysis of the SARS-CoV-2 isolates with the Wuhan reference sequence and all of the current VOC in the particular evaluated partial sequences of S, nsp12, and nsp2.
Collapse
Affiliation(s)
- Milad Zandi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Saber Soltani
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Sepideh Nasimzadeh
- Department of Medical VirologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Emad Behboudi
- Department of MicrobiologyGolestan University of Medical SciencesGorganIran
| | - Armin Zakeri
- Department of HematologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Yousef Erfani
- Department of Medical Laboratory SciencesSchool of Allied Medical SciencesTehran University Medical SciencesTehranIran
| | - Shokrollah Salmanzadeh
- Health Research InstituteInfectious and Tropical Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Samaneh Abbasi
- Department of MicrobiologySchool of MedicineAbadan University of Medical SciencesAbadanIran
| |
Collapse
|
33
|
Albtoush N, Petrey AC. The role of Hyaluronan synthesis and degradation in the critical respiratory illness COVID-19. Am J Physiol Cell Physiol 2022; 322:C1037-C1046. [PMID: 35442830 PMCID: PMC9126216 DOI: 10.1152/ajpcell.00071.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan (HA) is a polysaccharide found in all tissues as an integral component of the extracellular matrix (ECM) that plays a central regulatory role in inflammation. In fact, HA matrices are increasingly considered as a barometer of inflammation. A number of proteins specifically recognize the HA structure and these interactions modify cell behavior and control the stability of the ECM. Moreover, inflamed airways are remarkably rich with HA and are associated with various inflammatory diseases including cystic fibrosis, influenza, sepsis, and more recently coronavirus disease 2019 (COVID-19). COVID-19 is a worldwide pandemic caused by a novel coronavirus called SARS-CoV-2, and infected individuals have a wide range of disease manifestations ranging from asymptomatic to severe illness. Critically ill COVID-19 patient cases are frequently complicated by development of acute respiratory distress syndrome (ARDS), which typically leads to poor outcomes with high mortality rate. In general, ARDS is characterized by poor oxygenation accompanied with severe lung inflammation, damage, and vascular leakage and has been suggested to be linked to an accumulation of HA within the airways. Here, we provide a succinct overview of known inflammatory mechanisms regulated by HA in general, and those both observed and postulated in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Nansy Albtoush
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, United States
| | - Aaron C Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, United States.,Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Elemam NM, Hasswan H, Aljaibeji H, Sharif-Askari NS, Halwani R, Taneera J, Sulaiman N. Profiling Levels of Serum microRNAs and Soluble ACE2 in COVID-19 Patients. Life (Basel) 2022; 12:life12040575. [PMID: 35455065 PMCID: PMC9027848 DOI: 10.3390/life12040575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The main mechanism of viral entry in COVID-19 infection is through the angiotensin-converting enzyme 2 (ACE2) receptor present in the lungs. Numerous studies suggested a clinical significance of risk factors, such as gender, obesity, and diabetes on the soluble form of ACE2 (sACE2) and related miRNAs in COVID-19 infection. This study aims to investigate the serum level of sACE2 and 4 miRNAs (miR-421, miR-3909, miR-212-5p, and miR-4677-3p) in COVID-19 patients and assess their associations with clinicopathological parameters. Methods: Serum samples were collected from non-diabetic and diabetic COVID-19 patients and healthy controls. sACE2 levels were quantified using ELISA, and serum miRNA levels were measured using qPCR. In addition, laboratory blood tests were retrieved from the clinical records of COVID-19 patients. Results: sACE2 levels were upregulated in COVID-19 patients regardless of sex, diabetes status, or obesity. Furthermore, the four investigated miRNAs were upregulated in COVID-19 patients and were positively correlated with each other. Furthermore, miR-421, miR-3909, and miR-4677-3p were positively associated with sACE2, suggesting a strong link between these markers. Notably, miR-212-5p was selectively upregulated in moderate, male, and non-obese COVID-19 patients. Interestingly, miR-212-5p was correlated with D-dimer, while sACE2 was correlated with coagulation tests, such as aPTT and platelets, indicating their potential as markers of coagulopathy in COVID-19. Additionally, there was a positive correlation between sACE2 and C-reactive protein in diabetic COVID-19 patients, indicating a promising role of this marker in the inflammatory status of these patients. Conclusion: sACE2 and its regulatory miRNAs were upregulated and correlated with laboratory investigations of COVID-19 patients, thus indicating their clinical significance as biomarkers in COVID-19 infection.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.M.E.); (H.H.); (N.S.S.-A.); (R.H.); (J.T.)
| | - Hind Hasswan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.M.E.); (H.H.); (N.S.S.-A.); (R.H.); (J.T.)
| | - Hayat Aljaibeji
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.M.E.); (H.H.); (N.S.S.-A.); (R.H.); (J.T.)
