1
|
Murthy MK, Pattanayak R. Response to: Letter to the Editor: "Assessment of toxicity in the freshwater tadpole Polypedates maculatus exposed to silver and zinc oxide nanoparticles: A multi-biomarker approach". CHEMOSPHERE 2024; 359:142336. [PMID: 38759807 DOI: 10.1016/j.chemosphere.2024.142336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Meesala Krishna Murthy
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
2
|
Sabol A, Zhou Y, Zhang W, Ferreira BCLB, Chen J, Leblanc RM, Catenazzi A. Carbon nitride dots do not impair the growth, development, and telomere length of tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170176. [PMID: 38244620 DOI: 10.1016/j.scitotenv.2024.170176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Carbon nanoparticles, or carbon dots, can have many beneficial uses. However, we must consider whether they may have any potential negative side effects on wildlife or the ecosystem when these particles end up in wastewater. Early development stages of amphibians are particularly sensitive to contaminants, and exposure to carbon dots could disrupt their development and cause morbidity or death. Past studies have investigated short-term exposure to certain types of nanoparticles, but if these particles get into wastewater exposure may not be short term. Therefore, we tested whether chronic exposure to different concentrations of carbon dots affects the growth, metamorphosis, and telomere length of Cuban tree frog (Osteopilus septentrionalis) tadpoles. We exposed 12 groups of five tadpoles each to different concentrations of carbon dots and a control for three months and tracked survival, growth and metamorphosis. We used carbon nitride dots approximately 2 nm in size at concentrations of 0.01 mg/ml and 0.02 mg/ml, known to interrupt development in zebrafish embryos. After three months, we measured telomere length from tissue samples. We found no difference in tadpole survivorship, growth, development rate, or telomere length among any of the groups, suggesting that carbon dots at these concentrations do not disrupt tadpole development.
Collapse
Affiliation(s)
- Anne Sabol
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Yiqun Zhou
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA; Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
Lu X, Wang Z. Individual and binary exposure of embryonic zebrafish (Danio rerio) to single-walled and multi-walled carbon nanotubes in the absence and presence of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166458. [PMID: 37625727 DOI: 10.1016/j.scitotenv.2023.166458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The available toxicological information was inadequate to assess the potential ecological risk of a mixture of different nanostructured carbon nanotubes (CNTs) to aquatic organisms, especially for the co-existence of mixed CNTs with dissolved organic matter (DOM). Herein, we investigated individual and binary exposure of zebrafish (Danio rerio) embryos to single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) in the absence and presence of DOM. Results indicated that embryonic chorions were more resistant to mixed-type CNTs than to single-type CNTs, yet the addition of DOM decreased this resistance. The mixed-type CNTs increased the antioxidant capacity of zebrafish embryos by increasing superoxide dismutase activity in comparison to the single-type CNTs. Furthermore, the mixed-type CNTs caused oxidative damage to the zebrafish embryos, characterized by an increase in malondialdehyde level. Nevertheless, the activation of the antioxidant defense system was modulated by the presence of DOM. Transcriptome sequencing analysis showed that the number of unique genes (UGs) and differentially expressed genes (DEGs) between the mixed-type CNTs and control groups was significantly enhanced compared to the single-type CNTs. DOM increased the number of UGs and up-regulated DEGs, but decreased the number of down-regulated DEGs. GO classification analysis revealed that the mixed-type CNTs mainly altered the cellular component process of single-type CNTs to induce joint effects. DOM generally enhanced the GO enrichment of DEGs in D. rerio embryos exposed to the mixed-type CNTs during the biological process. KEGG pathway enrichment analysis for the mixed-type CNTs showed enrichment of DEGs encoding ether lipid metabolism, glycerophospholipid metabolism, glycerolipid metabolism, citrate cycle, and biosynthesis of nucleotide sugars. However, DOM allowed more specific KEGG pathways towards the mixed-type CNTs to be identified. Despite the mixed-type CNTs exhibiting differential expression of functional genes compared to the control and single-type CNTs, DOM could regulate the expression of these functional genes associated with oxidative stress response, carbohydrate metabolism, endoplasmic reticulum stress, neuroendocrine, osmotic stress, and DNA damage and repair. Our study thus paves a solid way for exploring the molecular mechanism of aquatic toxicity of multiple nanomaterials under field-relevant conditions.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| |
Collapse
|
4
|
Montalvão MF, Chagas TQ, Rodrigues ASDL, Guimarães ATB, Malafaia G. Long-term exposure of zebrafish juveniles to carbon nanofibers at predicted environmentally relevant concentrations: Outspreading warns about ecotoxicological risks to freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163153. [PMID: 37003323 DOI: 10.1016/j.scitotenv.2023.163153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
Although carbon-based nanomaterials (CNMs) toxicity has already been demonstrated in some animal models, little is known about the impact of carbon nanofibers (CNFs) on aquatic vertebrates. Thus, we aimed to evaluate the possible effects of long-term exposure of zebrafish (Danio rerio) juveniles (90 days) to CNFs in predicted environmentally relevant concentrations (10 ng/L and 10 μg/L). Our data revealed that exposure to CNFs did not affect the growth and development of the animals, in addition to not having induced locomotor alterations or anxiety-like behavior. On the other hand, we observed that zebrafish exposed to CNFs showed a response deficit to the vibratory stimulus test, alteration in the density of neuromasts recorded in the final ventral region, as well as an increase in thiobarbituric acid reactive substances levels and a reduction in total antioxidant activity, nitric oxide, and acetylcholinesterase activity in the brain. Such data were directly associated with a higher concentration of total organic carbon in the brain, which suggests the bioaccumulation of CNFs. Furthermore, exposure to CNFs induced a picture suggestive of genomic instability, inferred by the increased frequency of nuclear abnormalities and DNA damage in circulating erythrocytes. Although the individual analyses of the biomarkers did not point to a concentration-dependent effect, the principal component analysis (PCA) and the Integrated Biomarker Response Index (IBRv2) indicate a more prominent effect induced by the higher CNFs concentration (10 μg/L). Therefore, our study confirms the impact of CNFs in the studied model (D. rerio) and sheds light on the ecotoxicological risks of these nanomaterials to freshwater fish. Based on the ecotoxicological screening provided by our study, new horizons are opened for investigations into the mechanisms of action of CNFs, which will help understand the magnitude of the impact of these materials on aquatic biota.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- State Secretariat of Environmental Development (SEDAM), Sedam's Conservation Units Coordination (CUC), Conservation Unit Management Division, Porto Velho, RO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
5
|
Mouchet F, Rowenczyk L, Minet A, Clergeaud F, Silvestre J, Pinelli E, Ferriol J, Leflaive J, Ten-Hage L, Gigault J, Ter Halle A, Gauthier L. Ecotoxicity of Heteroaggregates of Polystyrene Nanospheres in Chironomidae and Amphibian. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2730. [PMID: 35957161 PMCID: PMC9370236 DOI: 10.3390/nano12152730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Due to their various properties as polymeric materials, plastics have been produced, used and ultimately discharged into the environment. Although some studies have shown their negative impacts on the marine environment, the effects of plastics on freshwater organisms are still poorly studied, while they could be widely in contact with this pollution. The current work aimed to better elucidate the impact and the toxicity mechanisms of two kinds of commercial functionalized nanoplastics, i.e., carboxylated polystyrene microspheres of, respectively, 350 and 50 nm (PS350 and PS50), and heteroaggregated PS50 with humic acid with an apparent size of 350 nm (PSHA), all used at environmental concentrations (0.1 to 100 µg L-1). For this purpose, two relevant biological and aquatic models-amphibian larvae, Xenopus laevis, and dipters, Chironomus riparius-were used under normalized exposure conditions. The acute, chronic, and genetic toxicity parameters were examined and discussed with regard to the fundamental characterization in media exposures and, especially, the aggregation state of the nanoplastics. The size of PS350 and PSHA remained similar in the Xenopus and Chironomus exposure media. Inversely, PS50 aggregated in both exposition media and finally appeared to be micrometric during the exposition tests. Interestingly, this work highlighted that PS350 has no significant effect on the tested species, while PS50 is the most prone to alter the growth of Xenopus but not of Chironomus. Finally, PSHA induced a significant genotoxicity in Xenopus.
