1
|
Rabbani N, Thornalley PJ. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract 2024; 217:111905. [PMID: 39447679 DOI: 10.1016/j.diabres.2024.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells. It is linked to hyperglycemia. We present evidence that subversion of the gating of glucose entry into glycolysis, mainly by glucokinase (hexokinase-4), during persistent hyperglycemia in enteroendocrine cells, pancreatic β- and α-cells and appetite-regulating neurons contributes to the biochemical mechanism of the impaired incretin effect. Unscheduled glycolysis and glycolytic overload thereby produced decreases cell signalling of incretin secretion to glucose and other secretion stimuli and incretin receptor responses. This mechanism provides a guide for development of alternative therapies targeting recovery of the impaired incretin effect.
Collapse
Affiliation(s)
- Naila Rabbani
- QU Health, Qatar University, University Street, PO Box 2713, Doha, Qatar
| | - Paul J Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
2
|
De Fano M, Malara M, Vermigli C, Murdolo G. Adipose Tissue: A Novel Target of the Incretin Axis? A Paradigm Shift in Obesity-Linked Insulin Resistance. Int J Mol Sci 2024; 25:8650. [PMID: 39201336 PMCID: PMC11354636 DOI: 10.3390/ijms25168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Adipose tissue (AT) represents a plastic organ that can undergo significant remodeling in response to metabolic demands. With its numerous checkpoints, the incretin system seems to play a significant role in controlling glucose homeostasis and energy balance. The importance of the incretin hormones, namely the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic peptide (GIP), in controlling the function of adipose cells has been brought to light by recent studies. Notably, a "paradigm shift" in reevaluating the role of the incretin system in AT as a potential target to treat obesity-linked metabolic disorders resulted from the demonstration that a disruption of the GIP and GLP-1 signaling axis in fat is associated with adiposity-induced insulin-resistance (IR) and/or type 2 diabetes mellitus (T2D). We will briefly discuss the (patho)physiological functions of GLP-1 and GIP signaling in AT in this review, emphasizing their potential impacts on lipid storage, adipogenesis, glucose metabolism and inflammation. We will also address the conundrum with the perturbation of the incretin axis in white or brown fat tissue and the emergence of metabolic disorders. In order to reduce or avoid adiposity-related metabolic complications, we will finally go over a potential scientific rationale for suggesting AT as a novel target for GLP-1 and GIP receptor agonists and co-agonists.
Collapse
Affiliation(s)
- Michelantonio De Fano
- Complex Structure of Endocrinology and Metabolism, Department of Medicine, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, 06081 Perugia, Italy; (M.M.); (C.V.); (G.M.)
| | | | | | | |
Collapse
|
3
|
Loomba R, Hartman ML, Lawitz EJ, Vuppalanchi R, Boursier J, Bugianesi E, Yoneda M, Behling C, Cummings OW, Tang Y, Brouwers B, Robins DA, Nikooie A, Bunck MC, Haupt A, Sanyal AJ. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. N Engl J Med 2024; 391:299-310. [PMID: 38856224 DOI: 10.1056/nejmoa2401943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease associated with liver-related complications and death. The efficacy and safety of tirzepatide, an agonist of the glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptors, in patients with MASH and moderate or severe fibrosis is unclear. METHODS We conducted a phase 2, dose-finding, multicenter, double-blind, randomized, placebo-controlled trial involving participants with biopsy-confirmed MASH and stage F2 or F3 (moderate or severe) fibrosis. Participants were randomly assigned to receive once-weekly subcutaneous tirzepatide (5 mg, 10 mg, or 15 mg) or placebo for 52 weeks. The primary end point was resolution of MASH without worsening of fibrosis at 52 weeks. A key secondary end point was an improvement (decrease) of at least one fibrosis stage without worsening of MASH. RESULTS Among 190 participants who had undergone randomization, 157 had liver-biopsy results at week 52 that could be evaluated, with missing values imputed under the assumption that they would follow the pattern of results in the placebo group. The percentage of participants who met the criteria for resolution of MASH without worsening of fibrosis was 10% in the placebo group, 44% in the 5-mg tirzepatide group (difference vs. placebo, 34 percentage points; 95% confidence interval [CI], 17 to 50), 56% in the 10-mg tirzepatide group (difference, 46 percentage points; 95% CI, 29 to 62), and 62% in the 15-mg tirzepatide group (difference, 53 percentage points; 95% CI, 37 to 69) (P<0.001 for all three comparisons). The percentage of participants who had an improvement of at least one fibrosis stage without worsening of MASH was 30% in the placebo group, 55% in the 5-mg tirzepatide group (difference vs. placebo, 25 percentage points; 95% CI, 5 to 46), 51% in the 10-mg tirzepatide group (difference, 22 percentage points; 95% CI, 1 to 42), and 51% in the 15-mg tirzepatide group (difference, 21 percentage points; 95% CI, 1 to 42). The most common adverse events in the tirzepatide groups were gastrointestinal events, and most were mild or moderate in severity. CONCLUSIONS In this phase 2 trial involving participants with MASH and moderate or severe fibrosis, treatment with tirzepatide for 52 weeks was more effective than placebo with respect to resolution of MASH without worsening of fibrosis. Larger and longer trials are needed to further assess the efficacy and safety of tirzepatide for the treatment of MASH. (Funded by Eli Lilly; SYNERGY-NASH ClinicalTrials.gov number, NCT04166773.).
Collapse
Affiliation(s)
- Rohit Loomba
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Mark L Hartman
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Eric J Lawitz
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Raj Vuppalanchi
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Jérôme Boursier
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Elisabetta Bugianesi
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Masato Yoneda
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Cynthia Behling
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Oscar W Cummings
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Yuanyuan Tang
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Bram Brouwers
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Deborah A Robins
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Amir Nikooie
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Mathijs C Bunck
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Axel Haupt
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| | - Arun J Sanyal
- From the Metabolic Dysfunction-Associated Steatotic Liver Disease Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla (R.L.), and Pacific Rim Pathology, San Diego (C.B.) - both in California; Eli Lilly (M.L.H., Y.T., B.B., D.A.R., A.N., M.C.B., A.H.), the Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine (R.V.), and the Department of Pathology and Laboratory Medicine, Indiana University (O.W.C.) - all in Indianapolis; the Texas Liver Institute, University of Texas Health, San Antonio (E.J.L.); the Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, and Hemodynamics, Interaction of Fibrosis and Hepatic Tumor Invasiveness Laboratory, Structure Fédérative de Recherche Interactions Cellulaires et Applications Thérapeutiques 4208, Angers University - both in Angers, France (J.B.); the Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy (E.B.); the Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan (M.Y.); and the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.)
| |
Collapse
|
4
|
Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1431292. [PMID: 39114288 PMCID: PMC11304055 DOI: 10.3389/fendo.2024.1431292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are two incretins that bind to their respective receptors and activate the downstream signaling in various tissues and organs. Both GIP and GLP-1 play roles in regulating food intake by stimulating neurons in the brain's satiety center. They also stimulate insulin secretion in pancreatic β-cells, but their effects on glucagon production in pancreatic α-cells differ, with GIP having a glucagonotropic effect during hypoglycemia and GLP-1 exhibiting glucagonostatic effect during hyperglycemia. Additionally, GIP directly stimulates lipogenesis, while GLP-1 indirectly promotes lipolysis, collectively maintaining healthy adipocytes, reducing ectopic fat distribution, and increasing the production and secretion of adiponectin from adipocytes. Together, these two incretins contribute to metabolic homeostasis, preventing both hyperglycemia and hypoglycemia, mitigating dyslipidemia, and reducing the risk of cardiovascular diseases in individuals with type 2 diabetes and obesity. Several GLP-1 and dual GIP/GLP-1 receptor agonists have been developed to harness these pharmacological effects in the treatment of type 2 diabetes, with some demonstrating robust effectiveness in weight management and prevention of cardiovascular diseases. Elucidating the underlying cellular and molecular mechanisms could potentially usher in the development of new generations of incretin mimetics with enhanced efficacy and fewer adverse effects. The treatment guidelines are evolving based on clinical trial outcomes, shaping the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Qiyuan Keith Liu
- MedStar Medical Group, MedStar Montgomery Medical Center, Olney, MD, United States
| |
Collapse
|
5
|
Regmi A, Aihara E, Christe ME, Varga G, Beyer TP, Ruan X, Beebe E, O'Farrell LS, Bellinger MA, Austin AK, Lin Y, Hu H, Konkol DL, Wojnicki S, Holland AK, Friedrich JL, Brown RA, Estelle AS, Badger HS, Gaidosh GS, Kooijman S, Rensen PCN, Coskun T, Thomas MK, Roell W. Tirzepatide modulates the regulation of adipocyte nutrient metabolism through long-acting activation of the GIP receptor. Cell Metab 2024; 36:1534-1549.e7. [PMID: 38878772 DOI: 10.1016/j.cmet.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Tirzepatide, a glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor (GIPR/GLP-1R) agonist, has, in clinical trials, demonstrated greater reductions in glucose, body weight, and triglyceride levels compared with selective GLP-1R agonists in people with type 2 diabetes (T2D). However, cellular mechanisms by which GIPR agonism may contribute to these improved efficacy outcomes have not been fully defined. Using human adipocyte and mouse models, we investigated how long-acting GIPR agonists regulate fasted and fed adipocyte functions. In functional assays, GIPR agonism enhanced insulin signaling, augmented glucose uptake, and increased the conversion of glucose to glycerol in a cooperative manner with insulin; however, in the absence of insulin, GIPR agonists increased lipolysis. In diet-induced obese mice treated with a long-acting GIPR agonist, circulating triglyceride levels were reduced during oral lipid challenge, and lipoprotein-derived fatty acid uptake into adipose tissue was increased. Our findings support a model for long-acting GIPR agonists to modulate both fasted and fed adipose tissue function differentially by cooperating with insulin to augment glucose and lipid clearance in the fed state while enhancing lipid release when insulin levels are reduced in the fasted state.
