1
|
Holst JJ, Madsbad S, Bojsen-Møller KN, Dirksen C, Svane M. New Lessons from the gut: Studies of the role of gut peptides in weight loss and diabetes resolution after gastric bypass and sleeve gastrectomy. Peptides 2024; 176:171199. [PMID: 38552903 DOI: 10.1016/j.peptides.2024.171199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
It has been known since 2005 that the secretion of several gut hormones changes radically after gastric bypass operations and, although more moderately, after sleeve gastrectomy but not after gastric banding. It has therefore been speculated that increased secretion of particularly GLP-1 and Peptide YY (PYY), which both inhibit appetite and food intake, may be involved in the weight loss effects of surgery and for improvements in glucose tolerance. Experiments involving inhibition of hormone secretion with somatostatin, blockade of their actions with antagonists, or blockade of hormone formation/activation support this notion. However, differences between results of bypass and sleeve operations indicate that distinct mechanisms may also be involved. Although the reductions in ghrelin secretion after sleeve gastrectomy would seem to provide an obvious explanation, experiments with restoration of ghrelin levels pointed towards effects on insulin secretion and glucose tolerance rather than on food intake. It seems clear that changes in GLP-1 secretion are important for insulin secretion after bypass and appear to be responsible for postbariatric hypoglycemia in glucose-tolerant individuals; however, with time the improvements in insulin sensitivity, which in turn are secondary to the weight loss, may be more important. Changes in bile acid metabolism do not seem to be of particular importance in humans.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | | | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Maria Svane
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Honka H, Bhattacharjee J, Zadeh M, Kohli R, Gastaldelli A, Salehi M. Vagal activation alters prandial bile acid composition and glycemia in patients with hypoglycemia after Roux-en-Y gastric bypass surgery. Neurogastroenterol Motil 2024; 36:e14763. [PMID: 38342974 DOI: 10.1111/nmo.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Altered prandial glycemic response after Roux-en-Y gastric bypass (RYGB) is exaggerated in patients with post-RYGB hypoglycemia. Increased contribution of glucagon-like peptide 1 (GLP-1) to prandial insulin secretion plays a key role in developing hypoglycemia after RYGB, but the role of nonhormonal gut factors remains unknown. Here, the effect of vagal activation on prandial bile acid (BA) composition in relation to glucose, insulin and gut hormone responses was examined in a small size group of nondiabetic subjects after RYGB with intact gallbladder compared to nonoperated controls. METHODS Concentrations of blood glucose, hormones, and BAs were measured in two RYGB subjects with documented hypoglycemia (HGB), three asymptomatic RYGB-treated subjects (AGB), and four nonoperated controls with intact gallbladders during a meal-tolerance test with (MTT-Sham) and without (MTT) preceding modified sham feeding (chew and spit). KEY RESULTS Meal ingestion raised serum total BAs in RYGB-treated subjects without any effect in nonoperated controls. Modified sham feeding similarly increased meal-induced responses of conjugated BAs (CBAs) in all subjects (p < 0.05 compared to MTT alone), whereas unconjugated BAs (UBAs), mainly deoxycholic and chenodeoxycholic acid, were raised only in the HGB group (p < 0.001 for interaction). Prandial UBAs had an inverse correlation with glucose nadir (r = -0.75, p < 0.05) and were directly associated with ISR and GLP-1 during MTT-Sham. CONCLUSIONS & INFERENCES In this small cohort, vagal activation by modified sham feeding increases prandial CBAs in both operated and nonoperated subjects but enhances UBAs only in patients with documented post-RYGB hypoglycemia. Our findings highlight a potential role for nonhormonal gut factors, such as BA and gut microbiome, in glucose abnormalities after RYGB.
Collapse
Affiliation(s)
- Henri Honka
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jashdeep Bhattacharjee
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Mansour Zadeh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| | - Marzieh Salehi
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- South Texas Veterans Health Care System, Audie Murphy Hospital, San Antonio, Texas, USA
| |
Collapse
|
3
|
Kong X, Feng L, Yan D, Li B, Yang Y, Ma X. FXR-mediated epigenetic regulation of GLP-1R expression contributes to enhanced incretin effect in diabetes after RYGB. J Cell Mol Med 2024; 28:e16339. [PMID: 33611845 PMCID: PMC10941525 DOI: 10.1111/jcmm.16339] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 01/07/2023] Open
Abstract
In this study, we investigated how Roux-en-Y gastric bypass (RYGB) enhances glucagon-like peptide 1 (GLP-1) response in GK rats and explored the potential link between RYGB-stimulated BAs/FXR signalling and GLP-1R-linked signalling in β-cells, a key pathway that regulates glucose-stimulated insulin secretion (GSIS). Here we show that RYGB restores GLP-1R expression in GK rat islets. This involves increased total BAs as well as chenodeoxycholic acid (CDCA), leading to FXR activation, increasing FXR binding to the promoter of Glp-1r and enhancing occupancy of histone acetyltransferase steroid receptor coactivator-1 (SRC1), thus increasing histone H3 acetylation at the promoter. These coordinated events bring about increased GLP-1R expression, resulting in greater GLP-1 response in β-cells. Moreover, ablation of FXR suppressed the stimulatory effects of GLP-1. Thus, this study unravels the crucial role of the BAs/FXR/SRC1 axis-controlled GLP-1R expression in β-cells, which results in enhanced incretin effect and normalized blood glucose of GK rats after RYGB.
Collapse
Affiliation(s)
- Xiangchen Kong
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Linxian Feng
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Dan Yan
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Bingfeng Li
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Yanhui Yang
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Xiaosong Ma
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| |
Collapse
|
4
|
Salazar J, Duran P, Garrido B, Parra H, Hernández M, Cano C, Añez R, García-Pacheco H, Cubillos G, Vasquez N, Chacin M, Bermúdez V. Weight Regain after Metabolic Surgery: Beyond the Surgical Failure. J Clin Med 2024; 13:1143. [PMID: 38398456 PMCID: PMC10888585 DOI: 10.3390/jcm13041143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Patients undergoing metabolic surgery have factors ranging from anatomo-surgical, endocrine metabolic, eating patterns and physical activity, mental health and psychological factors. Some of the latter can explain the possible pathophysiological neuroendocrine, metabolic, and adaptive mechanisms that cause the high prevalence of weight regain in postbariatric patients. Even metabolic surgery has proven to be effective in reducing excess weight in patients with obesity; some of them regain weight after this intervention. In this vein, several studies have been conducted to search factors and mechanisms involved in weight regain, to stablish strategies to manage this complication by combining metabolic surgery with either lifestyle changes, behavioral therapies, pharmacotherapy, endoscopic interventions, or finally, surgical revision. The aim of this revision is to describe certain aspects and mechanisms behind weight regain after metabolic surgery, along with preventive and therapeutic strategies for this complication.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Marlon Hernández
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición, Hospital Quirónsalud, 28009 Madrid, Spain
| | - Henry García-Pacheco
- Facultad de Medicina, Departamento de Cirugía, Universidad del Zulia, Hospital General del Sur, Dr. Pedro Iturbe, Maracaibo 4004, Venezuela
- Unidad de Cirugía para Obesidad y Metabolismo (UCOM), Maracaibo 4004, Venezuela
| | | | | | - Maricarmen Chacin
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080001, Colombia
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080001, Colombia
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080001, Colombia
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
5
|
Mashayekhi M, Nian H, Mayfield D, Devin JK, Gamboa JL, Yu C, Silver HJ, Niswender K, Luther JM, Brown NJ. Weight Loss-Independent Effect of Liraglutide on Insulin Sensitivity in Individuals With Obesity and Prediabetes. Diabetes 2024; 73:38-50. [PMID: 37874653 PMCID: PMC10784656 DOI: 10.2337/db23-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Metabolic effects of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and not fully recapitulated by increasing endogenous GLP-1. We tested the hypothesis that GLP-1 receptor (GLP-1R) agonists exert weight loss-independent, GLP-1R-dependent effects that differ from effects of increasing endogenous GLP-1. Individuals with obesity and prediabetes were randomized to receive for 14 weeks the GLP-1R agonist liraglutide, a hypocaloric diet, or the dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin. The GLP-1R antagonist exendin(9-39) and placebo were administered in a two-by-two crossover study during mixed-meal tests. Liraglutide and diet, but not sitagliptin, caused weight loss. Liraglutide improved insulin sensitivity measured by HOMA for insulin resistance (HOMA-IR), the updated HOMA model (HOMA2), and the Matsuda index after 2 weeks, prior to weight loss. Liraglutide decreased fasting and postprandial glucose levels, and decreased insulin, C-peptide, and fasting glucagon levels. In contrast, diet-induced weight loss improved insulin sensitivity by HOMA-IR and HOMA2, but not the Matsuda index, and did not decrease glucose levels. Sitagliptin increased endogenous GLP-1 and GIP values without altering insulin sensitivity or fasting glucose levels, but decreased postprandial glucose and glucagon levels. Notably, sitagliptin increased GIP without altering weight. Acute GLP-1R antagonism increased glucose levels in all groups, increased the Matsuda index and fasting glucagon level during liraglutide treatment, and increased endogenous GLP-1 values during liraglutide and sitagliptin treatments. Thus, liraglutide exerts rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity that are not achieved by increasing endogenous GLP-1. ARTICLE HIGHLIGHTS Metabolic benefits of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and are not fully achieved by increasing endogenous GLP-1 through dipeptidyl peptidase 4 (DPP-4) inhibition. We investigated weight loss-independent, GLP-1 receptor (GLP-1R)-dependent metabolic effects of liraglutide versus a hypocaloric diet or the DPP-4 inhibitor sitagliptin. GLP-1R antagonism with exendin(9-39) was used to assess GLP-1R-dependent effects during mixed meals. Liraglutide improved insulin sensitivity and decreased fasting and postprandial glucose prior to weight loss, and these benefits were reversed by exendin(9-39). GLP-1R agonists exert rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity not achieved by increasing endogenous GLP-1.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Dustin Mayfield
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jessica K. Devin
- UCHealth Endocrinology, Yampa Valley Medical Center, Steamboat Springs, CO
| | - Jorge L. Gamboa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Chang Yu
- Department of Population Health, NYU Grossman School of Medicine, New York, NY
| | - Heidi J. Silver
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Kevin Niswender
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - James M. Luther
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J. Brown
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
6
|
Honka H, Gastaldelli A, Pezzica S, Peterson R, DeFronzo R, Salehi M. Endogenous glucagon-like peptide 1 diminishes prandial glucose counterregulatory response to hypoglycemia after gastric bypass surgery. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.20.23295840. [PMID: 37790563 PMCID: PMC10543055 DOI: 10.1101/2023.09.20.23295840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We have previously shown that prandial endogenous glucose production (EGP) during insulin-induced hypoglycemia is smaller in non-diabetic subjects with gastric bypass (GB), where prandial glucagon-like peptide 1 (GLP-1) concentrations are 5-10 times higher than those in non-operated controls. Here, we sought to determine the effect of endogenous GLP-1 on prandial counterregulatory response to hypoglycemia after GB. Glucose fluxes, and islet-cell and gut hormone responses before and after mixed-meal ingestion were compared during a hyperinsulinemic hypoglycemic (~3.2 mmol/l) clamp with and without a GLP-1 receptor (GLP-1R) antagonist exendin-(9-39) (Ex-9) in non-diabetic subjects with prior GB compared to matched subjects with SG and non-surgical controls. In this setting, GLP-1R blockade had no effect on insulin secretion or insulin action, whereas prandial glucagon was enhanced in all 3 groups. Ex-9 infusion raised prandial EGP response to hypoglycemia in every GB subject but had no consistent effects on EGP among subjects with SG or non-operated controls (P < 0.05 for interaction). These results indicate that impaired post-meal glucose counterregulatory response to hypoglycemia after GB is partly mediated by endogenous GLP-1, highlighting a novel mechanism of action of GLP-1R antagonists for the treatment of prandial hypoglycemia in this population.
