1
|
Ramonell RP, Gauthier MC, Ray A, Wenzel SE. Biologic Medications for Severe Asthma: Implications for Understanding Pathogenic Heterogeneity and Endotypes. Annu Rev Med 2025; 76:339-355. [PMID: 39586024 DOI: 10.1146/annurev-med-070323-103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Asthma is a chronic inflammatory disease of the airways long known for phenotypic heterogeneity. Phenotyping studies in asthma have led to a better characterization of disease pathogenesis, yet further work is needed to pair available treatments with disease endotypes. In this review, the biology of targeted pathways is discussed along with the efficacy of biologic therapies targeting those pathways. Results of asthma clinical trials are included, as well as results of trials in related diseases. This review then analyzes how biologics help to inform the complex immunobiology of asthma and further guide their use while identifying areas for future research.
Collapse
Affiliation(s)
- Richard P Ramonell
- Asthma and Environmental Lung Health Institute at UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Marc C Gauthier
- Asthma and Environmental Lung Health Institute at UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Asthma and Environmental Lung Health Institute at UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
2
|
Okano M, Yamada M, Oka A. Personalized Medicine in Chronic Rhinosinusitis: Treatable Traits Using Biologics for Unmet Needs. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2025; 17:8-21. [PMID: 39895599 PMCID: PMC11791368 DOI: 10.4168/aair.2025.17.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Chronic rhinosinusitis (CRS) is a prevalent airway disease, leading to health, social, and economic burdens, and substantially impairs quality of life. As CRS is heterogeneous and contains diverse pathogenesis, treatment outcomes and prognosis vary from curative to intractable. Inflammatory endotypes of CRS are divided into 3 types-type 1, type 2 and type 3-based on cytokines promoted. Tissue/blood eosinophilia seems to be the most reliable and feasible biomarker for type 2 CRS in clinical settings, although the cutoff level of eosinophilia remains to be elucidated. In East Asia, the predominant pathogenesis has changed from neutrophilic type 3 inflammation to eosinophilic type 2 inflammation over the past decades. The treatment strategy for CRS has also evolved from classical phenotype-based "reliever-controller" treatment to endotype-based "treatable traits" treatment. "Treatable traits" treatment is a personalized approach for the management of airway disease with complex and heterogeneous conditions. In CRS, traits can be grouped into sinonasal, extra-nasal and risk factor/behavioral domains. Type 2 CRS is one of the sinonasal traits, and biologics targeting immunoglobulin E, interleukin (IL)-5 and its receptor, IL-4/IL-13 receptor (IL-4/IL-13R) and thymic stromal lymphopoietin are the corresponding treatments for this trait. Proper use of these biologics can achieve high efficacy with patient satisfaction, leading to clinical remission. However, some cases show marked hypereosinophilia after the reduction or discontinuation of systemic corticosteroid or the switching of biologics from anti-IL-5/IL-5R to anti-IL-4Rα monoclonal antibody. More precise research on CRS targeting endotype, genotype, regiotype and theratype is needed to address the unmet needs and refine the "treatable traits" treatment of CRS.
Collapse
Affiliation(s)
- Mitsuhiro Okano
- Department of Otorhinolaryngology, International University of Health and Welfare School of Medicine, Narita, Japan.
| | - Marie Yamada
- Department of Otorhinolaryngology, International University of Health and Welfare School of Medicine, Narita, Japan
| | - Aiko Oka
- Department of Otorhinolaryngology, International University of Health and Welfare School of Medicine, Narita, Japan
| |
Collapse
|
3
|
Vultaggio A, Bergantini L, Crimi C, Matucci A, Menzella F, Schroeder JWV, Senna G, Cameli P. Benralizumab: from tissue distribution to eosinophilic cytotoxicity up to potential immunoregulation. Expert Opin Biol Ther 2025; 25:175-185. [PMID: 39708290 DOI: 10.1080/14712598.2024.2446600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Benralizumab, a monoclonal IgG antibody, has emerged as a key therapeutic agent in severe asthma by specifically targeting eosinophils, pivotal cells that drive inflammation and tissue damage. Over the past two decades, the availability of such targeted therapies has allowed patients to achieve better disease control. Real-world evidence has consistently demonstrated the effectiveness of benralizumab in managing severe asthma. AREAS COVERED This paper discusses the kinetic and potential mechanism of action of benralizumab beyond the well-known antibody-dependent cell-mediated cytotoxicity involving natural killer cells. EXPERT OPINION The available data so far clearly show that reducing eosinophils, one of the main drivers of inflammation and tissue damage in SA, accounts for clinical benefits to these patients. Benralizumab is able to directly reduce tissue levels of eosinophils via multiple mechanisms, and additionally, it is potentially able to modulate the innate immune response. The complex and unique multiple modes of action of benralizumab and its pharmacokinetic features, seem to be the milestone on which the effectiveness of benralizumab is founded.
Collapse
Affiliation(s)
- Alessandra Vultaggio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Claudia Crimi
- Respiratory Medicine Unit, Policlinico "G. Rodolico-San Marco" University Hospital, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | | | | | - Gianenrico Senna
- Allergy Unit and Asthma Center, Verona University Hospital, Verona, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
4
|
De Corso E, Hellings PW, Fokkens WJ, Klimek L, Peters AT, Scadding GK, Desrosiers M, Lee SE, Mullol J. Thymic Stromal Lymphopoietin (TSLP): Evidence in Respiratory Epithelial-driven Diseases Including Chronic Rhinosinusitis with Nasal Polyps. Curr Allergy Asthma Rep 2024; 25:7. [PMID: 39636450 DOI: 10.1007/s11882-024-01186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF THE REVIEW Thymic stromal lymphopoietin (TSLP) is increasingly recognized for its pivotal role in the pathogenesis of various epithelial-driven chronic inflammatory diseases. This review navigates the existing evidence on TSLP, with a particular focus on asthma, before delving into the current understanding of its role in chronic rhinosinusitis with nasal polyps (CRSwNP). We explore the role of TSLP in the pathogenesis of asthma and CRSwNP, two conditions often interconnected and collectively referred to as"Global Airway Disease". Additionally, this review assesses the therapeutic potential of TSLP inhibition as a treatment option for both CRSwNP and asthma. A systematic literature search was conducted; selected publications were used to describe the biology of TSLP, including its expression and diverse effects on inflammation. RECENT FINDINGS The role of TSLP in asthma is well established and supported by the efficacy of tezepelumab, the first anti-TSLP monoclonal antibody approved for both type 2 (T2)-high and T2-low severe asthma. TSLP may be a key contributor to CRSwNP pathogenesis as evidenced by genetic and mechanistic studies in which TSLP has been shown to regulate T2 inflammation and influence non-T2 responses. Preliminary data from the NAVIGATOR trial indicate that tezepelumab may reduce CRSwNP symptoms in patients with comorbid asthma. While further research is required to clarify the extent of TSLP contribution in CRSwNP, this review highlights the potential of anti-TSLP therapies as a novel approach for managing severe, uncontrolled CRSwNP. If these preliminary findings are confirmed, targeting TSLP could become a promising strategy to treat CRSwNP with or without comorbid asthma.
Collapse
Affiliation(s)
- Eugenio De Corso
- UOC Otorinolaringoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F.Vito 1, Roma, Italy.
