1
|
Wang Y, Fu J, He W, Gao Y, Du J, Xu J, Guo L, Liu Y. Bone marrow mesenchymal stem cells ameliorate diet-induced obesity by activating thermogenesis and alleviating inflammation in adipose tissue. Biochem Biophys Res Commun 2025; 747:151172. [PMID: 39793396 DOI: 10.1016/j.bbrc.2024.151172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Obesity and its related metabolic disorders seriously threaten our health and significantly reduce our life expectancy. The aim of the present study was to explore the effects of bone marrow mesenchymal stem cells (BMSCs) on high-fat diet (HFD)-induced obesity mice. The results demonstrated that BMSCs significantly reduced body weight, improved glucose tolerance and insulin sensitivity in obese mice. Further analysis showed that BMSCs could promote brown adipose tissue (BAT) activity and white adipose tissue (WAT) browning by increasing the expression of mitochondrial uncouple protein 1 (UCP1). Additionally, BMSCs markedly increase mitochondrial biogenesis, activate oxidative phosphorylation (OXPHOS) in adipose tissue, further contributing to energy metabolism regulation. Moreover, BMSCs were effective in inhibiting macrophage-related inflammation in adipose tissue, thereby mitigating obesity-associated inflammatory responses. Overall, our results lay the foundation for research on the potential of BMSCs as a promising strategy in alleviating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Wanghong He
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yike Gao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Lijia Guo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China; Department of Orthodontics (WangFuJing Campus), School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
2
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025:112466. [PMID: 39848431 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
- Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush University, Chicago, United States.
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, United States
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, United States
| |
Collapse
|
3
|
Lempesis IG, Hoebers N, Essers Y, Jocken JWE, Dubois LJ, Blaak EE, Manolopoulos KN, Goossens GH. Impaired Mitochondrial Respiration in Upper Compared to Lower Body Differentiated Human Adipocytes and Adipose Tissue. J Clin Endocrinol Metab 2024; 109:e2291-e2301. [PMID: 38375937 PMCID: PMC11570378 DOI: 10.1210/clinem/dgae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
CONTEXT Abdominal obesity is associated with increased cardiometabolic disease risk, while lower body fat seems to confer protection against obesity-related complications. The functional differences between upper and lower body adipose tissue (AT) remain poorly understood. OBJECTIVE We aimed to examine whether mitochondrial respiration is impaired in abdominal as compared to femoral differentiated human multipotent adipose-derived stem cells (hMADS; primary outcome) and AT in postmenopausal women. DESIGN In this cross-sectional study, 23 postmenopausal women with normal weight or obesity were recruited at the University of Birmingham/Queen Elizabeth Hospital Birmingham (Birmingham, UK). We collected abdominal and femoral subcutaneous AT biopsies to determine mitochondrial oxygen consumption rates in differentiated abdominal and femoral hMADS. Furthermore, we assessed oxidative phosphorylation (OXPHOS) protein expression and mitochondrial DNA (mtDNA) content in abdominal and femoral AT as well as hMADS. Finally, we explored in vivo fractional oxygen extraction and carbon dioxide release across abdominal and femoral subcutaneous AT in a subgroup of the same individuals with normal weight or obesity. RESULTS We found lower basal and maximal uncoupled mitochondrial oxygen consumption rates in abdominal compared to femoral hMADS. In line, in vivo fractional oxygen extraction and carbon dioxide release were lower across abdominal than femoral AT. OXPHOS protein expression and mtDNA content did not significantly differ between abdominal and femoral differentiated hMADS and AT. CONCLUSION The present findings demonstrate that in vitro mitochondrial respiration and in vivo oxygen fractional extraction are less in upper compared to lower body differentiated hMADS and AT, respectively, in postmenopausal women.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Nicole Hoebers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Yvonne Essers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Konstantinos N Manolopoulos
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
4
|
Jing K, Gu R, Chen F, Wan J, Sun Y, Guo P, Chen F, Feng J, Guo J, Liu X. Orosomucoid 2 is an endogenous regulator of neuronal mitochondrial biogenesis and promotes functional recovery post-stroke. Pharmacol Res 2024; 209:107422. [PMID: 39293585 DOI: 10.1016/j.phrs.2024.107422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/01/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Development of functional recovery therapies is critical to reduce the global impact of stroke as the leading cause of long-term disability. Our previous studies found that acute-phase protein orosomucoid (ORM) could provide an up to 6 h therapeutic time window to reduce infarct volume in acute ischemic stroke by improving endothelial function. However, its role in neurons and functional recovery post-stroke remains largely unknown. Here, we showed that exogenous ORM administration with initial injection at 0.5 h (early) or 12 h (delayed) post-MCAO daily for consecutive 7 days significantly decreased infarct area, improved motor and cognitive functional recovery, and promoted mitochondrial biogenesis after MCAO. While neuron-specific knockout of ORM2, a dominant subtype of ORM in the brain, produced opposite effects which could be rescued by exogenous ORM. In vitro, exogenous ORM protected SH-SY5Y cells from OGD-induced damage and promoted mitochondrial biogenesis, while endogenous ORM2 deficiency worsened these processes. Mechanistically, inactivation of CCR5 or AMPK eliminated the protective effects of ORM on neuronal damage and mitochondrial biogenesis. Taken together, our findings demonstrate that ORM, mainly ORM2, is an endogenous regulator of neuronal mitochondrial biogenesis by activating CCR5/AMPK signaling pathway, and might act as a potential therapeutic target for the functional recovery post-stroke.
Collapse
Affiliation(s)
- Kai Jing
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Ruinan Gu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Feng Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jingjing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Pengyue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jinmin Guo
- Department of Clinical Pharmacy, 960th Hospital of Joint Logistic Support Force, Jinan, Shandong, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China.
| |
Collapse
|
5
|
Amiri P, Hosseini SA, Saghafi-Asl M, Roshanravan N, Tootoonchian M. Expression of PGC-1α, PPAR-α and UCP1 genes, metabolic and anthropometric factors in response to sodium butyrate supplementation in patients with obesity: a triple-blind, randomized placebo-controlled clinical trial. Eur J Clin Nutr 2024:10.1038/s41430-024-01512-x. [PMID: 39448815 DOI: 10.1038/s41430-024-01512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES There is increasing evidence that gut metabolites have a role in the etiology of obesity. This study aimed to investigate the effects of sodium butyrate (NaB) supplementation on the expression of peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1α (PGC-1α), PPAR-α, and uncoupling protein-1 (UCP-1) genes, as well as on the metabolic parameters and anthropometric indices in persons with obesity. METHODS In this triple-blind placebo-controlled randomized clinical trial, 50 individuals with obesity were randomly assigned to NaB (600 mg/day) + hypo-caloric diet or placebo group + hypo-caloric diet for 8 weeks. The study measured the participants' anthropometric characteristics, food consumption, and feelings of hunger in addition to the serum levels of metabolic indices and the mRNA expression of the PGC-1α, PPAR-α, and UCP-1 genes in peripheral blood mononuclear cells (PBMCs). RESULTS PGC-1α and UCP-1 genes expression significantly increased in NaB group compared to the placebo at the endpoint. A significant decrease in weight, BMI, and waist circumference (WC) was observed in NaB group. Among the metabolic factors, NaB significantly decreased fasting blood sugar (FBS) (P = 0.04), low-density lipoprotein cholesterol (LDL-C) (P = 0.038) and increased high-density lipoprotein cholesterol (HDL-C) (P = 0.016). NaB could not significantly change serum GLP-1 level. CONCLUSIONS This study unveiled NaB supplementation alone cannot have significant beneficial effects on anthropometric, and biochemical factors. NaB could affect anthropometric and metabolic risk variables associated with obesity only when prescribed, along with calorie restriction. CLINICAL TRIAL REGISTRATION This study was registered in the Iranian Registry of Clinical Trials ( https://en.irct.ir/trial/53968 ) on 31 January 2021 (registry number IRCT20190303042905N2).