Collapse
|
7
|
Roberts R, Williams DM, Min T, Barry J, Stephens JW. Benefits in routinely measured liver function tests following bariatric surgery: a retrospective cohort study. J Diabetes Metab Disord 2023; 22:1763-1768. [PMID: 37975098 PMCID: PMC10638127 DOI: 10.1007/s40200-023-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 11/19/2023]
Abstract
Background Bariatric surgery is well-established to support long-term metabolic health benefits associated with considerable weight loss. Here, we aim to determine the longer-term impact of bariatric surgery on liver enzymes and associations with other metabolic improvements. Methods One hundred patients who underwent bariatric surgery between 2007 and 2014 were included, and changes in liver enzymes, anthropometric measures and other parameters were observed over a mean 9.8 years. Results At the time of surgery, the mean age was 45.4 ± 9.6 years, weight 141.2 ± 31.6 kg, and body mass index (BMI) 50.2 ± 10.1 kg/m2. Most patients underwent sleeve gastrectomy [n = 71] with a mean follow-up duration 9.8 ± 2.3 years. From baseline, alanine transaminase (ALT) reduced by 41.3% within 12 months post-operatively (36.6 ± 29.2 U/L to 21.5 ± 14.9 U/L, p < 0.001), which was sustained at recent follow-up (20.2 ± 10.7 U/L, p < 0.001). There were associated reductions in body weight, BMI, HbA1c, blood pressure and triglycerides. Patients with greater baseline ALT had the greatest reduction in ALT over follow-up. Conclusions Bariatric surgery is associated with rapid and sustained improvements in routine liver enzymes at 10 years, and sustained improvements in features of the metabolic syndrome. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01311-4.
Collapse
Affiliation(s)
- Richard Roberts
- Diabetes Centre, Morriston Hospital, Swansea Bay University Health Board, Swansea, SA6 6NL UK
| | - David M Williams
- Diabetes Centre, Morriston Hospital, Swansea Bay University Health Board, Swansea, SA6 6NL UK
- Diabetes Centre, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Thinzar Min
- Diabetes Centre, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
- Diabetes Research Group, Swansea University Medical School, Swansea University, Swansea, UK
- Diabetes Centre, Neath Port Talbot Hospital, Baglan Way, Port Talbot, SA12 7BX UK
| | - Jonathan Barry
- Welsh Institute of Metabolic & Obesity Surgery, Morriston Hospital, Swansea Bay UHB, Swansea, SA6 6NL UK
| | - Jeffrey W Stephens
- Diabetes Centre, Morriston Hospital, Swansea Bay University Health Board, Swansea, SA6 6NL UK
- Diabetes Research Group, Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
8
|
Ferreira FP, Pereira SS, Costa MM, Guimarães M, Albrechtsen NJW, Holst JJ, Nora M, Monteiro MP. Individuals with type 2 diabetes have higher density of small intestinal neurotensin-expressing cells. Mol Cell Biochem 2023; 478:2779-2787. [PMID: 36920577 PMCID: PMC10627918 DOI: 10.1007/s11010-023-04698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Neurotensin (NT) is a gastro-intestinal hormone involved in several pathways that regulate energy and glucose homeostasis. NT was hypothesized to act in synergy with incretin hormones to potentiate its anti-diabetic effects. Additionally, circulating NT levels were shown to rise after bariatric surgery-induced weight loss. Knowledge of NT-secreting cells distribution along the small intestine and its variation according to diabetes status could provide insights on NT role in mediating type 2 diabetes (T2D) improvement after bariatric surgery. So, our aims were to characterize NT-expressing cell distribution along the human small intestine and to compare the relative density of NT-expressing cells in the small intestine of individuals with and without T2D undergoing bariatric surgery for obesity treatment. Autopsy-derived small intestine fragments (n = 30) were obtained at every 20 cm along the entire intestinal length. Additionally, jejunum biopsies (n = 29) were obtained during elective gastric bypass interventions from patients with (n = 10) or without T2D (n = 18). NT-expressing cells were identified by immunohistochemistry and quantified via computerized morphometric analysis. NT-expressing cell density increased along the human small intestine. NT-expressing cell density was significantly higher from 200 cm distal to the duodenojejunal flexure onward, as well as in subjects with T2D when compared to those without T2D. NT-expressing cell density increases along the human small gut, and a higher density is found in individuals with T2D. This finding suggests a potential role for NT in the mechanisms of disease and T2D improvement observed after bariatric surgery.
Collapse
Affiliation(s)
- Filipa P Ferreira
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Sofia S Pereira
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal.
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Madalena M Costa
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Marta Guimarães
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre Douro E Vouga, Santa Maria da Feira, Portugal
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mário Nora
- Department of General Surgery, Centro Hospitalar de Entre Douro E Vouga, Santa Maria da Feira, Portugal
| | - Mariana P Monteiro
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
9
|
Custers E, Franco A, Kiliaan AJ. Bariatric Surgery and Gut-Brain-Axis Driven Alterations in Cognition and Inflammation. J Inflamm Res 2023; 16:5495-5514. [PMID: 38026245 PMCID: PMC10676679 DOI: 10.2147/jir.s437156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is associated with systemic inflammation, comorbidities like diabetes, cardiovascular disease and several cancers, cognitive decline and structural and functional brain changes. To treat, or potentially prevent these related comorbidities, individuals with obesity must achieve long-term sustainable weight loss. Often life style interventions, such as dieting and increased physical activity are not successful in achieving long-term weight loss. Meanwhile bariatric surgery has emerged as a safe and effective procedure to treat obesity. Bariatric surgery causes changes in physiological processes, but it is still not fully understood which exact mechanisms are involved. The successful weight loss after bariatric surgery might depend on changes in various energy regulating hormones, such as ghrelin, glucagon-like peptide-1 and peptide YY. Moreover, changes in microbiota composition and white adipose tissue functionality might play a role. Here, we review the effect of obesity on neuroendocrine effects, microbiota composition and adipose tissue and how these may affect inflammation, brain structure and cognition. Finally, we will discuss how these obesity-related changes may improve after bariatric surgery.
Collapse
Affiliation(s)
- Emma Custers
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - Ayla Franco
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - Amanda Johanne Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Ternhamar T, Møller A, Martinussen C, Svane MS, Hindsø M, Jørgensen NB, Dirksen C, Jensen JEB, Hartmann B, Holst JJ, Kiens B, Madsbad S, Bojsen-Møller KN. The effects of postprandial exercise and meal glycemic index on plasma glucose and glucoregulatory hormone responses after Roux-en-Y gastric bypass. Am J Physiol Endocrinol Metab 2023; 325:E540-E551. [PMID: 37755455 DOI: 10.1152/ajpendo.00176.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Postprandial hypoglycemia is a complication of Roux-en-Y gastric bypass (RYGB), but the effects of postprandial exercise and meal glycemic index (GI) on postprandial glucose and glucoregulatory hormone responses are unknown. Ten RYGB-operated and 10 age and weight-matched unoperated women completed four test days in random order ingesting mixed meals with high GI (HGI, GI = 93) or low GI (LGI, GI = 54), but matched on energy and macronutrient content. Ten minutes after meal completion, participants rested or cycled for 30 min at 70% of maximum oxygen uptake (V̇o2max). Blood was collected for 4 h. Postprandial exercise did not lower plasma nadir glucose in RYGB after HGI (HGI/rest 3.7 ± 0.5 vs. HGI/Ex 4.1 ± 0.4 mmol/L, P = 0.070). Replacing HGI with LGI meals raised glucose nadir in RYGB (LGI/rest 4.1 ± 0.5 mmol/L, P = 0.034) and reduced glucose excursions (Δpeak-nadir) but less so in RYGB (-14% [95% CI: -27; -1]) compared with controls (-33% [-51; -14]). Insulin responses mirrored glucose concentrations. Glucagon-like peptide 1 (GLP-1) responses were greater in RYGB versus controls, and higher with HGI versus LGI. Glucose-dependent insulinotropic polypeptide (GIP) responses were greater after HGI versus LGI in both groups. Postexercise glucagon responses were lower in RYGB than controls, and noradrenaline responses tended to be lower in RYGB, whereas adrenaline responses were similar between groups. In conclusion, moderate intensity cycling shortly after meal intake did not increase the risk of postprandial hypoglycemia after RYGB. The low GI meal increased nadir glucose and reduced glucose excursions compared with the high GI meal. RYGB participants had lower postexercise glucagon responses compared with controls.NEW & NOTEWORTHY We investigate the effect of moderate exercise after a high or a low glycemic index meal on nadir glucose and glucoregulatory hormones in gastric bypass-operated individuals and in matched unoperated controls. Cycling shortly after meal intake did not increase the risk of hypoglycemia in operated individuals. The low glycemic index meal increased glucose nadir and reduced excursions compared with the high glycemic index meal. Operated individuals had lower postexercise glucagon responses compared with controls.
Collapse
Affiliation(s)
- Tummas Ternhamar
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Andreas Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens-Erik Beck Jensen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | |
Collapse
|
11
|
Salehi M, Peterson R, Tripathy D, Pezzica S, DeFronzo R, Gastaldelli A. Differential effect of gastric bypass versus sleeve gastrectomy on insulinotropic action of endogenous incretins. Obesity (Silver Spring) 2023; 31:2774-2785. [PMID: 37853989 PMCID: PMC10593483 DOI: 10.1002/oby.23872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Prandial hyperinsulinemia after Roux-en-Y gastric bypass surgery (GB), and to lesser degree after sleeve gastrectomy (SG), has been attributed to rapid glucose flux from the gut and increased insulinotropic gut hormones. However, β-cell sensitivity to exogenous incretin is reduced after GB. This study examines the effect of GB versus SG on prandial glycemia and β-cell response to increasing concentrations of endogenous incretins. METHODS Glucose kinetics, insulin secretion rate (ISR), and incretin responses to 50-g oral glucose ingestion were compared between ten nondiabetic participants with GB versus nine matched individuals with SG and seven nonoperated normal glucose tolerant control individuals (CN) with and without administration of 200 mg of sitagliptin. RESULTS Fasting glucose and hormonal levels were similar among three groups. Increasing plasma concentrations of endogenous incretins by two- to three-fold diminished prandial glycemia and increased β-cell secretion in all three groups (p < 0.05), but insulin secretion per insulin sensitivity (i.e., disposition index) was increased only in GB (p < 0.05 for interaction). However, plot of the slope of ISR (from premeal to peak values) versus plasma glucagon-like peptide-1 concentration was smaller after GB compared with SG and CN. CONCLUSIONS After GB, increasing incretin activity augments prandial β-cell response whereas the β-cell sensitivity to increasing plasma concentrations of endogenous incretin is diminished.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
- STVHCS, Audie Murphy Hospital, San Antonio, TX, United States
| | - Richard Peterson
- Department of Surgery, University of Texas at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
| | - Amalia Gastaldelli
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
12
|
Aulinger BA, D'Alessio DA. Assessment of the incretin effect in healthy subjects: concordance between clamp and OGTT methods. Am J Physiol Endocrinol Metab 2023; 325:E412-E420. [PMID: 37702736 PMCID: PMC10642988 DOI: 10.1152/ajpendo.00104.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
The incretin effect describes the insulin response to nutrient ingestion that exceeds the response to glycemia per se. It is mediated by gastrointestinal factors and is necessary to maintain postprandial glucose homeostasis. The incretin effect results in a more than twofold increase of the insulin response to a meal in healthy people and two different techniques have been used in the past to measure its magnitude. Most studies employ an OGTT on 1 day, followed by a matching glucose infusion on a separate day. Another study design employs a hyperglycemic glucose clamp that is maintained after oral ingestion of glucose. Both protocols allow quantification of the incretin effect by comparing the insulin response to an identical glycemic stimulus. Here we performed a within-subject comparison of both techniques to quantify the incretin effect and suggest different calculation methods to interpret the results derived from the clamp experiment in a cohort of healthy young adults (n = 10, age 33 ± 4 yr). All subjects participated on four different study days: 1) OGTT, 2) isoglycemic glucose infusion (Iso-IV), 3) hyperglycemic clamp with oral glucose ingestion (clamp-OGTT), and 4) hyperglycemic clamp (clamp). With the classic OGTT/Iso-IV method, the insulin response to glucose ingestion increased more than twofold and was 60 ± 6% and 49 ± 5% for insulin and c-peptide. Different estimates of the incretin effect based on the clamp method ranged from 58% to 79% for insulin and 38% to 61% for c-peptide, both significantly higher than values derived from the OGTT/isoglycemic infusion method. However, when the effect of continuous hyperglycemia on insulin secretion was accounted for, using extrapolation from early time points of the clamp, good agreement was noted between the two methods. Based on these results, both techniques seem to be equally suited to measure the incretin effect and should be employed according to the scientific questions, experimental contingencies, and investigator experience.NEW & NOTEWORTHY This proof-of-concept study shows that the incretin effect can be reliably assessed by two different methods with similar quantitative results. A single-day hyperglycemic clamp with oral glucose ingestion allows the determination of the incretin effect with fewer study days and less day-to-day variability.