Collapse
Affiliation(s)
- Florence Mouchet
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Laura Rowenczyk
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR CNRS 5623, Université Paul Sabatier, Bâtiment 2R1, 3ème étage, 118, Route de Narbonne, 31062 Toulouse, France
| | - Antoine Minet
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Fanny Clergeaud
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Jérôme Silvestre
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Eric Pinelli
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Jessica Ferriol
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Joséphine Leflaive
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Loïc Ten-Hage
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Julien Gigault
- Laboratoire Takuvik, CNRS, Laval University, Avenue de la Médecine, Quebec, QC 1045, Canada
| | - Alexandra Ter Halle
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR CNRS 5623, Université Paul Sabatier, Bâtiment 2R1, 3ème étage, 118, Route de Narbonne, 31062 Toulouse, France
| | - Laury Gauthier
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
6
|
Jovanović Glavaš O, Stjepanović N, Hackenberger BK. Influence of nano and bulk copper on agile frog development. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:357-365. [PMID: 35001260 DOI: 10.1007/s10646-021-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Nanotechnology, as one of the fastest-growing industries, offers many benefits in various fields. However, properties that contribute to its positive effects, in other context, can cause adverse effects to various organisms, such as amphibians. Identifying possible negative effects on its survival is crucial since amphibians are the most threatened group of vertebrates. In that context, we investigated the influence of both nano and bulk copper on embryonic development of agile frog, Rana dalmatina. The embryos were exposed to various concentrations (0.01 mg/L, 0.075 mg/L, 0.15 mg/L or 0.3 mg/L) of either nano (CuO, declared size 40-80 nm) or bulk form (CuSO4·5H2O) for 16 days. Upon the experiment, tadpoles were measured and weighted, then homogenized and their protein, lipid, and carbohydrates content determined, as well as the activity of LDH. Our results suggest stronger negative influence of nano copper to size and weight of tadpoles, and bulk copper on lipid content, while both had strong negative effect on carbohydrates content, and LDH activity. In addition, our results suggest agile frog to be more susceptible to negative influence of both, nano and bulk copper, than commonly used Xenopus laevis.
Collapse
Affiliation(s)
- Olga Jovanović Glavaš
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | | |
Collapse
|
7
|
Guimarães ATB, Malafaia G. Multiple toxicity endpoints induced by carbon nanofibers in Amazon turtle juveniles: Outspreading warns about toxicological risks to reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146514. [PMID: 34030253 DOI: 10.1016/j.scitotenv.2021.146514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of carbon-based nanomaterials (CNs) has been observed in different organisms; however, little is known about the impact of water polluted with carbon nanofibers (CNFs) on reptiles. Thus, the aim of the current study was to assess the chronic effects (7.5 months) of 1 and 10 mg/L of CNF on Podocnemis expansa (Amazon turtle) juveniles (4 months old) based on different biomarkers. Increased total organic carbon (TOC) concentrations observed in the liver and brain (which suggests CNF uptake) were closely correlated to changes in REDOX systems of turtles exposed to CNFs, mainly to higher nitrite, hydrogen peroxide and lipid peroxidation levels. Increased levels of antioxidants such as total glutathione, catalase and superoxide dismutase in the exposed animals were also observed. The uptake of CNFs and the observed biochemical changes were associated with higher frequency of erythrocyte nuclear abnormalities (assessed through micronucleus assays), as well as with both damage in erythrocyte DNA (assessed through comet assays) and higher apoptosis and necrosis rates in erythrocytes of exposed turtles. Cerebral and hepatic acetylcholinesterase (AChE) increased in turtles exposed to CNFs, and this finding suggested the neurotoxic effect of these nanomaterials. Data in the current study reinforced the toxic potential of CNFs and evidenced the biochemical, mutagenic, genotoxic, cytotoxic, and neurotoxic effects of CNFs on P. expansa.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
8
|
Guimarães ATB, Estrela FN, Rodrigues ASDL, Nóbrega RH, Charlie-Silva I, Malafaia G. Can carbon nanofibers affect anurofauna? Study involving neotropical Physalaemus cuvieri (Fitzinger, 1826) tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105795. [PMID: 33677260 DOI: 10.1016/j.aquatox.2021.105795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Although carbon nanotubes' (CNTs) toxicity in different experimental systems (in vivo and in vitro) is known, little is known about the toxic effects of carbon nanofibers (CNFs) on aquatic vertebrates. We herein investigated the potential impact of CNFs (1 and 10 mg/L) by using Physalaemus cuvieri tadpoles as experimental model. CNFs were able to induce nutritional deficit in animals after 48-h exposure to them, and this finding was inferred by reductions observed in body concentrations of total soluble carbohydrates, total proteins, and triglycerides. The increased production of hydrogen peroxide, reactive oxygen species and thiobarbituric acid reactive substances in tadpoles exposed to CNFs has suggested REDOX homeostasis change into oxidative stress. This process was correlated to the largest number of apoptotic and necrotic cells in the blood of these animals. On the other hand, the increased superoxide dismutase and catalase activity has suggested that the antioxidant system of animals exposed to CNFs was not enough to maintain REDOX balance. In addition, CNFs induced increase in acetylcholinesterase and butyrylcholinesterase activity, as well as changes in the number of neuromasts evaluated on body surface (which is indicative of the neurotoxic effect of nanomaterials on the assessed model system). To the best of our knowledge, this is the first report on the impact of CNFs on amphibians; therefore, it broadened our understanding about ecotoxicological risks associated with their dispersion in freshwater ecosystems and possible contribution to the decline in the populations of anurofauna species.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, Brazil; Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, Brazil
| | - Fernanda Neves Estrela
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, Brazil; Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, Brazil
| | | | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Morphology Department, São Paulo State University, Botucatu, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, Brazil; Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, Brazil; Post-Graduation Program in Cerrado Natural Resources Conservation, Goiano Federal University - Urutaí Campus, Urutaí, Brazil; Post-Graduation Program in Ecology and Natural Resources Conservation, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
9
|
Abstract
Applications of nanomaterials cause a general concern on their toxicity when they intentionally (such as in medicine) or unintentionally (environment exposure) enter into the human body. As a special subpopulation, pregnant women are more susceptible to nanoparticle (NP)-induced toxicity. More importantly, prenatal exposures may affect the entire life of the fetus. Through blood circulation, NPs may cross placental barriers and enter into fetus. A cascade of events, such as damage in placental barriers, generation of oxidative stress, inflammation, and altered gene expression, may induce delayed or abnormal fetal development. The physicochemical properties of NPs, exposure time, and other factors directly affect nanotoxicity in pregnant populations. Even though results from animal studies cannot directly extrapolate to humans, compelling evidence has already shown that, for pregnant women, caution must be taken when dealing with nanomedicines or NP pollutants.
Collapse
Affiliation(s)
- Zengjin Wang
- School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhiping Wang
- School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
10
|
Montalvão MF, Guimarães ATB, Rodrigues ASDL, Malafaia G. Carbon nanofibers are bioaccumulated in Aphylla williamsoni (Odonata) larvae and cause REDOX imbalance and changes of acetylcholinesterase activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143991. [PMID: 33302068 DOI: 10.1016/j.scitotenv.2020.143991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Carbon-based materials have been considered very promising for the technological industry due to their unique physical and chemical properties, namely: ability to reduce production costs and to improve the efficiency of several products. However, there is little information on what is the level of exposure that leads to adverse effects and what kind of effects is expected in aquatic biota. Thus, the aim of the present study was to evaluate the toxicity of carbon nanofibers (CNFs) in dragonfly larvae (Aphylla williamsoni) based on predictive oxidative-stress biomarkers, antioxidant activity reduction and neurotoxicity. After ephemeral models' exposure to CNFs (48 h; at 500 μg/L), data have shown that these pollutants did not change larvae's nutritional status given the concentration of total soluble carbohydrates, total proteins and triglycerides in them. However, the levels of both nitric oxide and substances reactive to thiobarbituric acid (lipid peroxidation indicators) have increased and the antioxidant activity based on total thiol levels and on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (%) has reduced, and it suggests REDOX imbalance induction by CNFs. In addition, larvae exposed to these pollutants showed significant acetylcholinesterase activity reduction in comparison to the control group. Thus, the present study has brought further knowledge about how carbon-based materials can affect benthic macroinvertebrates and emphasized their ecotoxicological potential in freshwater environments.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
11
|
Gomes AR, Chagas TQ, Silva AM, Sueli de Lima Rodrigues A, Marinho da Luz T, Emmanuela de Andrade Vieira J, Malafaia G. Trophic transfer of carbon nanofibers among eisenia fetida, danio rerio and oreochromis niloticus and their toxicity at upper trophic level. CHEMOSPHERE 2021; 263:127657. [PMID: 32814134 DOI: 10.1016/j.chemosphere.2020.127657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity of carbon-based nanomaterials has already been demonstrated in several studies, their transfer in the food chain and impact on the upper trophic level remain unexplored. Thus, based on the experimental food chain "Eisenia fetida → Danio rerio → Oreochromis niloticus", the current study tested the hypothesis that carbon nanofibers (CNFs) accumulated in animals are transferred to the upper trophic level and cause mutagenic and cytotoxic changes. E. fetida individuals were exposed to CNFs and offered to D. rerio, which were later used to feed O. niloticus. The quantification of total organic carbon provided evidence of CNFs accumulation at all evaluated trophic levels. Such accumulation was associated with higher frequency of erythrocyte nuclear abnormalities such as constricted erythrocyte nuclei, vacuole, blebbed, kidney-shaped and micronucleated erythrocytes in Nile tilapia exposed to CNFs via food chain. The cytotoxic effect was inferred based on the smaller size of the erythrocyte nuclei and on the lower "nuclear/cytoplasmic" area ratio in tilapia exposed to CNFs via food chain. Our study provided pioneering evidence about CNFs accumulation at trophic levels of the experimental chain, as well as about the mutagenic and cytotoxic effect of these materials on O. niloticus.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil.