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Tootoonchian
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
7
|
Pinette JA, Myers JW, Park WY, Bryant HG, Eddie AM, Wilson GA, Montufar C, Shaikh Z, Vue Z, Nunn ER, Bessho R, Cottam MA, Haase VH, Hinton AO, Spinelli JB, Cartailler JP, Zaganjor E. Disruption of nucleotide biosynthesis reprograms mitochondrial metabolism to inhibit adipogenesis. J Lipid Res 2024; 65:100641. [PMID: 39245323 DOI: 10.1016/j.jlr.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
A key organismal response to overnutrition involves the development of new adipocytes through the process of adipogenesis. Preadipocytes sense changes in the systemic nutrient status and metabolites can directly modulate adipogenesis. We previously identified a role of de novo nucleotide biosynthesis in adipogenesis induction, whereby inhibition of nucleotide biosynthesis suppresses the expression of the transcriptional regulators PPARγ and C/EBPα. Here, we set out to identify the global transcriptomic changes associated with the inhibition of nucleotide biosynthesis. Through RNA sequencing (RNAseq), we discovered that mitochondrial signatures were the most altered in response to inhibition of nucleotide biosynthesis. Blocking nucleotide biosynthesis induced rounded mitochondrial morphology, and altered mitochondrial function, and metabolism, reducing levels of tricarboxylic acid cycle intermediates, and increasing fatty acid oxidation (FAO). The loss of mitochondrial function induced by suppression of nucleotide biosynthesis was rescued by exogenous expression of PPARγ. Moreover, inhibition of FAO restored PPARγ expression, mitochondrial protein expression, and adipogenesis in the presence of nucleotide biosynthesis inhibition, suggesting a regulatory role of nutrient oxidation in differentiation. Collectively, our studies shed light on the link between substrate oxidation and transcription in cell fate determination.
Collapse
Affiliation(s)
- Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jacob W Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather G Bryant
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alex M Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Genesis A Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth R Nunn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ryoichi Bessho
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew A Cottam
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Volker H Haase
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Research and Medical Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Ke S, Hu Q, Zhu G, Li L, Sun X, Cheng H, Li L, Yao Y, Li H. Remodeling of white adipose tissue microenvironment against obesity by phytochemicals. Phytother Res 2024; 38:4904-4922. [PMID: 36786412 DOI: 10.1002/ptr.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Obesity is a kind of chronic disease due to a long-term imbalance between energy intake and expenditure. In recent years, the number of obese people around the world has soared, and obesity problem should not be underestimated. Obesity is characterized by changes in the adipose microenvironment, mainly manifested as hypertrophy, chronic inflammatory status, hypoxia, and fibrosis, thus contributing to the pathological changes of other tissues. A plethora of phytochemicals have been found to improve adipose microenvironment, thus prevent and resist obesity, providing a new research direction for the treatment of obesity and related diseases. This paper discusses remodeling of the adipose tissue microenvironment as a therapeutic avenue and reviews the progress of phytochemicals in fighting obesity by improving the adipose microenvironment.
Collapse
Affiliation(s)
- Shuwei Ke
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qingyuan Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Guanyao Zhu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xuechao Sun
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Hongbin Cheng
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Lingqiao Li
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Yuanfa Yao
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
10
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
11
|
Fuwa M, Kajita K, Mori I, Asano M, Kajita T, Senda T, Inagaki T, Morita H. Mitochondrial fractions located in the cytoplasmic and peridroplet areas of white adipocytes have distinct roles. FEBS Lett 2024; 598:1753-1768. [PMID: 38658180 DOI: 10.1002/1873-3468.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
The role of mitochondria in white adipocytes (WAs) has not been fully explored. A recent study revealed that brown adipocytes contain functionally distinct mitochondrial fractions, cytoplasmic mitochondria, and peridroplet mitochondria. However, it is not known whether such a functional division of mitochondria exists in WA. Herein, we observed that mitochondria could be imaged and mitochondrial DNA and protein detected in pellets obtained from the cytoplasmic layer and oil layer of WAs after centrifugation. The mitochondria in each fraction were designated as cytoplasmic mitochondria (CMw) and peridroplet mitochondria (PDMw) in WAs, respectively. CMw had higher β-oxidation activity than PDMw, and PDMw was associated with diacylglycerol acyltransferase 2. Therefore, CMw may be involved in β-oxidation and PDMw in droplet expansion in WAs.
Collapse
Affiliation(s)
- Masayuki Fuwa
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kazuo Kajita
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women's University, Japan
| | - Ichiro Mori
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Motochika Asano
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Toshiko Kajita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takao Senda
- Department of Anatomy, Gifu University Graduate School of Medicine, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunnma University, Maebashi-shi, Japan
| | - Hiroyuki Morita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan
| |
Collapse
|
12
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
13
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
14
|
Pearce B, Pearce K. Mitochondrial dysfunction and diabetes in South Africa: A review. ENDOCRINE AND METABOLIC SCIENCE 2024; 14:100157. [DOI: 10.1016/j.endmts.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
15
|
Zakic T, Kalezic A, Drvendzija Z, Udicki M, Ivkovic Kapicl T, Srdic Galic B, Korac A, Jankovic A, Korac B. Breast Cancer: Mitochondria-Centered Metabolic Alterations in Tumor and Associated Adipose Tissue. Cells 2024; 13:155. [PMID: 38247846 PMCID: PMC10814287 DOI: 10.3390/cells13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The close cooperation between breast cancer and cancer-associated adipose tissue (CAAT) shapes the malignant phenotype, but the role of mitochondrial metabolic reprogramming and obesity in breast cancer remains undecided, especially in premenopausal women. Here, we examined mitochondrial metabolic dynamics in paired biopsies of malignant versus benign breast tumor tissue and CAAT in normal-weight and overweight/obese premenopausal women. Lower protein level of pyruvate dehydrogenase and citrate synthase in malignant tumor tissue indicated decreased carbon flux from glucose into the Krebs cycle, whereas the trend was just the opposite in malignant CAAT. Simultaneously, stimulated lipolysis in CAAT of obese women was followed by upregulated β-oxidation, as well as fatty acid synthesis enzymes in both tumor tissue and CAAT of women with malignant tumors, corroborating their physical association. Further, protein level of electron transport chain complexes was generally increased in tumor tissue and CAAT from women with malignant tumors, respective to obesity. Preserved mitochondrial structure in malignant tumor tissue was also observed. However, mitochondrial DNA copy number and protein levels of PGC-1α were dependent on both malignancy and obesity in tumor tissue and CAAT. In conclusion, metabolic cooperation between breast cancer and CAAT in premenopausal women involves obesity-related, synchronized changes in mitochondrial metabolism.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Zorka Drvendzija
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Mirjana Udicki
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Tatjana Ivkovic Kapicl
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
- Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia;
| | - Biljana Srdic Galic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Aleksandra Korac
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
16
|
Swain J, Jadhao P, Sravya SL, Teli B, Lavanya K, Singh J, Sahoo A, Das S. Mitochondrial Dysfunction and Imeglimin: A New Ray of Hope for the Treatment of Type-2 Diabetes Mellitus. Mini Rev Med Chem 2024; 24:1575-1589. [PMID: 37861052 DOI: 10.2174/0113895575260225230921062013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 10/21/2023]
Abstract
Diabetes is a rapidly growing health challenge and epidemic in many developing countries, including India. India, being the diabetes capital of the world, has the dubious dual distinction of being the leading nations for both undernutrition and overnutrition. Diabetes prevalence has increased in both rural and urban areas, affected the younger population and increased the risk of complications and economic burden. These alarming statistics ring an alarm bell to achieve glycemic targets in the affected population in order to decrease diabetes-related morbidity and mortality. In the recent years, diabetes pathophysiology has been extended from an ominous triad through octet and dirty dozen etc. There is a new scope to target multiple pathways at the molecular level to achieve a better glycemic target and further prevent micro- and macrovascular complications. Mitochondrial dysfunction has a pivotal role in both β-cell failure and insulin resistance. Hence, targeting this molecular pathway may help with both insulin secretion and peripheral tissue sensitization to insulin. Imeglimin is the latest addition to our anti-diabetic armamentarium. As imeglimin targets, this root cause of defective energy metabolism and insulin resistance makes it a new add-on therapy in different diabetic regimes to achieve the proper glycemic targets. Its good tolerability and efficacy profiles in recent studies shows a new ray of hope in the journey to curtail diabetes-related morbidity.