Collapse
Affiliation(s)
- Ajit Regmi
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | - Gabor Varga
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | - Emily Beebe
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | - Yanzhu Lin
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Haitao Hu
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Tamer Coskun
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
6
|
Helsted MM, Schaltz NL, Gasbjerg LS, Christensen MB, Vilsbøll T, Knop FK. Safety of native glucose-dependent insulinotropic polypeptide in humans. Peptides 2024; 177:171214. [PMID: 38615716 DOI: 10.1016/j.peptides.2024.171214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
In this systematic review, we assessed the safety and possible safety events of native glucose-dependent insulinotropic polypeptide (GIP)(1-42) in human studies with administration of synthetic human GIP. We searched the PubMed database for all trials investigating synthetic human GIP(1-42) administration. A total of 67 studies were included. Study duration ranged from 30 min to 6 days. In addition to healthy individuals, the studies included individuals with impaired glucose tolerance, type 2 diabetes, type 1 diabetes, chronic pancreatitis and secondary diabetes, latent autoimmune diabetes in adults, diabetes caused by a mutation in the hepatocyte nuclear factor 1-alpha gene, end-stage renal disease, chronic renal insufficiency, critical illness, hypoparathyroidism, or cystic fibrosis-related diabetes. Of the included studies, 78% did not mention safety events, 10% of the studies reported that no safety events were observed in relation to GIP administration, and 15% of the studies reported safety events in relation to GIP administration with most frequently reported event being a moderate and transient increased heart rate. Gastrointestinal safety events, and changes in blood pressure were also reported. Plasma concentration of active GIP(1-42) increased linearly with dose independent of participant phenotype. There was no significant correlation between achieved maximal concentration of GIP(1-42) and reported safety events. Clearance rates of GIP(1-42) were similar between participant groups. In conclusion, the available data indicate that GIP(1-42) in short-term (up to 6 days) infusion studies is generally well-tolerated. The long-term safety of continuous GIP(1-42) administration is unknown.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina L Schaltz
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
7
|
Hong SH, Choi KM. Gut hormones and appetite regulation. Curr Opin Endocrinol Diabetes Obes 2024; 31:115-121. [PMID: 38511400 DOI: 10.1097/med.0000000000000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
PURPOSE OF REVIEW Various gut hormones interact with the brain through delicate communication, thereby influencing appetite and subsequent changes in body weight. This review summarizes the effects of gut hormones on appetite, with a focus on recent research. RECENT FINDINGS Ghrelin is known as an orexigenic hormone, whereas glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin (CCK), postprandial peptide YY (PYY), and oxyntomodulin (OXM) are known as anorexigenic hormones. Recent human studies have revealed that gut hormones act differently in various systems, including adipose tissue, beyond appetite and energy intake, and even involve in high-order thinking. Environmental factors including meal schedule, food contents and quality, type of exercise, and sleep deprivation also play a role in the influence of gut hormone on appetite, weight change, and obesity. Recently published studies have shown that retatrutide, a triple-agonist of GLP-1, GIP, and glucagon receptor, and orforglipron, a GLP-1 receptor partial agonist, are effective in weight loss and improving various metabolic parameters associated with obesity. SUMMARY Various gut hormones influence appetite, and several drugs targeting these receptors have been reported to exert positive effects on weight loss in humans. Given that diverse dietary and environmental factors affect the actions of gut hormones and appetite, there is a need for integrated and largescale long-term studies in this field.
Collapse
Affiliation(s)
- So-Hyeon Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Kagdi S, Lyons SA, Beaudry JL. The interplay of glucose-dependent insulinotropic polypeptide in adipose tissue. J Endocrinol 2024; 261:e230361. [PMID: 38579777 PMCID: PMC11103678 DOI: 10.1530/joe-23-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Adipose tissue was once known as a reservoir for energy storage but is now considered a crucial organ for hormone and energy flux with important effects on health and disease. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted from the small intestinal K cells, responsible for augmenting insulin release, and has gained attention for its independent and amicable effects with glucagon-like peptide 1 (GLP-1), another incretin hormone secreted from the small intestinal L cells. The GIP receptor (GIPR) is found in whole adipose tissue, whereas the GLP-1 receptor (GLP-1R) is not, and some studies suggest that GIPR action lowers body weight and plays a role in lipolysis, glucose/lipid uptake/disposal, adipose tissue blood flow, lipid oxidation, and free-fatty acid (FFA) re-esterification, which may or may not be influenced by other hormones such as insulin. This review summarizes the research on the effects of GIP in adipose tissue (distinct depots of white and brown) using cellular, rodent, and human models. In doing so, we explore the mechanisms of GIPR-based medications for treating metabolic disorders, such as type 2 diabetes and obesity, and how GIPR agonism and antagonism contribute to improvements in metabolic health outcomes, potentially through actions in adipose tissues.
Collapse
Affiliation(s)
- Samrin Kagdi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sulayman A Lyons
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Liskiewicz A, Müller TD. Regulation of energy metabolism through central GIPR signaling. Peptides 2024; 176:171198. [PMID: 38527521 DOI: 10.1016/j.peptides.2024.171198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism. Nonetheless, despite growing recognition of the GIP system as a valuable pharmacological target, there remains great uncertainty as to where and how GIP acts in the brain to regulate metabolism, and how GIPR agonism may differ from GIPR antagonism in control of energy metabolism. In this review we highlight current knowledge on the central action of GIP, and discuss open questions related to its multifaceted biology in the brain and the periphery.
Collapse
Affiliation(s)
- Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
| |
Collapse
|
10
|
Novikoff A, Müller TD. Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't. Physiology (Bethesda) 2024; 39:142-156. [PMID: 38353610 PMCID: PMC11368522 DOI: 10.1152/physiol.00032.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
11
|
Sicinski KM, Sürmeli D, Du J, Raman VS, Montanari V, Lee M, Harwood BN, Kopin AS, Beinborn M, Kumar K. A Robust Platform for the Molecular Design of Potent, Protease-Stable, Long-Acting GIP Analogues. J Med Chem 2024. [PMID: 38458970 DOI: 10.1021/acs.jmedchem.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Glucose-dependent insulinotropic peptide (GIP) is a 42-amino acid peptide hormone that regulates postprandial glucose levels. GIP binds to its cognate receptor, GIPR, and mediates metabolic physiology by improved insulin sensitivity, β-cell proliferation, increased energy consumption, and stimulated glucagon secretion. Dipeptidyl peptidase-4 (DPP4) catalyzes the rapid inactivation of GIP within 6 min in vivo. Here, we report a molecular platform for the design of GIP analogues that are refractory to DPP4 action and exhibit differential activation of the receptor, thus offering potentially hundreds of GIP-based compounds to fine-tune pharmacology. The lead compound from our studies, which harbored a combination of N-terminal alkylation and side-chain lipidation, was equipotent and retained full efficacy at GIPR as the native peptide, while being completely refractory toward DPP4, and was resistant to trypsin. The GIP analogue identified from these studies was further evaluated in vivo and is one of the longest-acting GIPR agonists to date.
Collapse
Affiliation(s)
- Kathleen M Sicinski
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Damla Sürmeli
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jasper Du
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Venkata S Raman
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Minhee Lee
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Benjamin N Harwood
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Alan S Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Martin Beinborn
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular Pharmacology Research Center, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
12
|
Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 2023; 20:784-796. [PMID: 37626258 DOI: 10.1038/s41575-023-00830-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.
Collapse
Affiliation(s)
- Rula Bany Bakar
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Zhou Q, Lei X, Fu S, Liu P, Long C, Wang Y, Li Z, Xie Q, Chen Q. Efficacy and safety of tirzepatide, dual GLP-1/GIP receptor agonists, in the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr 2023; 15:222. [PMID: 37904255 PMCID: PMC10614386 DOI: 10.1186/s13098-023-01198-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 are the main incretin hormones, and be responsible for the insulinotropic incretin effect. The addition of a GIP agonist to a GLP-1agonist has been hypothesized to significantly potentiate the weight-losing and glycemia control effect, which might offer a new therapeutic option in the treatment of type 2 diabetes. The current meta-analysis aims to synthesize evidence of primary efficacy and safety outcomes through clinically randomized controlled trials to evaluate integrated potency and signaling properties. METHOD We conducted comprehensive literature searches in Cochrane Library, Web of Science, Embase and PubMed for relevant literatures investigating the efficacy and/or safety of Tirzepatide published in the English as of May 30, 2023 was retrieved. We synthesized results using standardized mean differences (SMDs) and 95% confidence intervals (95 CIs) for continuous outcomes, and odds ratios (ORs) along with 95 Cis for dichotomous outcomes. All analyses were done using Revman version 5.3, STATA version 15.1 and the statistical package 'meta'. RESULTS Participants treated with weekly Tirzepatide achieved HbA1c and body weight target values significantly lower than any other comparator without clinically significant increase in the incidence of hypoglycemic events, serious and all-cause fatal adverse events. However, gastrointestinal adverse events and decreased appetite events were reported more frequently with Tirzepatide treatment than with placebo/controls. CONCLUSION The Tirzepatide, a dual GIP/GLP-1 receptor co-agonist, for diabetes therapy has opened a new era on personalized glycemia control and weight loss in a safe manner with broad and promising clinical implications.