| | - Peter W Hellings
- The European Forum for Research and Education in Allergy and Airway Diseases Scientific Expert Team Members, Brussels, Belgium
- Laboratory of Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Department of Otorhinolaryngology, Head and Neck Surgery, UZ Leuven, Louvain, Belgium
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, 2HNO-University Clinic Charité, Berlin, Germany
| | - Anju T Peters
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Glenis K Scadding
- Department of Allergy and Rhinology, Royal National ENT Hospital, London, UK
| | | | - Stella E Lee
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joaquim Mullol
- Rhinology Unit and Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic, FRCB- IDIBAPS, Universitat de Barcelona, CIBERES. Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
6
|
Liu Y, Liu S, Meng L, Fang L, Yu J, Yue J, Li T, Tu Y, Jiang T, Yu P, Wan YZ, Lu Y, Shi L. The function and mechanism of Human nasal mucosa-derived mesenchymal stem cells in allergic rhinitis in mice. Inflamm Res 2024; 73:1819-1832. [PMID: 39180692 PMCID: PMC11445352 DOI: 10.1007/s00011-024-01933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
PURPOSE To investigate the immunomodulatory effects and potential mechanisms of human nasal mucosa-derived mesenchymal stem cells(hNMSCs) on mouse allergic rhinitis, and to compare them with human umbilical cord-derived mesenchymal stem cells (hUCMSCs). METHOD hNMSCs and hUCMSCs were isolated and cultured for identification from human nasal mucosa and umbilical cord tissues. A co-culture system of LPS-stimulated RAW264.7 cells/mouse peritoneal macrophages and MSCs was employed.Changes in inflammatory factors in RAW264.7 cells and the culture medium as well as the expression of NF-κB signaling pathway in RAW264.7 cells were detected. Forty-eight BALB/c mice were randomly divided into control, OVA, hNMSCs, and hUCMSCs groups. An allergic rhinitis (AR) model was established through ovalbumin (OVA) stimulation and treated with hNMSCs and hUCMSCs. Subsequent assessments included related symptoms, biological changes, and the expression of the NF-κB signaling pathway in the nasal mucosa of mice. RESULTS MSCs can be successfully isolated from human nasal mucosa. Both hNMSCs and hUCMSCs interventions significantly reverseed the inflammation induced by LPS and suppressed the upregulation of the NF-κB signaling pathway in RAW264.7 cells. Treatment with hNMSCs and hUCMSCs alleviated mouse allergic symptoms, reduced levels of total IgE, OVA-specific IgE and IgG1 in mouse serum, TH2-type cytokines and chemokines in mouse nasal mucosa, and TH2-type cytokines in mouse spleen culture medium, while also inhibiting the expression of the NF-κB signaling pathway in the nasal mucosa of mice. moreover, the hNMSCs group showed a more significant reduction in OVA-specific IgG1 in serum and IL-4 expression levels in mouse spleen culture medium compared to the hUCMSCs group. CONCLUSION Our findings suggest that hNMSCs can ameliorate allergic rhinitis in mice, with a certain advantage in anti-inflammatory effects compared to hUCMSCs. The NF-κB pathway is likely involved in the anti-inflammatory regulation process by hNMSCs.Therefore, hNMSCs might represent a novel therapeutic approach for allergic rhinitis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China
| | - Shengyang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Linghui Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Li Fang
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China
| | - Jinzhuang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Jing Yue
- Department of Traditional Chinese Medicine, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Tao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yanyi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Tianjiao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yu-Zhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yongtian Lu
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China.
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China.
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China.
| |
Collapse
|
7
|
Brightling CE, Marone G, Aegerter H, Chanez P, Heffler E, Pavord ID, Rabe KF, Uller L, Dorscheid D. The epithelial era of asthma research: knowledge gaps and future direction for patient care. Eur Respir Rev 2024; 33:240221. [PMID: 39694589 PMCID: PMC11653196 DOI: 10.1183/16000617.0221-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
The Epithelial Science Expert Group convened on 18-19 October 2023, in Naples, Italy, to discuss the current understanding of the fundamental role of the airway epithelium in asthma and other respiratory diseases and to explore the future direction of patient care. This review summarises the key concepts and research questions that were raised. As an introduction to the epithelial era of research, the evolution of asthma management throughout the ages was discussed and the role of the epithelium as an immune-functioning organ was elucidated. The role of the bronchial epithelial cells in lower airway diseases beyond severe asthma was considered, as well as the role of the epithelium in upper airway diseases such as chronic rhinosinusitis. The biology and application of biomarkers in patient care was also discussed. The Epithelial Science Expert Group also explored future research needs by identifying the current knowledge and research gaps in asthma management and ranking them by priority. It was identified that there is a need to define and support early assessment of asthma to characterise patients at high risk of severe asthma. Furthermore, a better understanding of asthma progression is required. The development of new treatments and diagnostic tests as well as the identification of new biomarkers will also be required to address the current unmet needs. Finally, an increased understanding of epithelial dysfunction will determine if we can alter disease progression and achieve clinical remission.
Collapse
Affiliation(s)
- Christopher E Brightling
- Institute for Lung Health, National Institute for Health and Care Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Joint first authors
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, School of Medicine, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
- Joint first authors
| | - Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Ian D Pavord
- Respiratory Medicine, National Institute for Health and Care Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
- Chirstian-Alrechts University Kiel, Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Lena Uller
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Del Dorscheid
- Center for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Zeng Z, Ruan Y, Ying H, Wang J, Wang H, Chen S. Baicalin Attenuates Type 2 Immune Responses in a Mouse Allergic Asthma Model through Inhibiting the Production of Thymic Stromal Lymphopoietin. Int Arch Allergy Immunol 2024:1-9. [PMID: 39299223 DOI: 10.1159/000541100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Baicalin is a flavonoid chemical extracted and purified from the traditional Chinese medicine named Scutellaria baicalensis Georgi, which possesses broad pharmacological properties. Our work aimed to explore the protective role of baicalin in allergic asthma and its potential mechanisms on regulating type 2 immune response. METHODS Mice were injected intraperitoneally with ovalbumin (OVA) twice, further challenged with OVA aerosol for continuous 5 days. For baicalin group, mice were pre-administrated with baicalin. After the final challenge, the immune cells in bronchoalveolar lavage fluid (BALF) and blood were examined. The cytokines were evaluated by ELISA. Histological inspections were examined by hematoxylin and eosin staining and Periodic Acid-Schiff staining. Thymic stromal lymphopoietin (TSLP) expression in lungs were detected using immunohistochemistry and Western blotting. RESULTS The eosinophils infiltrating in BALF were reduced remarkably in baicalin-treated asthmatic mice. Baicalin decreased OVA-induced inflammatory cytokines and total serum immunoglobulin E secretion significantly. Moreover, baicalin alleviated the asthmatic pathological changes and substantially suppressed TSLP expression in the lung tissues. CONCLUSION Our study indicates that baicalin attenuates OVA-induced allergic asthma in mice effectively by suppressing type 2 immune responses, which might provide a novel insight into the anti-asthmatic activity of baicalin.
Collapse
Affiliation(s)
- Zhisen Zeng
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Yaoxin Ruan
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, China
| | - Haoran Ying
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Jie Wang
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Huangbin Wang
- Department of Microbiology and Immunology, Xiamen Medical College, Xiamen, China
| | - Shuzhen Chen
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Department of Microbiology and Immunology, Xiamen Medical College, Xiamen, China
| |
Collapse
|
9
|
Jang S, Kim HI, Jung JW, Boo M, Sung SH, Park J, Kim S. Bee venom acupuncture and herbal medicine for hand eczema: Two case reports and an in vivo study. Explore (NY) 2024; 20:102994. [PMID: 38637265 DOI: 10.1016/j.explore.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Eczema and contact dermatitis are relatively common, non-life-threatening disease, but can reduce the patient's quality-of-life when it becomes chronic. This study describes two cases of bee venom acupuncture (BVA) and herbal medicine (San Wu Huangqin decoction; SWH) co-treatment for hand eczema and contact dermatitis, then confirms the effect of the combination therapy in an in vivo model of eczema. CASE PRESENTATION A 56-year-old female (case 1) and a 33-year-old male (case 2) presented to the clinic with symptoms of itching and erythema (case 1), and scaliness (case 2) on both hands. Both were diagnosed with hand eczema and contact dermatitis based on examination of the erythema and scaliness. They were treated with BVA and SWH for three months. The lesions were healed and had not recurred after 1 and 3 years of follow-up. A mouse study was conducted by repeated application of 2,4-dinitrochlorobenzene (DNCB) to induce eczema-like contact dermatitis in Balb/c mice. In a DNCB-induced eczema-like contact dermatitis model, BVA and SWH co-administration synergistically improved clinical symptoms seen in eczema. Also, they improved histological changes of the skin, suppressed immune cell infiltration, and decreased inflammatory cytokines and immunoglobulin E in the serum. CONCLUSION This study suggests BVA and SWH could be an alternative treatment for eczema and contact dermatitis.