Collapse
Affiliation(s)
- Jayshree Swain
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Pooja Jadhao
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - S L Sravya
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Brij Teli
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Kasukurti Lavanya
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Jaspreet Singh
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Abhay Sahoo
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
17
|
Kwon J, Aoki Y, Takahashi H, Nakata R, Kawarasaki S, Ni Z, Yu R, Inoue H, Inoue K, Kawada T, Goto T. Inflammation-induced nitric oxide suppresses PPARα expression and function via downregulation of Sp1 transcriptional activity in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194987. [PMID: 37739218 DOI: 10.1016/j.bbagrm.2023.194987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that Ppara gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses Ppara expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed Ppara mRNA expression in 10T1/2 adipocytes. In addition, Ppara transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on Ppara gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the Ppara gene, which might partially result from the reduced Sp1 expression levels by NO. This study delineated the molecular mechanism that modulates Ppara gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of Ppara in WAT under obese conditions.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Yumeko Aoki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Zheng Ni
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hiroyasu Inoue
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
18
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
19
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Hiraike Y, Saito K, Oguchi M, Wada T, Toda G, Tsutsumi S, Bando K, Sagawa J, Nagano G, Ohno H, Kubota N, Kubota T, Aburatani H, Kadowaki T, Waki H, Yanagimoto S, Yamauchi T. NFIA in adipocytes reciprocally regulates mitochondrial and inflammatory gene program to improve glucose homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2308750120. [PMID: 37487068 PMCID: PMC10401007 DOI: 10.1073/pnas.2308750120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Adipose tissue is central to regulation of energy homeostasis. Adaptive thermogenesis, which relies on mitochondrial oxidative phosphorylation (Ox-Phos), dissipates energy to counteract obesity. On the other hand, chronic inflammation in adipose tissue is linked to type 2 diabetes and obesity. Here, we show that nuclear factor I-A (NFIA), a transcriptional regulator of brown and beige adipocytes, improves glucose homeostasis by upregulation of Ox-Phos and reciprocal downregulation of inflammation. Mice with transgenic expression of NFIA in adipocytes exhibited improved glucose tolerance and limited weight gain. NFIA up-regulates Ox-Phos and brown-fat-specific genes by enhancer activation that involves facilitated genomic binding of PPARγ. In contrast, NFIA in adipocytes, but not in macrophages, down-regulates proinflammatory cytokine genes to ameliorate adipose tissue inflammation. NFIA binds to regulatory region of the Ccl2 gene, which encodes proinflammatory cytokine MCP-1 (monocyte chemoattractant protein-1), to down-regulate its transcription. CCL2 expression was negatively correlated with NFIA expression in human adipose tissue. These results reveal the beneficial effect of NFIA on glucose and body weight homeostasis and also highlight previously unappreciated role of NFIA in suppressing adipose tissue inflammation.
Collapse
Affiliation(s)
- Yuta Hiraike
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
- The University of Tokyo Excellent Young Researcher Program, The University of Tokyo, Tokyo113-8654, Japan
| | - Kaede Saito
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
| | - Misato Oguchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Takahito Wada
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Gotaro Toda
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Shuichi Tsutsumi
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Junji Sagawa
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Gaku Nagano
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, Tokyo113-8655, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo103-0002, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo162-8636, Japan
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
| | | | - Hironori Waki
- Department of Diabetes and Endocrinology, Akita University Graduate School of Medicine, Akita010-8543, Japan
| | - Shintaro Yanagimoto
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| |
Collapse
|
21
|
Guo Y, Zhang Q, Zheng L, Shou J, Zhuang S, Xiao W, Chen P. Depot-specific adaption of adipose tissue for different exercise approaches in high-fat diet/streptozocin-induced diabetic mice. Front Physiol 2023; 14:1189528. [PMID: 37485056 PMCID: PMC10358987 DOI: 10.3389/fphys.2023.1189528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Adipose tissue pathology plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Understanding the impact of exercise training on adipose tissue adaptation is of paramount importance in enhancing metabolic health. In this study, we aimed to investigate the effects of various exercise modalities on three distinct adipose tissue depots, namely, interscapular brown adipose tissue (iBAT), subcutaneous white adipose tissue (sWAT), and epididymal white adipose tissue (eWAT), in a murine model of diabetes. Methods: Male C57BL/6J mice received a 12-week high-fat diet and a single injection of streptozotocin, followed by an 8-week exercise intervention. The exercise intervention included swimming, resistance training, aerobic exercise, and high-intensity interval training (HIIT). Results: We found that exercise training reduced body weight and body fat percentage, diminished adipocyte size and increased the expression of mitochondria-related genes (PGC1, COX4, and COX8B) in three adipose tissue depots. The effects of exercise on inflammatory status include a reduction in crown-like structures and the expression of inflammatory factors, mainly in eWAT. Besides, exercise only induces the browning of sWAT, which may be related to the expression of the sympathetic marker tyrosine hydroxylase. Among the four forms of exercise, HIIT was the most effective in reducing body fat percentage, increasing muscle mass and reducing eWAT adipocyte size. The expression of oxidative phosphorylation and thermogenesis-related genes in sWAT and eWAT was highest in the HIIT group. Conclusion: When targeting adipose tissue to improve diabetes, HIIT may offer superior benefits and thus represents a more advantageous choice.
