1
|
Fu Y, Yang L, Liu L, Kong L, Sun H, Sun Y, Yin F, Yan G, Wang X. Rhein: An Updated Review Concerning Its Biological Activity, Pharmacokinetics, Structure Optimization, and Future Pharmaceutical Applications. Pharmaceuticals (Basel) 2024; 17:1665. [PMID: 39770507 PMCID: PMC11679290 DOI: 10.3390/ph17121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Rhein is a natural active ingredient in traditional Chinese medicine that has attracted much attention due to its wide range of pharmacological activities. However, its clinical application is limited by low water solubility, poor oral absorption, and potential toxicity to the liver and kidneys. Recently, advanced extraction and synthesis techniques have made it possible to develop derivatives of rhein, which have better pharmacological properties and lower toxicity. This article comprehensively summarizes the biological activity and action mechanism of rhein. Notably, we found that TGF-β1 is the target of rhein improving tissue fibrosis, while NF-κB is the main target of its anti-inflammatory effect. Additionally, we reviewed the current research status of the pharmacokinetics, toxicology, structural optimization, and potential drug applications of rhein and found that the coupling and combination therapy of rhein and other active ingredients exhibit a synergistic effect, significantly enhancing therapeutic efficacy. Finally, we emphasize the necessity of further studying rhein's pharmacological mechanisms, toxicology, and development of analogs, aiming to lay the foundation for its widespread clinical application as a natural product and elucidate its prospects in modern medicine.
Collapse
Affiliation(s)
- Yuqi Fu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Lei Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| |
Collapse
|
2
|
Chen Y, Tu Y, Cao J, Wang Y, Ren Y. Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis. Cardiovasc Toxicol 2024; 24:1139-1150. [PMID: 39240427 DOI: 10.1007/s12012-024-09917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.
Collapse
Affiliation(s)
- Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Jin Cao
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yigang Wang
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
3
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
4
|
Li H, Jia Y, Yao D, Gao M, Wang L, Liu J. Rhein alleviates myocardial ischemic injury by inhibiting mitochondrial division, activating mitochondrial autophagy and suppressing myocardial cell apoptosis through the Drp1/Pink1/Parkin pathway. Mol Biol Rep 2024; 51:266. [PMID: 38302764 DOI: 10.1007/s11033-023-09154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China
| | - Yan Jia
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China
| | - Daomin Yao
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| | - Lijun Wang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| |
Collapse
|
5
|
Mao X, Xu DQ, Yue SJ, Fu RJ, Zhang S, Tang YP. Potential Medicinal Value of Rhein for Diabetic Kidney Disease. Chin J Integr Med 2023; 29:951-960. [PMID: 36607584 DOI: 10.1007/s11655-022-3591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
Diabetic kidney disease (DKD) is the primary cause of mortality among diabetic patients. With the increasing prevalence of diabetes, it has become a major concern around the world. The therapeutic effect of clinical use of drugs is far from expected, and therapy choices to slow the progression of DKD remain restricted. Therefore, research on new drugs and treatments for DKD has been a hot topic in the medical field. It has been found that rhein has the potential to target the pathogenesis of DKD and has a wide range of pharmacological effects on DKD, such as anti-nephritis, decreasing blood glucose, controlling blood lipids and renal protection. In recent years, the medical value of rhein in the treatment of diabetes, DKD and renal disease has gradually attracted worldwide attention, especially its potential in the treatment of DKD. Currently, DKD can only be treated with medications from a single symptom and are accompanied by adverse effects, while rhein improves DKD with a multi-pathway and multi-target approach. Therefore, this paper reviews the therapeutic effects of rhein on DKD, and proposes solutions to the limitations of rhein itself, in order to provide valuable references for the clinical application of rhein in DKD and the development of new drugs.
