1
|
Zeng X, Zhang H, Xu T, Mei X, Wang X, Yang Q, Luo Z, Zeng Q, Xu D, Ren H. Vericiguat attenuates doxorubicin-induced cardiotoxicity through the PRKG1/PINK1/STING axis. Transl Res 2024; 273:90-103. [PMID: 39059761 DOI: 10.1016/j.trsl.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/18/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Doxorubicin (DOX) is restricted due to its severe cardiotoxicity. There is still a lack of viable and effective drugs to prevent or treat DOX-induced cardiotoxicity(DIC). Vericiguat is widely used to treat heart failure with reduced ejection fraction. However, it is not clear whether vericiguat can improve DIC. In the present study, we constructed a DIC model using mice and neonatal rat cardiomyocytes and found that vericiguat ameliorated DOX-induced cardiac insufficiency in mice, restored DOX-induced mitochondrial dysfunction in neonatal rat cardiomyocytes, and inhibited the expression of inflammatory factors. Further studies showed that vericiguat improved mitochondrial dysfunction and reduced mtDNA leakage into the cytoplasm by up-regulating PRKG1, which activated PINK1 and then inhibited the STING/IRF3 pathway to alleviate DIC. These findings demonstrate for the first time that vericiguat has therapeutic potential for the treatment of DIC.
Collapse
Affiliation(s)
- Xianghui Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China; Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Tianyu Xu
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiyuan Mei
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Xiao Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Qiling Yang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Zhen Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China.
| | - Hao Ren
- Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
3
|
Shvedova M, Litvak MM, Roberts JD, Fukumura D, Suzuki T, Şencan İ, Li G, Reventun P, Buys ES, Kim HH, Sakadžić S, Ayata C, Huang PL, Feil R, Atochin DN. cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice. J Cereb Blood Flow Metab 2019; 39:2379-2391. [PMID: 31423931 PMCID: PMC6893979 DOI: 10.1177/0271678x19870583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Recent works highlight the therapeutic potential of targeting cyclic guanosine monophosphate (cGMP)-dependent pathways in the context of brain ischemia/reperfusion injury (IRI). Although cGMP-dependent protein kinase I (cGKI) has emerged as a key mediator of the protective effects of nitric oxide (NO) and cGMP, the mechanisms by which cGKI attenuates IRI remain poorly understood. We used a novel, conditional cGKI knockout mouse model to study its role in cerebral IRI. We assessed neurological deficit, infarct volume, and cerebral perfusion in tamoxifen-inducible vascular smooth muscle cell-specific cGKI knockout mice and control animals. Stroke experiments revealed greater cerebral infarct volume in smooth muscle cell specific cGKI knockout mice (males: 96 ± 16 mm3; females: 93 ± 12 mm3, mean±SD) than in all control groups: wild type (males: 66 ± 19; females: 64 ± 14), cGKI control (males: 65 ± 18; females: 62 ± 14), cGKI control with tamoxifen (males: 70 ± 8; females: 68 ± 10). Our results identify, for the first time, a protective role of cGKI in vascular smooth muscle cells during ischemic stroke injury. Moreover, this protective effect of cGKI was found to be independent of gender and was mediated via improved reperfusion. These results suggest that cGKI in vascular smooth muscle cells should be targeted by therapies designed to protect brain tissue against ischemic stroke.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maxim M Litvak
- Tomsk Polytechnic University, RASA Center, Tomsk, Russian Federation
| | - Jesse D Roberts
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dai Fukumura
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Tomoaki Suzuki
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - İkbal Şencan
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ge Li
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Reventun
- Department of Biology Systems, School of Medicine, University of Alcalá, Madrid, Spain
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hyung-Hwan Kim
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
4
|
Chauhan R, Shimizu Y, Watashi K, Wakita T, Fukasawa M, Michalak TI. Retrotransposon elements among initial sites of hepatitis B virus integration into human genome in the HepG2-NTCP cell infection model. Cancer Genet 2019; 235-236:39-56. [PMID: 31064734 DOI: 10.1016/j.cancergen.2019.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Integration of hepatitis B virus (HBV) DNA into host's genome is evident in all stages and models of HBV infection. Investigations of the initial virus-host junctions have been just recently initiated since their nature may promote liver oncogenesis immediately following infection. We examined the time-frame and host sites at which HBV integrates in HepG2 cells overexpressing sodium taurocholate co-transporting polypeptide (NTCP) receptor mediating HBV entry. HepG2-NTCP cells were analyzed from 15 min to 13 days post-infection (p.i.). The results showed that except for 15 min p.i., HBV-host integrations were detected at all time points thereafter. At 30 min p.i., virus junctions with retrotransposon SINE and with neuroblastoma breakpoint family member 1 gene were detected. At one-hour p.i., HBV integration with retrotransposon THE-1B-LTR was identified, while virus insertions into proline-rich protein and protein kinase cGMP-dependent type 1 encoding genes were found at 3 h p.i. Fusion with runt-related transcription factor 1 was detected at 24 h p.i. and merges with 9 different genes at 13 day p.i. The data showed that retrotransposon elements are frequent among first-hit sites of HBV insertion. This may suggest a mechanism by which HBV DNA may spread across host's genome from earliest stages of infection.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Science Centre, Memorial University, St. John's, NL, Canada
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Science Centre, Memorial University, St. John's, NL, Canada.