Collapse
Affiliation(s)
- Yifan Guo
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Qilong Zhang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai, China
| | - Jian Shou
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuzhao Zhuang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
22
|
Cavaliere G, Cimmino F, Trinchese G, Catapano A, Petrella L, D'Angelo M, Lucchin L, Mollica MP. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants (Basel) 2023; 12:1172. [PMID: 37371902 DOI: 10.3390/antiox12061172] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a major risk factor for several metabolic diseases, including type 2 diabetes, hyperlipidemia, cardiovascular diseases, and brain disorders. Growing evidence suggests the importance of inter-organ metabolic communication for the progression of obesity and the subsequent onset of related disorders. This review provides a broad overview of the pathophysiological processes that from adipose tissue dysfunction leading to altered multi-tissue crosstalk relevant to regulating energy homeostasis and the etiology of obesity. First, a comprehensive description of the role of adipose tissue was reported. Then, attention was turned toward the unhealthy expansion of adipose tissue, low-grade inflammatory state, metabolic inflexibility, and mitochondrial dysfunction as root causes of systemic metabolic alterations. In addition, a short spot was devoted to iron deficiency in obese conditions and the role of the hepcidin-ferroportin relationship in the management of this issue. Finally, different classes of bioactive food components were described with a perspective to enhance their potential preventive and therapeutic use against obesity-related diseases.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita D'Angelo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, 39100 Bolzano, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
23
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
24
|
Guo X, Hu J, He G, Chen J, Yang Y, Qin D, Li C, Huang Z, Hu D, Wei C, Wang F, Yu B. Loss of APOO (MIC26) aggravates obesity-related whitening of brown adipose tissue via PPARα-mediated functional interplay between mitochondria and peroxisomes. Metabolism 2023; 144:155564. [PMID: 37088120 DOI: 10.1016/j.metabol.2023.155564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and aberrant structure in adipose tissue occur in obesity and obesity-linked brown adipose tissue (BAT) whitening; however, whether this aberrant architecture contributes to or is the result of obesity is unknown. Apolipoprotein O (APOO) is a constitutive protein of the mitochondrial cristae organizing system complex. This study aimed to characterize the physiological consequences of APOO deficiency in vivo. METHODS APOO expression was analyzed in different human and murine adipose depots, and mice lacking APOO in adipocytes (ApooACKO) are developed to examine the metabolic consequences of adipocyte-specific APOO ablation in vitro and in vivo. RESULTS Results showed that APOO expression is reduced in BAT from both diet-induced and leptin-deficient obese mice. APOO-knockout mice showed increased adiposity, BAT dysfunction and whitening, reduced non-shivering thermogenesis, and blunted responses to cold stimuli. APOO deficiency disrupted mitochondrial structure in brown adipocytes and impaired oxidative phosphorylation, thereby inducing a shift from oxidative to glycolytic metabolism, increasing lipogenic enzyme levels and BAT whitening. APOO inactivation inhibited thermogenesis in BAT by reducing mitochondrial long-chain fatty acid oxidation. It also disturbed peroxisomal biogenesis and very long-chain fatty acid oxidation via peroxisome proliferator-activated receptor α. CONCLUSIONS Altogether, APOO deficiency in adipocytes aggravates BAT whitening and diet-induced obesity; thus, APOO could be a therapeutic target for obesity.
Collapse
Affiliation(s)
- Xin Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Jin Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Donglu Qin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Chenyu Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Zhijie Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Cheng Wei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Fengjiao Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China; Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
25
|
Solverson P, Albaugh GP, Debelo HA, Ferruzzi MG, Baer DJ, Novotny JA. Mixed Berry Juice and Cellulose Fiber Have Differential Effects on Peripheral Blood Mononuclear Cell Respiration in Overweight Adults. Nutrients 2023; 15:nu15071709. [PMID: 37049549 PMCID: PMC10097348 DOI: 10.3390/nu15071709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Berries and other anthocyanin-rich foods have demonstrated anti-obesity effects in rodents and humans. However, the bioactive components of these foods and their mechanisms of action are unclear. We conducted an intervention study with overweight and obese adults to isolate the effects of different berry components on bioenergetics. Subjects consumed whole mixed berries (high anthocyanin, high fiber), pressed berry juice (high anthocyanin, low fiber), berry-flavored gelatin (low anthocyanin, low fiber), or fiber-enriched gelatin (low anthocyanin, high fiber) for one week prior to a meal challenge with the same treatment food as the pre-feed period. Peripheral blood mononuclear cells were collected 2 h after the meal challenge, and cellular respiration was assessed via high-resolution respirometry. The high-anthocyanin, low-fiber treatment (berry juice) and the low-anthocyanin, high-fiber treatment (fiber-enriched gelatin) had opposite effects on cellular respiration. In the fasted state, berry juice resulted in the highest oxygen-consumption rate (OCR), while fiber-enriched gelatin resulted in the highest OCR in the fed state. Differences were observed in multiple respiration states (basal, state 3, state 4, uncoupled), with the greatest differences being between the pressed berry juice and the fiber-enriched gelatin. Different components of berries, specifically anthocyanins/flavonoids and fiber, appear to have differential effects on cellular respiration.
Collapse
|
26
|
Qiu L, Sheng P, Wang X. Identification of Metabolic Syndrome-Related miRNA-mRNA Regulatory Networks and Key Genes Based on Bioinformatics Analysis. Biochem Genet 2023; 61:428-447. [PMID: 35877019 DOI: 10.1007/s10528-022-10257-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/18/2022] [Indexed: 01/24/2023]
Abstract
Metabolic syndrome, which affects approximately one-quarter of the world's population, is a combination of multiple traits and is associated with high all-cause mortality, increased cancer risk, and other hazards. It has been shown that the epigenetic functions of miRNAs are closely related to metabolic syndrome, but epigenetic studies have not yet fully elucidated the regulatory network and key genes associated with metabolic syndrome. To perform data analysis and screening of potential differentially expressed target miRNAs, mRNAs and genes based on a bioinformatics approach using a metabolic syndrome mRNA and miRNA gene microarray, leading to further analysis and identification of metabolic syndrome-related miRNA-mRNA regulatory networks and key genes. The miRNA gene set (GSE98896) and mRNA gene set (GSE98895) of peripheral blood samples from patients with metabolic syndrome from the GEO database were screened, and set|logFC|> 1 and adjusted P < 0.05 were used to identify the differentially expressed miRNAs and mRNAs. Differentially expressed miRNA transcription factors were predicted using FunRich software and subjected to GO and KEGG enrichment analysis. Next, biological process enrichment analysis of differentially expressed mRNAs was performed with Metascape. Differentially expressed miRNAs and mRNAs were identified and visualized as miRNA-mRNA regulatory networks based on the complementary pairing principle. Data analysis of genome-wide metabolic syndrome-related mRNAs was performed using the gene set enrichment analysis (GSEA) database. Finally, further WGCNA of the set of genes most closely associated with metabolic syndrome was performed to validate the findings. A total of 217 differentially expressed mRNAs and 158 differentially expressed miRNAs were identified by screening the metabolic syndrome miRNA and mRNA gene sets, and these molecules mainly included transcription factors, such as SP1, SP4, and EGR1, that function in the IL-17 signalling pathway; cytokine-cytokine receptor interaction; proteoglycan syndecan-mediated signalling events; and the glypican pathway, which is involved in the inflammatory response and glucose and lipid metabolism. miR-34C-5P, which was identified by constructing a miRNA-mRNA regulatory network, could regulate DPYSL4 expression to influence insulin β-cells, the inflammatory response and glucose oxidative catabolism. Based on GSEA, metabolic syndrome is known to be closely related to oxidative phosphorylation, DNA repair, neuronal damage, and glycolysis. Finally, RStudio and DAVID were used to perform WGCNA of the gene sets most closely associated with metabolic syndrome, and the results further validated the conclusions. Metabolic syndrome is a common metabolic disease worldwide, and its mechanism of action is closely related to the inflammatory response, glycolipid metabolism, and impaired mitochondrial function. miR-34C-5P can regulate DPYSL4 expression and can be a potential research target. In addition, UQCRQ and NDUFA8 are core genes of oxidative phosphorylation and have also been identified as potential targets for the future treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lingyan Qiu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China.,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Pei Sheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China.,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xu Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China. .,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
27
|
|
28
|
Fang WJ, Li XM, Zhou XK, Xiong Y. Resveratrol improves diabetic cardiomyopathy by preventing asymmetric dimethylarginine-caused peroxisome proliferator-activated receptor-γ coactivator-1α acetylation. Eur J Pharmacol 2022; 936:175342. [DOI: 10.1016/j.ejphar.2022.175342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
29
|
Moore TM, Cheng L, Wolf DM, Ngo J, Segawa M, Zhu X, Strumwasser AR, Cao Y, Clifford BL, Ma A, Scumpia P, Shirihai OS, Vallim TQDA, Laakso M, Lusis AJ, Hevener AL, Zhou Z. Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes. Nat Commun 2022; 13:6661. [PMID: 36333379 PMCID: PMC9636263 DOI: 10.1038/s41467-022-34468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control. However, the mechanisms by which Parkin connects mitochondrial homeostasis with cellular metabolism in adipose tissue remain unclear. Here, we demonstrate that Park2 gene (encodes Parkin) deletion specifically from adipose tissue protects mice against high-fat diet and aging-induced obesity. Despite a mild reduction in mitophagy, mitochondrial DNA content and mitochondrial function are increased in Park2 deficient white adipocytes. Moreover, Park2 gene deletion elevates mitochondrial biogenesis by increasing Pgc1α protein stability through mitochondrial superoxide-activated NAD(P)H quinone dehydrogenase 1 (Nqo1). Both in vitro and in vivo studies show that Nqo1 overexpression elevates Pgc1α protein level and mitochondrial DNA content and enhances mitochondrial activity in mouse and human adipocytes. Taken together, our findings indicate that Parkin regulates mitochondrial homeostasis by balancing mitophagy and Pgc1α-mediated mitochondrial biogenesis in white adipocytes, suggesting a potential therapeutic target in adipocytes to combat obesity and obesity-associated disorders.