Collapse
Affiliation(s)
- Xi Mao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Sai Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
6
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
7
|
Tong W, Leng L, Wang Y, Guo J, Owusu FB, Zhang Y, Wang F, Li R, Li Y, Chang Y, Wang Y, Wang Q. Buyang huanwu decoction inhibits diabetes-accelerated atherosclerosis via reduction of AMPK-Drp1-mitochondrial fission axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116432. [PMID: 37003404 DOI: 10.1016/j.jep.2023.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese drugs, including Buyang Huanwu decoction (BYHWD), have been used in traditional practice to manage cardiovascular and cerebrovascular diseases. However, the effect and mechanisms by which this decoction alleviates diabetes-accelerated atherosclerosis are unknown and require exploration. AIM OF THE STUDY This study aims to investigate the pharmacological effects of BYHWD on preventing diabetes-accelerated atherosclerosis, and elucidate its underlying mechanism. MATERIALS AND METHODS Streptozotocin (STZ)-induced diabetic ApoE-/- mice were treated with BYHWD. Atherosclerotic aortic lesions, endothelial function, mitochondrial morphology, and mitochondrial dynamics-related proteins were evaluated in isolated aortas. High glucose-exposed human umbilical endothelial cells (HUVECs) were treated with BYHWD and its components. AMPK siRNA transfection, Drp1 molecular docking, Drp1 enzyme activity measurement, and so on were used to explore and verify the mechanism. RESULT BYHWD treatment inhibited the worsening of diabetes-accelerated atherosclerosis by lessening atherosclerotic lesions in diabetic ApoE-/- mice, by impeding endothelial dysfunction under diabetic conditions, and by inhibiting mitochondrial fragmentation by lowering protein expression levels of Drp1 and mitochondrial fission-1 protein (Fis1) in diabetic aortic endothelium. In high glucose-exposed HUVECs, BYHWD treatment also downgraded reactive oxygen species, promoted nitric oxide levels, and abated mitochondrial fission by reducing protein expression levels of Drp1 and fis1, but not mitofusin-1 and optic atrophy-1. Interestingly, we found that BYHWD's protective effect against mitochondrial fission is mediated by AMPK activation-dependent reduction of Drp1 levels. The main serum chemical components of BYHWD, ferulic acid, and calycosin-7-glucoside, can reduce the expression of Drp1 by regulating AMPK, and can inhibit the activity of GTPase of Drp1. CONCLUSION The above findings support the conclusion that BYHWD suppresses diabetes-accelerated atherosclerosis by reducing mitochondrial fission through modulation of the AMPK/Drp1 pathway.
Collapse
Affiliation(s)
- Wanyu Tong
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Yucheng Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jingwen Guo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Yanxu Chang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Yu M, Liang M, An Q, Wang W, Zhang B, Yang S, Zhou J, Yang X, Yang D, Zhang L, Du G, Lu Y. Versatile Solid Modifications of Multicomponent Pharmaceutical Salts: Novel Metformin-Rhein Salts Based on Advantage Complementary Strategy Design. Pharmaceutics 2023; 15:pharmaceutics15041196. [PMID: 37111681 PMCID: PMC10142746 DOI: 10.3390/pharmaceutics15041196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to develop an effective treatment for diabetes and diabetic complications, based on the advantage complementary strategy of drug-drug salt, by designing and synthesizing the multicomponent molecular salts containing metformin (MET) and rhein (RHE). Finally, the salts of MET-RHE (1:1), MET-RHE-H2O (1:1:1), MET-RHE-ethanol-H2O (1:1:1:1), and MET-RHE-acetonitrile (2:2:1) were obtained, indicating the polymorphism of salts formed by MET and RHE. The structures were analyzed by the combination of characterization experiments and theoretical calculation, and the formation mechanism of polymorphism was discussed. The obtained results of in vitro evaluation showed that MET-RHE had a similar hygroscopicity with metformin hydrochloride (MET·HCl), and the solubility of the component of RHE increased by approximately 93 times, which laid a foundation for improving the bioavailability of MET and RHE in vivo. The evaluation of hypoglycemic activity in mice (C57BL/6N) indicated that MET-RHE exhibited better hypoglycemic activity than the parent drugs and the physical mixtures of MET and RHE. The above findings demonstrate that this study achieved the complementary advantages of MET and RHE through the multicomponent pharmaceutical salification technique, and provides new possibilities for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Mingchao Yu