Collapse
Affiliation(s)
- Soobin Jang
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsangbuk-do, Gyeongsan, 38054, Republic of Korea
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jae Woo Jung
- Wonjae Korean Medical Clinic, Gyeongsangbuk-do, Chilgok, 39895, Republic of Korea
| | - Mina Boo
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo-Hyun Sung
- Department of Korean Medicine Policy, National Development Institute of Korean Medicine, Seoul, 04516, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Sungha Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
10
|
Kim J, Kim BE, Ahn K, Leung DYM. Skin Predictive Biomarkers for the Development of Atopic Dermatitis and Food Allergy in Infants. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:323-337. [PMID: 39155734 PMCID: PMC11331187 DOI: 10.4168/aair.2024.16.4.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The pathogenesis of atopic dermatitis (AD) is multifactorial, involving a dynamic interplay between genetic susceptibility, skin-barrier dysfunction, microbiome alterations, and immune dysregulation, whereas food allergy (FA) arises from the interplay of transcutaneous sensitization to food allergens and failure in the induction of oral tolerance. Skin epicutaneous sensitization is commonly involved in the development of AD and FA. Although clinical trials have been conducted to prevent AD or FA by applications of emollients on the skin after birth, the results are not consistent. For more effective preventive strategies, reliable biomarkers are required to identify high-risk individuals. Skin tape stripping (STS) is a non-invasive technique for identifying these biomarkers in the skin. By analyzing the stratum corneum collected via STS, researchers can gain molecular or cellular insights into the early pathogenesis and potential progression of AD and FA. This review aims to elucidate the critical aspects of AD and FA, underlying their pathogenesis, early manifestations, and STS's potential as a tool for identifying predictive non-invasive biomarkers in infants prior to onset of clinical disease.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| | - Byung Eui Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea.
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
11
|
Bertuccio FR, Baio N, Montini S, Ferroni V, Chino V, Pisanu L, Russo M, Giana I, Cascina A, Conio V, Grosso A, Gini E, Albicini F, Corsico AG, Stella GM. Potential New Inflammatory Markers in Bronchiectasis: A Literature Review. Curr Issues Mol Biol 2024; 46:6675-6689. [PMID: 39057040 PMCID: PMC11275576 DOI: 10.3390/cimb46070398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Specific molecular and inflammatory endotypes have been identified for chronic respiratory disorders, including asthma and COPD (chronic obstructive pulmonary disease). These endotypes correspond with clinical aspects of disease, enabling targeted medicines to address certain pathophysiologic pathways, often referred to as "precision medicine". With respect to bronchiectasis, many comorbidities and underlying causes have been identified. Inflammatory endotypes have also been widely studied and reported. Additionally, several genes have been shown to affect disease progression. However, the lack of a clear classification has also hampered our understanding of the disease's natural course. The aim of this review is, thus, to summarize the current knowledge on biomarkers and actionable targets of this complex pathologic condition and to point out unmet needs, which are required in the design of effective diagnostic and therapeutic trials.
Collapse
Affiliation(s)
- Francesco Rocco Bertuccio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Nicola Baio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Simone Montini
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Valentina Ferroni
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Vittorio Chino
- Ospedale Pederzoli, Peschiera del Garda, 37121 Verona, Italy;
| | - Lucrezia Pisanu
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Marianna Russo
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Ilaria Giana
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Alessandro Cascina
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Valentina Conio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Amelia Grosso
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Erica Gini
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Federica Albicini
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Angelo Guido Corsico
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Giulia Maria Stella
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| |
Collapse
|
12
|
Pathinayake PS, Hsu ACY, Nichol KS, Horvat JC, Hansbro PM, Wark PAB. Endoplasmic reticulum stress enhances the expression of TLR3-induced TSLP by airway epithelium. Am J Physiol Lung Cell Mol Physiol 2024; 326:L618-L626. [PMID: 38469627 PMCID: PMC11381004 DOI: 10.1152/ajplung.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.
Collapse
Affiliation(s)
- Prabuddha S Pathinayake
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C-Y Hsu
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Signature Research Program in Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Kristy S Nichol
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
- School of Medicine, Monash University, Melbourne, Victoria, Australia
- AIRMED Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Okano M, Kanai K, Oka A. Pathogenesis-based application of biologics for chronic rhinosinusitis: Current and future perspectives. Auris Nasus Larynx 2024; 51:371-378. [PMID: 37743131 DOI: 10.1016/j.anl.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
Chronic rhinosinusitis (CRS) is heterogeneous and contains diverse pathogenesis including type 1, type 2, and/or type 3 inflammation. For severe type 2 CRS especially CRS with nasal polyps (CRSwNP), biologics that target inflammatory molecules have recently been applied along with further changes in the treatment algorithm for CRS. Currently, a completed phase 3 clinical trial for biologics for severe CRSwNP with inadequate response to surgery and/or intranasal corticosteroids, including omalizumab (anti-IgE), mepolizumab (anti-IL-5), benralizumab (anti-IL-5Rα), and dupilumab (anti-IL-4Rα), have all shown efficacy. Similar phase 3 clinical trials for tezepelumab (anti-TSLP) and etokimab (anti-IL-33) are now underway and completed, respectively. Further studies need to evaluate how to optimally and cost-effectively use biologics for CRS and determine if any biomarkers are indicative of which biologics should be administered. A definition of complete and/or clinical remission of CRS is also needed to determine when to reduce or discontinue biologics. In addition, more precise basic research on CRS, such as endotyping and genotyping, will need to be undertaken in order to determine novel targets for biologics.
Collapse
Affiliation(s)
- Mitsuhiro Okano
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan.
| | - Kengo Kanai
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan
| | - Aiko Oka
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan
| |
Collapse
|
14
|
Haybar H, Hadi H, Purrahman D, Mahmoudian-Sani MR, Saki N. Emerging roles of HOTAIR lncRNA in the pathogenesis and prognosis of cardiovascular diseases. Biomark Med 2024; 18:203-219. [PMID: 38411079 DOI: 10.2217/bmm-2023-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Highlights HOTAIR, a long noncoding RNA, plays a role in the regulation of proteins involved in the pathogenesis of cardiovascular disease. Furthermore, it has been identified as a biomarker of this type of disease. Several factors and cells contribute to atherosclerosis, a progressive disease. However, the prognosis of HOTAIR in this disease varies depending on the path in which it plays a role. For this condition, there is no single prognosis to consider.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hakimeh Hadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Zhang XE, Zheng P, Ye SZ, Ma X, Liu E, Pang YB, He QY, Zhang YX, Li WQ, Zeng JH, Guo J. Microbiome: Role in Inflammatory Skin Diseases. J Inflamm Res 2024; 17:1057-1082. [PMID: 38375021 PMCID: PMC10876011 DOI: 10.2147/jir.s441100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.
Collapse
Affiliation(s)
- Xue-Er Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Pai Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Sheng-Zhen Ye
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yao-Bin Pang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Qing-Ying He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yu-Xiao Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Wen-Quan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Jin-Hao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| |
Collapse
|
16
|
Bai J, Tan BK, Kato A. Endotypic heterogeneity and pathogenesis in chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2024; 24:1-8. [PMID: 37966157 PMCID: PMC10873077 DOI: 10.1097/aci.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide updates in realms of endotypic heterogeneity, pathogenesis at the molecular level, potential of biomarkers, and cutting-edge scope of biologics in CRS. RECENT FINDINGS High-dimensional analyses, such as transcriptomes, and machine learning, have significantly enhanced CRS endotyping, uncovering diverse pathogenetic mechanisms contributing to its heterogeneity. The dynamic process of epithelial remodeling in CRS pathogenesis has gained more clarity and support as exemplified by IL-13 and oncostatin M (OSM) that are shown intricately linked to epithelial barrier dysfunction. Moreover, anti-dsDNA autoantibody, BAFF, periostin, and cystatin SN show promise as potentials biomarkers, offering diagnostic and prognostic value for CRS. SUMMARY The identification of inflammatory molecules involved in endotype specific signaling pathways provides insights into the underlying mechanisms and verifiable biomarkers for diagnosis and prediction of disease severity. More comprehensive clinical studies should be conducted to facilitate biologics from bench to bedside in treating CRS.
Collapse
Affiliation(s)
- Junqin Bai
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bruce K. Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Atsushi Kato
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Tamamoto-Mochizuki C, Santoro D, Saridomikelakis MN, Eisenschenk MNC, Hensel P, Pucheu-Haston C. Update on the role of cytokines and chemokines in canine atopic dermatitis. Vet Dermatol 2024; 35:25-39. [PMID: 37485553 DOI: 10.1111/vde.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Cytokines and chemokines play central roles in the pathogenesis of canine atopic dermatitis (cAD). Numerous studies have been published and provide new insights into their roles in cAD. OBJECTIVES To summarise the research updates on the role of cytokines and chemokines in the pathogenesis of cAD since the last review by the International Committee on Allergic Diseases of Animals in 2015. MATERIAL AND METHODS Online citation databases, abstracts and proceedings from international meetings on cytokines and chemokines relevant to cAD that had been published between 2015 and 2022 were reviewed. RESULTS Advances in technologies have allowed the simultaneous analysis of a broader range of cytokines and chemokines, which revealed an upregulation of a multipolar immunological axis (Th1, Th2, Th17 and Th22) in cAD. Most studies focused on specific cytokines, which were proposed as potential novel biomarkers and/or therapeutic targets for cAD, such as interleukin-31. Most other cytokines and chemokines had inconsistent results, perhaps as a consequence of their varied involvement in the pathogenesis of different endotypes of cAD. CONCLUSIONS AND CLINICAL RELEVANCE Inconsistent results for many cytokines and chemokines illustrate the difficulty of studying the complex cytokine and chemokine networks in cAD, and highlight the need for more comprehensive and structured studies in the future.