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.M.E.); (H.H.); (N.S.S.-A.); (R.H.); (J.T.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jalal Taneera
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.M.E.); (H.H.); (N.S.S.-A.); (R.H.); (J.T.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nabil Sulaiman
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.M.E.); (H.H.); (N.S.S.-A.); (R.H.); (J.T.)
- Department of Family Medicine, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Baker/IDI Heart and Diabetes Institute, Melbourne 3004, Australia
- Correspondence:
| |
Collapse
|
35
|
Exosomal mediated signal transduction through artificial microRNA (amiRNA): A potential target for inhibition of SARS-CoV-2. Cell Signal 2022; 95:110334. [PMID: 35461900 PMCID: PMC9022400 DOI: 10.1016/j.cellsig.2022.110334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
Exosome trans-membrane signals provide cellular communication between the cells through transport and/or receiving the signal by molecule, change the functional metabolism, and stimulate and/or inhibit receptor signal complexes. COVID19 genetic transformations are varied in different geographic positions, and single nucleotide polymorphic lineages were reported in the second waves due to the fast mutational rate and adaptation. Several vaccines were developed and in treatment practice, but effective control has yet to reach in cent presence. It was initially a narrow immune-modulating protein target. Controlling these diverse viral strains may inhibit their transuding mechanisms primarily to target RNA genes responsible for COVID19 transcription. Exosomal miRNAs are the main sources of transmembrane signals, and trans-located miRNAs can directly target COVID19 mRNA transcription. This review discussed targeted viral transcription by delivering the artificial miRNA (amiRNA) mediated exosomes in the infected cells and significant resources of exosome and their efficacy.
Collapse
|
36
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
37
|
Paul S, Bravo Vázquez LA, Reyes-Pérez PR, Estrada-Meza C, Aponte Alburquerque RA, Pathak S, Banerjee A, Bandyopadhyay A, Chakraborty S, Srivastava A. The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res 2022; 308:198631. [PMID: 34788642 PMCID: PMC8590742 DOI: 10.1016/j.virusres.2021.198631] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, one of the major global health concerns is coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Even though numerous treatments and vaccines to combat this virus are currently under development, the detailed molecular mechanisms underlying the pathogenesis of this disease are yet to be elucidated to design future therapeutic tools against SARS-CoV-2 variants. MicroRNAs (miRNAs) are small (20-24 nucleotides), non-coding RNA molecules that regulate post-transcriptional gene expression. Recently, it has been demonstrated that both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, lung adenocarcinoma, and cerebrovascular disorders) could affect the severity of the disease. Thus, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Besides, researchers have found a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. Therefore, in this current review, we present the recent discoveries regarding the clinical relevance and biological roles of miRNAs in COVID-19.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México.
| | - Luis Alberto Bravo Vázquez
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México
| | - Paula Roxana Reyes-Pérez
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México
| | - Carolina Estrada-Meza
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México
| | - Rafael Arturo Aponte Alburquerque
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila, Philippines; Reliance Industries Ltd, Navi Mumbai, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
38
|
Manikkath J, Jishnu PV, Wich PR, Manikkath A, Radhakrishnan R. Nanoparticulate strategies for the delivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine (Lond) 2022; 17:181-195. [PMID: 35014880 DOI: 10.2217/nnm-2021-0381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are naturally occurring noncoding RNAs with multiple functionalities. They are dysregulated in several conditions and can serve as disease biomarkers, therapeutic targets and therapeutic agents. Translation of miRNA therapeutics to the clinic poses several challenges related to the safe and effective delivery of these agents to the site of action. Nanoparticulate carriers hold promise in this area by enhancing targeting efficiency and reducing off-target effects. This paper reviews recent advances in the delivery strategies of miRNAs in anticancer therapy, with a focus on lipid-based, polymeric, inorganic platforms, cell membrane-derived vesicles and bacterial minicells. Additionally, this review explores the potentiality of miRNAs in the treatment of oral submucous fibrosis, a potentially premalignant condition of the oral cavity with no definitive treatment to date.