| |
Collapse
|
12
|
Evariste L, Flahaut E, Baratange C, Barret M, Mouchet F, Pinelli E, Galibert AM, Soula B, Gauthier L. Ecotoxicological assessment of commercial boron nitride nanotubes toward Xenopus laevis tadpoles and host-associated gut microbiota. Nanotoxicology 2020; 15:35-51. [PMID: 33171057 DOI: 10.1080/17435390.2020.1839137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the growing interest for boron nitride nanotubes (BNNT) due to their unique properties, data on the evaluation of the environmental risk potential of this emerging engineered nanomaterial are currently lacking. Therefore, the ecotoxicity of a commercial form of BNNT (containing tubes, hexagonal-boron nitride, and boron) was assessed in vivo toward larvae of the amphibian Xenopus laevis. Following the exposure, multiple endpoints were measured in the tadpoles as well as in bacterial communities associated to the host gut. Exposure to BNNT led to boron accumulation in host tissues and was not associated to genotoxic effects. However, the growth of the tadpoles increased due to BNNT exposure. This parameter was associated to remodeling of gut microbiome, benefiting to taxa from the phylum Bacteroidetes. Changes in relative abundance of this phylum were positively correlated to larval growth. The obtained results support the finding that BNNT are biocompatible as indicated by the absence of toxic effect from the tested nanomaterials. In addition, byproducts, especially free boron present in the tested product, were overall beneficial for the metabolism of the tadpoles.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Clément Baratange
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Anne Marie Galibert
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Brigitte Soula
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Laury Gauthier
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
13
|
Pikula K, Chaika V, Zakharenko A, Savelyeva A, Kirsanova I, Anisimova A, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves. Animals (Basel) 2020; 10:ani10050827. [PMID: 32397595 PMCID: PMC7278372 DOI: 10.3390/ani10050827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The growing nanotechnology industry disposes of a variety of nanoparticles with different physiochemical properties in everyday life. However, the dependence of the safety and toxicity of nanoparticles on their physicochemical properties remains unclear. Bivalve molluscs represent an efficient model for the investigation of nanoparticle toxicity owing to their filtrating ability and feeding on particles suspended in the water. Moreover, the blood cells of bivalve molluscs, the hemocytes, have been suggested as a good analog test-object to mammalian immune cells, phagocytes. In this study, we used hemocytes of three marine bivalve species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate and compare the toxic effects of 10 different types of nanoparticles. We gave short-term exposure of the nanoparticles to the hemocytes and registered viability and changes in their cell membrane polarization by employing flow cytometry. Metal-based nanoparticles were the most toxic to the cells of all three tested bivalve mollusc species. However, the sensitivity to different nanoparticle types varied between species. Moreover, the registered cell membrane depolarization indicated an early toxic response and raised concern that chronic long-term exposure of nanoparticles (even if they were previously declared as safe) is a serious threat for aquatic organisms. Abstract Nanoparticles (NPs) have broad applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With increasing annual production of NPs, the risks of their harmful influence on the environment and human health are also increasing. Currently, our knowledge about the mechanisms of the interaction between NPs and living organisms is limited. The marine species and their habitat environment are under continuous stress owing to the anthropogenic activities, which result in the release of NPs in the aquatic environment. We used a bioassay model with hemocytes of three bivalve mollusc species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate the toxicity of 10 different types of NPs. Specifically, we compared the cytotoxic effects and cell-membrane polarization changes in the hemocytes exposed to carbon nanotubes, carbon nanofibers, silicon nanotubes, cadmium and zinc sulfides, Au-NPs, and TiO2 NPs. Viability and the changes in hemocyte membrane polarization were measured by the flow cytometry method. The highest aquatic toxicity was registered for metal-based NPs, which caused cytotoxicity to the hemocytes of all the studied bivalve species. Our results also highlighted different sensitivities of the used tested mollusc species to specific NPs.
Collapse
Affiliation(s)
- Konstantin Pikula
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Vladimir Chaika
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
| | - Alexander Zakharenko
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Anastasia Savelyeva
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Irina Kirsanova
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Anna Anisimova
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
14
|
Li M, Zhu J, Wang M, Fang H, Zhu G, Wang Q. Exposure to graphene oxide at environmental concentrations induces thyroid endocrine disruption and lipid metabolic disturbance in Xenopus laevis. CHEMOSPHERE 2019; 236:124834. [PMID: 31549672 DOI: 10.1016/j.chemosphere.2019.124834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) has become a topic of increasing concern for its environmental and health risks. However, the potential toxic effects of GO on wildlife remain limited. The present study chose the Xenopus laevis tadpole as a model to assess the thyroid endocrine disruption as well as the lipid metabolic disturbance of GO. Tadpoles at the 51 stage were exposed to GO (0, 0.01, 0.1, and 1 mg/L) for 21 days, when tadpoles were undergoing an extremely complicated phase of morphological changes and growth. GO treatment showed obvious developmental toxicity, such as shortened snout-to-vent length (SVL) and hind limb length (HLL), decreased body weight, and delayed developmental stage. Exposure to GO also induced obvious decreases in whole-body triiodothyronine (T3) and thyroxin (T4) concentrations. The mRNA expression of genes related to the hypothalamic-pituitary-thyroid (HPT) axis also changed significantly. Furthermore, we observed significant decline in the fatty acids and triglycerides (TGs) concomitantly with changes in the expression of genes involved in the synthesis and metabolism of lipids in GO exposure groups. In contrast, high-density lipoprotein (HDL) and total bile acid levels increased remarkably, but cholesterol and low-density lipoprotein (LDH) levels showed no obvious changes. Taken together, the results revealed for the first time that GO could induce thyroid endocrine disruption and produce obvious disturbance effect on lipid synthesis and metabolism.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
do Amaral DF, Guerra V, Motta AGC, de Melo E Silva D, Rocha TL. Ecotoxicity of nanomaterials in amphibians: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:332-344. [PMID: 31181520 DOI: 10.1016/j.scitotenv.2019.05.487] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Nanomaterials (NMs) have been used in a growing number of commercial products, and their rapid expansion could lead to their release into the aquatic environments. However, there is limited knowledge about the impact of NMs in the biota, especially the amphibians. The present study revised the historical use of amphibian species as a model system for nanoecotoxicological studies and summarized the data available in the scientific literature about the genotoxic, mutagenic, histopathological, embryotoxic and reproductive effects of NMs in different groups of amphibians. The interaction, bioaccumulation, mode of action (MoA) and ecotoxicity of NMs on amphibians were also revised. The nanoecotoxicological studies were conducted with 11 amphibian species, being eight species of the order Anura and three species of the order Caudata. Xenopus laevis was the most studied species. The studies were conducted mainly with inorganic NMs (72%) compared to organic ones. The nanoecotoxicity depends on NM behavior and transformation in the environment, as well as the developmental stages of amphibians. The known effects of NMs in amphibians were mainly reported with reactive oxygen species (ROS) production, oxidative stress, and genotoxic effects. Results emphasize the need for further studies testing the ecotoxicity of different NMs, concentrations and exposure periods at environmentally relevant approaches. Furthermore, standard protocols for nanoecotoxicological tests using amphibians are required. Revised data showed that amphibians are suitable organisms to assess the environmental impact of NMs and indicated significant research gaps concerning the ecotoxicity of NMs on freshwater ecosystems and recommendations for future researches.