Collapse
Affiliation(s)
- Benedikt A Aulinger
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Clinical Research Unit, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States
| | - David A D'Alessio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Duke University, Durham, North Carolina, United States
- Clinical Research Unit, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States
| |
Collapse
|
13
|
Salehi M, Tripathy D, Peterson R, Honka H, Pezzica S, DeFronzo R, Gastaldelli A. Bariatric Surgery Alters the Postprandial Recovery From Hypoglycemia, Mediated by Cholinergic Signal. Diabetes 2023; 72:1374-1383. [PMID: 37467435 PMCID: PMC10545558 DOI: 10.2337/db23-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Roux-en-Y gastric bypass (GB) and sleeve gastrectomy (SG) surgeries increase prandial insulin and glucagon secretion but reduce the endogenous glucose production (EGP) response to hypoglycemia in comparison with control subjects who had not undergone gastric surgery (CN), suggesting that parasympathetic nervous system (PNS) plays a role. Here, we investigated the effect of acute PNS blockade on the post-meal counterregulatory response to insulin-induced hypoglycemia in GB and SG compared with CN. Glucose kinetics and islet cell secretion were measured in nine subjects without diabetes with GB and seven with SG and five CN during hyperinsulinemic-hypoglycemic clamp (∼3.2 mmol/L) combined with meal ingestion on two separate days with and without intravenous atropine infusion. Glucose and hormonal levels were similar at baseline and during steady-state hypoglycemia before meal ingestion in three groups and unaffected by atropine. Atropine infusion diminished prandial systemic appearance of ingested glucose (RaO) by 30%, EGP by 40%, and glucagon response to hypoglycemia by 90% in CN. In GB or SG, blocking PNS had no effect on the RaO or meal-induced hyperglucagonemia but increased EGP in SG without any effect in GB (P < 0.05 interaction). These findings indicate that cholinergic signal contributes to the recovery from hypoglycemia by meal consumption in humans. However, bariatric surgery dissipates PNS-mediated physiologic responses to hypoglycemia in the fed state. ARTICLE HIGHLIGHTS Rerouted gut after Roux-en-Y gastric bypass (GB) and, to a lesser degree, after sleeve gastrectomy (SG) leads to larger glucose excursion and lower nadir glucose, predisposing individuals to hypoglycemia. Despite prandial hyperglucagonemia, endogenous glucose production response to hypoglycemia is reduced after GB or SG. Parasympathetic nervous system (PNS) activity plays a key role in regulation of glucose kinetics and islet cell function. We examined the effect of acute PNS blockade on counterregulatory glucose and islet cell response to meal ingestion during insulin-induced hypoglycemia among GB, SG, and control subjects who had not had gastric surgery. Our findings demonstrate that cholinergic signal is critical in the recovery from hypoglycemia by meal ingestion in humans who have not had gastric surgery, although prandial PNS-mediated physiologic responses to hypoglycemia are differentially changed by GB and SG.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
- Audie L. Murphy Memorial Veterans’ Hospital, South Texas Veterans Health Care System, San Antonio, TX
| | - Devjit Tripathy
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Richard Peterson
- Department of Surgery, The University of Texas at San Antonio, San Antonio, TX
| | - Henri Honka
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Amalia Gastaldelli
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
14
|
Alkhaled L, Al-Kurd A, Butsch WS, Kashyap SR, Aminian A. Diagnosis and management of post-bariatric surgery hypoglycemia. Expert Rev Endocrinol Metab 2023; 18:459-468. [PMID: 37850227 DOI: 10.1080/17446651.2023.2267136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION While bariatric surgery remains the most effective treatment for obesity that allows substantial weight loss with improvement and possibly remission of obesity-associated comorbidities, some postoperative complications may occur. Managing physicians need to be familiar with the common problems to ensure timely and effective management. Of these complications, postoperative hypoglycemia is an increasingly recognized complication of bariatric surgery that remains underreported and underdiagnosed. AREA COVERED This article highlights the importance of identifying hypoglycemia in patients with a history of bariatric surgery, reviews pathophysiology and addresses available nutritional, pharmacological and surgical management options. Systemic evaluation including careful history taking, confirmation of hypoglycemia and biochemical assessment is essential to establish accurate diagnosis. Understanding the weight-dependent and weight-independent mechanisms of improved postoperative glycemic control can provide better insight into the causes of the exaggerated responses that lead to postoperative hypoglycemia. EXPERT OPINION Management of post-operative hypoglycemia can be challenging and requires a multidisciplinary approach. While dietary modification is the mainstay of treatment for most patients, some patients may benefit from pharmacotherapy (e.g. GLP-1 receptor antagonist); Surgery (e.g. reversal of gastric bypass) is reserved for unresponsive severe cases. Additional research is needed to understand the underlying pathophysiology with a primary aim in optimizing diagnostics and treatment options.
Collapse
Affiliation(s)
- Lina Alkhaled
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH USA
| | - Abbas Al-Kurd
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
- Department of General Surgery, Henry Ford Hospital, Detroit, MI USA
| | - W Scott Butsch
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
| | - Sangeeta R Kashyap
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY USA
| | - Ali Aminian
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
15
|
Castro MC, Villagarcía HG, Schinella G, Massa ML, Francini F. Mechanism of preventive effects of exendin-4 and des-fluoro-sitagliptin in a murine model of fructose-induced prediabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159363. [PMID: 37429413 DOI: 10.1016/j.bbalip.2023.159363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Protective effects of exendin-4 (glucagon-like peptide-1 -GLP-1- receptor agonist) and des-fluoro-sitagliptin (dipeptidyl peptidase-4 inhibitor) on fructose-induced hepatic disturbances were evaluated in prediabetic rats. Complementary, a possible direct effect of exendin-4 in human hepatoblastoma-derived cell line HepG2 incubated with fructose in presence/absence of exendin-9-39 (GLP-1 receptor antagonist) was investigated. In vivo, after 21 days of fructose rich diet, we determined: glycemia, insulinemia, and triglyceridemia; hepatic fructokinase, AMP-deaminase, and G-6-P dehydrogenase (G-6-P DH) activities; carbohydrate-responsive element-binding protein (ChREBP) expression; triglyceride content and lipogenic gene expression (glycerol-3-phosphate acyltransferase -GPAT-, fatty acid synthase -FAS-, sterol regulatory element-binding protein-1c -SREBP-1c); oxidative stress and inflammatory markers expression. In HepG2 cells we measured fructokinase activity and triglyceride content. Hypertriglyceridemia, hyperinsulinemia, enhanced liver fructokinase, AMP-deaminase, and G-6-P DH activities, increased ChREBP and lipogenic genes expression, enhanced triglyceride level, oxidative stress and inflammatory markers recorded in fructose fed animals, were prevented by co-administration of either exendin-4 or des-fluoro-sitagliptin. Exendin-4 prevented fructose-induced increase in fructokinase activity and triglyceride contain in HepG2 cells. These effects were blunted co-incubating with exendin-9-39. The results demonstrated for the first time that exendin-4/des-fluro-sitagliptin prevented fructose-induced endocrine-metabolic oxidative stress and inflammatory changes probably acting on the purine degradation pathway. Exendin 9-39 blunted in vitro protective exendin-4 effects, thereby suggesting a direct effect of this compound on hepatocytes through GLP-1 receptor. Direct effect on fructokinase and AMP-deaminase activities, with a key role in the pathogenesis of liver dysfunction induced by fructose, suggests purine degradation pathway constitute a potential therapeutic objective for GLP-1 receptor agonists.
Collapse
Affiliation(s)
- María Cecilia Castro
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Hernán Gonzalo Villagarcía
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Guillermo Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina; Instituto de Ciencias de la Salud, UNAJ-CICPBA, Street Avenue Calchaqui 6200, Florencio Varela 1888, Argentina.
| | - María Laura Massa
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Flavio Francini
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| |
Collapse
|
16
|
Bischoff SC, Ockenga J, Eshraghian A, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. Practical guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2023; 42:987-1024. [PMID: 37146466 DOI: 10.1016/j.clnu.2023.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Patients with chronic gastrointestinal disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean gastrointestinal patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The present practical guideline is intended for clinicians and practitioners in general medicine, gastroenterology, surgery and other obesity management, including dietitians and focuses on obesity care in patients with chronic gastrointestinal diseases. METHODS The present practical guideline is the shortened version of a previously published scientific guideline developed according to the standard operating procedure for ESPEN guidelines. The content has been re-structured and transformed into flow-charts that allow a quick navigation through the text. RESULTS In 100 recommendations (3× A, 33× B, 24 × 0, 40× GPP, all with a consensus grade of 90% or more) care of gastrointestinal patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially metabolic associated liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present practical guideline offers in a condensed way evidence-based advice how to care for patients with chronic gastrointestinal diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; and Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim gGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
17
|
Salehi M, Peterson R, Tripathy D, Pezzica S, DeFronzo R, Gastaldelli A. Insulinotropic effect of endogenous incretins is greater after gastric bypass than sleeve gastrectomy despite diminished beta-cell sensitivity to plasma incretins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.28.23287755. [PMID: 37034666 PMCID: PMC10081422 DOI: 10.1101/2023.03.28.23287755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
BACKGROUND/AIMS Prandial hyperinsulinemia after Roux-en Y gastric bypass surgery (GB), and to lesser degree after sleeve gastrectomy (SG), has been attributed to rapid glucose flux from the gut and increased insulinotropic gut hormones. However, β-cell sensitivity to exogenous incretin is markedly reduced after GB. This study examines the effect of GB versus SG on prandial glycemia and β-cell response to increasing concentrations of endogenous incretins. METHODS Glucose kinetics, insulin secretion rate (ISR), and incretin responses to 50-gram oral glucose ingestion were compared between 10 non-diabetic subjects with GB versus 9 matched individuals with SG and 7 non-operated normal glucose tolerant controls (CN) on two days with and without administration of 200 mg sitagliptin. RESULTS Fasting glucose and hormonal levels were similar among 3 groups. Increasing plasma concentrations of endogenous incretins by 2-3-fold diminished post-OGTT glycemia and increased β-cell secretion in all 3 groups (p<0.05), but insulin secretion per insulin sensitivity (i.e., disposition index) was increased only in GB (p<0.05 for interaction). As a result, sitagliptin administration led to hypoglycemia in 3 of 10 GB. Yet, plot of the slope of ISR versus the increase in endogenous incretin concentration was smaller after GB compared to both SG and CN. CONCLUSION Augmented glycemic-induced β-cell response caused by enhanced incretin activity is unique to GB and not shared with SG. However, the β-cell sensitivity to increasing concentrations of endogenous incretin is smaller after bariatric surgery, particularly after GB, compared to non-operated controls, indicating a long-term adaptation of gut-pancreas axis after these procedures. HIGHLIGHTS What is known?: Glycemic effects of gastric bypass (GB) and sleeve gastrectomy (SG) is attributed to rapid nutrient flux and enhanced insulinotropic effects of gut hormones but β-cell sensitivity to exogenous GLP-1 or GIP is diminished after GB. What the present findings add?: Post-OGTT β-cell sensitivity to enhanced endogenous incretins by DPP4i is markedly reduced in bariatric subjects versus non-operated controls, and yet insulin secretory response (disposition index) is increased leading to hypoglycemia in GB and not SG. Significance?: Blunted sensitivity to GLP-1 may represent β-cell adaptation to massive elevation in GLP-1 secretion following bariatric surgery to protect against hypoglycemia.The differential effect of enhanced concentrations of incretins on post-OGTT insulin response (disposition index) among GB versus SG highlights a distinct adaptive process among the two procedures.Augmented insulinotropic effects of gut hormones on postprandial insulin secretory response after GB despite a reduced beta-cell sensitivity to plasma concentrations of GLP-1 makes a case for non-hormonal mechanisms of GLP-1 action after GB.Better understanding of long-term effects of bariatric surgery on gut-pancreas axis activity is critical in development of GLP-1-based strategies to address glucose abnormalities (both hyperglycemia and hypoglycemia) in these settings.