Collapse
Affiliation(s)
- Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Aparna Manikkath
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
39
|
Henry A. Welcome to the 17th volume of Future Virology. Future Virol 2022. [DOI: 10.2217/fvl-2021-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Atiya Henry
- Future Science Group, Unitec House, 2 Albert Place, Finchley, London,*0 N3 1QB, UK
| |
Collapse
|
40
|
Katopodis P, Randeva HS, Spandidos DA, Saravi S, Kyrou I, Karteris E. Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). Int J Mol Med 2021; 49:20. [PMID: 34935057 PMCID: PMC8722767 DOI: 10.3892/ijmm.2021.5075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
The pathophysiology of coronavirus disease 2019 (COVID-19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide-repertoire of possible cell entry mediators that appear to co-localise in a cell- and tissue-specific manner. The present study provides an over-view of the 'canonical' SARS-CoV-2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin-1, expanding on the involvement of novel candidates, including glucose-regulated protein 78, basigin, kidney injury molecule-1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor-α convertase) and Toll-like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID-19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS-CoV-2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID-19 warrants further investigation.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Harpal S Randeva
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Sayeh Saravi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ioannis Kyrou
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
41
|
Arghiani N, Nissan T, Matin MM. Role of microRNAs in COVID-19 with implications for therapeutics. Biomed Pharmacother 2021; 144:112247. [PMID: 34601190 PMCID: PMC8463393 DOI: 10.1016/j.biopha.2021.112247] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/09/2023] Open
Abstract
COVID-19 is a pneumonia-like disease with highly transmittable and pathogenic properties caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which infects both animals and humans. Although many efforts are currently underway to test possible therapies, there is no specific FDA approved drug against SARS-CoV-2 yet. miRNA-directed gene regulation controls the majority of biological processes. In addition, the development and progression of several human diseases are associated with dysregulation of miRNAs. In this regard, it has been shown that changes in miRNAs are linked to severity of COVID-19 especially in patients with respiratory diseases, diabetes, heart failure or kidney problems. Therefore, targeting these small noncoding-RNAs could potentially alleviate complications from COVID-19. Here, we will review the roles and importance of host and RNA virus encoded miRNAs in COVID-19 pathogenicity and immune response. Then, we focus on potential miRNA therapeutics in the patients who are at increased risk for severe disease.
Collapse
Affiliation(s)
- Nahid Arghiani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
42
|
Khokhar M, Tomo S, Purohit P. MicroRNAs based regulation of cytokine regulating immune expressed genes and their transcription factors in COVID-19. Meta Gene 2021; 31:100990. [PMID: 34722158 PMCID: PMC8547816 DOI: 10.1016/j.mgene.2021.100990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 is characterized by the elevation of a broad spectrum of inflammatory mediators associated with poor disease outcomes. We aimed at an in-silico analysis of regulatory microRNA and their transcription factors (TF) for these inflammatory genes that may help to devise potential therapeutic strategies in the future. Methods The cytokine regulating immune-expressed genes (CRIEG) were sorted from literature and the GEO microarray dataset. Their co-differentially expressed miRNA and transcription factors were predicted from publicly available databases. Enrichment analysis was done through mienturnet, MiEAA, Gene Ontology, and pathways predicted by KEGG and Reactome pathways. Finally, the functional and regulatory features were analyzed and visualized through Cytoscape. Results Sixteen CRIEG were observed to have a significant protein-protein interaction network. The ontological analysis revealed significantly enriched pathways for biological processes, molecular functions, and cellular components. The search performed in the miRNA database yielded ten miRNAs that are significantly involved in regulating these genes and their transcription factors. Conclusion An in-silico representation of a network involving miRNAs, CRIEGs, and TF, which take part in the inflammatory response in COVID-19, has been elucidated. Thus, these regulatory factors may have potentially critical roles in the inflammatory response in COVID-19 and may be explored further to develop targeted therapeutic strategies and mechanistic validation.