Collapse
Affiliation(s)
- Diogo Ferreira do Amaral
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Vinicius Guerra
- Laboratory of Herpetology and Animal Behavior, Department of Ecology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Andreya Gonçalves Costa Motta
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
16
|
Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles. NANOMATERIALS 2019; 9:nano9040584. [PMID: 30970633 PMCID: PMC6523888 DOI: 10.3390/nano9040584] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
The worldwide increase of graphene family materials raises the question of the potential consequences resulting from their release in the environment and future consequences on ecosystem health, especially in the aquatic environment in which they are likely to accumulate. Thus, there is a need to evaluate the biological and ecological risk but also to find innovative solutions leading to the production of safer materials. This work focuses on the evaluation of functional group-safety relationships regarding to graphene oxide (GO) in vivo genotoxic potential toward X. laevis tadpoles. For this purpose, thermal treatments in H2 atmosphere were applied to produce reduced graphene oxide (rGOs) with different surface group compositions. Analysis performed indicated that GO induced disturbances in erythrocyte cell cycle leading to accumulation of cells in G0/G1 phase. Significant genotoxicity due to oxidative stress was observed in larvae exposed to low GO concentration (0.1 mg·L−1). Reduction of GO at 200 °C and 1000 °C produced a material that was no longer genotoxic at low concentrations. X-ray photoelectron spectroscopy (XPS) analysis indicated that epoxide groups may constitute a good candidate to explain the genotoxic potential of the most oxidized form of the material. Thermal reduction of GO may constitute an appropriate “safer-by-design” strategy for the development of a safer material for environment.
Collapse
|
17
|
da Rocha AM, Kist LW, Almeida EA, Silva DGH, Bonan CD, Altenhofen S, Kaufmann CG, Bogo MR, Barros DM, Oliveira S, Geraldo V, Lacerda RG, Ferlauto AS, Ladeira LO, Monserrat JM. Neurotoxicity in zebrafish exposed to carbon nanotubes: Effects on neurotransmitters levels and antioxidant system. Comp Biochem Physiol C Toxicol Pharmacol 2019; 218:30-35. [PMID: 30543862 DOI: 10.1016/j.cbpc.2018.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022]
Abstract
Given the increasing use of carbon nanotubes (CNT) in several industries and technological applications, it is essential to perform in vivo toxicological studies with these nanomaterials to evaluate their potential ecotoxicity. Dopamine (DA) and serotonin (5HT) are key neurotransmitters for brain functions and behavioral responses. Determination of DA and 5HT were performed in brain samples from zebrafish Danio rerio exposed i.p. to single-walled CNT (SWCNT), besides analyzing acetylcholinesterase (AChE) and ectonucleotidases activity, lipid peroxidation and total antioxidant capacity. Results showed that treatment with SWCNT increased between 3 and 6-fold the concentration of DA and 5HT (p < 0.05). Similarly, a significant reduction (p < 0.05) in AChE activity was observed in the brains of SWCNT exposed zebrafish when compared to the control groups. Cholinergic, serotonergic, and dopaminergic systems, through AChE activity and serotonin and dopamine levels, respectively were affected by SWCNT in the zebrafish brain. Alterations in these neurotransmitters can potentially affect several physiological and behavioral that they control.
Collapse
Affiliation(s)
- A M da Rocha
- Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande-FURG, Rio Grande, Rio Grande do Sul-FURG, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas -FAC, ICB, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil; Rede de Nanotoxicologia (MCTI/CNPq), Brazil; Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq), Belo Horizonte, MG, Brazil
| | - L W Kist
- Faculdade de Biociências - PUCRS/INCT-TM (CNPq), Porto Alegre, RS, Brazil
| | - E A Almeida
- Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil
| | - D G H Silva
- Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil
| | - C D Bonan
- Faculdade de Biociências - PUCRS/INCT-TM (CNPq), Porto Alegre, RS, Brazil
| | - S Altenhofen
- Faculdade de Biociências - PUCRS/INCT-TM (CNPq), Porto Alegre, RS, Brazil
| | - C G Kaufmann
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - M R Bogo
- Faculdade de Biociências - PUCRS/INCT-TM (CNPq), Porto Alegre, RS, Brazil
| | - D M Barros
- Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande-FURG, Rio Grande, Rio Grande do Sul-FURG, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas -FAC, ICB, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil; Rede de Nanotoxicologia (MCTI/CNPq), Brazil; Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq), Belo Horizonte, MG, Brazil
| | - S Oliveira
- Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq), Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - V Geraldo
- Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq), Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - R G Lacerda
- Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq), Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - A S Ferlauto
- Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq), Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Orlando Ladeira
- Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq), Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - J M Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande-FURG, Rio Grande, Rio Grande do Sul-FURG, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas -FAC, ICB, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil; Rede de Nanotoxicologia (MCTI/CNPq), Brazil; Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono (CNPq), Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
20
|
Vijayaraj V, Liné C, Cadarsi S, Salvagnac C, Baqué D, Elger A, Barret M, Mouchet F, Larue C. Transfer and Ecotoxicity of Titanium Dioxide Nanoparticles in Terrestrial and Aquatic Ecosystems: A Microcosm Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12757-12764. [PMID: 30335981 DOI: 10.1021/acs.est.8b02970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With the advancement in nanotechnology, particularly the use of TiO2 nanoparticles (NPs), there is a need to study their release into the environment and assess the related risk in an environmentally relevant contamination scenario. In the present study, the transfer and toxicity of TiO2 NPs in microcosms mimicking terrestrial and aquatic ecosystems were evaluated. The contaminated soil was prepared by spiking natural soils, with these then used as the basis for all exposure systems including preparation of soil leachates for amphibian exposure. Results demonstrated significant reductions in bacterial (-45%) and archaeal (-36%) nitrifier abundance; significant translocation of Ti to M. truncatula leaves (+422%); significant reductions in plant height (-17%), number of leaves (-29%), and aboveground biomass (-53%); nonsignificant Ti uptake in snail foot and viscera, and excretion in feces; and genotoxicity to X. laevis larvae (+119% micronuclei). Our study highlights a possible risk of engineered TiO2 NPs in the environment in terms of trophic transfer and toxicity in both terrestrial and aquatic environments.
Collapse
Affiliation(s)
| | - Clarisse Liné
- EcoLab , Université de Toulouse , CNRS, Toulouse , France
| | | | | | - David Baqué
- EcoLab , Université de Toulouse , CNRS, Toulouse , France
| | - Arnaud Elger
- EcoLab , Université de Toulouse , CNRS, Toulouse , France
| | - Maialen Barret
- EcoLab , Université de Toulouse , CNRS, Toulouse , France
| | | | - Camille Larue
- EcoLab , Université de Toulouse , CNRS, Toulouse , France
| |
Collapse
|
21
|
Cimbaluk GV, Ramsdorf WA, Perussolo MC, Santos HKF, Da Silva De Assis HC, Schnitzler MC, Schnitzler DC, Carneiro PG, Cestari MM. Evaluation of multiwalled carbon nanotubes toxicity in two fish species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:215-223. [PMID: 29287268 DOI: 10.1016/j.ecoenv.2017.12.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Carbon Nanotubes are among the most promising materials for the technology industry. Their unique physical and chemical proprieties may reduce the production costs and improve the efficiency of a large range of products. However, the same characteristics that have made nanomaterials interesting for industry may be responsible for inducing toxic effects on the aquatic organisms. Since the carbon nanotubes toxicity is still a controversial issue, we performed tests of acute and subchronic exposure to a commercial sample of multiwalled carbon nanotubes in two fish species, an exotic model (Danio rerio) and a native one (Astyanax altiparanae). Using the alkaline version of the comet assay on erythrocytes and the piscine micronucleous, also performed on erythrocytes, it was verified that the tested carbon nanotubes sample did not generate apparent genotoxicity by means of single/double DNA strand break or clastogenic/aneugenic effects over any of the species, independently of the exposure period. Although, our findings indicate the possibility of the occurrence of CNTs-DNA crosslinks. Apparently, the sample tested induces oxidative stress after subchronic exposure as shown by activity of superoxide dismutase and catalase. The data obtained by the activity levels of acetylcholinesterase suggests acute neurotoxicity in Astyanax altiparanae and subchronic neurotoxicity in Danio rerio.
Collapse
Affiliation(s)
- Giovani Valentin Cimbaluk
- Laboratório de citogenética animal e mutagênese ambiental da Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Wanessa Algarte Ramsdorf
- Laboratório de ecotoxicologia da Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | - Mariane Cristina Schnitzler
- Laboratório de química orgânica e nanoestruturas da Universidade Federal de São João Del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | - Danielle Caroline Schnitzler
- Laboratório de Estudos em Matrizes Ambientais: Sedimento, Solo e Água Universidade - Tecnológica Federal do Paraná, Curitiba, PR, Brazil
| | - Pedro Gontijo Carneiro
- Laboratório de química orgânica e nanoestruturas da Universidade Federal de São João Del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | - Marta Margarete Cestari
- Laboratório de citogenética animal e mutagênese ambiental da Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
22
|
Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:328-337. [PMID: 29154051 DOI: 10.1016/j.scitotenv.2017.11.095] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 05/20/2023]
Abstract
An increasing amount of carbon-based nanomaterials (CNM) (mostly fullerenes, carbon nanotubes and graphene) has been observed in aquatic systems over the last years. However, the potential toxicity of these CNM on aquatic ecosystems remains unclear. This paper reviews the existing literature on the toxic effects of CNM in aquatic organisms as well as the toxic effects of CNM through influencing the toxicity of other micro-pollutants, and outlines a series of research needs to reduce the uncertainty associated with CNMs toxic effects. The results show that environmental concentrations of CNM do not pose a threat on aquatic organisms on their own. The observed concentrations of CNM in aquatic environments are in the order of ngL-1 or even lower, much below than the lowest observed effect concentrations (LOEC) on different aquatic organisms (in the order of mgL-1). Toxic effects have been mainly observed in short-term experiments at high concentrations, and toxicity principally depends on the type of organisms, exposition time and CNM preparation methods. Moreover, we observed that CNM interact (establishing synergistic and/or antagonistic effects) with other micro-pollutants. Apparently, the resulting interaction is highly dependent on the chemical properties of each micro-pollutant, CNM acting either as carriers or as sorbents, thereby modifying the original toxicity of the contaminants. Results stress the need of studying the interactive effects of CNM with other micro-pollutants at environmental relevant concentrations, as well as their effects on biological communities in the long-term.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain.