Collapse
Affiliation(s)
- Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- , Chengdu, China
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- , Chengdu, China
| | - Shunlian Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Cong Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Yanmei Wang
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, China
| | - Zinan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- Sichuan Integrative Medicine Hospital, chengdu, China
| | - Qian Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
14
|
Calderon RM, Golczak M, Paik J, Blaner WS. Dietary Vitamin A Affects the Function of Incretin-Producing Enteroendocrine Cells in Male Mice Fed a High-Fat Diet. J Nutr 2023; 153:2901-2914. [PMID: 37648113 PMCID: PMC10613727 DOI: 10.1016/j.tjnut.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Retinol-binding protein 2 (RBP2) is an intracellular carrier for vitamin A in the absorptive enterocytes. Mice lacking RBP2 (Rbp2-/-) display an unexpected phenotype of obesity, glucose intolerance, and elevated glucose-dependent insulinotropic polypeptide (GIP) levels. GIP and glucagon-like peptide 1 (GLP-1) are incretin hormones secreted by enteroendocrine cells (EECs). We recently demonstrated the presence of RBP2 and other retinoid-related proteins in EECs. OBJECTIVES Given RBP2's role in intracellular retinoid trafficking, we aimed to evaluate whether dietary vitamin A affects incretin-secreting cell function and gene expression. METHODS Male Rbp2-/- mice and sex- and age-matched controls (n = 6-9) were fed a high-fat diet (HFD) for 18 wk containing normal (VAN, 4000 IU/kg of diet) or low (VAL, 25% of normal) vitamin A concentrations. Body weight was recorded biweekly. Plasma GIP and GLP-1 levels were obtained fasting and 30 min after an oral fat gavage at week 16. Glucose tolerance tests were also performed. Mice were killed at week 18, and blood and tissue samples were obtained. RESULTS Rbp2-/- mice displayed greater weight gain on the VAN compared with the VAL diet from week 7 of the intervention (P ≤ 0.01). Stimulated GIP levels were elevated in Rbp2-/- mice compared with their controls fed the VAN diet (P = 0.02), whereas their GIP response was lower when fed the VAL diet (P = 0.03). Although no differences in GLP-1 levels were observed in the VAN diet group, a lower GLP-1 response was seen in Rbp2-/- mice fed the VAL diet (P = 0.02). Changes in incretin gene expression and that of other genes associated with EEC lineage and function were consistent with these observations. Circulating and hepatic retinoid levels revealed no systemic vitamin A deficiency across dietary groups. CONCLUSIONS Our data support a role for RBP2 and dietary vitamin A in incretin secretion and gene expression in mice fed a HFD.
Collapse
Affiliation(s)
- Rossana M Calderon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
15
|
Lyons SA, Beaudry JL. Synergistic Combinations of Gut- and Pancreas-Hormone-Based Therapies: Advancements in Treatments for Metabolic Diseases. Endocrinology 2023; 164:bqad153. [PMID: 37823483 PMCID: PMC10612476 DOI: 10.1210/endocr/bqad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Metabolic diseases, such as obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease, and liver disease, have become increasingly prevalent around the world. As an alternative to bariatric surgery, glucagon-like peptide 1 (GLP-1) receptor agonists have been at the forefront of weight loss medication to combat these metabolic complications. Recently, there has been an exciting rapid emergence of new weight loss medications that combine GLP-1 receptor (GLP-1R) agonists with other gut- and pancreatic-derived hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) receptor agonists. Dual-agonist (GLP-1/GIP and GLP-1/GCG) and tri-agonist (GLP-1/GIP/GCG) administration generally result in greater weight loss, reduction of blood sugar and lipid levels, restoration of tissue function, and improvement in whole-body substrate metabolism compared to when GLP-1R agonists are used alone. The aim of this review is to summarize the recent literature of both preclinical and clinical studies on how these emerging gut-peptide therapies further improve weight loss and metabolic health outcomes for various metabolic diseases.
Collapse
Affiliation(s)
- Sulayman Aslan Lyons
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Jacqueline Leah Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
16
|
Abstract
In this review, we provide a brief synopsis of the connections between adipose tissue and metabolic health and highlight some recent developments in understanding and exploiting adipocyte biology. Adipose tissue plays critical roles in the regulation of systemic glucose and lipid metabolism and secretes bioactive molecules possessing endocrine, paracrine, and autocrine functions. Dysfunctional adipose tissue has a detrimental impact on metabolic health and is intimately involved in key aspects of metabolic diseases such as insulin resistance, lipid overload, inflammation, and organelle stress. Differences in the distribution of fat depots and adipose characteristics relate to divergent degrees of metabolic dysfunction found in metabolically healthy and unhealthy obese individuals. Thermogenic adipocytes increase energy expenditure via mitochondrial uncoupling or adenosine triphosphate-consuming futile substrate cycles, while functioning as a metabolic sink and participating in crosstalk with other metabolic organs. Manipulation of adipose tissue provides a wealth of opportunities to intervene and combat the progression of associated metabolic diseases. We discuss current treatment modalities for obesity including incretin hormone analogs and touch upon emerging strategies with therapeutic potential including exosome-based therapy, pharmacological activation of brown and beige adipocyte thermogenesis, and administration or inhibition of adipocyte-derived factors.
Collapse
Affiliation(s)
- Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Seung-Hee Cho
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - John C. Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
17
|
Sachs S, Götz A, Finan B, Feuchtinger A, DiMarchi RD, Döring Y, Weber C, Tschöp MH, Müller TD, Hofmann SM. GIP receptor agonism improves dyslipidemia and atherosclerosis independently of body weight loss in preclinical mouse model for cardio-metabolic disease. Cardiovasc Diabetol 2023; 22:217. [PMID: 37592302 PMCID: PMC10436634 DOI: 10.1186/s12933-023-01940-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Agonism at the receptor for the glucose-dependent insulinotropic polypeptide (GIPR) is a key component of the novel unimolecular GIPR:GLP-1R co-agonists, which are among the most promising drugs in clinical development for the treatment of obesity and type 2 diabetes. The therapeutic effect of chronic GIPR agonism to treat dyslipidemia and thus to reduce the cardiovascular disease risk independently of body weight loss has not been explored yet. METHODS After 8 weeks on western diet, LDL receptor knockout (LDLR-/-) male mice were treated with daily subcutaneous injections of long-acting acylated GIP analog (acyl-GIP; 10nmol/kg body weight) for 28 days. Body weight, food intake, whole-body composition were monitored throughout the study. Fasting blood glucose and intraperitoneal glucose tolerance test (ipGTT) were determined on day 21 of the study. Circulating lipid levels, lipoprotein profiles and atherosclerotic lesion size was assessed at the end of the study. Acyl-GIP effects on fat depots were determined by histology and transcriptomics. RESULTS Herein we found that treatment with acyl-GIP reduced dyslipidemia and atherogenesis in male LDLR-/- mice. Acyl-GIP administration resulted in smaller adipocytes within the inguinal fat depot and RNAseq analysis of the latter revealed that acyl-GIP may improve dyslipidemia by directly modulating lipid metabolism in this fat depot. CONCLUSIONS This study identified an unanticipated efficacy of chronic GIPR agonism to improve dyslipidemia and cardiovascular disease independently of body weight loss, indicating that treatment with acyl-GIP may be a novel approach to alleviate cardiometabolic disease.
Collapse
Affiliation(s)
- Stephan Sachs
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
- Institute for Diabetes and Obesity, Division of Metabolic Diseases, Helmholtz Diabetes Center at Helmholtz Centre Munich, Munich, Germany
- Technische Universität München, 80333, Munich, Germany
| | - Anna Götz
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
- Institute for Diabetes and Obesity, Division of Metabolic Diseases, Helmholtz Diabetes Center at Helmholtz Centre Munich, Munich, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | | | - Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Division of Metabolic Diseases, Helmholtz Diabetes Center at Helmholtz Centre Munich, Munich, Germany
- Technische Universität München, 80333, Munich, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Division of Metabolic Diseases, Helmholtz Diabetes Center at Helmholtz Centre Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
18
|
Davies I, Tan TMM. Design of novel therapeutics targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. Expert Opin Drug Discov 2023; 18:659-669. [PMID: 37154171 DOI: 10.1080/17460441.2023.2203911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION With obesity rates growing globally, there is a paramount need for new obesity pharmacotherapies to tackle this pandemic. AREAS COVERED This review focuses on the design of therapeutics that target the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. The authors highlight the paradoxical observation that both GIPR agonism and antagonism appear to provide metabolic benefits when combined with glucagon-like peptide-1 receptor (GLP-1 R) agonism. The therapeutic potential of compounds that target the GIPR alongside the GLP-1 R and the glucagon receptor are discussed, and the impressive clinical findings of such compounds are reviewed. EXPERT OPINION In this area, the translation of pre-clinical findings to clinical studies appears to be particularly difficult. Well-designed physiological studies in man are required to answer the paradox highlighted above, and to support the safe future development of a combination of GLP-1 R/GIPR targeting therapies.
Collapse
Affiliation(s)
- Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
19
|
Maagensen H, Helsted MM, Gasbjerg LS, Vilsbøll T, Knop FK. The Gut-Bone Axis in Diabetes. Curr Osteoporos Rep 2023; 21:21-31. [PMID: 36441432 DOI: 10.1007/s11914-022-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW To describe recent advances in the understanding of how gut-derived hormones regulate bone homeostasis in humans with emphasis on pathophysiological and therapeutic perspectives in diabetes. RECENT FINDINGS The gut-derived incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is important for postprandial suppression of bone resorption. The other incretin hormone, glucagon-like peptide 1 (GLP-1), as well as the intestinotrophic glucagon-like peptide 2 (GLP-2) has been shown to suppress bone resorption in pharmacological concentrations, but the role of the endogenous hormones in bone homeostasis is uncertain. For ambiguous reasons, both patients with type 1 and type 2 diabetes have increased fracture risk. In diabetes, the suppressive effect of endogenous GIP on bone resorption seems preserved, while the effect of GLP-2 remains unexplored both pharmacologically and physiologically. GLP-1 receptor agonists, used for the treatment of type 2 diabetes and obesity, may reduce bone loss, but results are inconsistent. GIP is an important physiological suppressor of postprandial bone resorption, while GLP-1 and GLP-2 may also exert bone-preserving effects when used pharmacologically. A better understanding of the actions of these gut hormones on bone homeostasis in patients with diabetes may lead to new strategies for the prevention and treatment of skeletal frailty related to diabetes.