| |
Collapse
|
5
|
Melis M, Tang XH, Trasino SE, Patel VM, Stummer DJ, Jessurun J, Gudas LJ. Effects of AM80 compared to AC261066 in a high fat diet mouse model of liver disease. PLoS One 2019; 14:e0211071. [PMID: 30677086 PMCID: PMC6345457 DOI: 10.1371/journal.pone.0211071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
The roles of retinoids in nonalcoholic fatty liver disease (NAFLD) remain unclear and a better understanding may lead to therapies that prevent or limit NAFLD progression. We examined the actions of retinoic acid receptor (RAR) agonists- AM80 for RARα and AC261066 for RARβ2- in a murine model of NAFLD. We fed wild type C57Bl/6 mice a chow or a 45% high fat diet (HFD) for 12 weeks, followed by 4 additional weeks with the HFD+AM80; HFD+AC261066; or HFD. The HFD+AM80 group showed greater hyperglycemia and glucose intolerance compared to other groups. Histopathological evaluation of the livers showed the highest degree of steatosis, triglycerides levels, and inflammation, assessed by F4/80 staining, in the HFD+AM80-treated compared to the HFD, the HFD+AC261066, and chow-fed mice. Liver vitamin A (retinol (ROL)) and retinyl palmitate levels were markedly lower in all HFD groups compared to chow-fed controls. HFD+AC261066-treated mice showed higher levels of a key intracellular ROL transporter, retinol-binding protein-1 (RBP1) compared to the HFD and HFD+AM80 groups. In conclusion, these data demonstrate that the selective RARα agonist AM80 exacerbates HFD-induced NAFLD and hyperglycemia. These findings should inform future studies examining the therapeutic potential of RAR agonists in HFD-related disorders.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | - Steven E Trasino
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
- School of Urban Public Health, Hunter College, City University of New York, New York, NY, United States of America
| | - Viral M Patel
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | - Daniel J Stummer
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | - Jose Jessurun
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States of America
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
- Weill Cornell Graduate School of Biomedical Sciences, New York, NY, United States of America
| |
Collapse
|
6
|
Franko A, Kovarova M, Feil S, Feil R, Wagner R, Heni M, Königsrainer A, Ruoß M, Nüssler AK, Weigert C, Häring HU, Lutz SZ, Peter A. cGMP-dependent protein kinase I (cGKI) modulates human hepatic stellate cell activation. Metabolism 2018; 88:22-30. [PMID: 30195474 DOI: 10.1016/j.metabol.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrosis, however the role of HSCs is less understood in hepatic insulin resistance. Since in the liver cGMP-dependent protein kinase I (cGKI) was detected in HSC but not in hepatocytes, and cGKI-deficient mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice) displayed hepatic insulin resistance, we hypothesized that cGKI modulates HSC activation and insulin sensitivity. MATERIALS AND METHODS To study stellate cell activation in cGKI-SM mice, retinol storage and gene expression were studied. Moreover, in the human stellate cell line LX2, the consequences of cGKI-silencing on gene expression were investigated. Finally, cGKI expression was examined in human liver biopsies covering a wide range of liver fat content. RESULTS Retinyl-ester concentrations in the liver of cGKI-SM mice were lower compared to wild-type animals, which was associated with disturbed expression of genes involved in retinol metabolism and inflammation. cGKI-silenced LX2 cells showed an mRNA expression profile of stellate cell activation, altered matrix degradation and activated chemokine expression. On the other hand, activation of LX2 cells suppressed cGKI expression. In accordance with this finding, in human liver biopsies, we observed a negative correlation between cGKI mRNA and liver fat content. CONCLUSIONS These results suggest that the lack of cGKI possibly leads to stellate cell activation, which stimulates chemokine expression and activates inflammatory processes, which could disturb hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Marketa Kovarova
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Marc Ruoß
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Cora Weigert
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefan Z Lutz
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Andreas Peter
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Flores-Costa R, Alcaraz-Quiles J, Titos E, López-Vicario C, Casulleras M, Duran-Güell M, Rius B, Diaz A, Hall K, Shea C, Sarno R, Currie M, Masferrer JL, Clària J. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. Br J Pharmacol 2018; 175:953-967. [PMID: 29281143 PMCID: PMC5825296 DOI: 10.1111/bph.14137] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome and is characterized by steatosis, inflammation and fibrosis. Soluble guanylate cyclase (sGC) stimulation reduces inflammation and fibrosis in experimental models of lung, kidney and heart disease. Here, we tested whether sGC stimulation is also effective in experimental NASH. EXPERIMENTAL APPROACH NASH was induced in mice by feeding a choline-deficient, l-amino acid-defined, high-fat diet. These mice received either placebo or the sGC stimulator IW-1973 at two different doses (1 and 3 mg·kg-1 ·day-1 ) for 9 weeks. IW-1973 was also tested in high-fat diet (HFD)-induced obese mice. Steatosis, inflammation and fibrosis were assessed by Oil Red O, haematoxylin-eosin, Masson's trichrome, Sirius Red, F4/80 and α-smooth muscle actin staining. mRNA expression was assessed by quantitative PCR. Levels of IW-1973, cytokines and cGMP were determined by LC-MS/MS, Luminex and enzyme immunoassay respectively. KEY RESULTS Mice with NASH showed reduced cGMP levels and sGC expression, increased steatosis, inflammation, fibrosis, TNF-α and MCP-1 levels and up-regulated collagen types I α1 and α2, MMP2, TGF-β1 and tissue metallopeptidase inhibitor 1 expression. IW-1973 restored hepatic cGMP levels and sGC expression resulting in a dose-dependent reduction of hepatic inflammation and fibrosis. IW-1973 levels were ≈40-fold higher in liver tissue than in plasma. IW-1973 also reduced hepatic steatosis and adipocyte hypertrophy secondary to enhanced autophagy in HFD-induced obese mice. CONCLUSIONS AND IMPLICATIONS Our data indicate that sGC stimulation prevents hepatic steatosis, inflammation and fibrosis in experimental NASH. These findings warrant further evaluation of IW-1973 in the clinical setting.