Collapse
Affiliation(s)
- Timothy M Moore
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Lijing Cheng
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dane M Wolf
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Jennifer Ngo
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mayuko Segawa
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Xiaopeng Zhu
- Division of Pediatric Endocrinology, Department of Pediatrics UCLA Children's Discovery and Innovation Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Alexander R Strumwasser
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Yang Cao
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bethan L Clifford
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alice Ma
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Philip Scumpia
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Orian S Shirihai
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Thomas Q de Aguiar Vallim
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Los Angeles, CA, USA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
30
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
31
|
Sekiya FS, Silva CPND, Oba-Shinjo SM, Santos-Bezerra DP, Ravagnani FG, Pasqualucci CA, Gil S, Gualano B, Baptista MDS, Correa-Giannella ML, Marie SKN. Identification of two patterns of mitochondrial DNA-copy number variation in postcentral gyrus during aging, influenced by body mass index and type 2 diabetes. Exp Gerontol 2022; 168:111932. [PMID: 35995312 DOI: 10.1016/j.exger.2022.111932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
AIMS Mitochondrial (mt) DNA replication is strongly associated with oxidative stress, a condition triggered by aging and hyperglycemia, both of which contribute to mitophagy disruption and inflammation. This observational exploratory study evaluated mtDNA-copy number (mtDNA-CN) and expression of genes involved in mitochondriogenesis (PPARGC1A, TFAM, TFB1M, TFB2M), mitophagy (PINK1, PRKN), and inflammatory pathways triggered by hyperglycemia (TXNIP, NLRP3, NFKB1), in the postcentral gyrus of adults and older individuals with and without type 2 diabetes mellitus (T2D). MAIN METHODS Quantitative real-time PCR was employed to evaluate mtDNA-CN and gene expression; tissue autofluorescence, a marker of aging and of cells with damaged organelles, was also quantified. KEY FINDINGS No correlation was found between age and mtDNA-CN, but a direct correlation was observed for cases with mtDNA-CN >1000 (r = 0.41). The mtDNA-CN >1000 group had greater tissue autofluorescence and higher body mass index compared to the mtDNA-CN <1000 group (BMI; 25.7 vs 22.0 kg/m2, respectively). mtDNA-CN correlated with tissue autofluorescence in the overall sample (r = 0.55) and in the T2D group (r = 0.64). PINK and PRKN expressions were inversely correlated with age. Mitochondriogenesis genes and TXNIP expressions were higher in the T2D group, and correlations among the mitochondriogenesis genes were also stronger in this group, relative to the subgroup with mtDNA-CN >1000.
Collapse
Affiliation(s)
- Felipe Seiti Sekiya
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarisse Pereira Nunes da Silva
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sueli Mieko Oba-Shinjo
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniele Pereira Santos-Bezerra
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Carlos Augusto Pasqualucci
- Departamento de Patologia, Grupo Brasileiro de Estudo de Envelhecimento Cerebral, Faculdade de Medicina FMUSP, Sao Paulo, Brazil
| | - Saulo Gil
- Applied Physiology & Nutrition Research Group, Division of Rheumatology, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Division of Rheumatology, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de Sao Paulo, Sao Paulo, Brazil; Food Research Center, University of São Paulo, Sao Paulo, Brazil
| | | | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
32
|
Khalil M, Shanmugam H, Abdallah H, John Britto JS, Galerati I, Gómez-Ambrosi J, Frühbeck G, Portincasa P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022; 14:3112. [PMID: 35956289 PMCID: PMC9370259 DOI: 10.3390/nu14153112] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The abnormal expansion of body fat paves the way for several metabolic abnormalities including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity, and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens, contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies, dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in obesity and MetS. The term "Mitochondria nutrients" has been adopted in recent years, and it depicts the adequate nutrients to keep proper mitochondrial function. Different experimental models show that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables, nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to decrease the burden of disease and medications at a later stage. In this comprehensive review, we discuss the effects of the MD and its bioactive components on improving mitochondrial structure and activity.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Jerlin Stephy John Britto
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Ilaria Galerati
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| |
Collapse
|
33
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
34
|
Jang YN, Lee YJ, Han YM, Kim HM, Seo HS, Jeong JH, Park SY, Jung TW. Fimasartan Ameliorates Deteriorations in Glucose Metabolism in a High Glucose State by Regulating Skeletal Muscle and Liver Cells. Yonsei Med J 2022; 63:530-538. [PMID: 35619576 PMCID: PMC9171673 DOI: 10.3349/ymj.2022.63.6.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Since diabetes and hypertension frequently occur together, it is thought that these conditions may have a common pathogenesis. This study was designed to evaluate the anti-diabetic function of the anti-hypertensive drug fimasartan on C2C12 mouse skeletal muscle and HepG2 human liver cells in a high glucose state. MATERIALS AND METHODS The anti-diabetic effects and mechanism of fimasartan were identified using Western blot, glucose uptake tests, oxygen consumption rate (OCR) analysis, adenosine 5'-triphosphate (ATP) enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining for diabetic biomarkers in C2C12 cells. Protein biomarkers for glycogenolysis and glycogenesis were evaluated by Western blotting and ELISA in HepG2 cells. RESULTS The protein levels of phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK), p-AKT, insulin receptor substrate-1 (IRS-1), and glucose transporter type 4 (Glut4) were elevated in C2C12 cells treated with fimasartan. These increases were reversed by peroxisome proliferator-activated receptor delta (PPARδ) antagonist. ATP, OCR, and glucose uptake were increased in cells treated with 200 µM fimasartan. Protein levels of glycogen phosphorylase, glucose synthase, phosphorylated glycogen synthase, and glycogen synthase kinase-3 (GSK-3) were decreased in HepG2 cells treated with fimasartan. However, these effects were reversed following the addition of the PPARδ antagonist GSK0660. CONCLUSION In conclusion, fimasartan ameliorates deteriorations in glucose metabolism as a result of a high glucose state by regulating PPARδ in skeletal muscle and liver cells.