Collapse
Affiliation(s)
- Henrik Maagensen
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Mads M Helsted
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Battillo DJ, Malin SK. Relation of Aortic Waveforms with Gut Hormones following Continuous and Interval Exercise among Older Adults with Prediabetes. Metabolites 2023; 13:137. [PMID: 36837756 PMCID: PMC9967213 DOI: 10.3390/metabo13020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Prediabetes raises cardiovascular disease risk, in part through elevated aortic waveforms. While insulin is a vasodilatory hormone, the gut hormone relation to aortic waveforms is less clear. We hypothesized that exercise, independent of intensity, would favor aortic waveforms in relation to gut hormones. Older adults (61.3 ± 1.5 yr; 33.2 ± 1.1 kg/m2) with prediabetes (ADA criteria) were randomized to undertake 60 min of work-matched continuous (CONT, n = 14) or interval (INT, n = 14) exercise for 2 wks. During a 180 min 75-g OGTT, a number of aortic waveforms (applanation tonometry) were assessed: the augmentation pressure (AP) and index (AIx75), brachial (bBP) and central blood pressure (cBP), pulse pressure (bPP and cPP), pulse pressure amplification (PPA), and forward (Pf) and backward pressure (Pb) waveforms. Acylated-ghrelin (AG), des-acylated ghrelin (dAG), GIP, and GLP-1active were measured, and correlations were co-varied for insulin. Independent of intensity, exercise increased VO2peak (p = 0.01) and PPA120min (p = 0.01) and reduced weight (p < 0.01), as well as AP120min (p = 0.02) and AIx75120min (p < 0.01). CONT lowered bSBP (p < 0.02) and bDBP (p < 0.02) tAUC180min more than INT. There were decreases dAG0min related to Pb120min (r = 0.47, p = 0.03), cPP120min (r = 0.48, p = 0.02), and AP120min (r = 0.46, p = 0.02). Declines in AG tAUC60min correlated with lower Pb120min (r = 0.47, p = 0.03) and cPP120min (r = 0.49, p = 0.02) were also found. GLP-1active 0min was reduced associated with lowered AP180min (r = 0.49, p = 0.02). Thus, while CONT exercise favored blood pressure, both intensities of exercise improved aortic waveforms in relation to gut hormones after controlling for insulin.
Collapse
Affiliation(s)
- Daniel J. Battillo
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Steven K. Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
21
|
Krogh LSL, Henriksen K, Stensen S, Skov-Jeppesen K, Bergmann NC, Størling J, Rosenkilde MM, Hartmann B, Holst JJ, Gasbjerg LS, Knop FK. The naturally occurring GIP(1-30)NH2 is a GIP receptor agonist in humans. Eur J Endocrinol 2023; 188:6979719. [PMID: 36651162 DOI: 10.1093/ejendo/lvac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) is an important regulator of glucose and bone metabolism. In rodents, the naturally occurring GIP variant, GIP(1-30)NH2, has shown similar effects as full-length GIP (GIP(1-42)), but its effects in humans are unsettled. Here, we investigated the actions of GIP(1-30)NH2 compared to GIP(1-42) on glucose and bone metabolism in healthy men and in isolated human pancreatic islets. METHODS Nine healthy men completed three separate three-step glucose clamps (0-60 minutes at fasting plasma glucose (FPG) level, 60-120 minutes at 1.5× FPG, and 120-180 minutes at 2× FPG) with infusion of GIP(1-42) (4 pmol/kg/min), GIP(1-30)NH2 (4 pmol/kg/min), and saline (9 mg/mL) in randomised order. Blood was sampled for measurement of relevant hormones and bone turnover markers. Human islets were incubated with low (2 mmol/L) or high (20 mmol/L) d-glucose with or without GIP(1-42) or GIP(1-30)NH2 in three different concentrations for 30 minutes, and secreted insulin and glucagon were measured. RESULTS Plasma glucose (PG) levels at FPG, 1.5× FPG, and 2× FPG were obtained by infusion of 1.45 g/kg, 0.97 g/kg, and 0.6 g/kg of glucose during GIP(1-42), GIP(1-30)NH2, and saline, respectively (P = .18), and were similar on the three experimental days. Compared to placebo, GIP(1-30)NH2 resulted in similar glucagonotropic, insulinotropic, and carboxy-terminal type 1 collagen crosslinks-suppressing effects as GIP(1-42). In vitro experiments on human islets showed similar insulinotropic and glucagonotropic effects of the two GIP variants. CONCLUSIONS GIP(1-30)NH2 has similar effects on glucose and bone metabolism in healthy individuals and in human islets in vitro as GIP(1-42).
Collapse
Affiliation(s)
- Liva S L Krogh
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kristine Henriksen
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
23
|
Heimbürger SMN, Hoe B, Nielsen CN, Bergman NC, Skov-Jeppesen K, Hartmann B, Holst JJ, Dela F, Overgaard J, Størling J, Vilsbøll T, Dejgaard TF, Havelund JF, Gorshkov V, Kjeldsen F, Færgeman NJ, Madsen MR, Christensen MB, Knop FK. GIP Affects Hepatic Fat and Brown Adipose Tissue Thermogenesis but Not White Adipose Tissue Transcriptome in Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:3261-3274. [PMID: 36111559 DOI: 10.1210/clinem/dgac542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/13/2023]
Abstract
CONTEXT Glucose-dependent insulinotropic polypeptide (GIP) has been proposed to exert insulin-independent effects on lipid and bone metabolism. OBJECTIVE We investigated the effects of a 6-day subcutaneous GIP infusion on circulating lipids, white adipose tissue (WAT), brown adipose tissue (BAT), hepatic fat content, inflammatory markers, respiratory exchange ratio (RER), and bone homeostasis in patients with type 1 diabetes. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 20 men with type 1 diabetes underwent a 6-day continuous subcutaneous infusion with GIP (6 pmol/kg/min) and placebo (saline), with an interposed 7-day washout period. RESULTS During GIP infusion, participants (26 ± 8 years [mean ± SD]; BMI 23.8 ± 1.8 kg/m2; glycated hemoglobin A1c 51 ± 10 mmol/mol [6.8 ± 3.1%]) experienced transiently increased circulating concentrations of nonesterified fatty acid (NEFA) (P = 0.0005), decreased RER (P = 0.009), indication of increased fatty acid β-oxidation, and decreased levels of the bone resorption marker C-terminal telopeptide (P = 0.000072) compared with placebo. After 6 days of GIP infusion, hepatic fat content was increased by 12.6% (P = 0.007) and supraclavicular skin temperature, a surrogate indicator of BAT activity, was increased by 0.29 °C (P < 0.000001) compared with placebo infusion. WAT transcriptomic profile as well as circulating lipid species, proteome, markers of inflammation, and bone homeostasis were unaffected. CONCLUSION Six days of subcutaneous GIP infusion in men with type 1 diabetes transiently decreased bone resorption and increased NEFA and β-oxidation. Further, hepatic fat content, and supraclavicular skin temperature were increased without affecting WAT transcriptomics, the circulating proteome, lipids, or inflammatory markers.
Collapse
Affiliation(s)
- Sebastian Møller Nguyen Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Translational Pharmacology, Zealand Pharma A/S, 2860 Søborg, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chris Neumann Nielsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Natasha Chidekel Bergman
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Ageing, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Julie Overgaard
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Fremming Dejgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Bulum T. Nephroprotective Properties of the Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) Receptor Agonists. Biomedicines 2022; 10:biomedicines10102586. [PMID: 36289848 PMCID: PMC9599125 DOI: 10.3390/biomedicines10102586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is the leading cause of chronic kidney disease, and about 30–40% of patients with diabetes will develop kidney disease. Incretin hormones have received attention during the past three decades not only as a pharmacotherapy for the treatment of type 2 diabetes, but also for their cardiorenometabolic effects. The main incretins are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Additional to the pancreas, receptors for GLP-1 are widely distributed in various organs, causing positive effects on endothelial function and vascular atherogenesis. Along with glycemic control and weight reduction, GLP-1 receptor agonists also strongly improve cardiovascular and renal outcomes in patients with type 2 diabetes. Recently, a dual GIP and GLP-1 receptor agonist has been approved for the treatment of type 2 diabetes. Compared to GLP-1 receptor agonist semaglutide, dual GIP and GLP-1 receptor agonist tirzepatide showed a superior reduction in hemoglobin A1c and body weight. Preliminary results also suggest that tirzepatide improves kidney outcomes in adults with type 2 diabetes with increased cardiovascular risk. In this review, we present the nephroprotective properties of dual GIP and GLP-1 receptor agonists as a new drug to treat type 2 diabetes.
Collapse
Affiliation(s)
- Tomislav Bulum
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Dugi dol 4a, 10000 Zagreb, Croatia;
- Medical School, University of Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Salehi M, DeFronzo R, Gastaldelli A. Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions. Int J Mol Sci 2022; 23:ijms23147667. [PMID: 35887007 PMCID: PMC9324232 DOI: 10.3390/ijms23147667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The liver has the capacity to regulate glucose metabolism by altering the insulin clearance rate (ICR). The decreased fasting insulin concentrations and enhanced prandial hyperinsulinemia after Roux-en-Y gastric-bypass (GB) surgery and sleeve gastrectomy (SG) are well documented. Here, we investigated the effect of GB or SG on insulin kinetics in the fasting and fed states. Method: ICR was measured (i) during a mixed-meal test (MMT) in obese non-diabetic GB (n = 9) and SG (n = 7) subjects and (ii) during a MMT combined with a hyperinsulinemic hypoglycemic clamp in the same GB and SG subjects. Five BMI-matched and non-diabetic subjects served as age-matched non-operated controls (CN). Results: The enhanced ICR during the fasting state after GB and SC compared with CN (p < 0.05) was mainly attributed to augmented hepatic insulin clearance rather than non-liver organs. The dose-response slope of the total insulin extraction rate (InsExt) of exogenous insulin per circulatory insulin value was greater in the GB and SG subjects than in the CN subjects, despite the similar peripheral insulin sensitivity among the three groups. Compared to the SG or the CN subjects, the GB subjects had greater prandial insulin secretion (ISR), independent of glycemic levels. The larger post-meal ISR following GB compared with SG was associated with a greater InsExt until it reached a plateau, leading to a similar reduction in meal-induced ICR among the GB and SG subjects. Conclusions: GB and SG alter ICR in the presence or absence of meal stimulus. Further, altered ICR after bariatric surgery results from changes in hepatic insulin clearance and not from a change in peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
- South Texas Veteran Health Care System, Audie Murphy Hospital, San Antonio, TX 78229, USA
- Correspondence: (M.S.); (A.G.); Tel.: +1-(210)-450-8560 (M.S.)