Collapse
Affiliation(s)
- Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
18
|
Wang ZY, Zheng YX, Xu F, Cui YZ, Chen XY, Chen SQ, Yan BX, Zhou Y, Zheng M, Man XY. Epidermal keratinocyte-specific STAT3 deficiency aggravated atopic dermatitis-like skin inflammation in mice through TSLP upregulation. Front Immunol 2023; 14:1273182. [PMID: 38053996 PMCID: PMC10694200 DOI: 10.3389/fimmu.2023.1273182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin diseases with complex pathogenesis involving epidermal barrier dysfunction, skin microbiome abnormalities and type-2-skewed immune dysregulation. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays critical roles in various biological processes. However, the role of STAT3 in epidermal keratinocytes in AD remains unclear. In this study, we generated an epidermal keratinocyte-specific Stat3-deficient mouse strain (termed Stat3 cKO mice). After topical 2,4-dinitrochlorobenzene (DNCB) treatment, Stat3 cKO mice developed worsened AD-like skin inflammation with increased Ki67+ cells, decreased filaggrin and loricrin expression, and downregulated S100A9 and LL37. The dominant microbial population in Stat3 cKO mice changed from Ralstonia to Staphylococcus. DNCB-treated Stat3 cKO mice displayed more infiltrating type-2 inflammatory cells, including mast cells, eosinophils, and CD4+T cells, accompanied by increased skin IL-4 and serum IgE levels. Moreover, thymic stromal lymphopoietin (TSLP), mainly produced by keratinocytes, was highly expressed in the ear skin of Stat3 cKO mice and chemoattracted more TSLPR+ cells. TSLP blockade significantly alleviated DNCB-induced AD-like skin inflammation in Stat3 cKO mice. Thus, epidermal keratinocyte-specific STAT3 deficiency can aggravate AD-like skin inflammation in mice, possibly through TSLP dysregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Zhang Y. From gene identifications to therapeutic targets for asthma: Focus on great potentials of TSLP, ORMDL3, and GSDMB. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:139-147. [PMID: 39171126 PMCID: PMC11332877 DOI: 10.1016/j.pccm.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 08/23/2024]
Abstract
Asthma is a chronic respiratory disease, and clinically, asthma exacerbations remain difficult to treat. The disease is caused by combinations of and interactions between genetic and environmental factors. Genomic and genetic approaches identified many novel genes to treat asthma and brought new insights into the disease. The products of the genes have functional roles in regulating physiological or pathophysiological processes in airway structural cells and immune system cells. Genetic factors also interact with environmental factors such as air pollutants, and bacterial and viral infections to trigger the disease. Thymic stromal lymphopoietin (TSLP), orosomucoid-like 3 (ORMDL3), and gasdermin B (GSDMB) are three genes identified by genetic studies to have a great potential as therapeutic targets of asthma. TSLP is an important driver of type 2 inflammation. ORMDL3 mediates cell stress, sphingolipid synthesis, and viral and bacterial infections. GSDMB regulates cell pyroptosis through its N and C terminals and can bind sulfatides to influence inflammatory response. Investigating inhibitors or modulators for these pathways would bring a new landscape for therapeutics of asthma in future.
Collapse
Affiliation(s)
- Youming Zhang
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
20
|
Nasanbat B, Uchiyama A, Amalia SN, Inoue Y, Yokoyama Y, Ogino S, Torii R, Hosoi M, Motegi SI. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation. J Dermatol Sci 2023; 111:93-100. [PMID: 37393173 DOI: 10.1016/j.jdermsci.2023.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Atopic dermatitis is a common skin disease caused by genetic susceptibility, environmental factors, immune response, and skin barrier dysfunction. Kaempferol is a natural flavonoid widely found in tea, vegetables, and fruits and has been reported to have excellent anti-inflammation activity. However, the therapeutic effect of kaempferol on atopic dermatitis is unclear. OBJECTIVE This study aimed to elucidate the effect of kaempferol on skin inflammation in atopic dermatitis. METHODS The suppressive effect of kaempferol administration on skin inflammation was examined using MC903-induced atopic dermatitis-like skin inflammation mouse model. Quantification of skin dermatitis and transepidermal water loss was performed. A histopathological study was performed to examine thymic stromal lymphopoietin expression, cornified envelope proteins such as filaggrin, loricrin, and involucrin, and the numbers of infiltrating inflammatory cells, including lymphocytes, macrophages, and mast cells in the dermatitis area. The expressions of IL-4 and IL-13 were investigated by qPCR and flow cytometry analysis using skin tissues. The expression of HO-1 was investigated by western blot and qPCR. RESULTS Kaempferol therapy significantly suppressed MC903-induced dermatitis, TEWL, TSLP, and HO-1 expression, and infiltration of inflammatory cells. Kaempferol therapy improved the decreased expressions of filaggrin, loricrin, and involucrin in MC903-induced dermatitis skin site. The expressions of IL-4, and IL-13 were partially decreased in kaempferol-treated mice. CONCLUSION Kaempferol might improve MC903-induced dermatitis via suppression of type 2 inflammation and improvement of barrier dysfunction by inhibition of TSLP expression and oxidative stress. Kaempferol might have the potential to be a new treatment for atopic dermatitis.
Collapse
Affiliation(s)
- Bolor Nasanbat
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
21
|
Du B, Fu Y, Han Y, Sun Q, Xu J, Yang Y, Rong R. The lung-gut crosstalk in respiratory and inflammatory bowel disease. Front Cell Infect Microbiol 2023; 13:1218565. [PMID: 37680747 PMCID: PMC10482113 DOI: 10.3389/fcimb.2023.1218565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Both lung and gut belong to the common mucosal immune system (CMIS), with huge surface areas exposed to the external environment. They are the main defense organs against the invasion of pathogens and play a key role in innate and adaptive immunity. Recently, more and more evidence showed that stimulation of one organ can affect the other, as exemplified by intestinal complications during respiratory disease and vice versa, which is called lung-gut crosstalk. Intestinal microbiota plays an important role in respiratory and intestinal diseases. It is known that intestinal microbial imbalance is related to inflammatory bowel disease (IBD), this imbalance could impact the integrity of the intestinal epithelial barrier and leads to the persistence of inflammation, however, gut microbial disturbances have also been observed in respiratory diseases such as asthma, allergy, chronic obstructive pulmonary disease (COPD), and respiratory infection. It is not fully clarified how these disorders happened. In this review, we summarized the latest examples and possible mechanisms of lung-gut crosstalk in respiratory disease and IBD and discussed the strategy of shaping intestinal flora to treat respiratory diseases.
