1
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03640-4. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Lei L, Yuan J, Dai Z, Xiang S, Tu Q, Cui X, Zhai S, Chen X, He Z, Fang B, Xu Z, Yu H, Tang L, Zhang C. Targeting the Labile Iron Pool with Engineered DFO Nanosheets to Inhibit Ferroptosis for Parkinson's Disease Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409329. [PMID: 39221531 DOI: 10.1002/adma.202409329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis in neurons is considered one of the key factors that induces Parkinson's disease (PD), which is caused by excessive iron accumulation in the intracellular labile iron pool (LIP). The iron ions released from the LIP lead to the aberrant generation of reactive oxygen species (ROS) to trigger ferroptosis and exacerbate PD progression. Herein, a pioneering design of multifunctional nanoregulator deferoxamine (DFO)-integrated nanosheets (BDPR NSs) is presented that target the LIP to restrict ferroptosis and protect against PD. The BDPR NSs are constructed by incorporating a brain-targeting peptide and DFO into polydopamine-modified black phosphorus nanosheets. These BDPR NSs can sequester free iron ions, thereby ameliorating LIP overload and regulating iron metabolism. Furthermore, the BDPR NSs can decrease lipid peroxidation generation by mitigating ROS accumulation. More importantly, BDPR NSs can specifically accumulate in the mitochondria to suppress ROS generation and decrease mitochondrial iron accumulation. In vivo experiments demonstrated that the BDPR NSs highly efficiently mitigated dopaminergic neuronloss and its associated behavioral disorders by modulating the LIP and inhibiting ferroptosis. Thus, the BDPR-based nanovectors holds promise as a potential avenue for advancing PD therapy.
Collapse
Affiliation(s)
- Li Lei
- Department of Chemistry, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Jiali Yuan
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Zhijun Dai
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Song Xiang
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Qiuxia Tu
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xing Cui
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China
| | - Suzhen Zhai
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaozhong Chen
- The Jinyang Hospital Affiliated to Guizhou Medical University: The Second People's Hospital of Guiyang, Guiyang, 550025, China
| | - Zhixu He
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China
| | - Chunlin Zhang
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
3
|
Panwar A, Lye A, Musib D, Upadhyay A, Karankumar I, Devi PB, Pal M, Maity B, Roy M. Strategic design and development of a siderophore mimic: pioneering anticancer therapy via ROS generation and ferroptosis. Dalton Trans 2024; 53:12119-12127. [PMID: 38979715 DOI: 10.1039/d4dt01461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We designed a tris-catecholate-based siderophore mimic, H6-T-CATL, to selectively chelate iron(III) from mitochondrial cytochromes and other iron-containing proteins within cellular matrices. This strategic sequestration aims to trigger apoptosis or ferroptosis in cancer cells through the glutathione (GSH)-dependent release of reduced iron and subsequent ROS-mediated cytotoxicity. Synthesis of H6-T-CATL involved precise peptide coupling reactions. Using the Fe(III)-porphyrin model (Fe-TPP-Cl), akin to cytochrome c, we studied H6-T-CATL's ability to extract iron(III), yielding a binding constant (Krel) of 1014 for the resulting iron(III) complex (FeIII-T-CATL)3-. This complex readily underwent GSH-mediated reduction to release bioavailable iron(II), which catalyzed Fenton-like reactions generating hydroxyl radicals (˙OH), confirmed by spectroscopic analyses. Our research underscores the potential of H6-T-CATL to induce cancer cell death by depleting iron(III) from cellular metalloproteins, releasing pro-apoptotic iron(II). Evaluation across various cancer types, including normal cells, demonstrated H6-T-CATL's cytotoxicity through ROS production, mitochondrial dysfunction, and activation of ferroptosis and DNA damage pathways. These findings propose a novel mechanism for cancer therapy, leveraging endogenous iron stores within cells. H6-T-CATL emerges as a promising next-generation anticancer agent, exploiting iron metabolism vulnerabilities to induce selective cancer cell death through ferroptosis induction.