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
| | - Amalia Gastaldelli
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, 56124 Pisa, Italy
- Correspondence: (M.S.); (A.G.); Tel.: +1-(210)-450-8560 (M.S.)
| |
Collapse
|
26
|
Boer GA, Hunt JE, Gabe MBN, Windeløv JA, Sparre-Ulrich AH, Hartmann B, Holst JJ, Rosenkilde MM. GIP receptor antagonist treatment causes a reduction in weight gain in ovariectomised high fat diet-fed mice. Br J Pharmacol 2022; 179:4486-4499. [PMID: 35710141 PMCID: PMC9544171 DOI: 10.1111/bph.15894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background and purpose The incretin hormone, gastric inhibitory peptide/glucose‐dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K‐cells in the proximal intestine, may regulate lipid metabolism and adiposity, but its exact role in these processes is unclear. Experimental approach We characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt‐1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high‐fat diet (HFD)‐induced body weight gain in ovariectomised mice during an 8‐week treatment period. Key results mGIPAnt‐1 showed competitive antagonistic properties to the GIP receptor in vitro as it inhibited GIP‐induced cAMP accumulation in COS‐7 cells. Furthermore, mGIPAnt‐1 was capable of inhibiting GIP‐induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half‐life of 7.2 h in C57Bl6 female mice. Finally, sub‐chronic treatment with mGIPAnt‐1 in ovariectomised HFD mice resulted in a reduction of body weight and fat mass. Conclusion and Implications mGIPAnt‐1 successfully inhibited acute GIP‐induced effects in vitro and in vivo and sub‐chronically induces resistance to HFD‐induced weight gain in ovariectomised mice. Our results support the development of GIP antagonists for the therapy of obesity.
Collapse
Affiliation(s)
- Geke Aline Boer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Guccio N, Gribble FM, Reimann F. Glucose-Dependent Insulinotropic Polypeptide-A Postprandial Hormone with Unharnessed Metabolic Potential. Annu Rev Nutr 2022; 42:21-44. [PMID: 35609956 DOI: 10.1146/annurev-nutr-062320-113625] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is released from the upper small intestine in response to food intake and contributes to the postprandial control of nutrient disposition, including of sugars and fats. Long neglected as a potential therapeutic target, the GIPR axis has received increasing interest recently, with the emerging data demonstrating the metabolically favorable outcomes of adding GIPR agonism to GLP-1 receptor agonists in people with type 2 diabetes and obesity. This review examines the physiology of the GIP axis, from the mechanisms underlying GIP secretion from the intestine to its action on target tissues and therapeutic development. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nunzio Guccio
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| | - Frank Reimann
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| |
Collapse
|
28
|
Taskinen MR, Matikainen N, Björnson E, Söderlund S, Ainola M, Hakkarainen A, Lundbom N, Sihlbom C, Thorsell A, Andersson L, Adiels M, Hartmann B, Deacon CF, Holst JJ, Packard CJ, Borén J. Role of endogenous incretins in the regulation of postprandial lipoprotein metabolism. Eur J Endocrinol 2022; 187:75-84. [PMID: 35521766 DOI: 10.1530/eje-21-1187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Incretins are known to influence lipid metabolism in the intestine when administered as pharmacologic agents. The aggregate influence of endogenous incretins on chylomicron production and clearance is less clear, particularly in light of opposing effects of co-secreted hormones. Here, we tested the hypothesis that physiological levels of incretins may impact on production or clearances rates of chylomicrons and VLDL. DESIGN AND METHODS A group of 22 overweight/obese men was studied to determine associations between plasma levels of glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) after a fat-rich meal and the production and clearance rates of apoB48- and apoB100-containing triglyceride-rich lipoproteins. Subjects were stratified by above- and below-median incretin response (area under the curve). RESULTS Stratification yielded subgroups that differed about two-fold in incretin response. There were neither differences in apoB48 production rates in chylomicrons or VLDL fractions nor in apoB100 or triglyceride kinetics in VLDL between men with above- vs below-median incretin responses. The men with above-median GLP-1 and GLP-2 responses exhibited higher postprandial plasma and chylomicron triglyceride levels, but this could not be related to altered kinetic parameters. No differences were found between incretin response subgroups and particle clearance rates. CONCLUSION We found no evidence for a regulatory effect of endogenous incretins on contemporaneous chylomicron or VLDL metabolism following a standardised fat-rich meal. The actions of incretins at pharmacological doses may not be reflected at physiological levels of these hormones.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Niina Matikainen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sanni Söderlund
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Mari Ainola
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina Sihlbom
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
29
|
Campbell JE, Beaudry JL, Svendsen B, Baggio LL, Gordon AN, Ussher JR, Wong CK, Gribble FM, D’Alessio DA, Reimann F, Drucker DJ. GIPR Is Predominantly Localized to Nonadipocyte Cell Types Within White Adipose Tissue. Diabetes 2022; 71:1115-1127. [PMID: 35192688 PMCID: PMC7612781 DOI: 10.2337/db21-1166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 02/02/2023]
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) augments glucose-dependent insulin secretion through its receptor expressed on islet β-cells. GIP also acts on adipose tissue; yet paradoxically, both enhanced and reduced GIP receptor (GIPR) signaling reduce adipose tissue mass and attenuate weight gain in response to nutrient excess. Moreover, the precise cellular localization of GIPR expression within white adipose tissue (WAT) remains uncertain. We used mouse genetics to target Gipr expression within adipocytes. Surprisingly, targeting Cre expression to adipocytes using the adiponectin (Adipoq) promoter did not produce meaningful reduction of WAT Gipr expression in Adipoq-Cre:Giprflx/flx mice. In contrast, adenoviral expression of Cre under the control of the cytomegalovirus promoter, or transgenic expression of Cre using nonadipocyte-selective promoters (Ap2/Fabp4 and Ubc) markedly attenuated WAT Gipr expression. Analysis of single-nucleus RNA-sequencing, adipose tissue data sets localized Gipr/GIPR expression predominantly to pericytes and mesothelial cells rather than to adipocytes. Together, these observations reveal that adipocytes are not the major GIPR+ cell type within WAT-findings with mechanistic implications for understanding how GIP and GIP-based co-agonists control adipose tissue biology.
Collapse
Affiliation(s)
- Jonathan E. Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
- Corresponding authors: Jonathan E. Campbell, , or Daniel J. Drucker,
| | - Jacqueline L. Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Berit Svendsen
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Laurie L. Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Andrew N. Gordon
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - John R. Ussher
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Fiona M. Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Corresponding authors: Jonathan E. Campbell, , or Daniel J. Drucker,
| |
Collapse
|
30
|
De Block CEM, Dirinck E, Verhaegen A, Van Gaal LF. Efficacy and safety of high-dose glucagon-like peptide-1, glucagon-like peptide-1/glucose-dependent insulinotropic peptide, and glucagon-like peptide-1/glucagon receptor agonists in type 2 diabetes. Diabetes Obes Metab 2022; 24:788-805. [PMID: 34984793 DOI: 10.1111/dom.14640] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have become agents of choice for people with type 2 diabetes (T2D) with established cardiovascular disease or in high-risk individuals. With currently available GLP-1 RAs, 51%-79% of subjects achieve an HbA1c target of less than 7.0% and 4%-27% lose 10% of body weight, illustrating the need for more potent agents. Three databases (PubMed, Cochrane, Web of Science) were searched using the MESH terms 'glucagon-like peptide-1 receptor agonist', 'glucagon receptor agonist', 'glucose-dependent insulinotropic peptide', 'dual or co-agonist', and 'tirzepatide'. Quality of papers was scored using PRISMA guidelines. Risk of bias was evaluated using the Cochrane assessment tool. An HbA1c target of less than 7.0% was attained by up to 80% with high-dose GLP-1 RAs and up to 97% with tirzepatide, with even up to 62% of people with T2D reaching an HbA1c of less than 5.7%. A body weight loss of 10% or greater was obtained by up to 50% and up to 69% with high-dose GLP-1 RAs or tirzepatide, respectively. The glucose- and weight-lowering effects of the GLP-1/glucagon RA cotadutide equal those of liraglutide 1.8 mg. Gastrointestinal side effects of high-dose GLP-1 RAs and co-agonists occurred in 30%-70% of patients, mostly arising within the first 2 weeks of the first dose, being mild or moderate in severity, and transient. The development of high-dose GLP-1 RAs and the dual GLP-1/glucose-dependent insulinotropic peptide RA tirzepatide resulted in increasing numbers of people reaching HbA1c and body weight targets, with up to 62% attaining normoglycaemia with 15-mg tirzepatide. Whether this will also translate to better cardiovascular outcomes and affect treatment guidelines remains to be studied.