Collapse
Affiliation(s)
- Baoxiang Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Fu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxiu Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yong Yang
- Shandong Antiviral Engineering Research Center of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Rizzi A, Di Gioacchino M, Gammeri L, Inchingolo R, Chini R, Santilli F, Nucera E, Gangemi S. The Emerging Role of Innate Lymphoid Cells (ILCs) and Alarmins in Celiac Disease: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. Cells 2023; 12:1910. [PMID: 37508573 PMCID: PMC10378400 DOI: 10.3390/cells12141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Celiac disease (CD) is an intestinal disease that develops in genetically predisposed individuals and is triggered by the ingestion of gluten. CD was considered a Th1-disease. Today, the role of Th17, IL-21, and IL-17A lymphocytes is well known. Inflammation is regulated by the activity of gluten-specific CD4+ T lymphocytes that produce pro-inflammatory cytokines, including IFN-γ, TNF-α, and IL-21, perpetuating the Th1 response. These cytokines determine an inflammatory state of the small intestine, with consequent epithelial infiltration of lymphocytes and an alteration of the architecture of the duodenal mucosa. B cells produce antibodies against tissue transglutaminase and against deamidated gliadin. Although the role of the adaptive immune response is currently known, the evidence about the role of innate immunity cells is still poorly understood. Epithelial damage determines the release of damage-associated molecular patterns (DAMPs), also known as alarmins. Together with the intestinal epithelial cells and the type 1 innate lymphoid cells (ILC1s), alarmins like TSLP, IL-33, and HMGB1 could have a fundamental role in the genesis and maintenance of inflammation. Our study aims to evaluate the evidence in the literature about the role of ILCs and alarmins in celiac disease, evaluating the possible future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Center for Advanced Studies and Technology, G. d'Annunzio University, 66100 Chieti, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Santilli
- Center for Advanced Studies and Technology, G. d'Annunzio University, 66100 Chieti, Italy
| | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
23
|
Peng M, Li J, Zhou J, Zhang B, Liao J, Yang D, Wang Y, Yang Y, Li R, Tang X, Lu Q, Zhao Q. Total alkaloids of Fritillaria unibracteata var. wabuensis bulbus ameliorate chronic asthma via the TRPV1/Ca 2+/NFAT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154946. [PMID: 37421766 DOI: 10.1016/j.phymed.2023.154946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory disease that is challenging to treat. Fritillaria unibracteata var. wabuensis (FUW) is the plant origin for the famous Chinese antitussive medicine Fritillaria Cirrhosae Bulbus. The total alkaloids of Fritillaria unibracteata var. wabuensis bulbus (TAs-FUW) have anti-inflammatory properties and may be used to treat asthma. PURPOSE To explore whether TAs-FUW have bioactivity against airway inflammation and a therapeutic effect on chronic asthma. METHODS The alkaloids were extracted via ultrasonication in a cryogenic chloroform-methanol solution after ammonium-hydroxide percolation of the bulbus. UPLC-Q-TOF/MS was used to characterize the composition of TAs-FUW. An ovalbumin (OVA)-induced asthmatic mouse model was established. We used whole-body plethysmography, ELISA, western blotting, RT-qPCR, and histological analyses to assess the pulmonary pathological changes in these mice after TAs-FUW treatment. Additionally, TNF-α/IL-4-induced inflammation in BEAS-2B cells was used as an in vitro model, whereby the effects of various doses of TAs-FUW on the TRPV1/Ca2+-dependent NFAT-induced expression of TSLP were assessed. Stimulation and inhibition of TRPV1 receptors by capsaicin (CAP) and capsazepine (CPZ), respectively, were used to validate the effect of TAs-FUW. RESULTS The UPLC-Q-TOF/MS analysis revealed that TAs-FUW mainly contain six compounds (peiminine, peimine, edpetiline, khasianine, peimisine, and sipeimine). TAs-FUW improved airway inflammation and obstruction, mucus secretion, collagen deposition, and leukocyte and macrophage infiltration, and downregulated TSLP by inhibiting the TRPV1/NFAT pathway in asthmatic mice. In vitro, the application of CPZ demonstrated that the TRPV1 channel is involved in TNF-α/IL-4-mediated regulation of TSLP. TAs-FUW suppressed TNF-α/IL-4-induced TSLP generation expression by regulating the TRPV1/Ca2+/NFAT pathway. Furthermore, TAs-FUW reduced CAP-induced TSLP release by inhibiting TRPV1 activation. Notably, sipeimine and edpetiline each were sufficient to block the TRPV1-mediated Ca2+ influx. CONCLUSION Our study is the first to demonstrate that TNF-α/IL-4 can activate the TRPV1 channel. TAs-FUW can alleviate asthmatic inflammation by suppressing the TRPV1 pathway and thereby preventing the increase in cellular Ca2+ influx and the subsequent NFAT activation. The alkaloids in FUW may be used for complementary or alternative therapies in asthma.
Collapse
Affiliation(s)
- Meihao Peng
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jintao Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jie Zhou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bowen Zhang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiaqing Liao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Di Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yu Wang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xue Tang
- Chengdu Analytical Applications Center, Shimadzu (China) Co Ltd., Chengdu 610023, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, China.
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
24
|
Kusampudi S, Meganathan V, Keshava S, Boggaram V. Purification and characterization of a serine protease from organic dust and elucidation of its inductive effects on lung inflammatory mediators. Am J Physiol Lung Cell Mol Physiol 2023; 325:L74-L90. [PMID: 37253661 PMCID: PMC10390052 DOI: 10.1152/ajplung.00309.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/08/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
Organic dust inhalation is associated with the development of respiratory diseases. Serine protease activities in organic dusts were previously reported to contribute to the induction of lung inflammatory mediators however, the identities of the proteases and the mechanisms by which they induce inflammatory mediators are unknown. The goal of this study was to purify and characterize serine protease(s) from organic dust and elucidate mechanisms by which they induce lung inflammatory mediators. A serine protease was purified from poultry organic dust by benzamidine-agarose affinity chromatography. Mass spectrometry and amino-terminal sequence analysis identified the purified protease as chicken trypsin II-P29. Purified protease induced proinflammatory cytokine levels in Beas2B and NHBE epithelial and THP-1 macrophage cells. Treatment with the purified protease increased cellular and mitochondrial reactive oxygen species (ROS) generation. Induction of inflammatory mediators and ROS were suppressed by serine protease inhibitors and antioxidants. Purified protease activated protein kinase C (PKC), mitogen-activated protein kinase (MAPK)1/3 and MAPK14 signaling, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (Stat-3), and chemical inhibitors targeting these pathways suppressed induction of inflammatory mediators. Calcium mobilization studies showed that the purified protease activated protease-activated receptors (PAR) F2R, F2RL1, F2RL2, F2RL3, and F2R and F2RL1 knockdown suppressed the induction of inflammatory mediators. Intranasal instillation of purified protease increased lung chemokine (C-X-C motif) ligand (CXCL)1, interleukin (IL)-6, and tumor necrosis factor (TNF) levels in mice. Our studies have shown that chicken trypsin is a proinflammatory constituent of poultry organic dust, and induces lung inflammatory mediators via increased ROS and PAR activation in a cell signaling pathway involving PKC, MAPK1/3 and MAPK14, and NF-κB and Stat-3.NEW & NOTEWORTHY Inhalation of dust in industrial agricultural operations is linked to the development of lung diseases. Our studies have isolated for the first time a trypsin protease from poultry farm dust and have shown that it stimulates lung inflammation. The protease stimulates the production of oxidants and cell signaling pathways to increase inflammatory mediator production. Targeting trypsin protease in poultry farm environment may be a useful strategy to counter the harmful effects of dust.
Collapse
Affiliation(s)
- Shilpa Kusampudi
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, United States
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, United States
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, United States
| | - Vijay Boggaram
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, United States
| |
Collapse
|
25
|
Plichta J, Kuna P, Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: recent developments and future perspectives. Front Immunol 2023; 14:1207641. [PMID: 37334374 PMCID: PMC10272527 DOI: 10.3389/fimmu.2023.1207641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic inflammatory diseases of the lung are some of the leading causes of mortality and significant morbidity worldwide. Despite the tremendous burden these conditions put on global healthcare, treatment options for most of these diseases remain scarce. Inhaled corticosteroids and beta-adrenergic agonists, while effective for symptom control and widely available, are linked to severe and progressive side effects, affecting long-term patient compliance. Biologic drugs, in particular peptide inhibitors and monoclonal antibodies show promise as therapeutics for chronic pulmonary diseases. Peptide inhibitor-based treatments have already been proposed for a range of diseases, including infectious disease, cancers and even Alzheimer disease, while monoclonal antibodies have already been implemented as therapeutics for a range of conditions. Several biologic agents are currently being developed for the treatment of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and pulmonary sarcoidosis. This article is a review of the biologics already employed in the treatment of chronic inflammatory pulmonary diseases and recent progress in the development of the most promising of those treatments, with particular focus on randomised clinical trial outcomes.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
26
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:ijms24087581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
27
|
Koumaki D, Gregoriou S, Evangelou G, Krasagakis K. Pruritogenic Mediators and New Antipruritic Drugs in Atopic Dermatitis. J Clin Med 2023; 12:2091. [PMID: 36983094 PMCID: PMC10054239 DOI: 10.3390/jcm12062091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Atopic dermatitis (AD) is a common highly pruritic chronic inflammatory skin disorder affecting 5-20% of children worldwide, while the prevalence in adults varies from 7 to 10%. Patients with AD experience intense pruritus that could lead to sleep disturbance and impaired quality of life. Here, we analyze the pathophysiology of itchiness in AD. We extensively review the histamine-dependent and histamine-independent pruritogens. Several receptors, substance P, secreted molecules, chemokines, and cytokines are involved as mediators in chronic itch. We also, summarize the new emerging antipruritic drugs in atopic dermatitis.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stamatios Gregoriou
- Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School of Athens, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - George Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | |
Collapse
|
28
|
Fu L, MacKeigan DT, Gong Q, Che D, Xu Y, Pi L, Sun C, Yu H, Chen K, Zhou H, Jiang Z, Wang Z, Zhang L, Cerenzia EG, Ni H, Gu X. Thymic stromal lymphopoietin induces platelet mitophagy and promotes thrombosis in Kawasaki disease. Br J Haematol 2023; 200:776-791. [PMID: 36341698 DOI: 10.1111/bjh.18531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis primarily affecting infants and children. Activated platelets predispose patients to coronary artery structural lesions that may lead to thrombotic cardiovascular events. To discover potential proteins underlying platelet activation in KD, we conducted a protein chip assay of 34 cytokines and discovered thymic stromal lymphopoietin (TSLP) was aberrantly expressed, which remained elevated after intravenous immunoglobulin G (IVIG) treatment and during convalescence in KD patients in comparison to healthy controls. Enzyme-linked immunosorbent assay (ELISA) corroborated the upregulation of TSLP in KD patients, which was exacerbated in convalescent patients complicated with thrombosis. TSLP receptors on platelets were also significantly upregulated in KD patients complicated with thrombosis. Platelet activation, apoptosis, and mitochondrial autophagy (mitophagy) were increased in convalescence KD patients complicated with thrombosis. In vitro, TSLP induced platelet activation and platelet mitophagy in healthy blood donors, as observed in KD patients. TSLP, similar to mitophagy agonist carbonyl cyanide 3-chlorophenyl hydrazone (CCCP), promoted thrombosis, which was attenuated by the mitophagy inhibitor Mdivi-1. Co-immunoprecipitation in TSLP-treated platelets revealed TSLP receptor (TSLPR) bound to mitophagy regulators, Parkin and Voltage Dependent Anion Channel Protein 1 (VDAC1).Thus, our results demonstrated that TSLP induced platelet mitophagy via a novel TSLPR/Parkin/VDAC1 pathway that promoted thrombosis in KD. These results suggest TSLP as a novel therapeutic target against KD-associated thrombosis.