Collapse
Key Words
- AHR, Aryl hydrocarbon receptor
- ARDS, acute respiratory distress syndrome
- BAL, Bronchoalveolar Lavage
- CC, Cellular components
- CCL, Chemokine (C-C motif) ligands
- CCL2, C-C motif chemokine 2
- CCL3, C-C motif chemokine 3
- CCL4, C-C motif chemokine 4
- CCR, CC chemokine receptor
- CEBPA, CCAAT/enhancer-binding protein alpha
- COVID-19
- COVID-19, Coronavirus Disease 2019
- CREM, cAMP responsive element modulator
- CRIEGs, Cytokine regulating immune expressed genes
- CSF2, Granulocyte-macrophage colony-stimulating factor
- CSF3, Granulocyte colony-stimulating factor
- CXCL10, C-X-C motif chemokine 10
- CXCL2, Chemokine (C-X-C motif) ligand 2
- CXCL8, Interleukin-8
- CXCR, C-X-C chemokine receptor
- Cytokine storm
- Cytokines
- DDIT3, DNA damage-inducible transcript 3 protein
- DEGs, Differentially expressed genes
- E2F1, Transcription factor E2F1
- EGR1, Early growth response protein 1
- EP300, Histone acetyltransferase p300
- ESR1, Estrogen receptor, Nuclear hormone receptor
- ETS2, Protein C-ets-2
- FOXP3, Forkhead box protein P3
- GO, Gene Ontology
- GSEs, Gene Series Expressions
- HDAC1, Histone deacetylase 1
- HDAC2, Histone deacetylase 2
- HSF1, Heat shock factor protein 1
- IL-6, interleukin-6
- IL10, Interleukin-10
- IL17A, Interleukin-17A
- IL1B, Interleukin-1
- IL2, Interleukin-2
- IL6, Interleukin-6
- IL7, Interleukin-7
- IL9, Interleukin-9
- IP-10, Interferon-Inducible Protein 10
- IRF1, Interferon regulatory factor 1
- Immuno-interactomics
- JAK-STAT, Janus kinase (JAK)-signal transducer and activator
- JAK2, Tyrosine-protein kinase JAK2
- JUN, Transcription factor AP-1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- KLF4, Krueppel-like factor 4
- MicroRNA, SARS-CoV-2
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFAT5, Nuclear factor of activated T-cells 5
- NFKB1, Nuclear factor NF-kappa-B p105 subunit
- NFKBIA, NF-kappa-B inhibitor alpha
- NR1I2, Nuclear receptor subfamily 1 group I member 2
- PDM, peripheral blood mononuclear cell
- REL, Proto-oncogene c-Rel
- RELA, Transcription factor p65
- RUNX1, Runt-related transcription factor 1
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SIRT1, NAD-dependent protein deacetylase sirtuin-1
- SP1, Transcription factor Sp1
- SPI1, Transcription factor PU.1
- STAT1, Signal transducer and activator of transcription 1-alpha/beta
- STAT3, Signal transducer and activator of transcription 3
- TLR3, Toll-like receptor 3 (TLR3)
- TNF, Tumor necrosis factor
- TNF-α, Tumor Necrosis Factor-Alpha
- VDR, Vitamin D3 receptor
- XBP1, X-box-binding protein 1
- ZFP36, mRNA decay activator protein ZFP36
- ZNF300, Zinc finger protein 300, heme oxygenase-1 (HO-1)
- miEAA, miRNA Enrichment Analysis and Annotation t
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| |
Collapse
|
43
|
De Silva S, Tennekoon KH, Karunanayake EH. Interaction of Gut Microbiome and Host microRNAs with the Occurrence of Colorectal and Breast Cancer and Their Impact on Patient Immunity. Onco Targets Ther 2021; 14:5115-5129. [PMID: 34712050 PMCID: PMC8548058 DOI: 10.2147/ott.s329383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and colorectal cancers are two primary malignancies on which most of the research done worldwide investigates the potential genetic and environmental risk factors and thereby tries to develop therapeutic methods to improve prognosis. Breast cancer is the most diagnosed cancer type in women, while colorectal cancer is diagnosed in males as the third most and females as the second most cancer type. Though these two cancer types are predominantly seen in adult patients worldwide, in the current context, these malignancies are diagnosed at a younger age with a significant rate of incidents than previous. Such early-onset cancers are generally present at an advanced stage of the most aggressive type with a poor prognosis. In the past, the focus of the research was mainly on studying possible candidate genes to understand the onset. However, it is now recognized that genetics, epigenetics, and other environmental factors play a pivotal role in cancer susceptibility. Thus, most studies were diversified to study the behavior of host microRNAs, and the involvement of gut microbiota and good communication between them surfaced in the occurrence and state of the disease. It is understood that the impact of these factors affects the outcome of the disease. Out of the adverse outcomes identified relating to the disease, immunosuppression is one of the most concerning outcomes in the current world, where such individuals remain vulnerable to infections. Recent studies revealed that microbiome and microRNA could create a considerable impact on immunosuppression. This review focused on the behavior of host microRNAs and gut microbiome for the onset of the disease and progression, thereby influencing an individual's immunosuppression. Understanding the interactions among microRNA, microbiome, presentation of the disease, and impact on the immune system will be immensely useful for developing future therapeutic strategies based on targeting host microRNA and the patient's gut microbiome. Therapies such as inhibitory-miRNA therapies, miRNA mimic-based therapeutics, immune checkpoint blockade therapies, and bacteria-assisted tumor-targeted therapies help modulate cancer. At the same time, it paid equal attention to potential noninvasive biomarkers in diagnosis, prognosis, and therapeutics in both cancers.