Collapse
|
18
|
Unhapipatpong C, Hiranyatheb P, Phanachet P, Warodomwichit D, Sriphrapradang C, Shantavasinkul PC. Postprandial hypoglycemia after ileocolic interposition and Billroth-II gastrojejunostomy: A case report. Clin Case Rep 2023; 11:e7060. [PMID: 36950668 PMCID: PMC10025248 DOI: 10.1002/ccr3.7060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Postprandial reactive hypoglycemia, or late dumping syndrome, is a common but underrecognized complication from bypass surgery. We report an unusual case of postprandial reactive hypoglycemia in a patient with a severe esophageal stricture from corrosive agent ingestion who underwent ileocolic interposition and an antecolic Billroth-II gastrojejunostomy. A 22-year-old male patient with a one-year history of corrosive ingestion was referred to the hospital for a surgical correction of severe esophageal stricture. After the patient underwent ileocolic interposition and an antecolic Billroth-II gastrojejunostomy, he experienced multiple episodes of gastroesophageal refluxsymptoms during nasogastric feeding and had onset of hypoglycemic symptoms. His plasma glucose level was 59 mg/dL. After we had intraoperatively re-inserted a jejunostomy tube bypassing the ileocolic interposition, and reintroduced enteral nutrition, his hypoglycemic symptoms resolved. We performed a mixed meal tolerance test by nasogastric tube, but the results did not show postprandial hypoglycemia. Although the specific mechanism is unclear, this case suggests gastroesophageal reflux to the ileal interposition may have caused a state of exaggerated hyperinsulinemic response and rebound hypoglycemia. To the best of our knowledge, we are the first to report case of postprandial hypoglycemia after ileocolic interposition, which may have been caused by exaggerated hyperinsulinemic response due to gastroesophageal reflux to the ileal interposition. This syndrome should be considered in the patient who has had ileocolic interposition surgery and has developed postprandial hypoglycemia.
Collapse
Affiliation(s)
- Chanita Unhapipatpong
- Department of Medicine, Division of Clinical NutritionKhon Kaen HospitalKhon KaenThailand
| | - Pitichote Hiranyatheb
- Department of Surgery, Division of General Surgery, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Pariya Phanachet
- Department of Medicine, Division of Nutrition and Biochemical Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Daruneewan Warodomwichit
- Department of Medicine, Division of Nutrition and Biochemical Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Chutintorn Sriphrapradang
- Department of Medicine, Division of Endocrinology and Metabolism, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Prapimporn Chattranukulchai Shantavasinkul
- Department of Medicine, Division of Nutrition and Biochemical Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
19
|
Hindsø M, Hedbäck N, Svane MS, Møller A, Martinussen C, Jørgensen NB, Dirksen C, Gasbjerg LS, Kristiansen VB, Hartmann B, Rosenkilde MM, Holst JJ, Madsbad S, Bojsen-Møller KN. The Importance of Endogenously Secreted GLP-1 and GIP for Postprandial Glucose Tolerance and β-Cell Function After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy Surgery. Diabetes 2023; 72:336-347. [PMID: 36478039 DOI: 10.2337/db22-0568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Enhanced secretion of glucagon-like peptide 1 (GLP-1) seems to be essential for improved postprandial β-cell function after Roux-en-Y gastric bypass (RYGB) but is less studied after sleeve gastrectomy (SG). Moreover, the role of the other major incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is relatively unexplored after bariatric surgery. We studied the effects of separate and combined GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) blockade during mixed-meal tests in unoperated (CON), SG-operated, and RYGB-operated people with no history of diabetes. Postprandial GLP-1 concentrations were highest after RYGB but also higher after SG compared with CON. In contrast, postprandial GIP concentrations were lowest after RYGB. The effect of GLP-1R versus GIPR blockade differed between groups. GLP-1R blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the surgical groups but had no effect in CON. GIPR blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the CON and SG groups but had no effect in the RYGB group. Our results support that GIP is the most important incretin hormone in unoperated people, whereas GLP-1 and GIP are equally important after SG, and GLP-1 is the most important incretin hormone after RYGB.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Møller
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
20
|
Clapp B, Ghanem OM, Edwards M, Giannopoulos S, Lyo V, Puzziferri N, Stefanidis D. Evaluating the success of American Society of Metabolic and Bariatric Surgery research grants. Surg Obes Relat Dis 2023; 19:136-143. [PMID: 36351846 DOI: 10.1016/j.soard.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Since 2004 the American Society of Metabolic and Bariatric Surgery (ASMBS) Foundation has funded competitive proposals by ASMBS members that are administered through the ASMBS Research Committee. These grants are intended to further the knowledge in the field of metabolic and bariatric surgery and support the scholarly growth of its members. OBJECTIVES The aim of this project was to evaluate the factors associated with grant completion success and barriers encountered by investigators. SETTING ASMBS. METHODS Members of the ASMBS Research Committee retrospectively reviewed all awarded research grants since 2004. Information captured included research topic, status of awarded grants, and related publications. Further, a web-based survey of grant recipients was administered exploring the perceived factors of successful completion and barriers encountered. RESULTS Since 2004, ASMBS members have been awarded 28 research grants funded by the ASMBS Foundation totaling $1,033,000. Fifty-seven percent of awardees responded to the survey. Seventeen projects had been completed at the time of the survey leading to 13 publications, while 11 remain in progress. Seventy percent of non-completed grant recipients indicated that a publication was forthcoming in the next 12 months. Overall, 64% received additional funding. Factors reported to influence successful completion of grants included the effectiveness of the research team, principal investigator (PI) perseverance, PI protected time, institutional support and available resources, and mentorship. Over the last decade, the average time from the award to publication was 2 years. CONCLUSIONS The research grants awarded by the AMSBS are successful at producing peer reviewed publications at a high rate and often lead to further funding suggesting that they boost the career of their recipients. The identified factors of success can help guide future applicants and the ASMBS Research Committee during its grant selection process.
Collapse
Affiliation(s)
- Benjamin Clapp
- Department of Surgery, Texas Tech Paul Foster School of Medicine, El Paso, Texas.
| | - Omar M Ghanem
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | | | | | - Victoria Lyo
- Department of Surgery, University of California Davis, Sacramento, California
| | - Nancy Puzziferri
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
21
|
Mining the mechanistic underpinnings of bariatric surgery: A gateway to novel and non-invasive obesity therapies? Mol Metab 2023; 68:101663. [PMID: 36587843 PMCID: PMC9938305 DOI: 10.1016/j.molmet.2022.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
|
22
|
Llewellyn DC, Logan Ellis H, Aylwin SJB, Oštarijaš E, Green S, Sheridan W, Chew NWS, le Roux CW, Miras AD, Patel AG, Vincent RP, Dimitriadis GK. The efficacy of GLP-1RAs for the management of postprandial hypoglycemia following bariatric surgery: a systematic review. Obesity (Silver Spring) 2023; 31:20-30. [PMID: 36502288 PMCID: PMC10107620 DOI: 10.1002/oby.23600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Postprandial hyperinsulinemic hypoglycemia with neuroglycopenia is an increasingly recognized complication of Roux-en-Y gastric bypass and gastric sleeve surgery that may detrimentally affect patient quality of life. One likely causal factor is glucagon-like peptide-1 (GLP-1), which has an exaggerated rise following ingestion of carbohydrates after bariatric surgery. This paper sought to assess the role of GLP-1 receptor agonists (GLP-1RAs) in managing postprandial hypoglycemia following bariatric surgery. METHODS MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and Scopus were systematically and critically appraised for all peer-reviewed publications that suitably fulfilled the inclusion criteria established a priori. This systematic review was developed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols (PRISMA-P). It followed methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions and is registered with PROSPERO (International Prospective Register of Systematic Reviews; identifier CRD420212716429). RESULTS AND CONCLUSIONS Postprandial hyperinsulinemic hypoglycemia remains a notoriously difficult to manage metabolic complication of bariatric surgery. This first, to the authors' knowledge, systematic review presents evidence suggesting that use of GLP-1RAs does not lead to an increase of hypoglycemic episodes, and, although this approach may appear counterintuitive, the findings suggest that GLP-1RAs could reduce the number of postprandial hypoglycemic episodes and improve glycemic variability.
Collapse
Affiliation(s)
- David C. Llewellyn
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Hugh Logan Ellis
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Simon J. B. Aylwin
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Eduard Oštarijaš
- Institute for Translational MedicineUniversity of Pécs Medical School, University of PécsPécsHungary
| | - Shauna Green
- Department of Acute MedicineLewisham and Greenwich NHS Foundation Trust, Queen Elizabeth HospitalLondonUK
| | - William Sheridan
- Faculty of Life Sciences and MedicineSchool of Life Course Sciences, King's College LondonLondonUK
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart Centre, National University HospitalSingaporeSingapore
| | - Carel W. le Roux
- Diabetes Complication Research Centre, School of Medicine and Medical ScienceUCD Conway Institute, University College DublinBelfieldIreland
| | - Alexander D. Miras
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Ameet G. Patel
- Department of Minimal Access SurgeryKing's College Hospital NHS Foundation TrustLondonUK
| | - Royce P. Vincent
- Faculty of Life Sciences and MedicineSchool of Life Course Sciences, King's College LondonLondonUK
- Department of Clinical BiochemistryKing's College Hospital NHS Foundation TrustLondonUK
| | - Georgios K. Dimitriadis
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
- Faculty of Life Sciences and Medicine, School of Cardiovascular Medicine and Sciences, Obesity, Type 2 Diabetes and Immunometabolism Research GroupKing's College LondonLondonUK
- Division of Reproductive Health, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
23
|
Patience N, Sheehan A, Cummings C, Patti ME. Medical Nutrition Therapy and Other Approaches to Management of Post-bariatric Hypoglycemia: A Team-Based Approach. Curr Obes Rep 2022; 11:277-286. [PMID: 36074258 DOI: 10.1007/s13679-022-00482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This manuscript provides a review of post-bariatric hypoglycemia (PBH) with a special focus on the role of the registered dietitian-nutritionist (RDN) and medical nutrition therapy (MNT) recommendations as foundational for management. RECENT FINDINGS As the number of bariatric surgeries rises yearly, with 256,000 performed in 2019, PBH is an increasingly encountered late complication. Following Roux-en-Y (RYGB) or vertical sleeve gastrectomy (VSG), about 1/3 of patients report symptoms suggestive of at least mild postprandial hypoglycemia, with severe and/or medically confirmed hypoglycemia in 1-10%. Anatomical alterations, changes in GLP1 and other intestinally derived hormones, excessive insulin response, reduced insulin clearance, impaired counterregulatory hormone response to hypoglycemia, and other factors contribute to PBH. MNT is the cornerstone of multidisciplinary treatment, with utilization of personal continuous glucose monitoring to improve safety when possible. While many individuals require pharmacotherapy, there are no currently approved medications for PBH. Increasing awareness and identification of individuals at risk for or with PBH is critical given the potential impact on safety, nutrition, and quality of life. A team-based approach involving the individual, the RDN, and other clinicians is essential in providing ongoing assessment and individualization of MNT in the long-term management of PBH.
Collapse
Affiliation(s)
- Nicole Patience
- Clinic Division, Joslin Diabetes Center, Inc, One Joslin Place, Boston, MA, 02215, USA.
| | - Amanda Sheehan
- Clinic Division, Joslin Diabetes Center, Inc, One Joslin Place, Boston, MA, 02215, USA
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | | | - Mary Elizabeth Patti
- Clinic Division, Joslin Diabetes Center, Inc, One Joslin Place, Boston, MA, 02215, USA.
- Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Herzig D, Schiavon M, Tripyla A, Lehmann V, Meier J, Jainandunsing S, Kuenzli C, Stauffer TP, Dalla Man C, Bally L. Unraveling, contributing factors to the severity of postprandial hypoglycemia after gastric bypass surgery. Surg Obes Relat Dis 2022; 19:467-472. [PMID: 36509672 DOI: 10.1016/j.soard.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Despite the increasing prevalence of postbariatric hypoglycemia (PBH), a late metabolic complication of bariatric surgery, our understanding of its diverse manifestations remains incomplete. OBJECTIVES To contrast parameters of glucose-insulin homeostasis in 2 distinct phenotypes of PBH (mild versus moderate hypoglycemia) based on nadir plasma glucose. SETTING University Hospital (Bern, Switzerland). METHODS Twenty-five subjects with PBH following gastric bypass surgery (age, 41 ± 12 years; body mass index, 28.1 ± 6.1kg/m2) received 75g of glucose with frequent blood sampling for glucose, insulin, C-peptide, and glucagon-like peptide 1 (GLP)-1. Based on nadir plasma glucose (</≥50mg/dL), subjects were grouped into level 1 (L1) and level 2 (L2) PBH groups. Beta-cell function (BCF), GLP-1 exposure (λ), beta-cell sensitivity to GLP-1 (π), potentiation of insulin secretion by GLP-1 (PI), first-pass hepatic insulin extraction (HE), insulin sensitivity (SI), and rate of glucose appearance (Ra) were calculated using an oral model of GLP-1 action coupled with the oral minimal model. RESULTS Nadir glucose was 43.3 ± 6.0mg/dL (mean ± standard deviation) and 60.1 ± 9.1mg/dL in L2- and L1-PBH, respectively. Insulin exposure was significantly higher in L2 versus L1 (P = .004). Mathematical modeling revealed higher BCF in L2 versus L1 (34.3 versus 18.8 10-9∗min-1; P = .003). Despite an increased GLP-1 exposure in L2 compared to L1 PBH (50.7 versus 31.9pmol∗L-1∗min∗102; P = .021), no significant difference in PI was observed (P = .204). No significant differences were observed for HE, Ra, and SI. CONCLUSIONS Our results suggest that higher insulin exposure in PBH patients with lower postprandial nadir glucose values mainly relate to a higher responsiveness to glucose, rather than GLP-1.
Collapse
Affiliation(s)
- David Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Afroditi Tripyla
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vera Lehmann
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jasmin Meier
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sjaam Jainandunsing
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Internal Medicine, Maasstad Hospital, Rotterdam, the Netherlands
| | | | | | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
25
|
Sridhar A, Khan D, Abdelaal M, Elliott JA, Naughton V, Flatt PR, Le Roux CW, Docherty NG, Moffett CR. Differential effects of RYGB surgery and best medical treatment for obesity-diabetes on intestinal and islet adaptations in obese-diabetic ZDSD rats. PLoS One 2022; 17:e0274788. [PMID: 36137097 PMCID: PMC9499270 DOI: 10.1371/journal.pone.0274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Modification of gut-islet secretions after Roux-En-Y gastric bypass (RYBG) surgery contributes to its metabolic and anti-diabetic benefits. However, there is limited knowledge on tissue-specific hormone distribution post-RYGB surgery and how this compares with best medical treatment (BMT). In the present study, pancreatic and ileal tissues were excised from male Zucker-Diabetic Sprague Dawley (ZDSD) rats 8-weeks after RYGB, BMT (daily oral dosing with metformin 300mg/kg, fenofibrate 100mg/kg, ramipril 1mg/kg, rosuvastatin 10mg/kg and subcutaneous liraglutide 0.2mg/kg) or sham operation (laparotomy). Insulin, glucagon, somatostatin, PYY, GLP-1 and GIP expression patterns were assessed using immunocytochemistry and analyzed using ImageJ. After RYGB and BMT, body weight and plasma glucose were decreased. Intestinal morphometry was unaltered by RYGB, but crypt depth was decreased by BMT. Intestinal PYY cells were increased by both interventions. GLP-1- and GIP-cell counts were unchanged by RYGB but BMT increased ileal GLP-1-cells and decreased those expressing GIP. The intestinal contents of PYY and GLP-1 were significantly enhanced by RYGB, whereas BMT decreased ileal GLP-1. No changes of islet and beta-cell area or proliferation were observed, but the extent of beta-cell apoptosis and islet integrity calculated using circularity index were improved by both treatments. Significantly decreased islet alpha-cell areas were observed in both groups, while beta- and PYY-cell areas were unchanged. RYGB also induced a decrease in islet delta-cell area. PYY and GLP-1 colocalization with glucagon in islets was significantly decreased in both groups, while co-staining of PYY with glucagon was decreased and that with somatostatin increased. These data characterize significant cellular islet and intestinal adaptations following RYGB and BMT associated with amelioration of obesity-diabetes in ZDSD rats. The differential responses observed and particularly those within islets, may provide important clues to the unique ability of RYGB to cause diabetes remission.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Jessie A. Elliott
- Department of Surgery, Trinity Centre for Health Sciences and St. James’s Hospital, Dublin, Ireland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Carel W. Le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Charlotte R. Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
26
|
Gray SM, Hoselton AL, Krishna R, Slentz CA, D’Alessio DA. GLP-1 Receptor Blockade Reduces Stimulated Insulin Secretion in Fasted Subjects With Low Circulating GLP-1. J Clin Endocrinol Metab 2022; 107:2500-2510. [PMID: 35775723 PMCID: PMC9387711 DOI: 10.1210/clinem/dgac396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Glucagon-like peptide 1 (GLP-1), an insulinotropic peptide released into the circulation from intestinal enteroendocrine cells, is considered a hormonal mediator of insulin secretion. However, the physiological actions of circulating GLP-1 have been questioned because of the short half-life of the active peptide. Moreover, there is mounting evidence for localized, intra-islet mediation of GLP-1 receptor (GLP-1r) signaling including a role for islet dipeptidyl-peptidase 4 (DPP4). OBJECTIVE To determine whether GLP-1r signaling contributes to insulin secretion in the absence of enteral stimulation and increased plasma levels, and whether this is affected by DPP4. METHODS Single-site study conducted at an academic medical center of 20 nondiabetic subjects and 13 subjects with type 2 diabetes. This was a crossover study in which subjects received either a DPP4 inhibitor (DPP4i; sitagliptin) or placebo on 2 separate days. On each day they received a bolus of intravenous (IV) arginine during sequential 60-minute infusions of the GLP-1r blocker exendin[9-39] (Ex-9) and saline. The main outcome measures were arginine-stimulated secretion of C-Peptide (C-PArg) and insulin (InsArg). RESULTS Plasma GLP-1 remained at fasting levels throughout the experiments and IV arginine stimulated both α- and β-cell secretion in all subjects. Ex-9 infusion reduced C-PArg in both the diabetic and nondiabetic groups by ~14% (P < .03 for both groups). Sitagliptin lowered baseline glycemia but did not affect the primary measures of insulin secretion. However, a significant interaction between sitagliptin and Ex-9 suggested more GLP-1r activation with DPP4i treatment in subjects with diabetes. CONCLUSION GLP-1r activation contributes to β-cell secretion in diabetic and nondiabetic people during α-cell activation, but in the absence of increased circulating GLP-1. These results are compatible with regulation of β-cells by paracrine signals from α-cells. This process may be affected by DPP4 inhibition.
Collapse
Affiliation(s)
- Sarah M Gray
- Duke University Division of Endocrinology, Durham, NC 27710, USA
- Department of Medicine, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Durham, NC 27710, USA
| | - Andrew L Hoselton
- Department of Medicine, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Durham, NC 27710, USA
| | - Radha Krishna
- Duke University Division of Endocrinology, Durham, NC 27710, USA
- Department of Medicine, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Durham, NC 27710, USA
| | - Cris A Slentz
- Department of Medicine, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Durham, NC 27710, USA
| | - David A D’Alessio
- Correspondence: David A. D’Alessio, MD, Duke University Medical Center, Division of Endocrinology, Metabolism and Nutrition, DUMC Box 3921, Durham, NC 27710, USA. david.d'
| |
Collapse
|
27
|
Bischoff SC, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2022; 41:2364-2405. [PMID: 35970666 DOI: 10.1016/j.clnu.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for ESPEN guidelines, following the Scottish Intercollegiate Guidelines Network (SIGN) grading system (A, B, 0, and good practice point (GPP)). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France; Department of Clinical Nutrition, Paul-Brousse-Hospital, Villejuif, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim GGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
28
|
Salehi M, DeFronzo R, Gastaldelli A. Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions. Int J Mol Sci 2022; 23:ijms23147667. [PMID: 35887007 PMCID: PMC9324232 DOI: 10.3390/ijms23147667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The liver has the capacity to regulate glucose metabolism by altering the insulin clearance rate (ICR). The decreased fasting insulin concentrations and enhanced prandial hyperinsulinemia after Roux-en-Y gastric-bypass (GB) surgery and sleeve gastrectomy (SG) are well documented. Here, we investigated the effect of GB or SG on insulin kinetics in the fasting and fed states. Method: ICR was measured (i) during a mixed-meal test (MMT) in obese non-diabetic GB (n = 9) and SG (n = 7) subjects and (ii) during a MMT combined with a hyperinsulinemic hypoglycemic clamp in the same GB and SG subjects. Five BMI-matched and non-diabetic subjects served as age-matched non-operated controls (CN). Results: The enhanced ICR during the fasting state after GB and SC compared with CN (p < 0.05) was mainly attributed to augmented hepatic insulin clearance rather than non-liver organs. The dose-response slope of the total insulin extraction rate (InsExt) of exogenous insulin per circulatory insulin value was greater in the GB and SG subjects than in the CN subjects, despite the similar peripheral insulin sensitivity among the three groups. Compared to the SG or the CN subjects, the GB subjects had greater prandial insulin secretion (ISR), independent of glycemic levels. The larger post-meal ISR following GB compared with SG was associated with a greater InsExt until it reached a plateau, leading to a similar reduction in meal-induced ICR among the GB and SG subjects. Conclusions: GB and SG alter ICR in the presence or absence of meal stimulus. Further, altered ICR after bariatric surgery results from changes in hepatic insulin clearance and not from a change in peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
- South Texas Veteran Health Care System, Audie Murphy Hospital, San Antonio, TX 78229, USA
- Correspondence: (M.S.); (A.G.); Tel.: +1-(210)-450-8560 (M.S.)
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
| | - Amalia Gastaldelli
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, 56124 Pisa, Italy
- Correspondence: (M.S.); (A.G.); Tel.: +1-(210)-450-8560 (M.S.)
| |
Collapse
|
29
|
Stefanovski D, Vajravelu ME, Givler S, De León DD. Exendin-(9-39) Effects on Glucose and Insulin in Children With Congenital Hyperinsulinism During Fasting and During a Meal and a Protein Challenge. Diabetes Care 2022; 45:1381-1390. [PMID: 35416981 PMCID: PMC9210867 DOI: 10.2337/dc21-2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/16/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to assess whether exendin-(9-39) will increase fasting and postprandial plasma glucose and decrease the incidence of hypoglycemia in children with hyperinsulinism (HI). RESEARCH DESIGN AND METHODS This was an open-label, four-period crossover study. In periods 1 and 2, the effect of three different dosing regimens of exendin-(9-39) (group 1, 0.28 mg/kg; group 2, 0.44 mg/kg; group 3, 0.6 mg/kg) versus vehicle on fasting glucose was assessed in 16 children with HI. In periods 3 and 4, a subset of eight subjects received either vehicle or exendin-(9-39) (0.6 mg/kg) during a mixed-meal tolerance test (MMTT) and an oral protein tolerance test (OPTT). RESULTS Treatment group 2 showed 20% (P = 0.037) increase in the area under the curve (AUC) of fasting glucose. A significant increase in AUC of glucose was also observed during the MMTT and OPTT; treatment with exendin-(9-39) resulted in 28% (P ≤ 0.001) and 30% (P = 0.01) increase in AUC of glucose, respectively. Fasting AUC of insulin decreased by 57% (P = 0.009) in group 3. In contrast, AUC of insulin was unchanged during the MMTT and almost twofold higher (P = 0.004) during the OPTT with exendin-(9-39) treatment. In comparison with vehicle, infusion of exendin-(9-39) resulted in significant reduction in likelihood of hypoglycemia in group 2, by 76% (P = 0.009), and in group 3, by 84% (P = 0.014). Administration of exendin-(9-39) during the OPTT resulted in 82% (P = 0.007) reduction in the likelihood of hypoglycemia. CONCLUSIONS These results support a therapeutic potential of exendin-(9-39) to prevent fasting and protein-induced hypoglycemia in children with HI.