Collapse
Affiliation(s)
- Yoo Na Jang
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Medicine, Graduate School, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yong Jik Lee
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Yoon Mi Han
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
| | - Hyun Min Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Medical Science, Korea University College of Medicine, Seoul, Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Medical Science, Korea University College of Medicine, Seoul, Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
35
|
Influence of NAFLD and bariatric surgery on hepatic and adipose tissue mitochondrial biogenesis and respiration. Nat Commun 2022; 13:2931. [PMID: 35614135 PMCID: PMC9132900 DOI: 10.1038/s41467-022-30629-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Impaired mitochondrial oxidative phosphorylation (OXPHOS) in liver tissue has been hypothesised to contribute to the development of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease (NAFLD). It is unknown whether OXPHOS capacities in human visceral (VAT) and subcutaneous adipose tissue (SAT) associate with NAFLD severity and how hepatic OXPHOS responds to improvement in NAFLD. In biopsies sampled from 62 patients with obesity undergoing bariatric surgery and nine control subjects without obesity we demonstrate that OXPHOS is reduced in VAT and SAT while increased in the liver in patients with obesity when compared with control subjects without obesity, but this was independent of NAFLD severity. In repeat liver biopsy sampling in 21 patients with obesity 12 months after bariatric surgery we found increased hepatic OXPHOS capacity and mitochondrial DNA/nuclear DNA content compared with baseline. In this work we show that obesity has an opposing association with mitochondrial respiration in adipose- and liver tissue with no overall association with NAFLD severity, however, bariatric surgery increases hepatic OXPHOS and mitochondrial biogenesis. Impaired mitochondrial function in liver tissue may contribute to the pathogenesis and disease progression of nonalcoholic fatty liver disease (NAFLD). Here the authors report that patients with obesity have lower mitochondrial capacity in adipose tissues but higher capacity in the liver, without overall associations to NAFLD severity, and that bariatric surgery increases hepatic mitochondrial respiration and mitochondrial biogenesis.
Collapse
|
36
|
Barrea L, Caprio M, Watanabe M, Cammarata G, Feraco A, Muscogiuri G, Verde L, Colao A, Savastano S. Could very low-calorie ketogenic diets turn off low grade inflammation in obesity? Emerging evidence. Crit Rev Food Sci Nutr 2022; 63:8320-8336. [PMID: 35373658 DOI: 10.1080/10408398.2022.2054935] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an emerging non-communicable disease associated with chronic low-grade inflammation and oxidative stress, compounded by the development of many obesity-related diseases, such as cardiovascular disease, type 2 diabetes mellitus, and a range of cancers. Originally developed for the treatment of epilepsy in drug non-responder children, the ketogenic diet (KD) is being increasingly used in the treatment of many diseases, including obesity and obesity-related conditions. The KD is a dietary pattern characterized by high fat intake, moderate to low protein consumption, and very low carbohydrate intake (<50 g) that has proved to be an effective and weight-loss tool. In addition, it also appears to be a dietary intervention capable of improving the inflammatory state and oxidative stress in individuals with obesity by means of several mechanisms. The main activity of the KD has been linked to improving mitochondrial function and decreasing oxidative stress. β-hydroxybutyrate, the most studied ketone body, has been shown to reduce the production of reactive oxygen species, improving mitochondrial respiration. In addition, KDs exert anti-inflammatory activity through several mechanisms, e.g., by inhibiting activation of the nuclear factor kappa-light-chain-enhancer of activated B cells, and the inflammatory nucleotide-binding, leucine-rich-containing family, pyrin domain-containing-3, and inhibiting histone deacetylases. Given the rising interest in the topic, this review looks at the underlying anti-inflammatory and antioxidant mechanisms of KDs and their possible recruitment in the treatment of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Cammarata
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI) and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| |
Collapse
|
37
|
Choi KM, Ryan KK, Yoon JC. Adipose Mitochondrial Complex I Deficiency Modulates Inflammation and Glucose Homeostasis in a Sex-Dependent Manner. Endocrinology 2022; 163:6529386. [PMID: 35171275 PMCID: PMC8900697 DOI: 10.1210/endocr/bqac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial dysfunction in adipose tissue has been associated with type 2 diabetes, but it is unclear whether it is a cause or the consequence. Mitochondrial complex I is a major site of reactive oxygen species generation and a therapeutic target. Here we report that genetic deletion of the complex I subunit Ndufs4 specifically in adipose tissue results in an increased propensity to develop diet-induced weight gain, glucose intolerance, and elevated levels of fat inflammatory genes. This outcome is apparent in young males but not in young females, suggesting that females are relatively protected from the adverse consequences of adipose mitochondrial dysfunction for metabolic health. Mutant mice of both sexes exhibit defects in brown adipose tissue thermogenesis. Fibroblast growth factor 21 (FGF21) signaling in adipose tissue is selectively blunted in male mutant mice relative to wild-type littermates, consistent with sex-dependent regulation of its autocrine/paracrine action in adipocytes. Together, these findings support that adipocyte-specific mitochondrial dysfunction is sufficient to induce tissue inflammation and can cause systemic glucose abnormalities in male mice.
Collapse
Affiliation(s)
- Kyung-Mi Choi
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
- Correspondence: John C. Yoon, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Meister BM, Hong SG, Shin J, Rath M, Sayoc J, Park JY. Healthy versus Unhealthy Adipose Tissue Expansion: the Role of Exercise. J Obes Metab Syndr 2022; 31:37-50. [PMID: 35283364 PMCID: PMC8987461 DOI: 10.7570/jomes21096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Although the hallmark of obesity is the expansion of adipose tissue, not all adipose tissue expansion is the same. Expansion of healthy adipose tissue is accompanied by adequate capillary angiogenesis and mitochondria-centered metabolic integrity, whereas expansion of unhealthy adipose tissue is associated with capillary and mitochondrial derangement, resulting in deposition of immune cells (M1-stage macrophages) and excess production of pro-inflammatory cytokines. Accumulation of these dysfunctional adipose tissues has been linked to the development of obesity comorbidities, such as type 2 diabetes, hypertension, dyslipidemia, and cardiovascular disease, which are leading causes of human mortality and morbidity in modern society. Mechanistically, vascular rarefaction and mitochondrial incompetency (for example, low mitochondrial content, fragmented mitochondria, defective mitochondrial respiratory function, and excess production of mitochondrial reactive oxygen species) are frequently observed in adipose tissue of obese patients. Recent studies have demonstrated that exercise is a potent behavioral intervention for preventing and reducing obesity and other metabolic diseases. However, our understanding of potential cellular mechanisms of exercise, which promote healthy adipose tissue expansion, is at the beginning stage. In this review, we hypothesize that exercise can induce unique physiological stimuli that can alter angiogenesis and mitochondrial remodeling in adipose tissues and ultimately promote the development and progression of healthy adipogenesis. We summarize recent reports on how regular exercise can impose differential processes that lead to the formation of either healthy or unhealthy adipose tissue and discuss key knowledge gaps that warrant future research.