Collapse
Affiliation(s)
- Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| | - Eric Hamilton Karunanayake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| |
Collapse
|
44
|
Alveolar Regeneration in COVID-19 Patients: A Network Perspective. Int J Mol Sci 2021; 22:ijms222011279. [PMID: 34681944 PMCID: PMC8538208 DOI: 10.3390/ijms222011279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.
Collapse
|
45
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Barazesh A, Karimazar M, Nguewa P, Carrera Silva EA. Highlighting the interplay of microRNAs from Leishmania parasites and infected-host cells. Parasitology 2021; 148:1434-1446. [PMID: 34218829 PMCID: PMC11010138 DOI: 10.1017/s0031182021001177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023]
Abstract
Leishmania parasites, the causative agents of leishmaniasis, are protozoan parasites with the ability to modify the signalling pathway and cell responses of their infected host cells. These parasite strategies alter the host cell environment and conditions favouring their replication, survival and pathogenesis. Since microRNAs (miRNAs) are able to post-transcriptionally regulate gene expression processes, these biomolecules can exert critical roles in controlling Leishmania-host cell interplay. Therefore, the identification of relevant miRNAs differentially expressed in Leishmania parasites as well as in infected cells, which affect the host fitness, could be critical to understand the infection biology, pathogenicity and immune response against these parasites. Accordingly, the current review aims to address the differentially expressed miRNAs in both, the parasite and infected host cells and how these biomolecules change cell signalling and host immune responses during infection. A deep understanding of these processes could provide novel guidelines and therapeutic strategies for managing and treating leishmaniasis.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Barazesh
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008Pamplona, Spain
| | | |
Collapse
|
46
|
Srivastava SP, Srivastava R, Chand S, Goodwin JE. Coronavirus Disease (COVID)-19 and Diabetic Kidney Disease. Pharmaceuticals (Basel) 2021; 14:751. [PMID: 34451848 PMCID: PMC8398861 DOI: 10.3390/ph14080751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
The present review describes COVID-19 severity in diabetes and diabetic kidney disease. We discuss the crucial effect of COVID-19-associated cytokine storm and linked injuries and associated severe mesenchymal activation in tubular epithelial cells, endothelial cells, and macrophages that influence neighboring cell homeostasis, resulting in severe proteinuria and organ fibrosis in diabetes. Altered microRNA expression disrupts cellular homeostasis and the renin-angiotensin-system, targets reno-protective signaling proteins, such as angiotensin-converting enzyme 2 (ACE2) and MAS1 receptor (MAS), and facilitates viral entry and replication in kidney cells. COVID-19-associated endotheliopathy that interacts with other cell types, such as neutrophils, platelets, and macrophages, is one factor that accelerates prethrombotic reactions and thrombus formation, resulting in organ failures in diabetes. Apart from targeting vital signaling through ACE2 and MAS, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are also associated with higher profibrotic dipeptidyl transferase-4 (DPP-4)-mediated mechanisms and suppression of AMP-activated protein kinase (AMPK) activation in kidney cells. Lowered DPP-4 levels and restoration of AMPK levels are organ-protective, suggesting a pathogenic role of DPP-4 and a protective role of AMPK in diabetic COVID-19 patients. In addition to standard care provided to COVID-19 patients, we urgently need novel drug therapies that support the stability and function of both organs and cell types in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Rohit Srivastava
- Laboratory of Medical Transcriptomics, Department of Endocrinology, Nephrology Services, Hadassah Hebrew-University Medical Center, Jerusalem 91905, Israel;
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
47
|