Collapse
Affiliation(s)
- Darko Stefanovski
- School of Veterinarian Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary E Vajravelu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephanie Givler
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Diva D De León
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Salehi M, Gastaldelli A, DeFronzo R. Prandial hepatic glucose production during hypoglycemia is altered after gastric bypass surgery and sleeve gastrectomy. Metabolism 2022; 131:155199. [PMID: 35390439 DOI: 10.1016/j.metabol.2022.155199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Roux-en Y gastric bypass surgery (GB) and sleeve gastrectomy (SG) alter prandial glucose metabolism, producing lower nadir glucose values and predisposing susceptible individuals to prandial hypoglycemia. The glycemic phenotype of GB or SG is associated with prandial hyperinsulinemia and hyperglucagonemia along with an increased influx of ingested glucose. Following insulin-induced hypoglycemia, glucagon is the most important stimulus for hepatic glucose production (HGP). It is unclear whether prandial hyperglucagonemia after GB or SG changes HGP under hyperinsulinemic hypoglycemia conditions. This study examined the hypothesis that prandial glucose production is reduced after GB and SG during hypoglycemia. METHODS Glucose kinetics and islet-cell and gut hormone secretion during hyperinsulinemic (120 mU.m-2.min-1) hypoglycemic clamp (~3.2 mM) were measured before and after mixed meal ingestion in 9 non-diabetic subjects with GB, 7 with SG, and 5 matched non-operated controls (CN). RESULTS Systemic appearance of ingested glucose was faster in GB compared to SG, and in SG compared to CN (p < 0.05). Subjects with GB and SG had greater plasma glucagon levels after eating (AUCGlucagon) compared to CN (p < 0.05). But prandial HGP response during insulin-induced hypoglycemia (AUCHGP) was smaller and shorter in duration in surgical groups (p < 0.05). In the absence of meal stimuli, however, glucose counterregulatory response to hypoglycemia was comparable among the 3 groups during hyperinsulinemic clamp. CONCLUSION After bariatric surgery, prandial glucose counterregulatory response to hypoglycemia is impaired. Considering post-meal hyperglucagonemia after GB or SG the blunted HGP response suggests a lower sensitivity of liver to glucagon that can predispose to hypoglycemia in this population.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States; STVHCS, Audie Murphy Hospital, San Antonio, TX, United States.
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
31
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
32
|
Lath D, Cherian KE, Paul TV, Kapoor N. Beyond diabetes remission a step further: Post bariatric surgery hypoglycemia. World J Diabetes 2022; 13:278-281. [PMID: 35432756 PMCID: PMC8984570 DOI: 10.4239/wjd.v13.i3.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Postbariatric hypoglycemia is a rare but increasingly recognized complication of bariatric surgery, with significant associated morbidity, and many patients often require multimodal treatment. A mixed meal challenge test is often helpful to diagnose this condition. This manuscript highlights the underlying mechanisms that lead to this condition and the novel emerging therapeutic targets that target these mechanisms.
Collapse
Affiliation(s)
- Devraj Lath
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Kripa Elizabeth Cherian
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Thomas Vizhalil Paul
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
- Non Communicable Disease Unit, Nossal Institute of Global Health, Melbourne 3053, Victoria, Australia
- The Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| |
Collapse
|
33
|
Prasad M, Mark V, Ligon C, Dutia R, Nair N, Shah A, Laferrère B. Role of the Gut in the Temporal Changes of β-Cell Function After Gastric Bypass in Individuals With and Without Diabetes Remission. Diabetes Care 2022; 45:469-476. [PMID: 34857533 PMCID: PMC8914419 DOI: 10.2337/dc21-1270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The role of the gut in diabetes remission after Roux-en-Y gastric bypass (RYGB) is incompletely understood. We assessed the temporal change in insulin secretory capacity after RYGB, using oral and intravenous (IV) glucose, in individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS Longitudinal, prospective measures of β-cell function were assessed after oral glucose intake and graded glucose infusion in individuals with severe obesity and diabetes studied at 0, 3 (n = 29), 12 (n = 24), and 24 (n = 20) months after RYGB. Data were collected between 2015 and 2019 in an academic clinical research center. RESULTS The decreases in body weight, fat mass, waist circumference, and insulin resistance after surgery (all P < 0.001 at 12 and 24 months) did not differ according to diabetes remission status. In contrast, both the magnitude and temporal changes in β-cell glucose sensitivity after oral glucose intake differed by remission status (P = 0.04): greater (6.5-fold; P < 0.01) and sustained in those in full remission, moderate and not sustained past 12 months in those with partial remission (3.3-fold; P < 0.001), and minimal in those not experiencing remission (2.7-fold; P = not significant). The improvement in β-cell function after IV glucose administration was not apparent until 12 months, significant only in those in full remission, and only ∼33% of that observed after oral glucose intake. Preintervention β-cell function and its change after surgery predicted remission; weight loss and insulin sensitivity did not. CONCLUSIONS Our data show the time course of changes in β-cell function after RYGB. The improvement in β-cell function after RYGB, but not changes in weight loss or insulin sensitivity, drives diabetes remission.
Collapse
Affiliation(s)
- Malini Prasad
- New York Nutrition Obesity Research Center, Columbia University Irving Medical Center, New York, NY
| | - Victoria Mark
- New York Nutrition Obesity Research Center, Columbia University Irving Medical Center, New York, NY
| | - Chanel Ligon
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Roxanne Dutia
- New York Nutrition Obesity Research Center, Columbia University Irving Medical Center, New York, NY
| | - Nandini Nair
- Division of Endocrinology, Columbia University Irving Medical Center, New York, NY
| | - Ankit Shah
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Blandine Laferrère
- New York Nutrition Obesity Research Center, Columbia University Irving Medical Center, New York, NY.,Department of Medicine, Columbia University Irving Medical Center, New York, NY.,Division of Endocrinology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
34
|
Koh HCE, Cao C, Mittendorfer B. Insulin Clearance in Obesity and Type 2 Diabetes. Int J Mol Sci 2022; 23:596. [PMID: 35054781 PMCID: PMC8776220 DOI: 10.3390/ijms23020596] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Plasma insulin clearance is an important determinant of plasma insulin concentration. In this review, we provide an overview of the factors that regulate insulin removal from plasma and discuss the interrelationships among plasma insulin clearance, excess adiposity, insulin sensitivity, and type 2 diabetes (T2D). We conclude with the perspective that the commonly observed lower insulin clearance rate in people with obesity, compared with lean people, is not a compensatory response to insulin resistance but occurs because insulin sensitivity and insulin clearance are mechanistically, directly linked. Furthermore, insulin clearance decreases postprandially because of the marked increase in insulin delivery to tissues that clear insulin. The commonly observed high postprandial insulin clearance in people with obesity and T2D likely results from the relatively low insulin secretion rate, not an impaired adaptation of tissues that clear insulin.
Collapse
Affiliation(s)
| | | | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8031-14-0002, St. Louis, MO 63110, USA; (H.-C.E.K.); (C.C.)
| |
Collapse
|
35
|
Meng Q, Culnan DM, Ahmed T, Sun M, Cooney RN. Roux-en-Y gastric bypass alters intestinal glucose transport in the obese Zucker rat. Front Endocrinol (Lausanne) 2022; 13:901984. [PMID: 36034439 PMCID: PMC9405183 DOI: 10.3389/fendo.2022.901984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract plays a major role in regulating glucose homeostasis and gut endocrine function. The current study examines the effects of Roux-en-Y gastric bypass (RYGB) on intestinal GLP-1, glucose transporter expression and function in the obese Zucker rat (ZR). METHODS Two groups of ZRs were studied: RYGB and sham surgery pair-fed (PF) fed rats. Body weight and food intake were measured daily. On post-operative day (POD) 21, an oral glucose test (OGT) was performed, basal and 30-minute plasma, portal venous glucose and glucagon-like peptide-1 (GLP-1) levels were measured. In separate ZRs, the biliopancreatic, Roux limb (Roux) and common channel (CC) intestinal segments were harvested on POD 21. RESULTS Body weight was decreased in the RYGB group. Basal and 30-minute OGT plasma and portal glucose levels were decreased after RYGB. Basal plasma GLP-1 levels were similar, while a 4.5-fold increase in GLP-1 level was observed in 30-minute after RYGB (vs. PF). The increase in basal and 30-minute portal venous GLP-1 levels after RYGB were accompanied by increased mRNA expressions of proglucagon and PC 1/3, GPR119 protein in the Roux and CC segments. mRNA and protein levels of FFAR2/3 were increased in Roux segment. RYGB decreased brush border glucose transport, transporter proteins (SGLT1 and GLUT2) and mRNA levels of Tas1R1/Tas1R3 and α-gustducin in the Roux and CC segments. CONCLUSIONS Reductions in intestinal glucose transport and enhanced post-prandial GLP-1 release were associated with increases in GRP119 and FFAR2/3 after RYGB in the ZR model. Post-RYGB reductions in the regulation of intestinal glucose transport and L cell receptors regulating GLP-1 secretion represent potential mechanisms for improved glycemic control.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Derek M. Culnan
- Burn and Reconstructive Centers of America, Jackson, MS, United States
| | - Tamer Ahmed
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Mingjie Sun
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Robert N. Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Robert N. Cooney,
| |
Collapse
|
36
|
Chen X, Zhang Q, Yang Q, Huang Z, Liao G, Wang Z. The Effect and Mechanism of Duodenal-Jejunal Bypass to Treat Type 2 Diabetes Mellitus in a Rat Model. Obes Facts 2022; 15:344-356. [PMID: 35299171 PMCID: PMC9209996 DOI: 10.1159/000519417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Bariatric surgery can treat obesity and T2DM, but the specific mechanism is unknown. This study investigated the effect and possible mechanism of duodenal-jejunal bypass (DJB) to treat T2DM. METHODS A T2DM rat model was established using a high-fat, high-sugar diet and a low dose of streptozotocin. DJB surgery and a sham operation (SO) were performed to analyze the effects on glucose homeostasis, lipid metabolism, and inflammation changes. Furthermore, the glucagon-like peptide-1 (GLP-1) in the ileum and the markers of endoplasmic reticulum stress (ERS) in the pancreas were examined after the surgery. The insulinoma cells (INS-1) were divided into three groups; group A was cultured with a normal sugar content (11.1 mmol/L), group B was cultured with fluctuating high glucose (11.1 mmol/L alternating with 33.3 mmol/L), and group C was cultured with fluctuating high glucose and exendin-4 (100 nmol/L). The cells were continuously cultured for 7 days in complete culture medium. The viability of the INS-1 cells was then investigated using the MTT method, apoptosis was detected by flow cytometry, and the ERS markers were detected by Western blot. RESULTS The blood glucose, lipids, insulin, and TNF-α were significantly elevated in the T2DM model. A gradual recovery was observed in the DJB group. GLP-1 expression in the distal ileum of the DJB group was significantly higher than that in the T2DM control group (DM) and the SO group (p < 0.05), and the markers of ERS expression in the pancreases of the DJB group decreased significantly more than those of groups DM and SO (p < 0.05). Compared with group A, the cell viability in group B was decreased, and the ERS and apoptosis were increased (p < 0.05). However, compared with group B, the cell viability in group C was improved, and the ERS and apoptosis declined (p < 0.05). CONCLUSIONS DJB can be used to treat T2DM in T2DM rats. The mechanism may be that the DJB stimulates the increased expression of GLP-1 on the far side of the ileum, and then, GLP-1 inhibits ERS in the pancreas, reducing the apoptosis of β cells to create a treatment effect in the T2DM rats.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiang Zhang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - QingQiang Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *QingQiang Yang,
| | - Zhen Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Liao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - ZiWei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- **Ziwei Wang,
| |
Collapse
|
37
|
An Z, Wang H, Mokadem M. Role of the Autonomic Nervous System in Mechanism of Energy and Glucose Regulation Post Bariatric Surgery. Front Neurosci 2021; 15:770690. [PMID: 34887725 PMCID: PMC8649921 DOI: 10.3389/fnins.2021.770690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
Even though lifestyle changes are the mainstay approach to address obesity, Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) are the most effective and durable treatments facing this pandemic and its associated metabolic conditions. The traditional classifications of bariatric surgeries labeled them as “restrictive,” “malabsorptive,” or “mixed” types of procedures depending on the anatomical rearrangement of each one of them. This conventional categorization of bariatric surgeries assumed that the “restrictive” procedures induce their weight loss and metabolic effects by reducing gastric content and therefore having a smaller reservoir. Similarly, the “malabsorptive” procedures were thought to induce their main energy homeostatic effects from fecal calorie loss due to intestinal malabsorption. Observational data from human subjects and several studies from rodent models of bariatric surgery showed that neither of those concepts is completely true, at least in explaining the multiple metabolic changes and the alteration in energy balance that those two surgeries induce. Rather, neuro-hormonal mechanisms have been postulated to underly the physiologic effects of those two most performed bariatric procedures. In this review, we go over the role the autonomic nervous system plays- through its parasympathetic and sympathetic branches- in regulating weight balance and glucose homeostasis after SG and RYGB.