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain
| | - Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain; GRECO, Institute of Aquatic Ecology, Campus Montilivi, 17130. University of Girona, Spain
| |
Collapse
|
23
|
Bacchetta R, Santo N, Valenti I, Maggioni D, Longhi M, Tremolada P. Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist? Nanotoxicology 2018; 12:201-223. [DOI: 10.1080/17435390.2018.1430258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Renato Bacchetta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Nadia Santo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Irene Valenti
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Mariangela Longhi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Paolo Tremolada
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Bjorkland R, Tobias D, Petersen EJ. Increasing evidence indicates low bioaccumulation of carbon nanotubes. ENVIRONMENTAL SCIENCE. NANO 2017; 4:747-766. [PMID: 28694970 PMCID: PMC5500871 DOI: 10.1039/c6en00389c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
As the production of carbon nanotubes (CNTs) expands, so might the potential for release into the environment. The possibility of bioaccumulation and toxicological effects has prompted research on their fate and potential ecological effects. For many organic chemicals, bioaccumulation properties are associated with lipid-water partitioning properties. However, predictions based on phase partitioning provide a poor fit for nanomaterials. In the absence of data on the bioaccumulation and other properties of CNTs, the Office of Pollution Prevention and Toxics (OPPT) within the US Environmental Protection Agency (EPA) subjects new pre-manufacture submissions for all nanomaterials to a higher-level review. We review the literature on CNT bioaccumulation by plants, invertebrates and non-mammalian vertebrates, summarizing 40 studies to improve the assessment of the potential for bioaccumulation. Because the properties and environmental fate of CNTs may be affected by type (single versus multiwall), functionalization, and dosing technique, the bioaccumulation studies were reviewed with respect to these factors. Absorption into tissues and elimination behaviors across species were also investigated. All of the invertebrate and non-mammalian vertebrate studies showed little to no absorption of the material from the gut tract to other tissues. These findings combined with the lack of biomagnification in the CNT trophic transfer studies conducted to date suggest that the overall risk of trophic transfer is low. Based on the available data, in particular the low levels of absorption of CNTs across epithelial surfaces, CNTs generally appear to form a class that should be designated as a low concern for bioaccumulation.
Collapse
Affiliation(s)
- Rhema Bjorkland
- AAAS Science & Technology Policy Fellow, Risk Assessment
Division, US EPA Office of Pollution Prevention and Toxics
| | - David Tobias
- Risk Assessment Division, US EPA Office of Pollution Prevention and
Toxics
| | - Elijah J. Petersen
- National Institute of Standards and Technology, Biosystems and
Biomaterials Division, Material Measurement Laboratory, Gaithersburg, MD, United
States
| |
Collapse
|
25
|
Mottier A, Mouchet F, Pinelli É, Gauthier L, Flahaut E. Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota. Curr Opin Biotechnol 2017; 46:1-6. [PMID: 28088098 DOI: 10.1016/j.copbio.2016.11.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022]
Abstract
Nano-ecotoxicology is an emerging science which aims to assess the environmental effect of nanotechnologies. The development of this particular aspect of ecotoxicology was made necessary in order to evaluate the potential impact of recently produced and used materials: nanoparticles (NPs). Among all the types of NPs, carbon nanoparticles (CNPs) especially draw attention giving the increasing number of applications and integration into consumer products. However the potential impacts of CNPs in the environment remain poorly known. This review aims to point out the critical issues and aspects that will govern the toxicity of CNPs in the environment.
Collapse
Affiliation(s)
- Antoine Mottier
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Florence Mouchet
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Éric Pinelli
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Laury Gauthier
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse cedex 9, France; CNRS, Institut Carnot Chimie Balard CIRIMAT, F-31062 Toulouse, France.
| |
Collapse
|
26
|
Kim DH, Puthumana J, Kang HM, Lee MC, Jeong CB, Han J, Hwang DS, Kim IC, Lee JW, Lee JS. Adverse effects of MWCNTs on life parameters, antioxidant systems, and activation of MAPK signaling pathways in the copepod Paracyclopina nana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:115-124. [PMID: 27595654 DOI: 10.1016/j.aquatox.2016.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Engineered multi-walled carbon nanotubes (MWCNTs) have received widespread applications in a broad variety of commercial products due to low production cost. Despite their significant commercial applications, CNTs are being discharged to aquatic ecosystem, leading a threat to aquatic life. Thus, we investigated the adverse effect of CNTs on the marine copepod Paracyclopina nana. Additional to the study on the uptake of CNTs and acute toxicity, adverse effects on life parameters (e.g. growth, fecundity, and size) were analyzed in response to various concentrations of CNTs. Also, as a measurement of cellular damage, oxidative stress-related markers were examined in a time-dependent manner. Moreover, activation of redox-sensitive mitogen-activated protein kinase (MAPK) signaling pathways along with the phosphorylation pattern of extracellular signal-regulated kinase (ERK), p38, and c-Jun-N-terminal kinases (JNK) were analyzed to obtain a better understanding of molecular mechanism of oxidative stress-induced toxicity in the copepod P. nana. As a result, significant inhibition on life parameters and evoked antioxidant systems were observed without ROS induction. In addition, CNTs activated MAPK signaling pathway via ERK, suggesting that phosphorylated ERK (p-ERK)-mediated adverse effects are the primary cause of in vitro and in vivo endpoints in response to CNTs exposure. Moreover, ROS-independent activation of MAPK signaling pathway was observed. These findings will provide a better understanding of the mode of action of CNTs on the copepod P. nana at cellular and molecular level and insight on possible ecotoxicological implications in the marine environment.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
27
|
Mottier A, Mouchet F, Laplanche C, Cadarsi S, Lagier L, Arnault JC, Girard HA, León V, Vázquez E, Sarrieu C, Pinelli É, Gauthier L, Flahaut E. Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment. NANO LETTERS 2016; 16:3514-3518. [PMID: 27124492 DOI: 10.1021/acs.nanolett.6b00348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Engineered nanoparticles such as graphenes, nanodiamonds, and carbon nanotubes correspond to different allotropes of carbon and are among the best candidates for applications in fast-growing nanotechnology. It is thus likely that they may get into the environment at each step of their life cycle: production, use, and disposal. The aquatic compartment concentrates pollutants and is expected to be especially impacted. The toxicity of a compound is conventionally evaluated using mass concentration as a quantitative measure of exposure. However, several studies have highlighted that such a metric is not the best descriptor at the nanoscale. Here we compare the inhibition of Xenopus laevis larvae growth after in vivo exposure to different carbon nanoparticles for 12 days using different dose metrics and clearly show that surface area is the most relevant descriptor of toxicity for different types of carbon allotropes.