Collapse
Affiliation(s)
- Roger Flores-Costa
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - José Alcaraz-Quiles
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Mireia Casulleras
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Marta Duran-Güell
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Bibiana Rius
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Alba Diaz
- Department of Pathology, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | | | | | - Renee Sarno
- Ironwood Pharmaceuticals Inc., Cambridge, MA, USA
| | - Mark Currie
- Ironwood Pharmaceuticals Inc., Cambridge, MA, USA
| | | | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| |
Collapse
|
8
|
Undank S, Kaiser J, Sikimic J, Düfer M, Krippeit-Drews P, Drews G. Atrial Natriuretic Peptide Affects Stimulus-Secretion Coupling of Pancreatic β-Cells. Diabetes 2017; 66:2840-2848. [PMID: 28864549 DOI: 10.2337/db17-0392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022]
Abstract
Atrial natriuretic peptide (ANP) influences glucose homeostasis and possibly acts as a link between the cardiovascular system and metabolism, especially in metabolic disorders like diabetes. The current study evaluated effects of ANP on β-cell function by the use of a β-cell-specific knockout of the ANP receptor with guanylate cyclase activity (βGC-A-KO). ANP augmented insulin secretion at the threshold glucose concentration of 6 mmol/L and decreased KATP single-channel activity in β-cells of control mice but not of βGC-A-KO mice. In wild-type β-cells but not β-cells lacking functional KATP channels (SUR1-KO), ANP increased electrical activity, suggesting no involvement of other ion channels. At 6 mmol/L glucose, ANP readily elicited Ca2+ influx in control β-cells. This effect was blunted in β-cells of βGC-A-KO mice, and the maximal cytosolic Ca2+ concentration was lower. Experiments with inhibitors of protein kinase G (PKG), protein kinase A (PKA), phosphodiesterase 3B (PDE3B), and a membrane-permeable cyclic guanosine monophosphate (cGMP) analog on KATP channel activity and insulin secretion point to participation of the cGMP/PKG and cAMP/PKA/Epac (exchange protein directly activated by cAMP) directly activated by cAMP Epac pathways in the effects of ANP on β-cell function; the latter seems to prevail. Moreover, ANP potentiated the effect of glucagon-like peptide 1 (GLP-1) on glucose-induced insulin secretion, which could be caused by a cGMP-mediated inhibition of PDE3B, which in turn reduces cAMP degradation.