Collapse
Affiliation(s)
- Zhibo An
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Haiying Wang
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Mohamad Mokadem
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, United States.,Obesity Research and Education Initiative, The University of Iowa, Iowa City, IA, United States.,Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
38
|
High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control. Nat Commun 2021; 12:6951. [PMID: 34845204 PMCID: PMC8630169 DOI: 10.1038/s41467-021-27289-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR’s mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling. Trial Registration: Clinicaltrials.gov NCT01073020. Factors underlying the effects of gastric bypass surgery on glucose homeostasis are incompletely understood. Here the authors developed and applied high-throughput mediation analysis to identify proteome/metabolome mediators of improved glucose homeostasis after to gastric bypass surgery, and report that improved glycemia was mediated by the growth hormone receptor.
Collapse
|
39
|
Gasbjerg LS, Bari EJ, Christensen M, Knop FK. Exendin(9-39)NH 2 : Recommendations for clinical use based on a systematic literature review. Diabetes Obes Metab 2021; 23:2419-2436. [PMID: 34351033 DOI: 10.1111/dom.14507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
AIM To present an overview of exendin(9-39)NH2 usage as a scientific tool in humans and provide recommendations for dosage and infusion regimes. METHODS We systematically searched the literature on exendin(9-39)NH2 and included for review 44 clinical studies reporting use of exendin(9-39)NH2 in humans. RESULTS Exendin(9-39)NH2 binds to the orthosteric binding site of the glucagon-like peptide-1 (GLP-1) receptor with high affinity. The plasma elimination half-life of exendin(9-39)NH2 after intravenous administration is ~30 minutes, requiring ~2.5 hours of constant infusion before steady-state plasma concentrations can be expected. Studies utilizing infusions with exendin(9-39)NH2 in humans have applied varying regimens (priming with a bolus or constant infusion) and dosages (continuous infusion rate range 30-900 pmol/kg/min) with subsequent differences in effects. Administration of exendin(9-39)NH2 in healthy individuals, patients with diabetes, obese patients, and patients who have undergone bariatric surgery significantly increases fasting and postprandial levels of glucose and glucagon, but has inconsistent effects on circulating concentrations of insulin and C-peptide, gastric emptying, appetite sensations, and food intake. Importantly, exendin(9-39)NH2 induces secretion of all L cell products (ie, in addition to GLP-1, also peptide YY, glucagon-like peptide-2, oxyntomodulin, and glicentin) complicating use of exendin(9-39)NH2 as a tool to study the isolated effect of GLP-1. CONCLUSIONS Exendin(9-39)NH2 is selective for the GLP-1 receptor, with numerous and complex whole-body effects. To obtain GLP-1 receptor blockade in humans, we recommend an initial high-dose infusion, followed by a continuous infusion rate aiming at a ratio of exendin(9-39)NH2 to GLP-1 of 2000:1. Highlights Exendin(9-39)NH2 is a competitive antagonist of the human GLP-1 receptor. Exendin(9-39)NH2 has been used as a tool to delineate human GLP-1 physiology since 1998. Exendin(9-39)NH2 induces secretion of GLP-1 and other L cell products. Reported effects of exendin(9-39)NH2 on insulin levels and food intake are inconsistent. Here, we provide recommendations for the use of exendin(9-39)NH2 in clinical studies.
Collapse
Affiliation(s)
- Laerke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Johanning Bari
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| |
Collapse
|
40
|
Akalestou E, Suba K, Lopez-Noriega L, Georgiadou E, Chabosseau P, Gallie A, Wretlind A, Legido-Quigley C, Leclerc I, Salem V, Rutter GA. Intravital imaging of islet Ca 2+ dynamics reveals enhanced β cell connectivity after bariatric surgery in mice. Nat Commun 2021; 12:5165. [PMID: 34453049 PMCID: PMC8397709 DOI: 10.1038/s41467-021-25423-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Bariatric surgery improves both insulin sensitivity and secretion and can induce diabetes remission. However, the mechanisms and time courses of these changes, particularly the impact on β cell function, are difficult to monitor directly. In this study, we investigated the effect of Vertical Sleeve Gastrectomy (VSG) on β cell function in vivo by imaging Ca2+ dynamics in islets engrafted into the anterior eye chamber. Mirroring its clinical utility, VSG in mice results in significantly improved glucose tolerance, and enhanced insulin secretion. We reveal that these benefits are underpinned by augmented β cell function and coordinated activity across the islet. These effects involve changes in circulating GLP-1 levels which may act both directly and indirectly on the β cell, in the latter case through changes in body weight. Thus, bariatric surgery leads to time-dependent increases in β cell function and intra-islet connectivity which are likely to contribute to diabetes remission.
Collapse
Affiliation(s)
- Elina Akalestou
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Kinga Suba
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Livia Lopez-Noriega
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Eleni Georgiadou
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Pauline Chabosseau
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Alasdair Gallie
- grid.413629.b0000 0001 0705 4923Central Biological Services (CBS) Hammersmith Hospital Campus, London, UK
| | - Asger Wretlind
- grid.419658.70000 0004 0646 7285Systems Medicine, Steno Diabetes Center, Gentofte, Copenhagen, Denmark
| | - Cristina Legido-Quigley
- grid.419658.70000 0004 0646 7285Systems Medicine, Steno Diabetes Center, Gentofte, Copenhagen, Denmark
| | - Isabelle Leclerc
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Victoria Salem
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK ,grid.413629.b0000 0001 0705 4923Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guy A. Rutter
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK ,grid.59025.3b0000 0001 2224 0361Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore, Singapore ,grid.14848.310000 0001 2292 3357Centre de Recherches du CHUM, University of Montreal, Montreal, QC Canada
| |
Collapse
|
41
|
Craig CM, Lawler HM, Lee CJE, Tan M, Davis DB, Tong J, Glodowski M, Rogowitz E, Karaman R, McLaughlin TL, Porter L. PREVENT: A Randomized, Placebo-controlled Crossover Trial of Avexitide for Treatment of Postbariatric Hypoglycemia. J Clin Endocrinol Metab 2021; 106:e3235-e3248. [PMID: 33616643 PMCID: PMC8277203 DOI: 10.1210/clinem/dgab103] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Postbariatric hypoglycemia (PBH), characterized by enteroinsular axis overstimulation and hyperinsulinemic hypoglycemia, is a complication of bariatric surgery for which there is no approved therapy. OBJECTIVE To evaluate efficacy and safety of avexitide [exendin (9-39)], a glucagon-like peptide-1 antagonist, for treatment of PBH. METHODS A multicenter, Phase 2, randomized, placebo-controlled crossover study (PREVENT). Eighteen female patients with PBH were given placebo for 14 days followed by avexitide 30 mg twice daily and 60 mg once daily, each for 14 days in random order. The main outcome measures were glucose nadir and insulin peak during mixed-meal tolerance testing (MMTT) and hypoglycemic events captured by self-monitoring of blood glucose (SMBG), electronic diary, and blinded continuous glucose monitoring (CGM). RESULTS Compared with placebo, avexitide 30 mg twice daily and 60 mg once daily raised the glucose nadir by 21% (P = .001) and 26% (P = .0002) and lowered the insulin peak by 23% (P = .029) and 21% (P = .042), corresponding to 50% and 75% fewer participants requiring rescue during MMTT, respectively. Significant reductions in rates of Levels 1 to 3 hypoglycemia were observed, defined, respectively, as SMBG <70 mg/dL, SMBG <54 mg/dL, and a severe event characterized by altered mental and/or physical function requiring assistance. CGM demonstrated reductions in hypoglycemia without induction of clinically relevant hyperglycemia. Avexitide was well tolerated, with no increase in adverse events. CONCLUSION Avexitide administered for 28 days was well tolerated and resulted in robust and consistent improvements across multiple clinical and metabolic parameters, reinforcing the targeted therapeutic approach and demonstrating durability of effect. Avexitide may represent a first promising treatment for patients with severe PBH.
Collapse
Affiliation(s)
- Colleen M Craig
- Eiger BioPharmaceuticals, Inc., Palo Alto, CA 94306, USA
- Correspondence: Colleen M Craig, MD, 2155 Park Boulevard, Palo Alto, CA, USA 94306.
| | - Helen Margaret Lawler
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Clare Jung Eun Lee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marilyn Tan
- Division of Endocrinology, Gerontology, and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dawn Belt Davis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Jenny Tong
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michele Glodowski
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Elisa Rogowitz
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rowan Karaman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | | | - Lisa Porter
- Eiger BioPharmaceuticals, Inc., Palo Alto, CA 94306, USA
| |
Collapse
|
42
|
Craig CM, McLaughlin TL. Defining clinically important hypoglycemia in patients with postbariatric hypoglycemia. Surg Obes Relat Dis 2021; 17:1865-1872. [PMID: 34275761 DOI: 10.1016/j.soard.2021.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/16/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Postbariatric hypoglycemia (PBH) is a rare but growing complication of bariatric surgery. Many aspects have yet to be established, including the blood glucose threshold which represents clinically important hypoglycemia in affected patients. OBJECTIVE To confirm the glucose threshold below which neuroglycopenic (NG) symptoms arise in patients with PBH during provoked and real-world hypoglycemia as an indicator of clinically important hypoglycemia. SETTING Stanford University School of Medicine. METHODS Forty patients with PBH were enrolled. Thirty-two patients underwent hypoglycemia provocation in the clinical research unit (CRU) during which symptoms and blood glucose concentrations were assessed. A sensitivity analysis and stepwise linear regression were conducted evaluating relationships between symptoms and glucose levels. To validate CRU findings in the real-world setting, 8 sex-, age-, body mass index (BMI)-, and disease severity-matched patients underwent 20 days of at-home continuous glucose monitoring (CGM), self-monitoring of blood glucose (SMBG), and symptom assessment by electronic diary (eDiary). RESULTS In response to hypoglycemia provocation 19%, 59%, and 22% of patients developed a postprandial glucose nadir <70-54 mg/dL , <54-40 mg/dL, and <40 mg/dL, respectively. Number of NG symptoms was highest when glucose was in the <54-40 mg/dL range, although 23% of those with NG symptoms in this range, and 37% with NG symptoms below this range lacked autonomic symptoms, indicating substantial hypoglycemia unawareness. Sensitivity of symptoms to detect hypoglycemia was poor other than for drowsiness, while specificity was high for all NG symptoms. Confusion, sweating, drowsiness, and incoordination were significant independent predictors of hypoglycemia. Events captured during real-world monitoring mirrored CRU data, showing a spike in NG symptoms in the <54-40 mg/dL range. CGM captured up to 10-fold more events than were patient-perceived and captured by SMBG/eDiary. CONCLUSION Due to the peak in NG symptoms at glucose <54-40 mg/dL during provoked and real-world hypoglycemia, the low sensitivity/high specificity of NG symptoms to detect hypoglycemia, and high prevalence of hypoglycemia unawareness at glucose values <54 mg/dL, we propose that blood glucose <54 mg/dL should be taken to signify clinically important hypoglycemia in patients with established PBH.