Collapse
Affiliation(s)
- Abhishek Panwar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Anushree Lye
- Department of Systems Biology, Center of Biomedical Research (CBMR), Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-50012, Karnataka, India
| | - Irungbam Karankumar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Paonam Bebika Devi
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Biswanath Maity
- Department of Systems Biology, Center of Biomedical Research (CBMR), Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
- Department of Biological Sciences, Bose Institute Unified Academic Campus, EN80, Sector V, Bidhan Nagar, Kolkata - 700091, West Bengal, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
- Department of Chemistry, National Institute of Technology Agartala, Jirania, West Tripura, Agartala, 799046, India
| |
Collapse
|
4
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
5
|
Xia Y, Chen Z, Huang C, Shi L, Ma W, Chen X, Liu Y, Wang Y, Cai C, Huang Y, Liu W, Shi R, Luo Q. Investigation the mechanism of iron overload-induced colonic inflammation following ferric citrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116241. [PMID: 38522287 DOI: 10.1016/j.ecoenv.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiang Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Cuvillier L, Passaretti A, Guilminot E, Joseph E. Agar and Chitosan Hydrogels' Design for Metal-Uptaking Treatments. Gels 2024; 10:55. [PMID: 38247779 PMCID: PMC10815442 DOI: 10.3390/gels10010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
In the field of cultural heritage, the use of natural gels is rising for the application of active agents. Here, two natural polymers are assessed: agar, a pioneer hydrogel for conservation treatments, and chitosan, a rather novel and metal-binding gel. For chitosan, a state-of-the-art based formulation (CS-ItA-LCys) is evaluated as it was reported for silver-complexing properties. It is evaluated whether these polymers can withstand the addition of the chelating compound deferoxamine, which is a bacterial siderophore. This allows for the obtainment of completely bio-sourced gel systems. A Fourier-transformed (FT) infrared spectroscopy characterization is performed, completed with rheological measurements and Cryo-Scanning Electron Microscopy (cryo-SEM) to investigate the physico-chemical properties of the gels, as well as their interaction with deferoxamine. Both polymers are also tested for their inherent complexing ability on silver ions using FT-Raman spectroscopy. A multi-analytical comparison shows different microstructures, in particular, the presence of a thick membrane for chitosan and different mechanical behaviors, with agar being more brittle. Neither hydrogel seems affected by the addition of deferoxamine; this is shown by similar rheological behavior and molecular structures in the presence or absence of the chelator. The intrinsic abilities of the chitosan formulation to make silver complex are demonstrated with the observation of two peaks characteristic of Ag-S and Ag-O bonds. Agar and chitosan are both proven to be reliable gels to act as carriers for bio-based active agents. This paper confirms the potential asset of the chitosan formulation CS-ItA-LCys as a promising gel for the complexation of soluble silver.
Collapse
Affiliation(s)
- Luana Cuvillier
- Laboratory of Technologies for Heritage Materials, University of Neuchâtel, Bellevaux 51, 2000 Neuchâtel, Switzerland; (L.C.); (A.P.)
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| | - Arianna Passaretti
- Laboratory of Technologies for Heritage Materials, University of Neuchâtel, Bellevaux 51, 2000 Neuchâtel, Switzerland; (L.C.); (A.P.)