Collapse
Affiliation(s)
- Sabrina Undank
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Julia Kaiser
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Jelena Sikimic
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Martina Düfer
- Department of Pharmaceutical and Medical Chemistry, University of Münster, Münster, Germany
| | - Peter Krippeit-Drews
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Gisela Drews
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
10
|
Wong JC, Vo V, Gorjala P, Fiscus RR. Pancreatic-β-cell survival and proliferation are promoted by protein kinase G type Iα and downstream regulation of AKT/FOXO1. Diab Vasc Dis Res 2017. [PMID: 28631500 DOI: 10.1177/1479164117713947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Early studies showed nitric oxide as a pro-inflammatory-cytokine-induced toxin involved in pancreatic β-cell destruction during pathogenesis of type-1 diabetes. However, nitric oxide has both cytotoxic and cytoprotective effects on mammalian cells, depending on concentration and micro-environmental surroundings. Our studies have shown that low/physiological-level nitric oxide selectively activates protein kinase G type Iα isoform, promoting cytoprotective/pro-cell-survival effects in many cell types. In bone marrow-derived stromal/mesenchymal stem cells, protein kinase G type Iα mediates autocrine effects of nitric oxide and atrial natriuretic peptide, promoting DNA-synthesis/proliferation and cell survival. In this study, endothelial nitric oxide synthase/neuronal nitric oxide synthase inhibitor L-NIO (L-N(5)-(1-iminoethyl)ornithine), soluble guanylyl cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one), atrial natriuretic peptide-receptor inhibitor A71915 and protein kinase G type Iα kinase activity inhibitor DT-2 all increased apoptosis and decreased insulin secretion in RINm5F pancreatic β-cells, suggesting autocrine regulatory role for endogenous nitric oxide- and atrial natriuretic peptide-induced activation of protein kinase G type Iα. In four pancreatic β-cell lines, Beta-TC-6, RINm5F, INS-1 and 1.1B4, protein kinase G type Iα small-interfering RNA decreased phospho-serine-239-VASP (indicator of endogenous protein kinase G type Iα kinase activity), increased apoptosis and decreased proliferation. In protein kinase G type Iα-knockdown β-cell lines, expressions of phospho-protein kinase B (PKB/AKT) (AKT), phospho-Forkhead box protein O1 (FOXO1) (transcriptional repressor of pancreas duodenum homobox-1) and pancreas duodenum homobox-1 were decreased, suppressing proliferation and survival in pancreatic β-cells. The data suggest autocrine nitric oxide/atrial natriuretic peptide-induced activation of protein kinase G type Iα/p-AKT/p-FOXO1 promotes survival and proliferation in pancreatic β-cells, providing therapeutic implications for development of new therapeutic agents for diabetes.
Collapse
Affiliation(s)
- Janica C Wong
- 1 Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
- 2 Pharmaceutical Sciences, College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | - Van Vo
- 1 Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
- 2 Pharmaceutical Sciences, College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | - Priyatham Gorjala
- 1 Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
- 2 Pharmaceutical Sciences, College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | - Ronald R Fiscus
- 1 Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
- 2 Pharmaceutical Sciences, College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| |
Collapse
|
11
|
Schinner E, Wetzl V, Schramm A, Kees F, Sandner P, Stasch JP, Hofmann F, Schlossmann J. Inhibition of the TGFβ signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio 2017; 7:550-561. [PMID: 28396839 PMCID: PMC5377407 DOI: 10.1002/2211-5463.12202] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022] Open
Abstract
Agents that enhance production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) ameliorate the progression of renal fibrosis. However, the molecular mechanism of this process is not fully understood. We hypothesize that the antifibrotic effects of cGMP and cGMP‐dependent kinase I (cGKI) are mediated via regulation of the TGFβ signalling pathway, both via ERK and the Smad‐dependent route. Kidney fibrosis was induced by unilateral ureter obstruction (UUO) in wild‐type and cGKI‐deficient (cGKI‐KO) mice. The cGMP/cGKI signalling pathway was activated by application of the soluble guanylate cyclase (sGC) stimulator BAY 41‐8543 (BAY), beginning 1 day after UUO. After 7 days, the antifibrotic effects of BAY were analysed by measuring mRNA and protein expression of characteristic fibrotic biomarkers. The effects of cGMP/TGFβ on cultured fibroblasts were also analysed in vitro. BAY application influenced the activity of the extracellular matrix (ECM)‐degrading matrix metalloproteases (MMP2 and MMP9) and their inhibitor tissue inhibitors of metalloproteinase‐1, the secretion of cytokines (e.g. IL‐6) and the expression pattern of ECM proteins (e.g. collagen, fibronectin) and profibrotic mediators (e.g. connective tissue growth factors and plasminogen‐activator inhibitor‐1). Activation of the cGMP/cGKI signalling pathway showed protective effects against fibrosis which were mediated by inhibition of P‐Erk1/2 and translocation of P‐smad3. The elucidation of these signalling mechanisms might support the development of new therapeutic options regarding cGMP/cGKI‐mediated antifibrotic actions.
Collapse
Affiliation(s)
- Elisabeth Schinner
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | - Veronika Wetzl
- Department of Pharmacology and Toxicology University of Regensburg Germany; Novartis Pharma GmbH Nuremberg Germany
| | - Andrea Schramm
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | - Frieder Kees
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | | | | | - Franz Hofmann
- Institute of Pharmacology and Toxicology Technical University of Munich Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology University of Regensburg Germany
| |
Collapse
|
12
|
Angermeier E, Domes K, Lukowski R, Schlossmann J, Rathkolb B, Angelis MH, Hofmann F. Iron deficiency anemia in cyclic GMP kinase knockout mice. Haematologica 2017; 101:e48-51. [PMID: 26830212 DOI: 10.3324/haematol.2015.137026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Katrin Domes
- Institut für Pharmakologie und Toxikologie, Technische Universität München
| | - Robert Lukowski
- Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, Universität Tübingen
| | - Jens Schlossmann
- Pharmacology and Toxicology, Institute of Pharmacy, Universität Regensburg
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München
| | - Martin Hraběde Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München
| |
Collapse
|
13
|
|
14
|
Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets 2016; 20:1445-1452. [DOI: 10.1080/14728222.2016.1254198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat. This so-called non-shivering thermogenesis takes place in BAT mitochondria, which express the specific uncoupling protein 1 (UCP1). The energy combusting properties of BAT render it a promising target in antiobesity strategies in which BAT could burn the surplus energy that has accumulated in obese and overweight individuals. cGMP is generated by guanylyl cyclases upon activation by nitric oxide or natriuretic peptides. It affects several downstream molecules including cGMP-receptor proteins such as cGMP-dependent protein kinase and is degraded by phosphodiesterases. The cGMP pathway contains several signaling molecules that can increase cGMP signaling, resulting in activation and recruitment of brown adipocytes, and hence can enhance the energy combusting features of BAT. In this review we highlight recent results showing the physiological significance of cGMP signaling in BAT, as well as pharmacological options targeting cGMP signaling that bear a high potential to become BAT-centered therapies for the treatment of obesity.