Collapse
Affiliation(s)
- Christophe E M De Block
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Wilrijk, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Wilrijk, Belgium
| | - Ann Verhaegen
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Wilrijk, Belgium
| | - Luc F Van Gaal
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
31
|
Takahashi H, Nakajima A, Matsumoto Y, Mori H, Inoue K, Yamanouchi H, Tanaka K, Tomiga Y, Miyahara M, Yada T, Iba Y, Matsuda Y, Watanabe K, Anzai K. Administration of Jerusalem artichoke reduces the postprandial plasma glucose and glucose-dependent insulinotropic polypeptide (GIP) concentrations in humans. Food Nutr Res 2022; 66:7870. [PMID: 35440936 PMCID: PMC8985572 DOI: 10.29219/fnr.v66.7870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 01/19/2023] Open
Abstract
Background The consumption of Jerusalem artichoke has multiple beneficial effects against diabetes and obesity. Objective The aim of this study was to determine the effect of a single administration of Jerusalem artichoke tubers on postprandial glycemia and the concentrations of incretin hormones in humans. Method Grated Jerusalem artichoke was administered prior to a meal (Trial 1; white rice for prediabetic participants, n = 10). Dose-dependent effect of Jerusalem artichoke (Trial 2; white rice for prediabetic participants, n = 4) and effect prior to the fat-rich meal were also investigated (Trial 3; healthy participants, n = 5) in this pilot study. Circulating glucose, insulin, triglyceride, glucagon, active glucagon-like peptide-1 (GLP-1), and active glucose-dependent insulinotropic polypeptide (GIP) concentrations were subsequently measured in all the trials. Results Jerusalem artichoke significantly reduced the glucose and GIP concentrations after the consumption of either meal in Trial 1 and Trial 3, whereas there were no differences in the insulin, glucagon, and active GLP-1 concentrations. Also, there was no significant difference in the triglyceride concentration after the ingestion of the fat-rich meal in Trial 3. The glucose and GIP-lowering effects were dose-dependent, and the consumption of at least 100 g of Jerusalem artichoke was required to have these effects in Trial 2. Conclusion This study demonstrates that a single administration of Jerusalem artichoke tubers reduces postprandial glucose and active GIP concentrations in prediabetic and healthy individuals.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Akane Nakajima
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Center of Nutritional Education, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuichi Matsumoto
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, Karatsu, Saga, Japan
| | - Hitoe Mori
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Kanako Inoue
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroko Yamanouchi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Tomiga
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Maki Miyahara
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomomi Yada
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Yumiko Iba
- Center of Nutritional Education, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Yayoi Matsuda
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiichi Watanabe
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, Karatsu, Saga, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
32
|
Pirro V, Roth KD, Lin Y, Willency JA, Milligan PL, Wilson JM, Ruotolo G, Haupt A, Newgard CB, Duffin KL. Effects of Tirzepatide, a Dual GIP and GLP-1 RA, on Lipid and Metabolite Profiles in Subjects With Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:363-378. [PMID: 34608929 DOI: 10.1210/clinem/dgab722] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/06/2023]
Abstract
CONTEXT Tirzepatide substantially reduced hemoglobin A1c (HbA1c) and body weight in subjects with type 2 diabetes (T2D) compared with the glucagon-like peptide 1 receptor agonist dulaglutide. Improved glycemic control was associated with lower circulating triglycerides and lipoprotein markers and improved markers of beta-cell function and insulin resistance (IR), effects only partially attributable to weight loss. OBJECTIVE Assess plasma metabolome changes mediated by tirzepatide. DESIGN Phase 2b trial participants were randomly assigned to receive weekly subcutaneous tirzepatide, dulaglutide, or placebo for 26 weeks. Post hoc exploratory metabolomics and lipidomics analyses were performed. SETTING Post hoc analysis. PARTICIPANTS 259 subjects with T2D. INTERVENTION(S) Tirzepatide (1, 5, 10, 15 mg), dulaglutide (1.5 mg), or placebo. MAIN OUTCOME MEASURE(S) Changes in metabolite levels in response to tirzepatide were assessed against baseline levels, dulaglutide, and placebo using multiplicity correction. RESULTS At 26 weeks, a higher dose tirzepatide modulated a cluster of metabolites and lipids associated with IR, obesity, and future T2D risk. Branched-chain amino acids, direct catabolic products glutamate, 3-hydroxyisobutyrate, branched-chain ketoacids, and indirect byproducts such as 2-hydroxybutyrate decreased compared to baseline and placebo. Changes were significantly larger with tirzepatide compared with dulaglutide and directly proportional to reductions of HbA1c, homeostatic model assessment 2-IR indices, and proinsulin levels. Proportional to metabolite changes, triglycerides and diglycerides were lowered significantly compared to baseline, dulaglutide, and placebo, with a bias toward shorter and highly saturated species. CONCLUSIONS Tirzepatide reduces body weight and improves glycemic control and uniquely modulates metabolites associated with T2D risk and metabolic dysregulation in a direction consistent with improved metabolic health.
Collapse
Affiliation(s)
| | | | - Yanzhu Lin
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology and Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
33
|
Tan Q, Akindehin SE, Orsso CE, Waldner RC, DiMarchi RD, Müller TD, Haqq AM. Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Front Endocrinol (Lausanne) 2022; 13:838410. [PMID: 35299971 PMCID: PMC8921987 DOI: 10.3389/fendo.2022.838410] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) has received enormous attention during the past three decades as a therapeutic target for the treatment of obesity and type 2 diabetes. Continuous improvement of the pharmacokinetic profile of GLP-1R agonists, starting from native hormone with a half-life of ~2-3 min to the development of twice daily, daily and even once-weekly drugs highlight the pharmaceutical evolution of GLP-1-based medicines. In contrast to GLP-1, the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) received little attention as a pharmacological target, because of conflicting observations that argue activation or inhibition of the GIP receptor (GIPR) provides beneficial effects on systemic metabolism. Interest in GIPR agonism for the treatment of obesity and diabetes was recently propelled by the clinical success of unimolecular dual-agonists targeting the receptors for GIP and GLP-1, with reported significantly improved body weight and glucose control in patients with obesity and type II diabetes. Here we review the biology and pharmacology of GLP-1 and GIP and discuss recent advances in incretin-based pharmacotherapies.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Seun E. Akindehin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
| | - Camila E. Orsso
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| | - Andrea M. Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| |
Collapse
|
34
|
Abstract
The enteroendocrine system coordinates the physiological response to food intake by regulating rates of digestion, nutrient absorption, insulin secretion, satiation and satiety. Gut hormones with important anorexigenic and/or insulinotropic roles include glucagon-like peptide 1 (GLP-1), peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP). High BMI or obesogenic diets do not markedly disrupt this enteroendocrine system, which represents a critical target for inducing weight loss and treating co-morbidities in individuals with obesity.
Collapse
|
35
|
Heimburger SMN, Nielsen CN, Calanna S, Holst JJ, Vilsbøll T, Knop FK, Christensen MB. Glucose-dependent insulinotropic polypeptide induces lipolysis during stable basal insulin substitution and hyperglycaemia in men with type 1 diabetes: A randomized, double-blind, placebo-controlled, crossover clinical trial. Diabetes Obes Metab 2022; 24:142-147. [PMID: 34490741 DOI: 10.1111/dom.14545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) plays an important role in the glucose and lipid metabolism. We investigated the effects of exogenous GIP on lipid metabolism during time of stable insulin levels. Ten male patients with type 1 diabetes without endogenous insulin secretion (C-peptide-negative, mean [±SD] age 26 ± 4years, body mass index 24 [±2] kg/m2 , glycated haemoglobin 56 [±8] mmol/mol or 7.3 [±0.8]%) were studied in a randomized, double-blind, placebo-controlled, crossover study with continuous intravenous infusions of GIP (4 pmol/kg/min) or placebo (saline), during two separate 90-minute hyperglycaemic (12 mmol/L) clamps with basal insulin substitution (0.1-0.2 mU/kg/min). Plasma glycerol concentrations increased from baseline during GIP infusion and decreased during placebo infusion (baseline-subtracted area under the curve [bsAUC] 703 ± 407 vs. -262 ± 240 μmol/L × min, respectively; P < 0.001). Free fatty acids (FFAs) increased during GIP infusions (bsAUC 5505 ± 2170 μEq/L × min) and remained unchanged during placebo infusion (bsAUC -74 ± 2363 μEq/L × min), resulting in a significant difference between GIP and placebo infusions (P < 0.001). Plasma concentrations of glucose, insulin, glucagon-like peptide-1 and glucagon were similar during GIP and placebo infusions. GIP increased plasma glycerol and FFAs in patients with type 1 diabetes during hyperglycaemia and stable basal insulin levels. This supports a direct lipolytic effect of GIP at high glucose and low levels of plasma insulin.
Collapse
Affiliation(s)
- Sebastian M N Heimburger
- Centre for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Zealand Pharma, Zealand Pharma A/S, Søborg, Denmark
| | - Chris N Nielsen
- Centre for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | | | - Jens J Holst
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Centre for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Centre for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Centre for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Centre for Translational Research, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
36
|
Pelle MC, Provenzano M, Zaffina I, Pujia R, Giofrè F, Lucà S, Andreucci M, Sciacqua A, Arturi F. Role of a Dual Glucose-Dependent Insulinotropic Peptide (GIP)/Glucagon-like Peptide-1 Receptor Agonist (Twincretin) in Glycemic Control: From Pathophysiology to Treatment. Life (Basel) 2021; 12:29. [PMID: 35054422 PMCID: PMC8779403 DOI: 10.3390/life12010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two gut hormones, defined incretins, responsible for the amplification of insulin secretion after oral glucose intake. Unlike GLP-1, GIP has little acute effect on insulin secretion and no effect on food intake; instead it seems that the GIP may be an obesity-promoting hormone. In patients with type2 diabetes mellitus (T2DM) some studies found a downregulation of GIP receptors on pancreatic β cells caused by hyperglycemic state, but the glucagonotropic effect persisted. Agonists of the receptor for the GLP-1 have proven successful for the treatment of diabetes, since they reduce the risk for cardiovascular and renal events, but the possible application of GIP as therapy for T2DM is discussed. Moreover, the latest evidence showed a synergetic effect when GIP was combined with GLP-1 in monomolecular co-agonists. In fact, compared with the separate infusion of each hormone, the combination increased both insulin response and glucagonostatic response. In accordance with theseconsiderations, a dual GIP/GLP-1receptor agonist, i.e., Tirzepatide, known as a "twincretin" had been developed. In the pre-clinical trials, as well as Phase 1-3 clinical trials, Tirzepatideshowedpotent glucose lowering and weight loss effects within an acceptable safety.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Michele Provenzano
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (M.A.)
| | - Isabella Zaffina
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Roberta Pujia
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Federica Giofrè
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Stefania Lucà
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Michele Andreucci
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (M.A.)