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| | - Elodie Guilminot
- Arc’Antique Conservation and Research Laboratory, 26 Rue de la Haute Forêt, 44300 Nantes, France;
| | - Edith Joseph
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
7
|
Michailidou G, Li Y, Zamboulis A, Karlioti G, Meimaroglou D, Pantopoulos K, Bikiaris DN. A Water-Soluble Chitosan Derivative for the Release of Bioactive Deferoxamine. Int J Mol Sci 2024; 25:913. [PMID: 38255991 PMCID: PMC10815119 DOI: 10.3390/ijms25020913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Deferoxamine (DFO) is a water-soluble iron chelator used pharmacologically for the management of patients with transfusional iron overload. However, DFO is not cell-permeable and has a short plasma half-life, which necessitates lengthy parenteral administration with an infusion pump. We previously reported the synthesis of chitosan (CS) nanoparticles for sustained slow release of DFO. In the present study, we developed solid dispersions and nanoparticles of a carboxymethyl water-soluble chitosan derivative (CMCS) for improved DFO encapsulation and release. CS dispersions and nanoparticles with DFO have been prepared by ironical gelation using sodium triphosphate (TPP) and were examined for comparison purposes. The successful presence of DFO in CMCS polymeric dispersions and nanoparticles was confirmed through FTIR measurements. Furthermore, the formation of CMCS nanoparticles led to inclusion of DFO in an amorphous state, while dispersion of DFO in the polymeric matrix led to a decrease in its crystallinity according to X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results. An in vitro release assay indicated sustained release of DFO from CS and CMCS nanoparticles over 48 h and 24 h, respectively. Application of CMCS-DFO dispersions to murine RAW 264.7 macrophages or human HeLa cervical carcinoma cells triggered cellular responses to iron deficiency. These were exemplified in the induction of the mRNA encoding transferrin receptor 1, the major iron uptake protein, and the suppression of ferritin, the iron storage protein. Our data indicate that CMCS-DFO nanoparticles release bioactive DFO that causes effective iron chelation in cultured cells.
Collapse
Affiliation(s)
- Georgia Michailidou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Yupeng Li
- Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Alexandra Zamboulis
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Georgia Karlioti
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Despoina Meimaroglou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Kostas Pantopoulos
- Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| |
Collapse
|
8
|
Qiao O, Wang X, Wang Y, Li N, Gong Y. Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment. J Adv Res 2023; 54:211-222. [PMID: 36702249 PMCID: PMC10703611 DOI: 10.1016/j.jare.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI. AIM OF REVIEW This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI. KEY SCIENTIFIC CONCEPTS OF REVIEW One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI.
Collapse
Affiliation(s)
- Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| |
Collapse
|
9
|
Mottaghi S, Abbaszadeh H. Grape seed extract in combination with deferasirox ameliorates iron overload, oxidative stress, inflammation, and liver dysfunction in beta thalassemia children. Complement Ther Clin Pract 2023; 53:101804. [PMID: 37832335 DOI: 10.1016/j.ctcp.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND PURPOSE Iron overload in the body is associated with serious and irreversible tissue damage. This study aimed to investigate the iron-chelating, antioxidant, anti-inflammatory, and hepatoprotective activities of grape seed extract (GSE) supplement as well as its safety in β-thalassemia major (β-TM) pediatric patients receiving deferasirox as a standard iron-chelation therapy. MATERIALS AND METHODS The children were randomly allocated to either GSE group (n = 30) or control group (n = 30) to receive GSE (100 mg/day) or placebo capsules, respectively, for 4 weeks. The serum levels of iron, ferritin, total iron-binding capacity (TIBC), alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and glutathione (GSH) as well as superoxide dismutase (SOD) activity and hemoglobin (Hb) concentration were measured pre-and post-intervention. RESULTS GSE supplement significantly attenuated the serum levels of iron (p = 0.030), ferritin (p = 0.017), ALT (p = 0.000), AST (p = 0.000), TNF-α (p = 0.000), and hs-CRP (p = 0.001). The TIBC level (p = 0.020) significantly enhanced in the GSE group compared with the placebo group. Moreover, GSE supplement remarkably improved the oxidative stress markers, MDA (p = 0.000) and GSH (p = 0.001). The changes in the SOD activity (p = 0.590) and Hb concentration (p = 0.670) were not statistically different between the groups. CONCLUSION GSE supplement possesses several health beneficial influences on children with β-TM by alleviating iron burden, oxidative stress, inflammation, and liver dysfunction.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Jones G, Zeng L, Kim J. Application of Allometric Scaling to Nanochelator Pharmacokinetics. ACS OMEGA 2023; 8:27256-27263. [PMID: 37546686 PMCID: PMC10399172 DOI: 10.1021/acsomega.3c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023]