Collapse
|
16
|
Natriuretic peptide control of energy balance and glucose homeostasis. Biochimie 2016; 124:84-91. [DOI: 10.1016/j.biochi.2015.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 12/27/2022]
|
17
|
Sanyal A, Hoffmann LS, Etzrodt J, Pfeifer A. Effects of obesity on sGCβ1 mediated signaling in white adipose tissue. BMC Pharmacol Toxicol 2015. [PMCID: PMC4565486 DOI: 10.1186/2050-6511-16-s1-a83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Kus K, Walczak M, Maslak E, Zakrzewska A, Gonciarz-Dytman A, Zabielski P, Sitek B, Wandzel K, Kij A, Chabowski A, Holland RJ, Saavedra JE, Keefer LK, Chlopicki S. Hepatoselective Nitric Oxide (NO) Donors, V-PYRRO/NO and V-PROLI/NO, in Nonalcoholic Fatty Liver Disease: A Comparison of Antisteatotic Effects with the Biotransformation and Pharmacokinetics. Drug Metab Dispos 2015; 43:1028-36. [PMID: 25870102 PMCID: PMC11024901 DOI: 10.1124/dmd.115.063388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/09/2015] [Indexed: 04/20/2024] Open
Abstract
V-PYRRO/NO [O(2)-vinyl-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate] and V-PROLI/NO (O2-vinyl-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate), two structurally similar diazeniumdiolate derivatives, were designed as liver-selective prodrugs that are metabolized by cytochrome P450 isoenzymes, with subsequent release of nitric oxide (NO). Yet, their efficacy in the treatment of nonalcoholic fatty liver disease (NAFLD) and their comparative pharmacokinetic and metabolic profiles have not been characterized. The aim of the present work was to compare the effects of V-PYRRO/NO and V-PROLI/NO on liver steatosis, glucose tolerance, and liver fatty acid composition in C57BL/6J mice fed a high-fat diet, as well as to comprehensively characterize the ADME (absorption, distribution, metabolism and excretion) profiles of both NO donors. Despite their similar structure, V-PYRRO/NO and V-PROLI/NO showed differences in pharmacological efficacy in the murine model of NAFLD. V-PYRRO/NO, but not V-PROLI/NO, attenuated liver steatosis, improved glucose tolerance, and favorably modified fatty acid composition in the liver. Both compounds were characterized by rapid absorption following i.p. administration, rapid elimination from the body, and incomplete bioavailability. However, V-PYRRO/NO was eliminated mainly by the liver, whereas V-PROLI/NO was excreted mostly in unchanged form by the kidney. V-PYRRO/NO was metabolized by CYP2E1, CYP2C9, CYP1A2, and CYP3A4, whereas V-PROLI/NO was metabolized mainly by CYP1A2. Importantly, V-PYRRO/NO was a better NO releaser in vivo and in the isolated, perfused liver than V-PROLI/NO, an effect compatible with the superior antisteatotic activity of V-PYRRO/NO. In conclusion, V-PYRRO/NO displayed a pronounced antisteatotic effect associated with liver-targeted NO release, whereas V-PROLI/NO showed low effectiveness, was not taken up by the liver, and was eliminated mostly in unchanged form by the kidney.
Collapse
Affiliation(s)
- Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Anna Gonciarz-Dytman
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Piotr Zabielski
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Krystyna Wandzel
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Adrian Chabowski
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Ryan J Holland
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Joseph E Saavedra
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Larry K Keefer
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| |
Collapse
|
19
|
Park MY, Sung MK. Carnosic acid attenuates obesity-induced glucose intolerance and hepatic fat accumulation by modulating genes of lipid metabolism in C57BL/6J-ob/ob mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:828-835. [PMID: 25348739 DOI: 10.1002/jsfa.6973] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 09/17/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Carnosic acid (CA), a major bioactive component of rosemary (Rosmarinus officinalis) leaves, is known to possess antioxidant and anti-adipogenic activities. In this study it was hypothesized that CA would ameliorate obesity-induced glucose intolerence and hepatic fat accumulation, and possible mechanisms are suggested. RESULTS It was observed that a 0.02% (w/w) CA diet effectively decreased body weight, liver weight and blood triglyceride (TG) and total cholesterol levels (P < 0.05) compared with the control diet. CA at 0.02% significantly improved glucose tolerance, and hepatic TG accumulation was reduced in a dose-dependent manner. Hepatic lipogenic-related gene (L-FABP, SCD1 and FAS) expression decreased whereas lipolysis-related gene (CPT1) expression increased in animals fed the 0.02% CA diet (P < 0.05). Long-chain fatty acid content and the ratio of C18:1/C18:0 fatty acids were decreased in adipose tissue of animals fed the 0.02% CA diet (P < 0.05). Serum inflammatory mediators were also decreased significantly in animals fed the 0.02% CA diet compared with those of the obese control group (P < 0.05). CONCLUSION These results suggest that CA is an effective anti-obesity agent that regulates fatty acid metabolism in C57BL/6J-ob/ob mice.