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| |
Collapse
|
37
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
38
|
Takeda Y, Fujita Y, Yanagimachi T, Maruyama N, Bessho R, Sakagami H, Honjo J, Yokoyama H, Haneda M. Establishment of novel specific assay for short-form glucose-dependent insulinotropic polypeptide and evaluation of its secretion in nondiabetic subjects. Physiol Rep 2021; 8:e14469. [PMID: 32472669 PMCID: PMC7260394 DOI: 10.14814/phy2.14469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022] Open
Abstract
The short‐form glucose‐dependent insulinotropic polypeptide (GIP) (1–30) is released from islet alpha cells and promotes insulin secretion in a paracrine manner in vitro. However, it is not well elucidated how GIP (1–30) is involved in glucose metabolism in vivo, since a specific assay system for GIP (1–30) has not yet been established. We first developed a sandwich enzyme‐linked immunosorbent assay (ELISA) specific for GIP (1–30) by combining a novel antibody specific to the GIP (1–30) C terminus with the common antibody against GIP N terminus. Then, we explored cross‐reactivities with incretins and glucagon‐related peptides in this ELISA. GIP (1–30) amide, but not GIP (1–42), GLP‐1, or glucagon increased absorbance in a dose‐dependent manner. We next measured plasma GIP (1–30) concentrations in nondiabetic participants (ND) during a 75‐g oral glucose tolerance test or cookie meal test (carbohydrates 75 g, lipids 28.5 g, proteins 8.5 g). Both glucose and cookie load increased GIP (1–30) concentrations in ND, but the increases were much lower than those of GIP (1–42). Furthermore, the DPP‐4 inhibitor significantly increased GIP (1–30) concentrations similarly to GIP (1–42) in ND. In conclusion, we for the first time developed an ELISA specific for GIP (1–30) and revealed its secretion in ND.
Collapse
Affiliation(s)
- Yasutaka Takeda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yukihiro Fujita
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Tsuyoshi Yanagimachi
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan.,Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | - Ryoichi Bessho
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hidemitsu Sakagami
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Jun Honjo
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | | | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
39
|
Boer GA, Keenan SN, Miotto PM, Holst JJ, Watt MJ. GIP receptor deletion in mice confers resistance to high-fat diet-induced obesity via alterations in energy expenditure and adipose tissue lipid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E835-E845. [PMID: 33645252 DOI: 10.1152/ajpendo.00646.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is best known as an incretin hormone that is secreted from K-cells of the proximal intestine, but evidence also implicates a role for GIP in regulating lipid metabolism and adiposity. It is well-established that GIP receptor knockout (GIPR KO) mice are resistant to diet-induced obesity; however, the factors mediating this effect remain unresolved. Accordingly, we aimed to elucidate the mechanisms leading to adiposity resistance in GIPR KO mice with a focus on whole-body energy balance and lipid metabolism in adipose tissues. Studies were conducted in age-matched male GIPR KO and wild-type (WT) mice fed a high-fat diet for 10 weeks. GIPR KO mice gained less body weight and fat mass compared to WT littermates, and this was associated with increased energy expenditure but no differences in food intake or fecal energy loss. Upon an oral lipid challenge, fatty acid storage in inguinal adipose tissue was significantly increased in GIPR KO compared with WT mice. This was not related to differential expression of lipoprotein lipase in adipose tissue. Adipose tissue lipolysis was increased in GIPR KO compared with WT mice, particularly following β-adrenergic stimulation, and could explain why GIPR KO mice gain less adipose tissue despite increased rates of fatty acid storage in inguinal adipose tissue. Taken together, these results suggest that the GIPR is required for normal maintenance of body weight and adipose tissue mass by regulating energy expenditure and lipolysis.NEW & NOTEWORTHY GIPR KO mice fed a high-fat diet have reduced adiposity despite transporting more ingested lipids into adipose tissue. This can be partly explained by accelerated adipose tissue lipolysis and increased energy expenditure in GIPR KO mice. These new insights rationalize targeting the GIPR as part of a weight management strategy in obesity.
Collapse
Affiliation(s)
- Geke Aline Boer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stacey N Keenan
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Paula M Miotto
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021; 16:e0249239. [PMID: 33788878 PMCID: PMC8011784 DOI: 10.1371/journal.pone.0249239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/13/2021] [Indexed: 12/04/2022] Open
Abstract
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.
Collapse
Affiliation(s)
- Jason A. West
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
| | | | | | | | | | - David Maggs
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | | | - Gavin A. Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Gradel AKJ, Kildegaard J, Porsgaard T, Lykkesfeldt J, Refsgaard HHF. Food intake rather than blood glucose levels affects the pharmacokinetic profile of insulin aspart in pigs. Basic Clin Pharmacol Toxicol 2021; 128:783-794. [PMID: 33626236 DOI: 10.1111/bcpt.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
In humans, food intake and glucose infusion have been reported to increase subcutaneous blood flow. Since local blood flow influences the rate of insulin absorption from the subcutaneous tissue, we hypothesised that an increase in blood glucose levels-occurring as the result of glucose infusion or food intake-could modulate the pharmacokinetic properties of subcutaneously administered insulin. The pharmacokinetic profile of insulin aspart was assessed in 29 domestic pigs that were examined in a fed and fasted state or included in hyperinsulinaemic clamp studies of 4 vs. 10 mmol/L glucose prior to subcutaneous (30 nmol) or intravenous (0.1 nmol/kg) insulin administration. Results showed that food intake compared to fasting accelerated absorption and decreased clearance of insulin aspart (P < 0.05). Furthermore, higher c-peptide but also glucagon levels were observed in fed compared to fasted pigs (P < 0.05). The pharmacokinetic profile of insulin aspart did not differ between pigs clamped at 4 vs. 10 mmol/L glucose. Hence, food intake rather than blood glucose levels within normal range modulates the pharmacokinetic properties of insulin aspart upon subcutaneous and intravenous administration in pigs.
Collapse
Affiliation(s)
- Anna Katrina Jógvansdóttir Gradel
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Copenhagen, Denmark.,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | | | - Jens Lykkesfeldt
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
42
|
Rosendo-Silva D, Matafome P. Gut-adipose tissue crosstalk: A bridge to novel therapeutic targets in metabolic syndrome? Obes Rev 2021; 22:e13130. [PMID: 32815267 DOI: 10.1111/obr.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The gut is one of the main endocrine organs in our body, producing hormones acknowledged to play determinant roles in controlling appetite, energy balance and glucose homeostasis. One of the targets of such hormones is the adipose tissue, a major energetic reservoir, which governs overall metabolism through the secretion of adipokines. Disturbances either in nutrient and metabolic sensing and consequent miscommunication between these organs constitute a key driver to the metabolic complications clustered in metabolic syndrome. Thus, it is essential to understand how the disruption of this crosstalk might trigger adipose tissue dysfunction, a strong characteristic of obesity and insulin resistance. The beneficial effects of metabolic surgery in the amelioration of glucose homeostasis and body weight reduction allowed to understand the potential of gut signals modulation as a treatment for metabolic syndrome-related obesity and type 2 diabetes. In this review, we cover the effects of gut hormones in the modulation of adipose tissue metabolic and endocrine functions, as well as their impact in tissue plasticity. Furthermore, we discuss how the modulation of gut secretome, either through surgical procedures or pharmacological approaches, might improve adipose tissue function in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
43
|
Boer GA, Holst JJ. Incretin Hormones and Type 2 Diabetes-Mechanistic Insights and Therapeutic Approaches. BIOLOGY 2020; 9:biology9120473. [PMID: 33339298 PMCID: PMC7766765 DOI: 10.3390/biology9120473] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary When we ingest a meal, our intestine secretes hormones that are released into the bloodstream. Amongst these hormones are the incretins hormones which stimulate the release of insulin from the pancreas which is essential for the regulation of in particular postprandial glucose concentrations. In patients with type 2 diabetes, the effect of the incretins is diminished. This is thought to contribute importantly to the pathophysiology of the disease. However, in pharmacological amounts, the incretins may still influence insulin secretion and metabolism. Much research has therefore been devoted to the development of incretin-based therapies for type 2 diabetes. These therapies include compounds that strongly resemble the incretins, hereby stimulating their effects as well as inhibitors of the enzymatic degradation of the hormones, thereby increasing the concentration of incretins in the blood. Both therapeutic approaches have been implemented successfully, but research is still ongoing aimed at the development of further optimized therapies. Abstract Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from the gut upon nutrient stimulation and regulate postprandial metabolism. These hormones are known as classical incretin hormones and are responsible for a major part of postprandial insulin release. The incretin effect is severely reduced in patients with type 2 diabetes, but it was discovered that administration of GLP-1 agonists was capable of normalizing glucose control in these patients. Over the last decades, much research has been focused on the development of incretin-based therapies for type 2 diabetes. These therapies include incretin receptor agonists and inhibitors of the incretin-degrading enzyme dipeptidyl peptidase-4. Especially the development of diverse GLP-1 receptor agonists has shown immense success, whereas studies of GIP monotherapy in patients with type 2 diabetes have consistently been disappointing. Interestingly, both GIP-GLP-1 co-agonists and GIP receptor antagonists administered in combination with GLP-1R agonists appear to be efficient with respect to both weight loss and control of diabetes, although the molecular mechanisms behind these effects remain unknown. This review describes our current knowledge of the two incretin hormones and the development of incretin-based therapies for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Geke Aline Boer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Correspondence: ; Tel.: +45-2875-7518
| |
Collapse
|
44
|