Abstract
Deferoxamine (DFO) is an effective FDA-approved iron chelator; however, its use is considerably limited by off-target toxicities and an extremely cumbersome dose regimen involving daily infusions. The recent development of a deferoxamine-based nanochelator (DFO-NP) with selective renal excretion has shown promise in ameliorating iron overload and associated physiological complications in rodent models with a substantially improved safety profile. While the dose- and administration route-dependent pharmacokinetics (PK) of DFO-NPs have been recently characterized, the optimized PK model was not validated, and the prior studies did not directly address the clinical translatability of DFO-NPs into humans. In the present work, these gaps were addressed by applying allometric scaling of DFO-NP PK in rats to predict those in mice and humans. First, this approach predicted serum concentration-time profiles of DFO-NPs, which were similar to those experimentally measured in mice, validating the nonlinear disposition and absorption models for DFO-NPs across the species. Subsequently, we explored the utility of allometric scaling by predicting the PK profile of DFO-NPs in humans under clinically relevant dosing schemes. These in silico efforts demonstrated that the novel nanochelator is expected to improve the PK of DFO when compared to standard infusion regimens of native DFO. Moreover, reasonable formulation strategies were identified and discussed for both early clinical development and more sophisticated formulation development.
Collapse
Affiliation(s)
- Gregory Jones
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Lingxue Zeng
- Department
of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jonghan Kim
- Department
of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
11
|
Ezzat GM, Nassar AY, Bakr MH, Mohamed S, Nassar GA, Kamel AA. Acetylated Oligopeptide and N-acetyl cysteine Protected Against Oxidative Stress, Inflammation, Testicular-Blood Barrier Damage, and Testicular Cell Death in Iron-Overload Rat Model. Appl Biochem Biotechnol 2023; 195:5053-5071. [PMID: 36947366 DOI: 10.1007/s12010-023-04457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Multiple organs, including the testes, are damaged by iron overload. It has been shown that N-acetyl cysteine (NAC) influences oxidative stress in iron overload. The present study aimed to evaluate the roles of acetylated peptide (AOP) and NAC in the inhibition of iron-overload induced-testicular damage. At the beginning of the experiment, NAC (150 mg /kg) was given for a week to all 40 rats. Then, four groups were formed by dividing the animals (10 rats/group). Group I included healthy control rats. Group II (iron overload) was given intraperitoneal iron dextran (60 mg/kg/day) 5 days a week for 4 weeks. Group III (NAC) was given NAC orally at a dose of 150 mg/kg/day for 4 weeks in addition to iron dextran. Group IV (AOP) was given AOP orally at a dose of 150 mg/kg/day for 4 weeks besides iron dextran. When the experiment time was over, testosterone serum level, testicular B cell lymphoma-2 (BCL-2) and protein kinase B (PKB) protein levels, nuclear factor kappa-B (NF-κB), and Beclin1 mRNA expression levels, and malondialdehyde (MDA), and reduced glutathione (GSH) were determined by ELISA, quantitative reverse transcription-PCR, and chemical methods. Finally, histopathological examinations and immunohistochemical detection of claudin-1 and CD68 were performed. The iron overload group exhibited decreased testosterone, BCL-2, PKB, claudin-1, and GSH and increased MDA, NF-κB, Beclin1, and CD68, while both NAC and AOP treatments protected against the biochemical and histopathological disturbances occurring in the iron overload model. We concluded that NAC and AOP can protect against testes damage by iron overload via their antioxidant, anti-inflammatory, antiapoptotic, and ant-autophagic properties. The NAC and AOP may be used as preventative measures against iron overload-induced testicular damage.