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| | - Meidai Liang
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing 100050, China
| | - Qi An
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| | - Wenwen Wang
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| | - Baoxi Zhang
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| | - Shiying Yang
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| | - Jian Zhou
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| | - Xiuying Yang
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing 100050, China
| | - Dezhi Yang
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| | - Li Zhang
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| | - Guanhua Du
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing 100050, China
| | - Yang Lu
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Beijing 100050, China
| |
Collapse
|
9
|
Ajzashokouhi AH, Rezaee R, Omidkhoda N, Karimi G. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury. Cell Cycle 2023; 22:741-757. [PMID: 36593695 PMCID: PMC10026916 DOI: 10.1080/15384101.2022.2161959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The PI3K/Akt/GSK3β pathway is crucial in regulating cardiomyocyte growth and survival. It has been shown that activation of this pathway alleviates the negative impact of ischemia-reperfusion. Glycogen synthase kinase-3 (GSK3β) induces apoptosis through stimulation of transcription factors, and its phosphorylation has been suggested as a new therapeutic target for myocardial ischemia-reperfusion injury (MIRI). GSK3β regulatory role is mediated by the reperfusion injury salvage kinase (RISK) pathway, and its inhibition by Akt activation blocks mitochondrial permeability transition pore (mPTP) opening and enhances myocardial survival. The present article discusses the involvement of the PI3K/Akt/GSK3β pathway in cardioprotective effects of natural products against MIRI.Abbreviations: Akt: protein kinase B; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Bad: bcl2-associated agonist of cell death; Bax: bcl2-associated x protein; Bcl-2: B-cell lymphoma 2; CK-MB: Creatine kinase-MB; CRP: C-reactive-protein; cTnI: cardiac troponin I; EGCG: Epigallocatechin-3-gallate; Enos: endothelial nitric oxide synthase; ER: endoplasmic reticulum; ERK ½: extracellular signal‑regulated protein kinase ½; GSK3β: glycogen synthase kinase-3; GSRd: Ginsenoside Rd; GSH: glutathione; GSSG: glutathione disulfide; HO-1: heme oxygenase-1; HR: hypoxia/reoxygenation; HSYA: Hydroxysafflor Yellow A; ICAM-1: Intercellular Adhesion Molecule 1; IKK-b: IκB kinase; IL: interleukin; IPoC: Ischemic postconditioning; IRI: ischemia-reperfusion injury; JNK: c-Jun N-terminal kinase; Keap1: kelch-like ECH-associated protein- 1; LDH: lactate dehydrogenase; LVEDP: left ventricular end diastolic pressure; LVP: left ventricle pressure; LVSP: left ventricular systolic pressure; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MIRI: myocardial ischemia-reperfusion injury; MnSOD: manganese superoxide dismutase; mPTP: mitochondrial permeability transition pore; mtHKII: mitochondria-bound hexokinase II; Nrf-1: nuclear respiratory factor 1; Nrf2: nuclear factor erythroid 2-related factor; NO: nitric oxide; PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α; PI3K: phosphoinositide 3-kinases; RISK: reperfusion injury salvage kinase; ROS: reactive oxygen species; RSV: Resveratrol; SOD: superoxide dismutase; TFAM: transcription factor A mitochondrial; TNF-α: tumor necrosis factor-alpha; VEGF-B: vascular endothelial growth factor B.