Collapse
Affiliation(s)
- Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daniel Thomas MacKeigan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaonan Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaining Chen
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyong Jiang
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhouping Wang
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Eric G Cerenzia
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Heyu Ni
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Parab S, Doshi G. The Experimental Animal Models in Psoriasis Research: A Comprehensive Review. Int Immunopharmacol 2023; 117:109897. [PMID: 36822099 DOI: 10.1016/j.intimp.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Psoriasis is an autoimmune, chronic, inflammatory skin condition mediated by T cells. It differs from other inflammatory conditions by causing significant alterations in epidermal cell proliferation and differentiation that are both complicated and prominent. The lack of an appropriate animal model has significantly hindered studies into the pathogenic mechanisms of psoriasis since animals other than humans typically do not exhibit the complex phenotypic features of human psoriasis. A variety of methods, including spontaneous mutations, drug-induced mutations, genetically engineered animals, xenotransplantation models, and immunological reconstitution approaches, have all been employed to study specific characteristics in the pathogenesis of psoriasis. Although some of these approaches have been used for more than 50 years and far more models have been introduced recently, they have surprisingly not yet undergone detailed validation. Despite their limitations, these models have shown a connection between keratinocyte hyperplasia, vascular hyperplasia, and a cell-mediated immune response in the skin. The xenotransplantation of diseased or unaffected human skin onto immune-compromised recipients has also significantly aided psoriasis research. This technique has been used in a variety of ways to investigate the function of T lymphocytes and other cells, including preclinical therapeutic studies. The design of pertinent in vivo and in vitro psoriasis models is currently of utmost concern and a crucial step toward its cure. This article outlines the general approach in the development of psoriasis-related animal models, aspects of some specific models, along with their strengths and limitations.
Collapse
Affiliation(s)
- Siddhi Parab
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
30
|
O'Byrne PM, Panettieri RA, Taube C, Brindicci C, Fleming M, Altman P. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther 2023; 78:102184. [PMID: 36535465 DOI: 10.1016/j.pupt.2022.102184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, acts as a key mediator in airway inflammation and modulates the function of multiple cell types, including dendritic cells and group 2 innate lymphoid cells. TSLP plays a role in asthma pathogenesis as an upstream cytokine, and data suggest that TSLP blockade with the anti-TSLP monoclonal antibody, tezepelumab, could be efficacious in a broad asthma population. Currently approved asthma biologic therapies target allergic or eosinophilic disease and require phenotyping; therefore, an unmet need exists for a therapy that can address Type 2 (T2)-high and T2-low inflammation in asthma. All currently approved biologic treatments are delivered intravenously or subcutaneously; an inhaled therapy route that allows direct targeting of the lung with reduced systemic impact may offer advantages. Currently in development, ecleralimab (CSJ117) represents the first inhaled anti-TSLP antibody fragment that binds soluble TSLP and prevents TSLP receptor activation, thereby inhibiting further inflammatory signalling cascades. This anti-TSLP antibody fragment is being developed for patients with severe uncontrolled asthma despite standard of care inhaled therapy. A Phase IIa proof of concept study, using allergen bronchoprovocation as a model for asthma exacerbations, found that ecleralimab was well-tolerated and reduced allergen-induced bronchoconstriction in adult patients with mild asthma. These results suggest ecleralimab may be a promising, new therapeutic class for asthma treatment.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada.
| | | | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, New Jersey, USA.
| |
Collapse
|
31
|
Calderon AA, Dimond C, Choy DF, Pappu R, Grimbaldeston MA, Mohan D, Chung KF. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Respir Rev 2023; 32:32/167/220144. [PMID: 36697211 PMCID: PMC9879340 DOI: 10.1183/16000617.0144-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
Interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) are alarmins that are released upon airway epithelial injury from insults such as viruses and cigarette smoke, and play critical roles in the activation of immune cell populations such as mast cells, eosinophils and group 2 innate lymphoid cells. Both cytokines were previously understood to primarily drive type 2 (T2) inflammation, but there is emerging evidence for a role for these alarmins to additionally mediate non-T2 inflammation, with recent clinical trial data in asthma and COPD cohorts with non-T2 inflammation providing support. Currently available treatments for both COPD and asthma provide symptomatic relief with disease control, improving lung function and reducing exacerbation rates; however, there still remains an unmet need for further improving lung function and reducing exacerbations, particularly for those not responsive to currently available treatments. The epithelial cytokines/alarmins are involved in exacerbations; biologics targeting TSLP and IL-33 have been shown to reduce exacerbations in moderate-to-severe asthma, either in a broad population or in specific subgroups, respectively. For COPD, while there is clinical evidence for IL-33 blockade impacting exacerbations in COPD, clinical data from anti-TSLP therapies is awaited. Clinical data to date support an acceptable safety profile for patients with airway diseases for both anti-IL-33 and anti-TSLP antibodies in development. We examine the roles of IL-33 and TSLP, their potential use as drug targets, and the evidence for target patient populations for COPD and asthma, together with ongoing and future trials focused on these targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Divya Mohan
- Genentench, Inc., San Francisco, CA, USA,Corresponding author: Divya Mohan ()
| | - Kian Fan Chung
- National Heart and Lung institute, Imperial College London, London, UK
| |
Collapse
|
32
|
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that acts on multiple cell lineages, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils and innate lymphoid cells, affecting their maturation, survival and recruitment. It is best known for its role in promoting type 2 immune responses such as in allergic diseases and, in 2021, a monoclonal antibody targeting TSLP was approved for the treatment of severe asthma. However, it is now clear that TSLP has many other important roles in a variety of settings. Indeed, several genetic variants for TSLP are linked to disease severity, and chromosomal alterations in TSLP are common in certain cancers, indicating important roles of TSLP in disease. In this Review, we discuss recent advances in TSLP biology, highlighting how it regulates the tissue environment not only in allergic disease but also in infectious diseases, inflammatory diseases and cancer. Encouragingly, therapies targeting the TSLP pathway are being actively pursued for several diseases.