Collapse
Affiliation(s)
- Antoine Mottier
- ECOLAB, Université de Toulouse , CNRS, INPT, UPS, F-31326 Castanet-Tolosan, France
- ENSAT , Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Florence Mouchet
- ECOLAB, Université de Toulouse , CNRS, INPT, UPS, F-31326 Castanet-Tolosan, France
- ENSAT , Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Christophe Laplanche
- ECOLAB, Université de Toulouse , CNRS, INPT, UPS, F-31326 Castanet-Tolosan, France
- ENSAT , Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Stéphanie Cadarsi
- ECOLAB, Université de Toulouse , CNRS, INPT, UPS, F-31326 Castanet-Tolosan, France
- ENSAT , Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Laura Lagier
- ECOLAB, Université de Toulouse , CNRS, INPT, UPS, F-31326 Castanet-Tolosan, France
- ENSAT , Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | | | - Hugues A Girard
- CEA LIST , Diamond Sensors Laboratory, F-91191 Gif sur Yvette, France
| | - Verónica León
- Departamento da Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha , Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Departamento da Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha , Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cyril Sarrieu
- Institut Carnot CIRIMAT (Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux), Université de Toulouse , INP, UPS, UMR CNRS 5085, F-31062 Toulouse cedex 9, France
- CNRS , Institut Carnot CIRIMAT, F-31062 Toulouse, France
| | - Éric Pinelli
- ECOLAB, Université de Toulouse , CNRS, INPT, UPS, F-31326 Castanet-Tolosan, France
- ENSAT , Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Laury Gauthier
- ECOLAB, Université de Toulouse , CNRS, INPT, UPS, F-31326 Castanet-Tolosan, France
- ENSAT , Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Emmanuel Flahaut
- Institut Carnot CIRIMAT (Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux), Université de Toulouse , INP, UPS, UMR CNRS 5085, F-31062 Toulouse cedex 9, France
- CNRS , Institut Carnot CIRIMAT, F-31062 Toulouse, France
| |
Collapse
|
28
|
Petersen EJ, Flores-Cervantes DX, Bucheli TD, Elliott LCC, Fagan JA, Gogos A, Hanna S, Kägi R, Mansfield E, Montoro Bustos AR, Plata DL, Reipa V, Westerhoff P, Winchester MR. Quantification of Carbon Nanotubes in Environmental Matrices: Current Capabilities, Case Studies, and Future Prospects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4587-605. [PMID: 27050152 PMCID: PMC4943226 DOI: 10.1021/acs.est.5b05647] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carbon nanotubes (CNTs) have numerous exciting potential applications and some that have reached commercialization. As such, quantitative measurements of CNTs in key environmental matrices (water, soil, sediment, and biological tissues) are needed to address concerns about their potential environmental and human health risks and to inform application development. However, standard methods for CNT quantification are not yet available. We systematically and critically review each component of the current methods for CNT quantification including CNT extraction approaches, potential biases, limits of detection, and potential for standardization. This review reveals that many of the techniques with the lowest detection limits require uncommon equipment or expertise, and thus, they are not frequently accessible. Additionally, changes to the CNTs (e.g., agglomeration) after environmental release and matrix effects can cause biases for many of the techniques, and biasing factors vary among the techniques. Five case studies are provided to illustrate how to use this information to inform responses to real-world scenarios such as monitoring potential CNT discharge into a river or ecotoxicity testing by a testing laboratory. Overall, substantial progress has been made in improving CNT quantification during the past ten years, but additional work is needed for standardization, development of extraction techniques from complex matrices, and multimethod comparisons of standard samples to reveal the comparability of techniques.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - D. Xanat Flores-Cervantes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Thomas D. Bucheli
- Agroscope, Institute of Sustainability Sciences ISS, 8046 Zurich, Switzerland
| | - Lindsay C. C. Elliott
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alexander Gogos
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- Agroscope, Institute of Sustainability Sciences ISS, 8046 Zurich, Switzerland
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ralf Kägi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Elisabeth Mansfield
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Antonio R. Montoro Bustos
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Desiree L. Plata
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and The Built Environment, Arizona State University, Box 3005, Tempe, Arizona 85278-3005, United States
| | - Michael R. Winchester
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
29
|
Holt BD, Shawky JH, Dahl KN, Davidson LA, Islam MF. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes. J Appl Toxicol 2016; 36:579-85. [PMID: 26153061 PMCID: PMC4704994 DOI: 10.1002/jat.3203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes.
Collapse
Affiliation(s)
- Brian D. Holt
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Joseph H. Shawky
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mohammad F. Islam
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Holt BD, Shawky JH, Dahl KN, Davidson LA, Islam MF. Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection. J Appl Toxicol 2016; 36:568-78. [PMID: 26510384 PMCID: PMC4943752 DOI: 10.1002/jat.3255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 01/16/2023]
Abstract
Single wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and large-scale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 µg ml(-1) SWCNT concentrations into the well-established embryogenesis model, Xenopus laevis, and determined embryo compatibility and subcellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but were heterogeneously distributed throughout the target-injected tissue. Co-registering unique Raman spectral intensity of SWCNTs with images of fluorescently labeled subcellular compartments demonstrated that even at regions of highest SWCNT concentration, there were no gross alterations to subcellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate and localized to the perinuclear subcellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications.
Collapse
Affiliation(s)
- Brian D. Holt
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Joseph H. Shawky
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mohammad F. Islam
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Nugue G, Dekali S, Bourbon F, Selek L, Laisné A, Debouzy JC, Crouzier D. HF radiofrequency exposure partially restores the dynamics of model membranes containing carbon nanotubes. RSC Adv 2016. [DOI: 10.1039/c6ra10783d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied the changes in the structure and dynamics of model membranes induced by HF radio frequency exposure and/or the presence of carbon nanotubes.
Collapse
Affiliation(s)
- G. Nugue
- Institut de Recherches Biomédicales du Service de Santé des Armées
- IRBA
- 91223 Bretigny-sur-Orge
- France
| | - S. Dekali
- Institut de Recherches Biomédicales du Service de Santé des Armées
- IRBA
- 91223 Bretigny-sur-Orge
- France
| | - F. Bourbon
- Institut de Recherches Biomédicales du Service de Santé des Armées
- IRBA
- 91223 Bretigny-sur-Orge
- France
| | - L. Selek
- CLINATEC
- Centre de recherche biomédicale Edmond J. Safra
- Commissariat à l’énergie atomique et aux énergies alternatives
- CEA
- 38100 Grenoble
| | - A. Laisné
- DGA Techniques aéronautiques
- 31131 Balma Cedex
- France
| | - J. C. Debouzy
- Institut de Recherches Biomédicales du Service de Santé des Armées
- IRBA
- 91223 Bretigny-sur-Orge
- France
- CLINATEC
| | - D. Crouzier
- Institut de Recherches Biomédicales du Service de Santé des Armées
- IRBA
- 91223 Bretigny-sur-Orge
- France
- CLINATEC
| |
Collapse
|
32
|
Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A. NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1788-804. [PMID: 26425431 PMCID: PMC4578397 DOI: 10.3762/bjnano.6.183] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/30/2015] [Indexed: 05/18/2023]
Abstract
The increasing production and use of engineered nanomaterials (ENMs) inevitably results in their higher concentrations in the environment. This may lead to undesirable environmental effects and thus warrants risk assessment. The ecotoxicity testing of a wide variety of ENMs rapidly evolving in the market is costly but also ethically questionable when bioassays with vertebrates are conducted. Therefore, alternative methods, e.g., models for predicting toxicity mechanisms of ENMs based on their physico-chemical properties (e.g., quantitative (nano)structure-activity relationships, QSARs/QNARs), should be developed. While the development of such models relies on good-quality experimental toxicity data, most of the available data in the literature even for the same test species are highly variable. In order to map and analyse the state of the art of the existing nanoecotoxicological information suitable for QNARs, we created a database NanoE-Tox that is available as Supporting Information File 1. The database is based on existing literature on ecotoxicology of eight ENMs with different chemical composition: carbon nanotubes (CNTs), fullerenes, silver (Ag), titanium dioxide (TiO2), zinc oxide (ZnO), cerium dioxide (CeO2), copper oxide (CuO), and iron oxide (FeO x ; Fe2O3, Fe3O4). Altogether, NanoE-Tox database consolidates data from 224 articles and lists altogether 1,518 toxicity values (EC50/LC50/NOEC) with corresponding test conditions and physico-chemical parameters of the ENMs as well as reported toxicity mechanisms and uptake of ENMs in the organisms. 35% of the data in NanoE-Tox concerns ecotoxicity of Ag NPs, followed by TiO2 (22%), CeO2 (13%), and ZnO (10%). Most of the data originates from studies with crustaceans (26%), bacteria (17%), fish (13%), and algae (11%). Based on the median toxicity values of the most sensitive organism (data derived from three or more articles) the toxicity order was as follows: Ag > ZnO > CuO > CeO2 > CNTs > TiO2 > FeO x . We believe NanoE-Tox database contains valuable information for ENM environmental hazard estimation and development of models for predicting toxic potential of ENMs.