Collapse
Affiliation(s)
- Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shimma Mohamed
- Department of Medical Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A Nassar
- Metabolic and Genetic disorders unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Jones G, Zeng L, Kim J. Mechanism-Based Pharmacokinetic Modeling of Absorption and Disposition of a Deferoxamine-Based Nanochelator in Rats. Mol Pharm 2023; 20:481-490. [PMID: 36378830 DOI: 10.1021/acs.molpharmaceut.2c00737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deferoxamine (DFO) is an effective FDA-approved iron chelator. However, its use is considerably limited by off-target toxicities and an extremely cumbersome dose regimen with daily infusions. The recent development of a deferoxamine-based nanochelator (DFO-NP) with selective renal excretion has shown promise in ameliorating animal models of iron overload with a substantially improved safety profile. To further the preclinical development of this promising nanochelator and to inform on the feasibility of clinical development, it is necessary to fully characterize the dose and administration-route-dependent pharmacokinetics and to develop predictive pharmacokinetic (PK) models describing absorption and disposition. Herein, we have evaluated the absorption, distribution, and elimination of DFO-NPs after intravenous and subcutaneous (SC) injection at therapeutically relevant doses in Sprague Dawley rats. We also characterized compartment-based model structures and identified model-based parameters to quantitatively describe the PK of DFO-NPs. Our modeling efforts confirmed that disposition could be described using a three-compartment mamillary model with elimination and saturable reabsorption both occurring from the third compartment. We also determined that absorption was nonlinear and best described by parallel saturable and first-order processes. Finally, we characterized a novel pathway for saturable SC absorption of an ultrasmall organic nanoparticle directly into the systemic circulation, which offers a novel strategy for improving drug exposure for nanotherapeutics.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lingxue Zeng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
13
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
14
|
Chen H. Iron metabolism in non-alcoholic fatty liver disease: A promising therapeutic target. LIVER RESEARCH 2022; 6:203-213. [PMID: 39957910 PMCID: PMC11791839 DOI: 10.1016/j.livres.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide, and is closely associated with the increased risk of the prevalence of obesity and diabetes. NAFLD begins with the presence of >5% excessive lipid accumulation in the liver, and potentially develops into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. Therefore, insight into the pathogenesis of NAFLD is of key importance to its effective treatment. Iron is an essential element in the life of all mammalian organisms. However, the free iron deposition is positively associated with histological severity in NAFLD patients due to the production of reactive oxygen species via the Fenton reaction. Recently, several iron metabolism-targeted therapies, such as phlebotomy, iron chelators, nanotherapeutics. and ferroptosis, have shown their potential as a therapeutic option in the treatment of NAFLD and as a clinical strategy to intervene in the progression of NAFLD. Herein, we review the recent overall evidence on iron metabolism and provide the mechanism of hepatic iron overload-induced liver pathologies and the recent advances in iron metabolism-targeted therapeutics in the treatment of NAFLD.