Collapse
Affiliation(s)
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Subash-Babu P, Abdulaziz AlSedairy S, Abdulaziz Binobead M, Alshatwi AA. Luteolin-7-O-rutinoside Protects RIN-5F Cells from High-Glucose-Induced Toxicity, Improves Glucose Homeostasis in L6 Myotubes, and Prevents Onset of Type 2 Diabetes. Metabolites 2023; 13:metabo13020269. [PMID: 36837888 PMCID: PMC9965038 DOI: 10.3390/metabo13020269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Luteolin-7-O-rutinoside (lut-7-O-rutin), a flavonoid commonly present in Mentha longifolia L. and Olea europaea L. leaves has been used as a flavoring agent with some biological activity. The present study is the first attempt to analyze the protective effect of lut-7-O-rutin on high-glucose-induced toxicity to RIN-5F cells in vitro. We found that lut-7-O-rutin improved insulin secretion in both normal and high-glucose conditions in a dose-dependent manner, without toxicity observed. In addition, 20 µmol of lut-7-O-rutin improves insulin sensitization and glucose uptake significantly (p ≤ 0.01) in L6 myotubes cultured in a high-glucose medium. Lut-7-O-rutin has shown a significant (p ≤ 0.05) effect on glucose uptake in L6 myotubes compared to the reference drug, rosiglitazone (20 µmol). Gene expression analysis confirmed significantly lowered CYP1A, TNF-α, and NF-κb expressions in RIN-5F cells, and increased mitochondrial thermogenesis-related LPL, Ucp-1 and PPARγC1A mRNA expressions in L6 myotubes after 24 h of lut-7-O-rutin treatment. The levels of signaling proteins associated with intracellular glucose uptakes, such as cAMP, ChREBP-1, and AMPK, were significantly increased in L6 myotubes. In addition, the levels of the conversion rate of glucose to lactate and fatty acids were raised in insulin-stimulated conditions; the rate of glycerol conversion was found to be higher at the basal level in L6 myotubes. In conclusion, lut-7-O-rutin protects RIN-5F cells from high-glucose-induced toxicity, stimulates insulin secretion, and promotes glucose absorption and homeostasis via molecular mechanisms.
Collapse
|
11
|
Deng T, Du J, Yin Y, Cao B, Wang Z, Zhang Z, Yang M, Han J. Rhein for treating diabetes mellitus: A pharmacological and mechanistic overview. Front Pharmacol 2023; 13:1106260. [PMID: 36699072 PMCID: PMC9868719 DOI: 10.3389/fphar.2022.1106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
With the extension of life expectancy and changes in lifestyle, the prevalence of diabetes mellitus is increasing worldwide. Rheum palmatum L. a natural botanical medicine, has been used for thousands of years to prevent and treat diabetes mellitus in Eastern countries. Rhein, the main active component of rhubarb, is a 1, 8-dihydroxy anthraquinone derivative. Previous studies have extensively explored the clinical application of rhein. However, a comprehensive review of the antidiabetic effects of rhein has not been conducted. This review summarizes studies published over the past decade on the antidiabetic effects of rhein, covering the biological characteristics of Rheum palmatum L. and the pharmacological effects and pharmacokinetic characteristics of rhein. The review demonstrates that rhein can prevent and treat diabetes mellitus by ameliorating insulin resistance, possess anti-inflammatory and anti-oxidative stress properties, and protect islet cells, thus providing a theoretical basis for the application of rhein as an antidiabetic agent.