Collapse
Affiliation(s)
- Mi-Young Park
- Department of Food and Nutrition, Graduate School of Education, Soonchunhyang University, Asan, Chungnam, 336-745, Korea
| | | |
Collapse
|
20
|
Inhibition of phosphodiesterase 5 reduces bone mass by suppression of canonical Wnt signaling. Cell Death Dis 2014; 5:e1544. [PMID: 25429621 PMCID: PMC4260761 DOI: 10.1038/cddis.2014.510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/21/2023]
Abstract
Inhibitors of phosphodiesterase 5 (PDE5) are widely used to treat erectile
dysfunction and pulmonary hypertension in clinics. PDE5, cyclic guanosine
monophosphate (cGMP), and protein kinase G (PKG) are important components of the
non-canonical Wnt signaling. This study aimed to investigate the effect of PDE5
inhibition on canonical Wnt signaling and osteoblastogenesis, using both in
vitro cell culture and in vivo animal models. In the in
vitro experiments, PDE5 inhibition resulted in activation of cGMP-dependent
protein kinase 2 and consequent inhibition of glycogen synthase kinase
3β phosphorylation, destabilization of cytosolic
β-catenin and the ultimate suppression of canonical Wnt signaling and
reduced osteoblastic differentiation in HEK293T and C3H10T1/2 cells. In animal
experiments, systemic inhibition of PDE5 suppressed the activity of canonical Wnt
signaling and osteoblastogenesis in bone marrow-derived stromal cells, resulting in
the reduction of bone mass in wild-type adult C57B/6 mice, significantly
attenuated secreted Frizzled-related protein-1 (SFRP1) deletion-induced activation of
canonical Wnt signaling and excessive bone growth in adult
SFRP1−/− mice. Together, these results uncover a
hitherto uncharacterized role of PDE5/cGMP/PKG signaling in bone homeostasis
and provide the evidence that long-term treatment with PDE5 inhibitors at a high
dosage may potentially cause bone catabolism.
Collapse
|
21
|
Leiss V, Illison J, Domes K, Hofmann F, Lukowski R. Expression of cGMP-dependent protein kinase type I in mature white adipocytes. Biochem Biophys Res Commun 2014; 452:151-6. [DOI: 10.1016/j.bbrc.2014.08.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/15/2014] [Indexed: 01/01/2023]
|
22
|
Kulkarni SR, Donepudi AC, Xu J, Wei W, Cheng QC, Driscoll MV, Johnson DA, Johnson JA, Li X, Slitt AL. Fasting induces nuclear factor E2-related factor 2 and ATP-binding Cassette transporters via protein kinase A and Sirtuin-1 in mouse and human. Antioxid Redox Signal 2014; 20:15-30. [PMID: 23725046 PMCID: PMC3880903 DOI: 10.1089/ars.2012.5082] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS The purpose of this study was to determine whether 3'-5'-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2-4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. RESULTS Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1-dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. INNOVATION Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. CONCLUSION The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway.
Collapse
Affiliation(s)
- Supriya R Kulkarni
- 1 Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island , Kingston, Rhode Island
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Cardiac natriuretic peptides have emerged as potent metabolic hormones during the past decade. We here discuss recent work highlighting the potential importance of these hormones in metabolic physiology and diseases. RECENT FINDINGS Natriuretic peptides signal through a cyclic guanosine monophosphate pathway to convey their biological effects at the cell level. Similarly to cyclic adenosine monophosphate, activation of cyclic guanosine monophosphate signaling induces a browning of white fat and thermogenesis. Natriuretic peptides also enhance oxidative capacity and fat oxidation in skeletal muscle of mice and humans. The molecular mechanism involves an upregulation of mitochondrial fat oxidative capacity and respiration. This may be particularly relevant to relay the physiological adaptations of chronic exercise. Population-based studies indicate that circulating natriuretic peptides are lowered in obesity and predict type 2 diabetes. Recent work also directly link natriuretic peptides with type 2 diabetes through a gut-heart axis. SUMMARY Natriuretic peptides exhibit a wide range of biological actions to control metabolic homeostasis. Natriuretic peptides deficiency in obesity may trigger metabolic dysfunction and lead to type 2 diabetes. Increasing circulating natriuretic peptides level and tissue signaling may help to fight against metabolic complications of obesity.