Collapse
Affiliation(s)
- Hanqing Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Wei Z, Xie Y, Wei M, Zhao H, Ren K, Feng Q, Xu Y. New insights in ferroptosis: Potential therapeutic targets for the treatment of ischemic stroke. Front Pharmacol 2022; 13:1020918. [PMID: 36425577 PMCID: PMC9679292 DOI: 10.3389/fphar.2022.1020918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 10/22/2023] Open
Abstract
Stroke is a common disease in clinical practice, which seriously endangers people's physical and mental health. The neurovascular unit (NVU) plays a key role in the occurrence and development of ischemic stroke. Different from other classical types of cell death such as apoptosis, necrosis, autophagy, and pyroptosis, ferroptosis is an iron-dependent lipid peroxidation-driven new form of cell death. Interestingly, the function of NVU and stroke development can be regulated by activating or inhibiting ferroptosis. This review systematically describes the NVU in ischemic stroke, provides a comprehensive overview of the regulatory mechanisms and key regulators of ferroptosis, and uncovers the role of ferroptosis in the NVU and the progression of ischemic stroke. We further discuss the latest progress in the intervention of ferroptosis as a therapeutic target for ischemic stroke and summarize the research progress and regulatory mechanism of ferroptosis inhibitors on stroke. In conclusion, ferroptosis, as a new form of cell death, plays a key role in ischemic stroke and is expected to become a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Jones G, Zeng L, Stiles WR, Park SH, Kang H, Choi HS, Kim J. Pharmacokinetics and tissue distribution of deferoxamine-based nanochelator in rats. Nanomedicine (Lond) 2022; 17:1649-1662. [PMID: 36547231 PMCID: PMC9869290 DOI: 10.2217/nnm-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Aim: To characterize the pharmacokinetics of deferoxamine-conjugated nanoparticles (DFO-NPs), a novel nanochelator for removing excess iron. Materials & methods: The pharmacokinetics of DFO-NPs were evaluated in Sprague-Dawley rats at three doses (3.3, 10 and 30 μmol/kg) after intravenous and subcutaneous administration. Results: DFO-NPs exhibited a biphasic concentration-time profile after intravenous administration with a short terminal half-life (2.0-3.2 h), dose-dependent clearance (0.111-0.179 l/h/kg), minimal tissue distribution and exclusive renal excretion with a possible saturable reabsorption mechanism. DFO-NPs after subcutaneous administration exhibited absorption-rate-limited kinetics with a prolonged half-life (5.7-10.1 h) and favorable bioavailability (47-107%). Conclusion: DFO-NPs exhibit nonlinear pharmacokinetics with increasing dose, and subcutaneous administration substantially improves drug exposure, thereby making it a clinically viable administration route for iron chelation.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Lingxue Zeng
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Wesley R Stiles
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Seung Hun Park
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Homan Kang
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
17
|
Park SH, Kim RS, Stiles WR, Jo M, Zeng L, Rho S, Baek Y, Kim J, Kim MS, Kang H, Choi HS. Injectable Thermosensitive Hydrogels for a Sustained Release of Iron Nanochelators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200872. [PMID: 35343104 PMCID: PMC9130884 DOI: 10.1002/advs.202200872] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 05/17/2023]
Abstract
Deferoxamine (DFO) is an FDA-approved iron-chelating agent which shows good therapeutic efficacy, however, its short blood half-life presents challenges such as the need for repeated injections or continuous infusions. Considering the lifelong need of chelating agents for iron overload patients, a sustained-release formulation that can reduce the number of chelator administrations is essential. Here, injectable hydrogel formulations prepared by integrating crosslinked hyaluronic acid into Pluronic F127 for an extended release of DFO nanochelators are reported. The subcutaneously injected hydrogel shows a thermosensitive sol-gel transition at physiological body temperature and provides a prolonged release of renal clearable nanochelators over 2 weeks, resulting in a half-life 47-fold longer than that of the nanochelator alone. In addition, no chronic toxicity of the nanochelator-loaded hydrogel is confirmed by biochemical and histological analyses. This injectable hydrogel formulation with DFO nanochelators has the potential to be a promising formulation for the treatment of iron overload disorders.