Collapse
Affiliation(s)
- Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Mawson Institute, University of South Australia, Mawson Lakes, 5095 South Australia, Australia
| | - Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Monika Mortimer
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, California 93106-5131, United States
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
33
|
Eom HJ, Roca CP, Roh JY, Chatterjee N, Jeong JS, Shim I, Kim HM, Kim PJ, Choi K, Giralt F, Choi J. A systems toxicology approach on the mechanism of uptake and toxicity of MWCNT in Caenorhabditis elegans. Chem Biol Interact 2015; 239:153-63. [PMID: 26111764 DOI: 10.1016/j.cbi.2015.06.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/05/2015] [Accepted: 06/21/2015] [Indexed: 01/08/2023]
Abstract
The increased volumes of carbon nanotubes (CNTs) being utilized in industrial and biomedical processes carries with it an increased risk of unintentional release into the environment, requiring a thorough hazard and risk assessment. In this study, the toxicity of pristine and hydroxylated (OH-) multiwall CNTs (MWCNTs) was investigated in the nematode Caenorhabditis elegans using an integrated systems toxicology approach. To gain an insight into the toxic mechanism of MWCNTs, microarray and proteomics were conducted for C. elegans followed by pathway analyses. The results of pathway analyses suggested endocytosis, phagocytosis, oxidative stress and endoplasmic reticulum (ER) stress, as potential mechanisms of uptake and toxicity, which were subsequently investigated using loss-of-function mutants of genes of those pathways. The expression of phagocytosis related genes (i.e. ced-10 and rab-7) were significantly increased upon exposure to OH-MWCNT, concomitantly with the rescued toxicity by loss-of-function mutants of those genes, such as ced-10(n3246) and rab-7(ok511). An increased sensitivity of the hsp-4(gk514) mutant by OH-MWCNT, along with a decreased expression of hsp-4 at both gene and protein level suggests that MWCNTs may affect ER stress response in C. elegans. Collectively, the results implied phagocytosis to be a potential mechanism of uptake of MWCNTs, and ER and oxidative stress as potential mechanisms of toxicity. The integrated systems toxicology approach applied in this study provided a comprehensive insight into the toxic mechanism of MWCNTs in C. elegans, which may eventually be used to develop an "Adverse Outcome Pathway (AOP)", a recently introduced concept as a conceptual framework to link molecular level responses to higher level effects.
Collapse
Affiliation(s)
- Hyun-Jeong Eom
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Carlos P Roca
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Ji-Yeon Roh
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Jae-Seong Jeong
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Ilseob Shim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Hyun-Mi Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Phil-Je Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Kyunghee Choi
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Francesc Giralt
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea.
| |
Collapse
|
34
|
Bour A, Mouchet F, Verneuil L, Evariste L, Silvestre J, Pinelli E, Gauthier L. Toxicity of CeO2 nanoparticles at different trophic levels--effects on diatoms, chironomids and amphibians. CHEMOSPHERE 2015; 120:230-236. [PMID: 25086917 DOI: 10.1016/j.chemosphere.2014.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/26/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The aim of the present work is to provide wider information on the toxicity of cerium dioxide nanoparticles (CeO2 NPs) in aquatic environments, by studying the toxicity of two types of CeO2 NPs for four species (diatoms Nitzschia palea, the sediment-dwelling invertebrate Chironomus riparius, and the amphibian larvae Xenopus laevis and Pleurodeles waltl.). The two types of CeO2 NPs have different intrinsic properties: some of them are small citrate-coated spheres (2-5 nm), and the others are larger uncoated plates (20-60 nm). Acute toxicity (mortality at 48 or 96 h, depending on the test-organism) was assessed for the four species, from 0.1 to 100 mg L(-1) of NPs. Sub-lethal effects were assessed on chironomids exposed between 0.01 and 1 mg L(-1) of NPs. Mortality, growth inhibition and genotoxic effects were evaluated on amphibian larvae from 0.1 to 10 mg L(-1). Results reveal that no acute toxicity occurs on any species after short exposures, even at the highest concentrations. Mortality (35%) is observed on Xenopus larvae after 12d of exposure at the highest concentration of one type of NPs. No significant effects were observed on chironomids during chronic exposure. Xenopus larvae growth was inhibited from 1 mg L(-1) of both NPs while growth inhibition is observed on Pleurodeles only at the highest concentration of one type of NPs. No genotoxicity was observed on Xenopus but Pleurodeles exhibited dose-dependent genotoxic effects when exposed to one type of NPs. Observed differences in toxicity are discussed focusing on the studied compartment, routes of exposure, species and NPs.
Collapse
Affiliation(s)
- Agathe Bour
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Florence Mouchet
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France.
| | - Laurent Verneuil
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Lauris Evariste
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Jérôme Silvestre
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Eric Pinelli
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Laury Gauthier
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| |
Collapse
|
35
|
Eom HJ, Jeong JS, Choi J. Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode, Caenorhabditis elegans. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2015; 30:e2015001. [PMID: 25997507 PMCID: PMC4590576 DOI: 10.5620/eht.e2015001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 01/27/2015] [Indexed: 05/13/2023]
Abstract
OBJECTIVES In this study, the effect of tube length and outer diameter (OD) size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs) on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. METHODS The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. RESULTS The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. CONCLUSIONS Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.
Collapse
Affiliation(s)
| | | | - Jinhee Choi
- Correspondence: Jinhee Choi 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Korea Tel: +82-2-6490-2869 Fax : +82-2-6490-2859 E-mail :
| |
Collapse
|
36
|
Cytotoxicity and genotoxicity of panel of single- and multiwalled carbon nanotubes: in vitro effects on normal Syrian hamster embryo and immortalized v79 hamster lung cells. J Toxicol 2014; 2014:872195. [PMID: 25548561 PMCID: PMC4274832 DOI: 10.1155/2014/872195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 11/18/2014] [Indexed: 12/28/2022] Open
Abstract
Carbon nanotubes (CNTs) belong to a specific class of nanomaterials with unique properties. Because of their anticipated use in a wide range of industrial applications, their toxicity is of increasing concern. In order to determine whether specific physicochemical characteristics of CNTs are responsible for their toxicological effects, we investigated the cytotoxic and genotoxic effects of eight CNTs representative of each of the commonly encountered classes: single- SW-, double- DW-, and multiwalled (MW) CNTs, purified and raw. In addition, because most previous studies of CNT toxicity were conducted on immortalized cell lines, we decided to compare results obtained from V79 cells, an established cell line, with results from SHE (Syrian hamster embryo) cells, an easy-to-handle normal cell model.
After 24 hours of treatment, MWCNTs were generally found to be more cytotoxic than SW- or DWCNTs. MWCNTs also provoked more genotoxic effects. No correlation could be found between CNT genotoxicity and metal impurities, length, surface area, or induction of cellular oxidative stress, but genotoxicity was seen to increase with CNT width. The toxicity observed for some CNTs leads us to suggest that they might also act by interfering with the cell cycle, but no significant differences were observed between normal and immortalized cells.
Collapse
|
37
|
Filho JDS, Matsubara EY, Franchi LP, Martins IP, Rivera LMR, Rosolen JM, Grisolia CK. Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model. ENVIRONMENTAL RESEARCH 2014; 134:9-16. [PMID: 25042031 DOI: 10.1016/j.envres.2014.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 05/02/2023]
Abstract
This is a detailed in vivo study of the biological response to carbon nanotubes network as probed by the zebrafish model. First, we prepared pristine carbon nanotubes (CNTs) by methanol chemical vapor deposition in the presence of Mn and Co as catalysts, followed by purification in acid, which furnished curved tubes with diameters lying between 10 and 130 nm. The CNT network consisted of pristine CNTs dispersed in water in the presence of a surfactant. The CNT network pellets corresponded to agglomerated multi-walled CNTs with an average diameter of about 500 nm. Although the same pristine CNTs had been previously found to exert genotoxic effects in vitro, here we verified that the CNT network was not genotoxic in vivo. Indeed, Raman spectroscopy and microscopy conducted in the intestine of the zebrafish revealed complete clearance of the CNT network as well as minimal disturbances, such as aneurysms, hyperemia, and reversible inflammatory focus in the zebrafish gills.
Collapse
Affiliation(s)
- Jose de Souza Filho
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Elaine Y Matsubara
- Departamento de Química-FFCLRP, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP, Brasil.
| | - Leonardo Pereira Franchi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo, 14049-900, Ribeirão Preto - SP - Brazil
| | - Igor Pinheiro Martins
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Luis Miguel Ramires Rivera
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - José Mauricio Rosolen
- Departamento de Química-FFCLRP, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP, Brasil.
| | - Cesar Koppe Grisolia
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
38
|
Saria R, Mouchet F, Perrault A, Flahaut E, Laplanche C, Boutonnet JC, Pinelli E, Gauthier L. Short term exposure to multi-walled carbon nanotubes induce oxidative stress and DNA damage in Xenopus laevis tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:22-29. [PMID: 24905693 DOI: 10.1016/j.ecoenv.2014.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
The potential impact of Multiwalled Carbon NanoTubes (MWCNTs) was investigated on Xenopus laevis tadpoles exposed to 0.1, 1 and 10mg/L. Oxidative stress was measured in entire larvae exposed and DNA damage (Comet assay) was carried out in erythrocytes of circulating blood from 2h to 24h according to standardized recommendations. Results showed significant H2O2 production when larvae were exposed to 1mg/L and 10mg/L of MWCNTs after 4h and 2h of exposure, respectively. Antioxidant enzyme activities showed significant induction of catalase (CAT), glutathione reductase (GR) and superoxide dismutase (SOD) from only 2h of exposure to 10mg/L of MWCNTs. In presence of 1mg/L of MWCNTs, only GR and CAT activities were significantly induced at 4h. Enzyme activities do not follow a simple dose-effect relation, but the time of induction is shortened in relation with the tested concentration. The Comet assay results showed significant DNA damages with a dose dependent response. The profiles of DNA damages show fluctuations, in course of time, which are characteristics of oxidative stress response in relation with the continuous balance between damage and compensation process.