Collapse
Affiliation(s)
- Benjamin M Meister
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Soon-Gook Hong
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Junchul Shin
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Meghan Rath
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jacqueline Sayoc
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Joon-Young Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Genome-wide CRISPR/Cas9 screening identifies determinant of panobinostat sensitivity in acute lymphoblastic leukemia. Blood Adv 2022; 6:2496-2509. [PMID: 35192680 PMCID: PMC9043932 DOI: 10.1182/bloodadvances.2021006152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Genome-wide CRISPR/Cas9 screening in the ALL cell line identified mitochondrial activity as the driver of panobinostat resistance. SIRT1 expression sensitized ALL to panobinostat through activating mitochondrial activity and the mitochondria-related apoptosis pathway.
Epigenetic alterations, including histone acetylation, contribute to the malignant transformation of hematopoietic cells and disease progression, as well as the emergence of chemotherapy resistance. Targeting histone acetylation provides new strategies for the treatment of cancers. As a pan-histone deacetylase inhibitor, panobinostat has been approved by the US Food and Drug Administration for the treatment of multiple myeloma and has shown promising antileukemia effects in acute lymphoblastic leukemia (ALL). However, the underlying drug resistance mechanism in ALL remains largely unknown. Using genome-wide Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas)9 (CRISPR/Cas9) screening, we identified mitochondrial activity as the driver of panobinostat resistance in ALL. Mechanistically, ectopic SIRT1 expression activated mitochondrial activity and sensitized ALL to panobinostat through activating mitochondria-related apoptosis pathway. Meanwhile, the transcription level of SIRT1 was significantly associated with panobinostat sensitivity across diverse tumor types and thus could be a potential biomarker of panobinostat response in cancers. Our data suggest that patients with higher SIRT1 expression in cancer cells might benefit from panobinostat treatment, supporting the implementation of combinatorial therapy with SIRT1 or mitochondrial activators to overcome panobinostat resistance.
Collapse
|
40
|
Jeong S, Lee SG, Kim KH, Zhu X, Lee WK, Lee HY, Park S, Lee MS, Cheng SY, Lee J, Jo YS. Cell non-autonomous effect of hepatic growth differentiation factor 15 on the thyroid gland. Front Endocrinol (Lausanne) 2022; 13:966644. [PMID: 36046792 PMCID: PMC9420875 DOI: 10.3389/fendo.2022.966644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The thyroid gland plays an essential role in the regulation of body energy expenditure to maintain metabolic homeostasis. However, to date, there are no studies investigating the morphological and functional changes of the thyroid gland due to mitochondrial stress in metabolic organs such as the liver. We used data from the Genotype-Tissue Expression portal to investigate RNA expression patterns of the thyroid gland according to the expression of growth differentiation factor 15 (GDF15) such as the muscles and liver. To verify the effect of hepatic GDF15 on the thyroid gland, we compared the morphological findings of the thyroid gland from liver-specific GDF15 transgenic mice to that of wild type mice. High GDF15 expression in the muscles and liver was associated with the upregulation of genes related to hypoxia, inflammation (TGF-α via NFκB), apoptosis, and p53 pathway in thyroid glands. In addition, high hepatic GDF15 was related to epithelial mesenchymal transition and mTORC1 signaling. Electron microscopy for liver-specific GDF15 transgenic mice revealed short mitochondrial cristae length and small mitochondrial area, indicating reduced mitochondrial function. However, serum thyroid stimulating hormone (TSH) level was not significantly different. In our human cohort, those with a high serum GDF15 level showed high fasting glucose, alanine transaminase, and alkaline phosphatase but no difference in TSH, similar to the data from our mice model. Additionally, high serum GDF15 increased the risk of lymph node metastasis to lateral neck. The hepatic GDF15 affected thyroid morphogenesis via a TSH-independent mechanism, affecting aggressive features of thyroid cancers.
Collapse
Affiliation(s)
- Seonhyang Jeong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seul Gi Lee
- Department of Surgery, Daejeon Eulji Medical Center, Eulji University, Daejeon, South Korea
| | - Kook Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hwa Young Lee
- Department of Surgery, Open Nanotechnology Biotechnology Information technology Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sunmi Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Myung-Shik Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jandee Lee
- Department of Surgery, Open Nanotechnology Biotechnology Information technology Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jandee Lee, ; Young Suk Jo,
| | - Young Suk Jo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jandee Lee, ; Young Suk Jo,
| |
Collapse
|
41
|
Zhang X, Chen G, Zhang J, Zhang B, Li L, Li X. Fermented noni (Morinda citrifolia L.) fruit juice improved oxidative stress and insulin resistance under the synergistic effect of Nrf2/ARE pathway and gut flora in db/db mice and HepG2 cells. Food Funct 2022; 13:8254-8273. [DOI: 10.1039/d2fo00595f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress interferes with blood glucose homeostasis, leading to insulin resistance (IR) and hyperglycemia, which eventually induces type 2 diabetes (T2DM). Fermented noni (Morinda citrifolia L.) fruit juice (FNJ) is...
Collapse
|
42
|
Wang Y, Li J, Lu D, Meng Q, Song N, Zhou H, Xiao X, Sun L, Zhu H. Integrated proteome and phosphoproteome analysis of interscapular brown adipose and subcutaneous white adipose tissues upon high fat diet feeding in mouse. J Proteomics 2022; 255:104500. [DOI: 10.1016/j.jprot.2022.104500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022]
|
43
|
Lee GH, Peng C, Jeong SY, Park SA, Lee HY, Hoang TH, Kim J, Chae HJ. Ginger extract controls mTOR-SREBP1-ER stress-mitochondria dysfunction through AMPK activation in obesity model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner. J Nutr Biochem 2021; 100:108898. [PMID: 34748921 DOI: 10.1016/j.jnutbio.2021.108898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.
Collapse
|
45
|
Roberts FL, Markby GR. New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells 2021; 10:cells10102639. [PMID: 34685618 PMCID: PMC8533934 DOI: 10.3390/cells10102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise itself is fundamental for good health, and when practiced regularly confers a myriad of metabolic benefits in a range of tissues. These benefits are mediated by a range of adaptive responses in a coordinated, multi-organ manner. The continued understanding of the molecular mechanisms of action which confer beneficial effects of exercise on the body will identify more specific pathways which can be manipulated by therapeutic intervention in order to prevent or treat various metabolism-associated diseases. This is particularly important as exercise is not an available option to all and so novel methods must be identified to confer the beneficial effects of exercise in a therapeutic manner. This review will focus on key emerging molecular mechanisms of mitochondrial biogenesis, autophagy and mitophagy in selected, highly metabolic tissues, describing their regulation and contribution to beneficial adaptations to exercise.
Collapse
|
46
|
Carruthers NJ, Strieder-Barboza C, Caruso JA, Flesher CG, Baker NA, Kerk SA, Ky A, Ehlers AP, Varban OA, Lyssiotis CA, Lumeng CN, Stemmer PM, O'Rourke RW. The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity. Sci Rep 2021; 11:17394. [PMID: 34462518 PMCID: PMC8405693 DOI: 10.1038/s41598-021-96995-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
Dysfunctional visceral adipose tissue (VAT) in obesity is associated with type 2 diabetes (DM) but underlying mechanisms remain unclear. Our objective in this discovery analysis was to identify genes and proteins regulated by DM to elucidate aberrant cellular metabolic and signaling mediators. We performed label-free proteomics and RNA-sequencing analysis of VAT from female bariatric surgery subjects with DM and without DM (NDM). We quantified 1965 protein groups, 23 proteins, and 372 genes that were differently abundant in DM vs. NDM VAT. Proteins downregulated in DM were related to fatty acid synthesis and mitochondrial function (fatty acid synthase, FASN; dihydrolipoyl dehydrogenase, mitochondrial, E3 component, DLD; succinate dehydrogenase-α, SDHA) while proteins upregulated in DM were associated with innate immunity and transcriptional regulation (vitronectin, VTN; endothelial protein C receptor, EPCR; signal transducer and activator of transcription 5B, STAT5B). Transcriptome indicated defects in innate inflammation, lipid metabolism, and extracellular matrix (ECM) function, and components of complement classical and alternative cascades. The VAT proteome and transcriptome shared 13 biological processes impacted by DM, related to complement activation, cell proliferation and migration, ECM organization, lipid metabolism, and gluconeogenesis. Our data revealed a marked effect of DM in downregulating FASN. We also demonstrate enrichment of complement factor B (CFB), coagulation factor XIII A chain (F13A1), thrombospondin 1 (THBS1), and integrins at mRNA and protein levels, albeit with lower q-values and lack of Western blot or PCR confirmation. Our findings suggest putative mechanisms of VAT dysfunction in DM.