Collapse
Affiliation(s)
- Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Pezeshki PS, Nowroozi A, Razi S, Rezaei N. Asthma and Allergy. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Møller DL, Kielsen K, Nielsen CH, Sengeløv H, Pedersen AE, Ryder LP, Müller K. Thymic stromal lymphopoietin levels after allogeneic hematopoietic stem cell transplantation. Immunopharmacol Immunotoxicol 2022; 44:1004-1012. [PMID: 35899395 DOI: 10.1080/08923973.2022.2102989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is an immunoregulatory, Th2-polarizing cytokine produced by epithelial cells. We hypothesized that TSLP affects immune reconstitution after hematopoietic stem cell transplantation (HSCT) leading to increased alloreactivity. METHODS We measured plasma TSLP by ELISA in 38 patients and assessed the immune reconstitution by flow cytometry. RESULTS TSLP levels rose after initiation of the conditioning to peak at day +21 after HSCT (p = .03), where TSLP levels correlated with counts of neutrophils (rho = 0.36, p = .04), monocytes (rho = 0.58, p = .006), and lymphocytes (rho = 0.59, p = .02). Overall absolute TSLP levels were not associated with acute or chronic graft-vs-host disease (a/cGvHD). However, patients mounting a sustained increase in TSLP levels at day +90 had a higher risk of cGvHD compared to patients who had returned to pre-conditioning levels at that stage (cumulative incidence: 77% vs. 38%, p = .01). CONCLUSION In conclusion, this study suggests a role of TSLP in immune reconstitution and alloreactivity post-HSCT. lymphopoietin (TSLP) is an immunoregulatory, Th2-polarizing cytokine produced by epithelial cells. We hypothesized that TSLP affects immune reconstitution after hematopoietic stem cell transplantation (HSCT) leading to increased alloreactivity. We measured plasma TSLP by ELISA in 38 patients and assessed the immune reconstitution by flow cytometry.
Collapse
Affiliation(s)
- Dina Leth Møller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Department of Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Katrine Kielsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Department of Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Lars Peter Ryder
- The Tissue Typing Laboratory, Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Department of Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
β-Caryophyllene Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis through the Downregulation of Mitogen-Activated Protein Kinase/EGR1/TSLP Signaling Axis. Int J Mol Sci 2022; 23:ijms232314861. [PMID: 36499191 PMCID: PMC9740728 DOI: 10.3390/ijms232314861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin diseases accompanied by severe itching. β-caryophyllene (BCP), which displays anti-inflammatory activity, is a natural agonist of cannabinoid receptor 2. However, the therapeutic effects of BCP on atopic dermatitis (AD) remain poorly understood. The current study aimed to evaluate the topical therapeutic efficacy of BCP in an AD-like mouse model. Thymic Stromal Lymphopoietin (TSLP) is a keratinocyte-derived cytokine that drives AD pathogenesis. This study also investigated the effect of BCP on the interleukin 4 (IL-4)-induced expression of TSLP in HaCaT keratinocytes. We found that the topical application of BCP alleviated AD-like skin inflammation and inhibited the infiltration of proinflammatory cells into skin lesions. Moreover, the topical application of BCP reduced EGR1 (Early Growth Response 1) and TSLP expression in AD-like skin lesions. We also found that BCP inhibited IL-4-induced TSLP expression by downregulating mitogen-activated protein kinase (MAPK)-mediated EGR1 expression in HaCaT keratinocytes. These findings demonstrate that BCP ameliorates DNCB-induced AD-like skin lesions through the downregulation of the MAPK/EGR1/TSLP signaling axis. BCP may be applicable for developing topical therapeutic agents for chronic skin inflammatory diseases, such as AD.
Collapse
|
36
|
Atopic Keratoconjunctivitis: Diagnosis and Treatment. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Mießner H, Seidel J, Smith ESJ. In vitro models for investigating itch. Front Mol Neurosci 2022; 15:984126. [PMID: 36385768 PMCID: PMC9644192 DOI: 10.3389/fnmol.2022.984126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from in vivo animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human in vivo experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most in vitro models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic in vitro models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, in vitro models offer a chance to investigate otherwise inaccessible specific cell–cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As in vitro models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current in vitro models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.
Collapse
Affiliation(s)
- Hendrik Mießner
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Judith Seidel
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Ewan St. John Smith,
| |
Collapse
|
38
|
Cao J, Kuang D, Luo M, Wang S, Fu C. Targeting circNCLN/miR-291a-3p/TSLP signaling axis alleviates lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun 2022; 617:60-67. [PMID: 35679712 DOI: 10.1016/j.bbrc.2022.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease caused by the severe and acute response of the lungs to a variety of direct and indirect insults. Patients with ALI are currently treated mainly with respiratory support due to inadequate understanding of ALI progression. Alveolar epithelial cells produced thymic stromal lymphopoietin (TSLP) has been proved to worsen ALI by triggering airway inflammation. However, the regulation mechanism of TSLP expression remains unclear. In this study, we identified the crucial role played by circNCLN in lipopolysaccharide (LPS)-induced ALI. We demonstrated for the first time that miR-291a-3p could directly bind to the 3'UTR of TSLP and suppress TSLP expression in alveolar epithelial cells. Mechanistically, our data identified that circNCLN acts as a molecular sponge to antagonize miR-291a-3p and thereby maintaining the expression of TSLP in alveolar epithelial cells. Importantly, targeting circNCLN by its antisense oligonucleotide (ASO) markedly alleviated LPS-induced ALI. Therefore, our results suggested that circNCLN/miR-291a-3p/TSLP axis may be an important signaling in LPS-induced ALI and circNCLN inhibition may serve as a potential treatment of ALI.
Collapse
Affiliation(s)
- Jianwei Cao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Ming Luo
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Shanzhong Wang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Chunlai Fu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
39
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
40
|
Segawa R, Ishihara R, Hiratsuka M, Hirasawa N. 229Inhibition of thymic stromal lymphopoietin production by FK3453. J Pharmacol Sci 2022; 149:198-204. [DOI: 10.1016/j.jphs.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
|
41
|
Nutrition during Pregnancy and Lactation: Epigenetic Effects on Infants’ Immune System in Food Allergy. Nutrients 2022; 14:nu14091766. [PMID: 35565735 PMCID: PMC9103859 DOI: 10.3390/nu14091766] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Food allergies are an increasing health problem worldwide. They are multifactorial diseases, in which the genome alone does not explain the development of the disease, but a genetic predisposition and various environmental factors contribute to their onset. Environmental factors, in particular nutritional factors, in the early stages of life are recognized as key elements in the etiology of food allergies. There is growing evidence advising that nutrition can affect the risk of developing food allergies through epigenetic mechanisms elicited by the nutritional factors themselves or by modulating the gut microbiota and its functional products. Gut microbiota and postbiotics can in turn influence the risk of food allergy development through epigenetic mechanisms. Epigenetic programming accounts not only for the short-term effects on the individual’s health status, but also for those observed in adulthood. The first thousand days of life represent an important window of susceptibility in which environmental factors, including nutritional ones, can influence the risk of developing allergies through epigenetic mechanisms. From this point of view, it represents an interesting window of opportunity and intervention. This review reports the main nutritional factors that in the early stages of life can influence immune oral tolerance through the modulation of epigenetic mechanisms.
Collapse
|
42
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Jagadeesan S, Dhar S. Atopic March: Dermatologic perspectives. Indian J Dermatol 2022; 67:265-272. [PMID: 36386083 PMCID: PMC9644798 DOI: 10.4103/ijd.ijd_989_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The progression of allergic diseases with the development of atopic dermatitis and food allergy in infancy and subsequent asthma and allergic rhinitis in the later childhood is known as 'atopic march'. There have been many arguments in favour of and against this concept. This article reviews the latest epidemiology, immunological mechanisms and translational implications in clinical practice and research, which is relevant to the dermatologists. The role of skin as a site of initiation and the potential for interventions on skin that may prevent subsequent allergic diseases is also highlighted.
Collapse
|
44
|
Dai X, Muto J, Shiraishi K, Utsunomiya R, Mori H, Murakami M, Sayama K. TSLP impairs epidermal barrier integrity by stimulating the formation of nuclear IL-33/phosphorylated STAT3 complex in human keratinocytes. J Invest Dermatol 2022; 142:2100-2108.e5. [DOI: 10.1016/j.jid.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
|
45
|
Thymic stromal lymphopoietin and alarmins as possible therapeutical targets for asthma. Curr Opin Allergy Clin Immunol 2021; 21:590-596. [PMID: 34608100 PMCID: PMC9722372 DOI: 10.1097/aci.0000000000000793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Overview of epithelial cytokines, particularly thymic stromal lymphopoietin (TSLP), released by the airway epithelium and the effects of their inhibition on the outcomes of patients with asthma. RECENT FINDINGS The epithelial cytokines are early mediators at the top of the inflammatory cascade and are attractive therapeutic targets to prevent exacerbations and improve lung function in patients with type 2 and nontype 2 asthma. SUMMARY Clinical trials demonstrated that tezepelumab, an anti-TSLP monoclonal antibody, is a promising alternative treatment for asthma that is effective also in nontype 2 asthma. The PATHWAY and NAVIGATOR trials have assessed its effects in improving outcomes on broad clinically diverse populations. The identification of biomarkers will help to predict potential responders and help in asthma treatment personalization.