Collapse
Affiliation(s)
- Seung Hun Park
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Molecular Science and TechnologyAjou UniversitySuwon16499South Korea
| | - Richard S. Kim
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Wesley R. Stiles
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Minjoo Jo
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Lingxue Zeng
- Department of Biomedical & Nutritional SciencesZuckerberg College of Health SciencesUniversity of MassachusettsLowellMA01854USA
| | - Sunghoon Rho
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Yoonji Baek
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional SciencesZuckerberg College of Health SciencesUniversity of MassachusettsLowellMA01854USA
| | - Moon Suk Kim
- Department of Molecular Science and TechnologyAjou UniversitySuwon16499South Korea
| | - Homan Kang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hak Soo Choi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
18
|
Therapeutic potential of induced iron depletion using iron chelators in Covid-19. Saudi J Biol Sci 2022; 29:1947-1956. [PMID: 34924800 PMCID: PMC8666385 DOI: 10.1016/j.sjbs.2021.11.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/24/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023] Open
Abstract
Ferritin, which includes twenty-four light and heavy chains in varying proportions in different tissues, is primarily responsible for maintaining the body's iron metabolism. Its normal value is between 10 and 200 ngmL-1 in men and between 30 and 300 ngmL-1 in women. Iron is delivered to the tissue via them, and they act as immunomodulators, signaling molecules, and inflammatory markers. When ferritin level exceeds 1000 µgL-1, the patient is categorized as having hyperferritinemia. Iron chelators such as deferiprone, deferirox, and deferoxamine are currently FDA approved to treat iron overload. The inflammation cascade and poor prognosis of COVID-19 may be attributed to high ferritin levels. Critically ill patients can benefit from deferasirox, an iron chelator administered orally at 20-40 mgkg-1 once daily, as well as intravenous deferoxamine at 1000 mg initially followed by 500 mg every 4 to 12 h. It can be combined with monoclonal antibodies, antioxidants, corticosteroids, and lactoferrin to make iron chelation therapy effective for COVID-19 victims. In this article, we analyze the antiviral and antifibrotic activity of iron chelators, thereby promoting iron depletion therapy as a potentially innovative treatment strategy for COVID-19.
Collapse
|
19
|
Hruby M, Martínez IIS, Stephan H, Pouckova P, Benes J, Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers (Basel) 2021; 13:3969. [PMID: 34833268 PMCID: PMC8618197 DOI: 10.3390/polym13223969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.
Collapse
Affiliation(s)
- Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Jiri Benes
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| |
Collapse
|
20
|
Ion-imprinted-based nanochelators for iron(III) removal from synthetic gastric fluid. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Liu Z, Simchick GA, Qiao J, Ashcraft MM, Cui S, Nagy T, Zhao Q, Xiong MP. Reactive Oxygen Species-Triggered Dissociation of a Polyrotaxane-Based Nanochelator for Enhanced Clearance of Systemic and Hepatic Iron. ACS NANO 2021; 15:419-433. [PMID: 33378155 PMCID: PMC8596504 DOI: 10.1021/acsnano.0c01083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chronic blood transfusions are used to alleviate anemic symptoms in thalassemia and sickle cell anemia patients but can eventually result in iron overload (IO) and subsequently lead to severe oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat transfusional IO, but the use of the iron chelator is hindered by nonspecific toxicity and poor pharmacokinetic (PK) properties in humans, resulting in the need to administer the drug via long-term infusion regimens that can often lead to poor patient compliance. Herein, a nanochelator system that uses the characteristic IO physiological environment to dissociate was prepared through the incorporation of DFO and reactive oxygen species (ROS)-sensitive thioketal groups into an α-cyclodextrin-based polyrotaxane platform (rPR-DFO). ROS-induced dissociation of this nanochelator (ca. 10 nm) into constructs averaging 2 nm in diameter significantly increased urine and fecal elimination of excess iron in vivo. In addition to significantly improved PK properties, rPR-DFO was well-tolerated in mice and no adverse side effects were noted in single high dose or multiple dose acute toxicity studies. The overall features of rPR-DFO as a promising system for iron chelation therapy can be attributed to a combination of the nanochelator's improved PK, favorable distribution to the liver, and ROS-induced dissociation properties into constructs <6 nm for faster renal elimination. This ROS-responsive nanochelator design may serve as a promising alternative for safely prolonging the circulation of DFO and more rapidly eliminating iron chelates from the body in iron chelation therapy regimens requiring repeated dosing of nanochelators.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory A Simchick