Collapse
Affiliation(s)
- Cedric Moro
- aInserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC) bUMR1048, Paul Sabatier University, Toulouse, France
| |
Collapse
|
24
|
Vignozzi L, Gacci M, Cellai I, Morelli A, Maneschi E, Comeglio P, Santi R, Filippi S, Sebastianelli A, Nesi G, Serni S, Carini M, Maggi M. PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS. Prostate 2013; 73:1391-402. [PMID: 23765639 DOI: 10.1002/pros.22686] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS) and benign prostate hyperplasia (BPH)/low urinary tract symptoms (LUTS) are often comorbid. Chronic inflammation is one of the putative links between these diseases. Phosphodiesterase type 5 inhibitors (PDE5i) are recognized as an effective treatment of BPH-related LUTS. One proposed mechanism of action of PDE5 is the inhibition of intraprostatic inflammation. In this study we investigate whether PDE5i could blunt inflammation in the human prostate. METHODS Evaluation of the effect of tadalafil and vardenafil on secretion of interleukin 8 (IL-8, a surrogate marker of prostate inflammation) by human myofibroblast prostatic cells (hBPH) exposed to different inflammatory stimuli. We preliminary evaluate histological features of prostatic inflammatory infiltrates in BPH patients enrolled in a randomized, double bind, placebo controlled study aimed at investigating the efficacy of vardenafil (10 mg/day, for 12 weeks) on BPH/LUTS. RESULTS In vitro treatment with tadalafil or vardenafil on hBPH reduced IL-8 secretion induced by either TNFα or metabolic factors, including oxidized low-density lipoprotein, oxLDL, to the same extent as a PDE5-insensitive PKG agonist Sp-8-Br-PET-cGMP. These effects were reverted by the PKG inhibitor KT5823, suggesting a cGMP/PKG-dependency. Treatment with tadalafil or vardenafil significantly suppressed oxLDL receptor (LOX-1) expression. Histological evaluation of anti-CD45 staining (CD45 score) in prostatectomy specimens of BPH patients showed a positive association with MetS severity. Reduced HDL-cholesterol and elevated triglycerides were the only MetS factors significantly associated with CD45 score. In the MetS cohort there was a significant lower CD45 score in the vardenafil-arm versus the placebo-one.
Collapse
Affiliation(s)
- Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences, Sexual Medicine and Andrology Unit, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park MY, Mun ST. Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice. Nutr Res Pract 2013; 7:294-301. [PMID: 23964317 PMCID: PMC3746164 DOI: 10.4162/nrp.2013.7.4.294] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/07/2023] Open
Abstract
In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of β-oxidation-related genes, such as peroxisome proliferator-activated receptor α (PPAR-α), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid β-oxidation in mice.
Collapse
Affiliation(s)
- Mi-Young Park
- Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-707, Korea
| | | |
Collapse
|
26
|
Zhang L, Lukowski R, Gaertner F, Lorenz M, Legate KR, Domes K, Angermeier E, Hofmann F, Massberg S. Anti-interleukin-6 therapy for treatment of high platelet counts in cGMP-dependent protein kinase I gene-targeted mice. BMC Pharmacol Toxicol 2013. [PMCID: PMC3765637 DOI: 10.1186/2050-6511-14-s1-p80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Zhang L, Lukowski R, Gaertner F, Lorenz M, Legate KR, Domes K, Angermeier E, Hofmann F, Massberg S. Thrombocytosis as a Response to High Interleukin-6 Levels in cGMP-Dependent Protein Kinase I Mutant Mice. Arterioscler Thromb Vasc Biol 2013; 33:1820-8. [DOI: 10.1161/atvbaha.113.301507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lin Zhang
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Robert Lukowski
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Florian Gaertner
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Michael Lorenz
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Kyle R. Legate
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Katrin Domes
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Elisabeth Angermeier
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Franz Hofmann
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| | - Steffen Massberg
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany (L.Z., F.G., M.L., K.R.L., S.M.); Heart Failure Institute, Research Center for Translational Medicine (L.Z.), and Department of Cardiovascular Medicine (L.Z.), East Hospital, Tongji University School of Medicine, Shanghai, China; Forschergruppe 923, Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (R.L., K.D., E.A., F.H., S.M.)
| |
Collapse
|
28
|
Pfeifer A, Kilić A, Hoffmann LS. Regulation of metabolism by cGMP. Pharmacol Ther 2013; 140:81-91. [PMID: 23756133 DOI: 10.1016/j.pharmthera.2013.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 01/16/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) mediates the physiological effects of nitric oxide and natriuretic peptides in a broad spectrum of tissues and cells. So far, the major focus of research on cGMP lay on the cardiovascular system. Recent evidence suggests that cGMP also plays a major role in the regulation of cellular and whole-body metabolism. Here, we focus on the role of cGMP in adipose tissue. In addition, other organs important for the regulation of metabolism and their regulation by cGMP are discussed. Targeting the cGMP signaling pathway could be an exciting approach for the regulation of energy expenditure and the treatment of obesity.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Germany.