Non-Coding RNAs and Reactive Oxygen Species–Symmetric Players of the Pathogenesis Associated with Bacterial and Viral Infections. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Infections can be triggered by a wide range of pathogens. However, there are few strains of bacteria that cause illness, but some are quite life-threatening. Likewise, viral infections are responsible for many human diseases, usually characterized by high contagiousness. Hence, as bacterial and viral infections can both cause similar symptoms, it can be difficult to determine the exact cause of a specific infection, and this limitation is critical. However, recent scientific advances have geared us up with the proper tools required for better diagnoses. Recent discoveries have confirmed the involvement of non-coding RNAs (ncRNAs) in regulating the pathogenesis of certain bacterial or viral infections. Moreover, the presence of reactive oxygen species (ROS) is also known as a common infection trait that can be used to achieve a more complete description of such pathogen-driven conditions. Thus, this opens further research opportunities, allowing scientists to explore infection-associated genetic patterns and develop better diagnosis and treatment methods. Therefore, the aim of this review is to summarize the current knowledge of the implication of ncRNAs and ROS in bacterial and viral infections, with great emphasis on their symmetry but, also, on their main differences.
Collapse
|
48
|
Zandi M, Soltani S, Feyzi K. SARS-CoV-2 as a betacoronavirus comprises five structural proteins? INFECTION GENETICS AND EVOLUTION 2021; 94:105011. [PMID: 34293483 PMCID: PMC8289725 DOI: 10.1016/j.meegid.2021.105011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Feyzi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
49
|
Hemagglutinin-esterase cannot be considered as a candidate for designing drug against COVID-19. Mol Divers 2021; 25:1999-2000. [PMID: 34241772 PMCID: PMC8267763 DOI: 10.1007/s11030-021-10272-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/03/2021] [Indexed: 11/25/2022]
Abstract
We read with interest the article by Patel et al. on the identification of potential inhibitors of coronavirus hemagglutinin-esterase. The authors considered hemagglutinin-esterase as a glycoprotein of SARS-CoV-2 and selected hemagglutinin-esterase as a target to identify potential inhibitors using a combination of various computational approaches, and however, SARS-CoV-2 genome lacks hemagglutinin-esterase gene; thus, hemagglutinin-esterase does not exist in SARS-CoV-2 particle.
Collapse
|
50
|
Ying H, Ebrahimi M, Keivan M, Khoshnam SE, Salahi S, Farzaneh M. miRNAs; a novel strategy for the treatment of COVID-19. Cell Biol Int 2021; 45:2045-2053. [PMID: 34180562 PMCID: PMC8426984 DOI: 10.1002/cbin.11653] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/08/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is the seventh member of the bat severe acute respiratory syndrome family. COVID‐19 can fuse their envelopes with the host cell membranes and deliver their genetic material. COVID‐19 attacks the respiratory system and stimulates the host inflammatory responses, enhances the recruitment of immune cells, and promotes angiotensin‐converting enzyme 2 activities. Patients with confirmed COVID‐19 may have experienced fever, dry cough, headache, dyspnea, acute kidney injury, acute respiratory distress syndrome, and acute heart injury. Several strategies such as oxygen therapy, ventilation, antibiotic or antiviral therapy, and renal replacement therapy are commonly used to decrease COVID‐19‐associated mortality. However, these approaches may not be good treatment options. Therefore, the search for an alternative‐novel therapy is urgently important to prevent the disease progression. Recently, microRNAs (miRNAs) have emerged as a promising strategy for COVID‐19. The design of oligonucleotide against the genetic material of COVID‐19 might suppress virus RNA translation. Several previous studies have shown that host miRNAs play an antiviral role and improve the treatment of patients with COVID‐19. miRNAs by binding to the 3′‐untranslated region (UTR) or 5′‐UTR of viral RNA play an important role in COVID‐19‐host interplay and viral replication. miRNAs interact with multiple pathways and reduce inflammatory biomarkers, thrombi formation, and tissue damage to accelerate the patient outcome. The information in this review provides a summary of the current clinical application of miRNAs for the treatments of patients with COVID‐19.
Collapse
Affiliation(s)
- Hao Ying
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mona Keivan
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sarvenaz Salahi
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|