Collapse
Affiliation(s)
- Colleen M Craig
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California.
| | - Tracey L McLaughlin
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
43
|
Brierley DI, de Lartigue G. Reappraising the role of the vagus nerve in GLP-1-mediated regulation of eating. Br J Pharmacol 2021; 179:584-599. [PMID: 34185884 PMCID: PMC8714868 DOI: 10.1111/bph.15603] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Here, we provide a focused review of the evidence for the roles of the vagus nerve in mediating the regulatory effects of peripherally and centrally produced GLP-1 on eating behaviour and energy balance. We particularly focus on recent studies which have used selective genetic, viral, and transcriptomic approaches to provide important insights into the anatomical and functional organisation of GLP-1-mediated gut-brain signalling pathways. A number of these studies have challenged canonical ideas of how GLP-1 acts in the periphery and the brain to regulate eating behaviour, with important implications for the development of pharmacological treatments for obesity.
Collapse
Affiliation(s)
- Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Guillaume de Lartigue
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Gilijamse PW, Demirkiran A, van Wagensveld BA, Ackermans MT, Romijn JA, Nieuwdorp M, Ter Horst KW, Serlie MJ. The relation between postprandial glucagon-like peptide-1 release and insulin sensitivity before and after bariatric surgery in humans with class II/III obesity. Surg Obes Relat Dis 2021; 17:1440-1448. [PMID: 34083134 DOI: 10.1016/j.soard.2021.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/31/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) receptor agonist treatment is beneficial for the human glucose metabolism, and GLP-1 secretion is greatly enhanced following Roux-en-Y gastric bypass (RYGB). OBJECTIVES To elucidate the relationship between GLP-1 concentrations and insulin sensitivity in subjects with class II/III obesity without diabetes and to assess the relation between GLP-1 and the improvements in glucose metabolism following RYGB. SETTING Clinical research facility in a university hospital. METHODS We recruited 35 patients scheduled for RYGB and assessed their plasma GLP-1, insulin, and glucose responses to a high-fat mixed meal. Basal and insulin-mediated glucose fluxes were determined during a 2-step hyperinsulinemic-euglycemic clamp with stable isotope-labeled tracers. Out of 35 subjects, 10 were studied both before surgery and at 1 year of follow-up. RESULTS Plasma GLP-1 increased following the high-fat mixed meal. Postprandial GLP-1 excursions correlated positively with hepatic and peripheral insulin sensitivity, but not with body mass index. At 1 year after RYGB, participants had lost 24% ± 6% of their body weight. Plasma GLP-1, insulin, and glucose levels peaked earlier and higher after the mixed meal. The positive association between the postprandial GLP-1 response and peripheral insulin sensitivity persisted. CONCLUSIONS Postprandial GLP-1 concentrations correlate with insulin sensitivity in subjects with class II/III obesity without diabetes before and 1 year after RYGB. Increased GLP-1 signaling in postbariatric patients may, directly or indirectly, contribute to the observed improvements in insulin sensitivity and metabolic health.
Collapse
Affiliation(s)
- Pim W Gilijamse
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ahmet Demirkiran
- Department of Surgery, Red Cross Hospital, Beverwijk, The Netherlands
| | | | - Mariette T Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes A Romijn
- Department of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Bariatric surgery restores visual cortical plasticity in nondiabetic subjects with obesity. Int J Obes (Lond) 2021; 45:1821-1829. [PMID: 34002040 DOI: 10.1038/s41366-021-00851-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity leads to changes in synaptic plasticity. We aimed at investigating the impact of bariatric surgery (RYGB) on visual neural plasticity (NP) and its relationship with the main gut peptides, leptin, and brain-derived neurotrophic factor (BDNF). SUBJECTS/METHODS NP was assessed testing binocular rivalry before and after 2 h of monocular deprivation (index of visual brain plasticity) in 15 subjects with obesity (age 42.3 ± 9.8 years; BMI 46.1 ± 4.9 kg/m2) before and after RYGB. Gut peptides, leptin, and BDNF were obtained at baseline and 6 months after surgery in 13 subjects. RESULTS A significant reduction in BMI (p < 0.001 vs. baseline) and a significant increase of disposition index (DI, p = 0.02 vs baseline) were observed after RYGB. Total and active GLP-1 release in response to glucose ingestion significantly increased after RYGB, while no changes occurred in VIP, GIP, and BDNF levels. Fasting leptin concentration was lower after RYGB (p = 0.001 vs. baseline). Following RYGB, NP was progressively restored (p < 0.002). NP was correlated with DI and fasting glucose at baseline (r = 0.75, p = 0.01; r = -0.7, p = 0.02; respectively), but not with BMI. A positive correlation between post-pre-RYGB changes in AUCactive GLP-1 and NP was observed (r = 0.70, p < 0.01). Leptin was inversely correlated with NP 6 months after surgery (r = -0.63, p = 0.02). No correlation was observed between GIP, VIP, BDNF, and NP. CONCLUSIONS Visual plasticity is altered in subjects with obesity, and it can be restored after RYGB. The improvement may be mediated by amelioration of insulin sensitivity, increased GLP-1 levels, and reduced leptin levels.
Collapse
|
46
|
Miras AD, Kamocka A, Pérez-Pevida B, Purkayastha S, Moorthy K, Patel A, Chahal H, Frost G, Bassett P, Castagnetto-Gissey L, Coppin L, Jackson N, Umpleby AM, Bloom SR, Tan T, Ahmed AR, Rubino F. The Effect of Standard Versus Longer Intestinal Bypass on GLP-1 Regulation and Glucose Metabolism in Patients With Type 2 Diabetes Undergoing Roux-en-Y Gastric Bypass: The Long-Limb Study. Diabetes Care 2021; 44:1082-1090. [PMID: 33158945 PMCID: PMC8132320 DOI: 10.2337/dc20-0762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) characteristically enhances postprandial levels of glucagon-like peptide 1 (GLP-1), a mechanism that contributes to its profound glucose-lowering effects. This enhancement is thought to be triggered by bypass of food to the distal small intestine with higher densities of neuroendocrine L-cells. We hypothesized that if this is the predominant mechanism behind the enhanced secretion of GLP-1, a longer intestinal bypass would potentiate the postprandial peak in GLP-1, translating into higher insulin secretion and, thus, additional improvements in glucose tolerance. To investigate this, we conducted a mechanistic study comparing two variants of RYGB that differ in the length of intestinal bypass. RESEARCH DESIGN AND METHODS A total of 53 patients with type 2 diabetes (T2D) and obesity were randomized to either standard limb RYGB (50-cm biliopancreatic limb) or long limb RYGB (150-cm biliopancreatic limb). They underwent measurements of GLP-1 and insulin secretion following a mixed meal and insulin sensitivity using euglycemic hyperinsulinemic clamps at baseline and 2 weeks and at 20% weight loss after surgery. RESULTS Both groups exhibited enhancement in postprandial GLP-1 secretion and improvements in glycemia compared with baseline. There were no significant differences in postprandial peak concentrations of GLP-1, time to peak, insulin secretion, and insulin sensitivity. CONCLUSIONS The findings of this study demonstrate that lengthening of the intestinal bypass in RYGB does not affect GLP-1 secretion. Thus, the characteristic enhancement of GLP-1 response after RYGB might not depend on delivery of nutrients to more distal intestinal segments.
Collapse
Affiliation(s)
| | - Anna Kamocka
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Belén Pérez-Pevida
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | | | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, London, U.K
| | - Ameet Patel
- Department of Surgery, King's College London, London, U.K
| | - Harvinder Chahal
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Gary Frost
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | | | | | - Lucy Coppin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Nicola Jackson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Anne Margot Umpleby
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Stephen Robert Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Ahmed Rashid Ahmed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | | |
Collapse
|
47
|
Yang M, Reimann F, Gribble FM. Chemosensing in enteroendocrine cells: mechanisms and therapeutic opportunities. Curr Opin Endocrinol Diabetes Obes 2021; 28:222-231. [PMID: 33449572 DOI: 10.1097/med.0000000000000614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Enteroendocrine cells (EECs) are scattered chemosensory cells in the intestinal epithelium that release hormones with a wide range of actions on intestinal function, food intake and glucose homeostasis. The mechanisms by which gut hormones are secreted postprandially, or altered by antidiabetic agents and surgical interventions are of considerable interest for future therapeutic development. RECENT FINDINGS EECs are electrically excitable and express a repertoire of G-protein coupled receptors that sense nutrient and nonnutrient stimuli, coupled to intracellular Ca2+ and cyclic adenosine monophosphate. Our knowledge of EEC function, previously developed using mouse models, has recently been extended to human cells. Gut hormone release in humans is enhanced by bariatric surgery, as well as by some antidiabetic agents including sodium-coupled glucose transporter inhibitors and metformin. SUMMARY EECs are important potential therapeutic targets. A better understanding of their chemosensory mechanisms will enhance the development of new therapeutic strategies to treat metabolic and gastrointestinal diseases.
Collapse
Affiliation(s)
- Ming Yang
- University of Cambridge, Institute of Metabolic Science and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
48
|
Al Obeed OA, Traiki TB, Alfahad YF, Abdulla MH, AlAli MN, Alharbi AA, Alharbi R, Nouh T, Hersi A. Prevalence of vasovagal syncope following bariatric surgery. Saudi J Anaesth 2021; 15:161-164. [PMID: 34188635 PMCID: PMC8191276 DOI: 10.4103/sja.sja_922_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Obesity is a major global public health problem. Observational studies have shown an increasing incidence of syncope and pre-syncope following bariatric surgery in obese patients. However, there is paucity of the true incidence of syncope following bariatrics sugary in the literature. METHODS We have randomly surveyed 200 patients who underwent bariatric surgery between 2016-2018 using Calgary Syncope Score (CSS). RESULTS Of the 200 patients enrolled, 107 (53.5%) were female with 167 patients (83.5%) between 18 and 50 years of age. The most-reported comorbidities were diabetes mellitus 26 (13%) hypertension 25 (12.5%) and pulmonary disease 18 (9%). The majority 98 (49%) of the patients had pre-operative body mass index (BMI) of 40-50 kg/m 2, and most of them had laparoscopic sleeve gastrectomy (LSG). Sixty-two (31%) patients had vasovagal syncope (VVS), 52 (26%) patients had non-VVS and 86 (43%) had no syncope. CONCLUSION Vasovagal syncope in patients following bariatric sugary is quite common and affects 15% of bariatric patients in our series in the first year postoperatively. Further randomized controlled trials are required to prove our results.
Collapse
Affiliation(s)
- Omar A. Al Obeed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Yara F. Alfahad
- Department of Cardiac Sciences, College of Medicine, King Saud University and King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed N. AlAli
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulhamed A. Alharbi
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Reem Alharbi
- Department of Surgery, College of Medicine, Prince Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Thamer Nouh
- Trauma and Acute Care Surgery Unit, Department of Surgery, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmad Hersi
- Department of Cardiac Sciences, College of Medicine, King Saud University and King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021; 16:e0249239. [PMID: 33788878 PMCID: PMC8011784 DOI: 10.1371/journal.pone.0249239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/13/2021] [Indexed: 12/04/2022] Open
Abstract
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.
Collapse
Affiliation(s)
- Jason A. West
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
| | | | | | | | | | - David Maggs
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | | | - Gavin A. Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Do Gut Hormones Contribute to Weight Loss and Glycaemic Outcomes after Bariatric Surgery? Nutrients 2021; 13:nu13030762. [PMID: 33652862 PMCID: PMC7996890 DOI: 10.3390/nu13030762] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery is an effective intervention for management of obesity through treating dysregulated appetite and achieving long-term weight loss maintenance. Moreover, significant changes in glucose homeostasis are observed after bariatric surgery including, in some cases, type 2 diabetes remission from the early postoperative period and postprandial hypoglycaemia. Levels of a number of gut hormones are dramatically increased from the early period after Roux-en-Y gastric bypass and sleeve gastrectomy—the two most commonly performed bariatric procedures—and they have been suggested as important mediators of the observed changes in eating behaviour and glucose homeostasis postoperatively. In this review, we summarise the current evidence from human studies on the alterations of gut hormones after bariatric surgery and their impact on clinical outcomes postoperatively. Studies which assess the role of gut hormones after bariatric surgery on food intake, hunger, satiety and glucose homeostasis through octreotide use (a non-specific inhibitor of gut hormone secretion) as well as with exendin 9–39 (a specific glucagon-like peptide-1 receptor antagonist) are reviewed. The potential use of gut hormones as biomarkers of successful outcomes of bariatric surgery is also evaluated.
Collapse
|