Collapse
|
46
|
Gallegos-Alcalá P, Jiménez M, Cervantes-García D, Salinas E. The Keratinocyte as a Crucial Cell in the Predisposition, Onset, Progression, Therapy and Study of the Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms221910661. [PMID: 34639001 PMCID: PMC8509070 DOI: 10.3390/ijms221910661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The keratinocyte (KC) is the main functional and structural component of the epidermis, the most external layer of the skin that is highly specialized in defense against external agents, prevention of leakage of body fluids and retention of internal water within the cells. Altered epidermal barrier and aberrant KC differentiation are involved in the pathophysiology of several skin diseases, such as atopic dermatitis (AD). AD is a chronic inflammatory disease characterized by cutaneous and systemic immune dysregulation and skin microbiota dysbiosis. Nevertheless, the pathological mechanisms of this complex disease remain largely unknown. In this review, we summarize current knowledge about the participation of the KC in different aspects of the AD. We provide an overview of the genetic predisposing and environmental factors, inflammatory molecules and signaling pathways of the KC that participate in the physiopathology of the AD. We also analyze the link among the KC, the microbiota and the inflammatory response underlying acute and chronic skin AD lesions.
Collapse
Affiliation(s)
- Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Daniel Cervantes-García
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- National Council of Science and Technology, Ciudad de México 03940, Mexico
| | - Eva Salinas
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- Correspondence: ; Tel.: +52-449-9108424
| |
Collapse
|
47
|
Ogasawara A, Yuki T, Takai T, Yokozeki K, Katagiri A, Takahashi Y, Yokozeki H, Basketter D, Sakaguchi H. Epicutaneous challenge with protease allergen requires its protease activity to recall T H2 and T H17/T H22 responses in mice pre-sensitized via distant skin. J Immunotoxicol 2021; 18:118-126. [PMID: 34487475 DOI: 10.1080/1547691x.2021.1968548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epicutaneous exposure to allergenic proteins is an important sensitization route for skin diseases like protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. Environmental allergen sources such as house dust mites contain proteases, which are frequent allergens themselves. Here, the dependency of T-helper (TH) cell recall responses on allergen protease activity in the elicitation phase in mice pre-sensitized via distant skin was investigated. Repeated epicutaneous administration of a model protease allergen, i.e. papain, to the back skin of hairless mice induced skin inflammation, serum papain-specific IgE and TH2 and TH17 cytokine responses in the sensitization sites, and antigen-restimulated draining lymph node cells. In the papain-sensitized but not vehicle-treated mice, subsequent single challenge on the ear skin with papain, but not with protease inhibitor-treated papain, up-regulated the gene expression of TH2 and TH17/TH22 cytokines along with cytokines promoting these TH cytokine responses (TSLP, IL-33, IL-17C, and IL-23p19). Up-regulation of IL-17A gene expression and cells expressing RORγt occurred in the ear skin of the presensitized mice even before the challenge. In a reconstructed epidermal model with a three-dimensional culture of human keratinocytes, papain but not protease inhibitor-treated papain exhibited increasing transdermal permeability and stimulating the gene expression of TSLP, IL-17C, and IL-23p19. This study demonstrated that allergen protease activity contributed to the onset of cutaneous TH2 and TH17/TH22 recall responses on allergen re-encounter at sites distant from the original epicutaneous sensitization exposures. This finding suggested the contribution of protease-dependent barrier disruption and induction of keratinocyte-derived cytokines to the recall responses.
Collapse
Affiliation(s)
- Akira Ogasawara
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyosuke Yokozeki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Asuka Katagiri
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Yutaka Takahashi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
48
|
Choa R, Tohyama J, Wada S, Meng H, Hu J, Okumura M, May RM, Robertson TF, Pai RAL, Nace A, Hopkins C, Jacobsen EA, Haldar M, FitzGerald GA, Behrens EM, Minn AJ, Seale P, Cotsarelis G, Kim B, Seykora JT, Li M, Arany Z, Kambayashi T. Thymic stromal lymphopoietin induces adipose loss through sebum hypersecretion. Science 2021; 373:373/6554/eabd2893. [PMID: 34326208 DOI: 10.1126/science.abd2893] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Emerging studies indicate that the immune system can regulate systemic metabolism. Here, we show that thymic stromal lymphopoietin (TSLP) stimulates T cells to induce selective white adipose loss, which protects against obesity, improves glucose metabolism, and mitigates nonalcoholic steatohepatitis. Unexpectedly, adipose loss was not caused by alterations in food intake, absorption, or energy expenditure. Rather, it was induced by the excessive loss of lipids through the skin as sebum. TSLP and T cells regulated sebum release and sebum-associated antimicrobial peptide expression in the steady state. In human skin, TSLP expression correlated directly with sebum-associated gene expression. Thus, we establish a paradigm in which adipose loss can be achieved by means of sebum hypersecretion and uncover a role for adaptive immunity in skin barrier function through sebum secretion.
Collapse
Affiliation(s)
- Ruth Choa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Junichiro Tohyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Shogo Wada
- Cardiovascular Institute and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Tanner F Robertson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruth-Anne Langan Pai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arben Nace
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hopkins
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Kim
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Arany
- Cardiovascular Institute and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Blicharz L, Rudnicka L, Czuwara J, Waśkiel-Burnat A, Goldust M, Olszewska M, Samochocki Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis-An Update. Int J Mol Sci 2021; 22:ijms22168403. [PMID: 34445108 PMCID: PMC8395079 DOI: 10.3390/ijms22168403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatosis affecting up to 30% of children and 10% of adults worldwide. AD is primarily driven by an epidermal barrier defect which triggers immune dysregulation within the skin. According to recent research such phenomena are closely related to the microbial dysbiosis of the skin. There is growing evidence that cutaneous microbiota and bacterial biofilms negatively affect skin barrier function, contributing to the onset and exacerbation of AD. This review summarizes the latest data on the mechanisms leading to microbiome dysbiosis and biofilm formation in AD, and the influence of these phenomena on skin barrier function.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
- Correspondence:
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Małgorzata Olszewska
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Zbigniew Samochocki
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| |
Collapse
|
50
|
Jacobo-Delgado YM, Torres-Juarez F, Rodríguez-Carlos A, Santos-Mena A, Enciso-Moreno JE, Rivas-Santiago C, Diamond G, Rivas-Santiago B. Retinoic acid induces antimicrobial peptides and cytokines leading to Mycobacterium tuberculosis elimination in airway epithelial cells. Peptides 2021; 142:170580. [PMID: 34033876 DOI: 10.1016/j.peptides.2021.170580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is the leading cause of death by a single infectious agent, Mycobacterium tuberculosis (Mtb). Alveolar macrophages and respiratory epithelial cells are the first cells exposed to Mtb during the primary infection, once these cells are activated, secrete cytokines and antimicrobial peptides that are associated with the Mtb contention and elimination. Vitamins are micronutrients that function as boosters on the innate immune system, however, is unclear whether they have any protective activity during Mtb infection. Thus, we investigated the role of vitamin A (retinoic acid), vitamin C (ascorbic acid), vitamin D (calcitriol), and vitamin E (alfa-tocopherol) as inductors of molecules related to mycobacterial infection in macrophages and epithelial cells. Our results showed that retinoic acid promotes the expression of pro- and anti-inflammatory molecules such as Thymic stromal lymphopoietin (TSLP), β-defensin-2, IL-1β, CCL20, β-defensin-3, Cathelicidin LL-37, TGF-β, and RNase 7, whereas calcitriol, ascorbic acid, and α-tocopherol lead to an anti-inflammatory response. Treatment of Mtb-infected epithelial cells and macrophage-like cells with the vitamins showed a differential response, where calcitriol reduced Mtb in macrophages, while retinoic acid reduced infection in epithelial cells. Thereby, we propose that a combination of calcitriol and retinoic acid supplementation can drive the immune response, and promotes the Mtb elimination by increasing the expression of antimicrobial peptides and cytokines, while simultaneously modulating inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cesar Rivas-Santiago
- CONACYT-Academic Unit of Chemical Sciences, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | | |
Collapse
|