- Bioimaging Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Jing Qiao
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan M Ashcraft
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Shuolin Cui
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Qun Zhao
- Bioimaging Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Abstract
The paper presents the synthesis and preliminary characterization of two novel solid-phase sorbents for iron(III), resulting from the functionalization of ethylene-vinyl alcohol copolymer (EVOH) with deferoxamine, DFO (DFO@EVOH), and a novel tripodal 3-hydroxy-4-pyridinone, named 3,4-HP (3,4-HP@EVOH). DFO and 3,4-HP have been covalently bonded to EVOH, using carbonyldiimidazole as a coupling agent. Before their use as Fe(III) sorbents, they were warm-pressed to obtain a thin film. Polymers have been characterized by conventional physico-chemical techniques; furthermore, the sorption properties towards Fe(III) were investigated. The physico-chemical characterization of the new solid-state devices demonstrates the effective linkage of the two receptors on the polymeric support. Despite a relatively low sorption capacity for both materials, the stoichiometry and the complexation constants of Fe(III)/DFO@EVOH and Fe(III)/3,4-HP@EVOH are in pretty good agreement with those obtained for the same ligands in aqueous solutions.
Collapse
|
23
|
Farr AC, Xiong MP. Challenges and Opportunities of Deferoxamine Delivery for Treatment of Alzheimer's Disease, Parkinson's Disease, and Intracerebral Hemorrhage. Mol Pharm 2020; 18:593-609. [PMID: 32926630 DOI: 10.1021/acs.molpharmaceut.0c00474] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deferoxamine mesylate (DFO) is an FDA-approved, hexadentate iron chelator routinely used to alleviate systemic iron burden in thalassemia major and sickle cell patients. Iron accumulation in these disease states results from the repeated blood transfusions required to manage these conditions. Iron accumulation has also been implicated in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), and secondary injury following intracerebral hemorrhage (ICH). Chelation of brain iron is thus a promising therapeutic strategy for improving behavioral outcomes and slowing neurodegeneration in the aforementioned disease states, though the effectiveness of DFO treatment is limited on several accounts. Systemically administered DFO results in nonspecific toxicity at high doses, and the drug's short half-life leads to low patient compliance. Mixed reports of DFO's ability to cross the blood-brain barrier (BBB) also appear in literature. These limitations necessitate novel DFO formulations prior to the drug's widespread use in managing neurodegeneration. Herein, we discuss the various dosing regimens and formulations employed in intranasal (IN) or systemic DFO treatment, as well as the physiological and behavioral outcomes observed in animal models of AD, PD, and ICH. The clinical progress of chelation therapy with DFO in managing neurodegeneration is also evaluated. Finally, the elimination of intranasally administered particles via the glymphatic system and efflux transporters is discussed. Abundant preclinical evidence suggests that intranasal DFO treatment improves memory retention and behavioral outcome in rodent models of AD, PD, and ICH. Several other biochemical and physiological metrics, such as tau phosphorylation, the survival of tyrosine hydroxylase-positive neurons, and infarct volume, are also positively affected by intranasal DFO treatment. However, dosing regimens are inconsistent across studies, and little is known about brain DFO concentration following treatment. Systemic DFO treatment yields similar results, and some complex formulations have been developed to improve permeability across the BBB. However, despite the success in preclinical models, clinical translation is limited with most clinical evidence investigating DFO treatment in ICH patients, where high-dose treatment has proven dangerous and dosing regimens are not consistent across studies. DFO is a strong drug candidate for managing neurodegeneration in the aging population, but before it can be routinely implemented as a therapeutic agent, dosing regimens must be standardized, and brain DFO content following drug administration must be understood and controlled via novel formulations.
Collapse
Affiliation(s)
- Amy Corbin Farr
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|