Collapse
Affiliation(s)
- Rayenne Saria
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France
| | - Florence Mouchet
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France; Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France.
| | - Annie Perrault
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France
| | - Emmanuel Flahaut
- Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France; Université de Toulouse; INP, UPS; EcoLab (Laboratoire d׳Ecologie Fonctionnelle et Environnement); ENSAT, Avenue de l׳Agrobiopole, F-31326 Castanet Tolosan, France; CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France
| | - Christophe Laplanche
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France
| | - Jean-Charles Boutonnet
- Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France; Toxicology & Environment Department, 420 rue d׳Estienne d׳Orves, F-92705 Colombes Cedex, Arkema, France
| | - Eric Pinelli
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France; Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France
| | - Laury Gauthier
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France; Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France
| |
Collapse
|
39
|
Verneuil L, Silvestre J, Mouchet F, Flahaut E, Boutonnet JC, Bourdiol F, Bortolamiol T, Baqué D, Gauthier L, Pinelli E. Multi-walled carbon nanotubes, natural organic matter, and the benthic diatomNitzschia palea: “A sticky story”. Nanotoxicology 2014; 9:219-29. [DOI: 10.3109/17435390.2014.918202] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
He X, Aker WG, Leszczynski J, Hwang HM. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J Food Drug Anal 2014; 22:128-146. [PMID: 24673910 PMCID: PMC9359143 DOI: 10.1016/j.jfda.2014.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/21/2013] [Indexed: 11/17/2022] Open
Abstract
In this report, we critically reviewed selected intrinsic physicochemical properties of engineered nanomaterials (ENMs) and their role in the interaction of the ENMs with the immediate surroundings in representative aquatic environments. The behavior of ENMs with respect to dynamic microenvironments at the nano–bio–eco interface level, and the resulting impact on their toxicity, fate, and exposure potential are elaborated. Based on this literature review, we conclude that a holistic approach is urgently needed to fulfill our knowledge gap regarding the safety of discharged ENMs. This comparative approach affords the capability to recognize and understand the potential hazards of ENMs and their toxicity mechanisms, and ultimately to establish a quantitative and reliable system to predict such outcomes.
Collapse
|
41
|
Martinez DST, Franchi LP, Freria CM, Ferreira OP, Filho AGS, Alves OL, Takahashi CS. Carbon Nanotubes: From Synthesis to Genotoxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Edgington AJ, Petersen EJ, Herzing AA, Podila R, Rao A, Klaine SJ. Microscopic investigation of single-wall carbon nanotube uptake by Daphnia magna. Nanotoxicology 2013; 8 Suppl 1:2-10. [PMID: 24350828 DOI: 10.3109/17435390.2013.847504] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objectives of this study were to determine the extent of absorption of functionalized single-wall carbon nanotubes (SWCNTs) across the gut epithelial cells in Daphnia magna. Several microscopic techniques were utilized, including micro-Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM) and selective area diffraction (SAD). In an effort to examine the variation in uptake due to surface properties, four groups of differently functionalized SWCNTs were used: hydroxylated (OH-SWCNTs), silicon dioxide (SiO2-SWCNTs), poly aminobenzenesulfonic acid (PABS-SWCNTs) and polyethylene glycol (PEG-SWCNTs). Raman spectroscopy was able to detect OH-SWCNTs within the gut, but lacked the spatial resolution that is needed to identify lower concentrations of SWCNTs that may have been absorbed by body tissues. Initially, low-magnification imaging of exposed D. magna sections in the TEM revealed several features, which suggested absorption of SWCNTs. However, subsequent analysis with additional techniques (HRTEM, X-ray energy-dispersive spectroscopy and SAD) indicated that these features were either artifacts produced via the specimen staining process or consisted of non-graphitic, organic structures. This latter observation emphasizes the inherent difficulty in resolving SWCNTs embedded within a complex, organic matrix, as well as the care with which imaging results must be interpreted and supplemented with other, more analytical techniques.
Collapse
|
43
|
Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 2013; 7:154. [PMID: 24034413 PMCID: PMC3848800 DOI: 10.1186/1752-153x-7-154] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships.
Collapse
Affiliation(s)
- Petra Jackson
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen Ø, DK-2100, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bacchetta R, Moschini E, Santo N, Fascio U, Del Giacco L, Freddi S, Camatini M, Mantecca P. Evidence and uptake routes for Zinc oxide nanoparticles through the gastrointestinal barrier inXenopus laevis. Nanotoxicology 2013; 8:728-44. [DOI: 10.3109/17435390.2013.824128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M. New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2902-10. [PMID: 22296240 DOI: 10.1021/es203409a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Environmental impacts due to engineered nanomaterials arise both from releases of the nanomaterials themselves as well as from their synthesis. In this work, we employ the USEtox model to quantify and compare aquatic ecotoxicity impacts over the life cycle of carbon nanotubes (CNTs). USEtox is an integrated multimedia fate, transport, and toxicity model covering large classes of organic and inorganic substances. This work evaluates the impacts of non-CNT emissions from three methods of synthesis (arc ablation, CVD, and HiPco), and compares these to the modeled ecotoxicity of CNTs released to the environment. Parameters for evaluating CNT ecotoxicity are bounded by a highly conservative "worst case" scenario and a "realistic" scenario that draws from existing literature on CNT fate, transport, and ecotoxicity. The results indicate that the ecotoxicity impacts of nanomaterial production processes are roughly equivalent to the ecotoxicity of CNT releases under the unrealistic worst case scenario, while exceeding the results of the realistic scenario by 3 orders of magnitude. Ecotoxicity from production processes is dominated by emissions of metals from electricity generation. Uncertainty exists for both production and release stages, and is modeled using a combination of Monte Carlo simulation and scenario analysis. The results of this analysis underscore the contributions of existing work on CNT fate and transport, as well as the importance of life cycle considerations in allocating time and resources toward research on mitigating the impacts of novel materials.
Collapse
Affiliation(s)
- Matthew J Eckelman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, United States.
| | | | | | | |
Collapse
|
46
|
Petersen EJ, Zhang L, Mattison NT, O'Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang Q, Henry TB, Holbrook RD, Chen KL. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9837-9856. [PMID: 21988187 DOI: 10.1021/es201579y] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Carbon nanotubes (CNTs) are currently incorporated into various consumer products, and numerous new applications and products containing CNTs are expected in the future. The potential for negative effects caused by CNT release into the environment is a prominent concern and numerous research projects have investigated possible environmental release pathways, fate, and toxicity. However, this expanding body of literature has not yet been systematically reviewed. Our objective is to critically review this literature to identify emerging trends as well as persistent knowledge gaps on these topics. Specifically, we examine the release of CNTs from polymeric products, removal in wastewater treatment systems, transport through surface and subsurface media, aggregation behaviors, interactions with soil and sediment particles, potential transformations and degradation, and their potential ecotoxicity in soil, sediment, and aquatic ecosystems. One major limitation in the current literature is quantifying CNT masses in relevant media (polymers, tissues, soils, and sediments). Important new directions include developing mechanistic models for CNT release from composites and understanding CNT transport in more complex and environmentally realistic systems such as heteroaggregation with natural colloids and transport of nanoparticles in a range of soils.
Collapse
Affiliation(s)
- Elijah J Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhuang J, Gentry RW. Environmental Application and Risks of Nanotechnology: A Balanced View. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1079.ch003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, U.S.A
- Department of Civil and Environmental Engineering, Center for Environmental Biotechnology, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Randall W. Gentry
- Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, U.S.A
- Department of Civil and Environmental Engineering, Center for Environmental Biotechnology, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
48
|
Flahaut E. Introduction to the special focus issue: environmental toxicity of nanoparticles. Foreword. Nanomedicine (Lond) 2010; 5:949-50. [PMID: 20735228 DOI: 10.2217/nnm.10.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Affiliation(s)
- Emmanuel Flahaut
- Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux, Universite Paul Sabatier, Cirimat/LCMIE, UMR CNRS 5085, Bâtiment 2R1, 31062 Toulouse Cedex 9, France.
| |
Collapse
|