| | | | | |
Collapse
|
29
|
SOCS and diabetes-ups and downs of a turbulent relationship. Cell Biochem Funct 2013; 31:181-95. [DOI: 10.1002/cbf.2940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 11/07/2022]
|
30
|
Mitschke MM, Hoffmann LS, Gnad T, Scholz D, Kruithoff K, Mayer P, Haas B, Sassmann A, Pfeifer A, Kilic A. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J 2013; 27:1621-30. [PMID: 23303211 DOI: 10.1096/fj.12-221580] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With more than half a billion individuals affected worldwide, obesity has reached pandemic proportions. Development of "brown-like" or "brite" adipocytes within white adipose tissue (WAT) has potential antiobesity and insulin-sensitizing effects. We investigated the role of cyclic GMP (cGMP) signaling, focusing on cGMP-dependent protein kinase I (PKGI) in WAT. PKGI is expressed in murine WAT, primary adipocytes, and 3T3-L1. Treatment of adipocytes with cGMP resulted in increased adipogenesis, with a 54% increase in expression of peroxisome proliferator-activated receptor-γ. Lentiviral overexpression of PKGI further increased adipogenesis, whereas loss of PKGI significantly reduced adipogenic differentiation. In addition to adipogenic effects, PKGI had an antihypertrophic and anti-inflammatory effect via RhoA phosphorylation and reduction of proinflammatory adipokine expression. Moreover, PKGI induced a 4.3-fold increase in abundance of UCP-1 and the development of a brown-like thermogenic program in primary adipocytes. Notably, treatment of C57BL/6 mice with phosphodiesterase inhibitor sildenafil (12 mg/kg/d) for 7 d caused 4.6-fold increase in uncoupling protein-1 expression and promoted establishment of a brown fat cell-like phenotype ("browning") of WAT in vivo. Taken together, PKGI is a key regulator of cell size, adipokine secretion and browning of white fat depots and thus could be a valuable target in developing novel treatments for obesity.
Collapse
|
31
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
32
|
Abstract
Since the discovery of natriuretic peptides (NPs) by de Bold et al. in 1981, the cardiovascular community has been well aware that they exert potent effects on vessels, heart remodeling, kidney function, and the regulation of sodium and water balance. Who would have thought that NPs are also able to exert metabolic effects and contribute to an original cross talk between heart, adipose tissues, and skeletal muscle? The attention on the metabolic role of NPs was awakened in the year 2000 with the discovery that NPs exert potent lipolytic effects mediated by the NP receptor type A/cGMP pathway in human fat cells and that they contribute to lipid mobilization in vivo. In this review, we will discuss the biological effects of NPs on the main tissues involved in the regulation of energy metabolism (i.e., white and brown adipose tissues, skeletal muscle, liver, and pancreas). These recent results on NPs are opening a new chapter into the physiological properties and therapeutic usefulness of this family of hormones.
Collapse
Affiliation(s)
- Cedric Moro
- Institut National de la Santé et de la Recherche Médicale/UPS UMR 1048-I2MC-Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.
| | | |
Collapse
|
33
|
Yurdagul A, Chen J, Funk SD, Albert P, Kevil CG, Orr AW. Altered nitric oxide production mediates matrix-specific PAK2 and NF-κB activation by flow. Mol Biol Cell 2012; 24:398-408. [PMID: 23171552 PMCID: PMC3564533 DOI: 10.1091/mbc.e12-07-0513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PAK2 mediates shear stress–induced NF-κB activation. Basement membrane proteins limit the proinflammatory response to shear by blocking the interaction of PAK2 with the adaptor protein Nck. This uncoupling response requires protein kinase A–dependent nitric oxide production and subsequent PAK2 phosphorylation on Ser-20 in the Nck-binding domain. Shear stress generated by distinct blood flow patterns modulates endothelial cell phenotype to spatially restrict atherosclerotic plaque development. Signaling through p21-activated kinase (PAK) mediates several of the deleterious effects of shear stress, including enhanced NF-κB activation and proinflammatory gene expression. Whereas shear stress activates PAK in endothelial cells on a fibronectin matrix, basement membrane proteins limit shear-induced PAK activation and inflammation through a protein kinase A–dependent pathway; however, the mechanisms underlying this regulation were unknown. We show that basement membrane proteins limit membrane recruitment of PAK2, the dominant isoform in endothelial cells, by blocking its interaction with the adaptor protein Nck. This uncoupling response requires protein kinase A–dependent nitric oxide production and subsequent PAK2 phosphorylation on Ser-20 in the Nck-binding domain. Of importance, shear stress does not stimulate nitric oxide production in endothelial cells on fibronectin, resulting in enhanced PAK activation, NF-κB phosphorylation, ICAM-1 expression, and monocyte adhesion. These data demonstrate that differential flow–induced nitric oxide production regulates matrix-specific PAK signaling and describe a novel mechanism of nitric oxide–dependent NF-κB inhibition.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Pathology, LSU Health Sciences Center, Shreveport, LA 71103, USA
| | | | | | | | | | | |
Collapse
|