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2020; 46:101139. [PMID: 33290902 PMCID: PMC8085569 DOI: 10.1016/j.molmet.2020.101139] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic peptide (GIP) is one of two incretin hormones that communicate nutrient intake with systemic metabolism. Although GIP was the first incretin hormone to be discovered, the understanding of GIP's biology was quickly outpaced by research focusing on the other incretin hormone, glucagon-like peptide 1 (GLP-1). Early work on GIP produced the theory that GIP is obesogenic, limiting interest in developing GIPR agonists to treat type 2 diabetes. A resurgence of GIP research has occurred in the last five years, reinvigorating interest in this peptide. Two independent approaches have emerged for treating obesity, one promoting GIPR agonism and the other antagonism. In this report, evidence supporting both cases is discussed and hypotheses are presented to reconcile this apparent paradox. SCOPE OF THE REVIEW This review presents evidence to support targeting GIPR to reduce obesity. Most of the focus is on the effect of singly targeting the GIPR using both a gain- and loss-of-function approach, with additional sections that discuss co-targeting of the GIPR and GLP-1R. MAJOR CONCLUSIONS There is substantial evidence to support that GIPR agonism and antagonism can positively impact body weight. The long-standing theory that GIP drives weight gain is exclusively derived from loss-of-function studies, with no evidence to support that GIPR agonisms increases adiposity or body weight. There is insufficient evidence to reconcile the paradoxical observations that both GIPR agonism and antagonism can reduce body weight; however, two independent hypotheses centered on GIPR antagonism are presented based on new data in an effort to address this question. The first discusses the compensatory relationship between incretin receptors and how antagonism of the GIPR may enhance GLP-1R activity. The second discusses how chronic GIPR agonism may produce desensitization and ultimately loss of GIPR activity that mimics antagonism. Overall, it is clear that a deeper understanding of GIP biology is required to understand how modulating this system impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
45
|
Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol Metab 2020; 46:101090. [PMID: 32987188 PMCID: PMC8085566 DOI: 10.1016/j.molmet.2020.101090] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glucagon-like peptide-1 receptor (GLP-1R) agonists are approved to treat type 2 diabetes and obesity. They elicit robust improvements in glycemic control and weight loss, combined with cardioprotection in individuals at risk of or with pre-existing cardiovascular disease. These attributes make GLP-1 a preferred partner for next-generation therapies exhibiting improved efficacy yet retaining safety to treat diabetes, obesity, non-alcoholic steatohepatitis, and related cardiometabolic disorders. The available clinical data demonstrate that the best GLP-1R agonists are not yet competitive with bariatric surgery, emphasizing the need to further improve the efficacy of current medical therapy. Scope of review In this article, we discuss data highlighting the physiological and pharmacological attributes of potential peptide and non-peptide partners, exemplified by amylin, glucose-dependent insulinotropic polypeptide (GIP), and steroid hormones. We review the progress, limitations, and future considerations for translating findings from preclinical experiments to competitive efficacy and safety in humans with type 2 diabetes and obesity. Major conclusions Multiple co-agonist combinations exhibit promising clinical efficacy, notably tirzepatide and investigational amylin combinations. Simultaneously, increasing doses of GLP-1R agonists such as semaglutide produces substantial weight loss, raising the bar for the development of new unimolecular co-agonists. Collectively, the available data suggest that new co-agonists with robust efficacy should prove superior to GLP-1R agonists alone to treat metabolic disorders. GLP-1 is a preferred partner for co-agonist development. Co-agonist combinations must exhibit improved weight loss beyond GLP-1 alone. Unimolecular coagonists must exhibit retained or improved cardioprotection. Obesity represents an optimal condition for the development of new GLP-1 co-agonists.
Collapse
Affiliation(s)
- Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada.
| |
Collapse
|
46
|
Koliaki C, Liatis S, Dalamaga M, Kokkinos A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr Obes Rep 2020; 9:255-271. [PMID: 32647952 DOI: 10.1007/s13679-020-00396-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on the role of gut hormones and their interactions in the regulation of energy homeostasis, describes gut hormone adaptations in obesity and in response to weight loss, and summarizes the current evidence on the role of gut hormone-based therapies for obesity treatment. RECENT FINDINGS Gut hormones play a key role in regulating eating behaviour, energy and glucose homeostasis. Dysregulated gut hormone responses have been proposed to be pathogenetically involved in the development and perpetuation of obesity. Summarizing the major gut hormone changes in obesity, obese individuals are characterized by blunted postprandial ghrelin suppression, loss of premeal ghrelin peaks, impaired diurnal ghrelin variability and reduced fasting and postprandial levels of anorexigenic peptides. Adaptive alterations of gut hormone levels are implicated in weight regain, thus complicating hypocaloric dietary interventions, and can further explain the profound weight loss and metabolic improvement following bariatric surgery. A plethora of compounds mimicking gut hormone changes after bariatric surgery are currently under investigation, introducing a new era in the pharmacotherapy of obesity. The current trend is to combine different gut hormone receptor agonists and target multiple systems simultaneously, in order to replicate as closely as possible the gut hormone milieu after bariatric surgery and circumvent the counter-regulatory adaptive changes associated with dietary energy restriction. An increasing number of preclinical and early-phase clinical trials reveal the additive benefits obtained with dual or triple gut peptide receptor agonists in reducing body weight and improving glycaemia. Gut hormones act as potent regulators of energy and glucose homeostasis. Therapeutic strategies targeting their levels or receptors emerge as a promising approach to treat patients with obesity and hyperglycaemia.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece.
| | - Stavros Liatis
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
47
|
Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. Int J Mol Sci 2020; 21:ijms21165820. [PMID: 32823659 PMCID: PMC7461212 DOI: 10.3390/ijms21165820] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in the portal circulation, i.e., bacterial translocation.
Collapse
|
48
|
Samms RJ, Coghlan MP, Sloop KW. How May GIP Enhance the Therapeutic Efficacy of GLP-1? Trends Endocrinol Metab 2020; 31:410-421. [PMID: 32396843 DOI: 10.1016/j.tem.2020.02.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists improve glucose homeostasis, reduce bodyweight, and over time benefit cardiovascular health in type 2 diabetes mellitus (T2DM). However, dose-related gastrointestinal effects limit efficacy, and therefore agents possessing GLP-1 pharmacology that can also target alternative pathways may expand the therapeutic index. One approach is to engineer GLP-1 activity into the sequence of glucose-dependent insulinotropic polypeptide (GIP). Although the therapeutic implications of the lipogenic actions of GIP are debated, its ability to improve lipid and glucose metabolism is especially evident when paired with the anorexigenic mechanism of GLP-1. We review the complexity of GIP in regulating adipose tissue function and energy balance in the context of recent findings in T2DM showing that dual GIP/GLP-1 receptor agonist therapy produces profound weight loss, glycemic control, and lipid lowering.
Collapse
Affiliation(s)
- Ricardo J Samms
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Matthew P Coghlan
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
49
|
Christensen MB, Gasbjerg LS, Heimbürger SM, Stensen S, Vilsbøll T, Knop FK. GIP's involvement in the pathophysiology of type 2 diabetes. Peptides 2020; 125:170178. [PMID: 31682875 DOI: 10.1016/j.peptides.2019.170178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
During the past four decades derangements in glucose-dependent insulinotropic polypeptide (GIP) biology has been viewed upon as contributing factors to various parts of the pathophysiology type 2 diabetes. This overview outlines and discusses the impaired insulin responses to GIP as well as the effect of GIP on glucagon secretion and the potential involvement of GIP in the obesity and bone disease associated with type 2 diabetes. As outlined in this review, it is unlikely that the impaired insulinotropic effect of GIP occurs as a primary event in the development of type 2 diabetes, but rather develops once the diabetic state is present and beta cells are unable to maintain normoglycemia. In various models, GIP has effects on glucagon secretion, bone and lipid homeostasis, but whether these effects contribute substantially to the pathophysiology of type 2 diabetes is at present controversial. The review also discusses the substantial uncertainty surrounding the translation of preclinical data relating to the GIP system and outline future research directions.
Collapse
Affiliation(s)
- Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian M Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Barbosa-Yañez RL, Markova M, Dambeck U, Honsek C, Machann J, Schüler R, Kabisch S, Pfeiffer AFH. Predictive effect of GIPR SNP rs10423928 on glucose metabolism liver fat and adiposity in prediabetic and diabetic subjects. Peptides 2020; 125:170237. [PMID: 31874232 DOI: 10.1016/j.peptides.2019.170237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
The gastric inhibitory polypeptide receptor (GIPR) regulates postprandial metabolism. In this context GIPR SNP rs10423928 seems toplay an important role in modulating glucose metabolism and insulinsensitivity. However, evidence regarding thisparticular SNP is still vague. In this study, we collected baseline data from four different dietaryintervention studies. We genotyped 424 subjects with prediabetes and 73with diabetes for GIPR SNP rs10423928 and examined its impact on glucosemetabolism, insulin sensitivity and body fat accumulation. We extended previous data by showing that carriers of the A allele withprediabetes displayed increased fasting glucose (p = 0.015). Unexpectedly,A allele carriers showed lower glucose levels 2 h (p = 0.021) after anoral glucose challenge compared to T/T homozygous individuals. A allelecarriers also showed significantly higher insulin sensitivity (p < 0.001)(assessed by Cederholm Index), indicating an enhanced ß-cell response. This study points to a potential protective role for rs10423928 inglucose metabolism and insulin sensitivity in subjects with prediabetes.Further studies are necessary to confirm these results.
Collapse
Affiliation(s)
- Renate Luzía Barbosa-Yañez
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Ulrike Dambeck
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Caroline Honsek
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076, Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Stefan Kabisch
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|