Collapse
Affiliation(s)
- Nicholas J Carruthers
- Proteomics Core Facility, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Joseph A Caruso
- Department of Chemistry, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Samuel A Kerk
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Alexander Ky
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Anne P Ehlers
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Oliver A Varban
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Graduate Program in Immunology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Paul M Stemmer
- Proteomics Core Facility, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA.
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA.
- Section of General Surgery, Department of Surgery, University of Michigan, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA.
| |
Collapse
|
47
|
Jiang CL, Chen YF, Lin FJ. Apolipoprotein E deficiency activates thermogenesis of white adipose tissues in mice through enhancing β-hydroxybutyrate production from precursor cells. FASEB J 2021; 35:e21760. [PMID: 34309918 DOI: 10.1096/fj.202100298rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022]
Abstract
White adipose tissue (WAT) has the capacity to undergo a white-to-beige phenotypic switch, known as browning, in response to stimuli such as cold. However, the mechanism underlying beige adipocyte formation is largely unknown. Apolipoprotein E (ApoE) is highly induced in WAT and has been implicated in lipid metabolism. Here, we show that ApoE deficiency in mice increased oxygen consumption and thermogenesis and enhanced adipose browning pattern in inguinal WAT (iWAT), with associated characteristics such as increased Ucp1 and Pparγ expression. At the cellular level, ApoE deficient beige adipocytes had increased glucose uptake and higher mitochondrial respiration than wild-type cells. Mechanistically, we showed that ApoE deficient iWAT and primary adipose precursor cells activated the thermogenic genes program by stimulating the production of ketone body β-hydroxybutyrate (βHB), a novel adipose browning promoting factor. This was accompanied by increased expression of genes involved in ketogenesis and could be compromised by the treatment for ketogenesis inhibitors. Consistently, ApoE deficient mice show higher serum βHB level than wild-type mice in the fed state and during cold exposure. Our results further demonstrate that the increased βHB production in ApoE deficient adipose precursor cells could be attributed, at least in part, to enhanced Cd36 expression and CD36-mediated fatty acid utilization. Our findings uncover a previously uncharacterized role for ApoE in energy homeostasis via its cell-autonomous action in WAT.
Collapse
Affiliation(s)
- Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ying-Fang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.,Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
48
|
Zhao B, Liu M, Liu H, Xie J, Yan J, Hou X, Liu J. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes. Food Funct 2021; 12:6283-6293. [PMID: 34047728 DOI: 10.1039/d1fo00524c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is closely associated with maintaining mitochondrial homeostasis, and mitochondrial dysfunction can lead to systemic lipid metabolism disorders. Zeaxanthin (ZEA) is a kind of carotenoid with potent antioxidant activity and has been reported to promote mitochondrial biogenesis. Nevertheless, the molecular mechanism has not been explained. In this study, we first discovered that ZEA stimulated 3T3-L1 adipocyte browning by increasing the expression of specific markers (Cd137, Tbx1, Sirt1, Cidea, Ucp1, Tmem26, and Cited1), thereby reducing lipid accumulation. Besides, ZEA promoted mitochondrial biogenesis by increasing the expression of PRDM16, UCP1, NRF2, PGC-1α, and SIRT1. Moreover, the uncoupled oxygen consumption rate (OCR) of protons leaked in 3T3-L1 adipocytes was rapidly increased by ZEA treatment, which improved mitochondrial respiration and energy metabolism. Furthermore, we found that ZEA promotes browning by enhancing mitochondrial biogenesis partly through the protein kinase A (PKA) pathway. This study provided new insight into the promotion of browning and mitochondrial biogenesis by ZEA, suggesting that ZEA probably has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Bailing Zhao
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Kobayashi M, Deguchi Y, Nozaki Y, Higami Y. Contribution of PGC-1α to Obesity- and Caloric Restriction-Related Physiological Changes in White Adipose Tissue. Int J Mol Sci 2021; 22:ijms22116025. [PMID: 34199596 PMCID: PMC8199692 DOI: 10.3390/ijms22116025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) regulates mitochondrial DNA replication and mitochondrial gene expression by interacting with several transcription factors. White adipose tissue (WAT) mainly comprises adipocytes that store triglycerides as an energy resource and secrete adipokines. The characteristics of WAT vary in response to systemic and chronic metabolic alterations, including obesity or caloric restriction. Despite a small amount of mitochondria in white adipocytes, accumulated evidence suggests that mitochondria are strongly related to adipocyte-specific functions, such as adipogenesis and lipogenesis, as well as oxidative metabolism for energy supply. Therefore, PGC-1α is expected to play an important role in WAT. In this review, we provide an overview of the involvement of mitochondria and PGC-1α with obesity- and caloric restriction-related physiological changes in adipocytes and WAT.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K. & Y.H.)
| | - Yusuke Deguchi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda 278-8510, Japan
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K. & Y.H.)
| |
Collapse
|
50
|
Luo Z, Huang J, Li Z, Liu Z, Fu L, Hu Y, Shen X. Cajanolactone A, a Stilbenoid From Cajanus canjan (L.) Millsp, Prevents High-Fat Diet-Induced Obesity via Suppressing Energy Intake. Front Pharmacol 2021; 12:695561. [PMID: 34135763 PMCID: PMC8201603 DOI: 10.3389/fphar.2021.695561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cajanolactone A (CLA) is a stilbenoid isolated from Cajanus canjan (L.) Millsp with the potential to prevent postmenopausal obesity. In this study, the effect of CLA on high-fat diet (HFD)-induced obesity in female C57BL/6 mice was investigated. It was found that, treatment with CLA reduced the energy intake and effectively protected the mice from HFD-induced body weight gain, fat accumulation within the adipose tissues and liver, and impairment in energy metabolism. Further investigation revealed that CLA significantly down-regulated the expression of ORX, ORXR2, pMCH, and Gal in the hypothalamus and antagonized HFD-induced changes in the expression of UCP1, Pgc-1α, Tfam, and Mfn1 in the inguinal white adipose tissue (iWAT); Caveolin-1, MT and UCP3 in the perigonadal white adipose tissue (pWAT); and Pdhb, IRS2, Mttp, Hadhb, and Cpt1b in the liver. CLA also protected the pWAT and liver from HFD-induced mitochondrial damage. However, neither HFD nor CLA showed an effect on the mass of brown adipose tissue (BAT) or the expression of UCP1 in the BAT. In summary, our findings suggest that CLA is a potential drug candidate for preventing diet-induced obesity, at least in females. CLA works most likely by suppressing the hypothalamic expression of orexigenic genes, which leads to reduced energy intake, and subsequently, reduced fat accumulation, thereby protecting the adipose tissues and the liver from lipid-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhuohui Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiping Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linchun Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|