Collapse
Affiliation(s)
- Tingting Deng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Meina Yang, ; Jinxiang Han,
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Meina Yang, ; Jinxiang Han,
| |
Collapse
|
12
|
Drp1 Overexpression Decreases Insulin Content in Pancreatic MIN6 Cells. Int J Mol Sci 2022; 23:ijms232012338. [PMID: 36293194 PMCID: PMC9604375 DOI: 10.3390/ijms232012338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial dynamics and bioenergetics are central to glucose-stimulated insulin secretion by pancreatic beta cells. Previously, we demonstrated that a disturbance in glucose-invoked fission impairs insulin secretion by compromising glucose catabolism. Here, we investigated whether the overexpression of mitochondrial fission regulator Drp1 in MIN6 cells can improve or rescue insulin secretion. Although Drp1 overexpression slightly improves the triggering mechanism of insulin secretion of the Drp1-knockdown cells and has no adverse effects on mitochondrial metabolism in wildtype MIN6 cells, the constitutive presence of Drp1 unexpectedly impairs insulin content, which leads to a reduction in the absolute values of secreted insulin. Coherent with previous studies in Drp1-overexpressing muscle cells, we found that the upregulation of ER stress-related genes (BiP, Chop, and Hsp60) possibly impacts insulin production in MIN6 cells. Collectively, we confirm the important role of Drp1 for the energy-coupling of insulin secretion but unravel off-targets effects by Drp1 overexpression on insulin content that warrant caution when manipulating Drp1 in disease therapy.
Collapse
|
13
|
Zhu Y, Yang S, Lv L, Zhai X, Wu G, Qi X, Dong D, Tao X. Research Progress on the Positive and Negative Regulatory Effects of Rhein on the Kidney: A Review of Its Molecular Targets. Molecules 2022; 27:molecules27196572. [PMID: 36235108 PMCID: PMC9573519 DOI: 10.3390/molecules27196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, both acute kidney injury (AKI) and chronic kidney disease (CKD) are considered to be the leading public health problems with gradually increasing incidence rates around the world. Rhein is a monomeric component of anthraquinone isolated from rhubarb, a traditional Chinese medicine. It has anti-inflammation, anti-oxidation, anti-apoptosis, anti-bacterial and other pharmacological activities, as well as a renal protective effects. Rhein exerts its nephroprotective effects mainly through decreasing hypoglycemic and hypolipidemic, playing anti-inflammatory, antioxidant and anti-fibrotic effects and regulating drug-transporters. However, the latest studies show that rhein also has potential kidney toxicity in case of large dosages and long use times. The present review highlights rhein's molecular targets and its different effects on the kidney based on the available literature and clarifies that rhein regulates the function of the kidney in a positive and negative way. It will be helpful to conduct further studies on how to make full use of rhein in the kidney and to avoid kidney damage so as to make it an effective kidney protection drug.
Collapse
|
14
|
Li RJ, Xu JJ, Zhang ZH, Chen MW, Liu SX, Yang C, Li YL, Luo P, Liu YJ, Tang R, Shan ZG. Rhein ameliorates transverse aortic constriction-induced cardiac hypertrophy via regulating STAT3 and p38 MAPK signaling pathways. Front Pharmacol 2022; 13:940574. [PMID: 36091816 PMCID: PMC9459036 DOI: 10.3389/fphar.2022.940574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The progression from compensatory hypertrophy to heart failure is difficult to reverse, in part due to extracellular matrix fibrosis and continuous activation of abnormal signaling pathways. Although the anthraquinone rhein has been examined for its many biological properties, it is not clear whether it has therapeutic value in the treatment of cardiac hypertrophy and heart failure. In this study, we report for the first time that rhein can ameliorate transverse aortic constriction (TAC)-induced cardiac hypertrophy and other cardiac damage in vivo and in vitro. In addition, rhein can reduce cardiac hypertrophy by attenuating atrial natriuretic peptide, brain natriuretic peptide, and β-MHC expression; cardiac fibrosis; and ERK phosphorylation and transport into the nucleus. Furthermore, the inhibitory effect of rhein on myocardial hypertrophy was similar to that of specific inhibitors of STAT3 and ERK signaling. In addition, rhein at therapeutic doses had no significant adverse effects or toxicity on liver and kidney function. We conclude that rhein reduces TAC-induced cardiac hypertrophy via targeted inhibition of the molecular function of ERK and downregulates STAT3 and p38 MAPK signaling. Therefore, rhein might be a novel and effective agent for treating cardiac hypertrophy and other cardiovascular diseases.
Collapse
Affiliation(s)
- Run-Jing Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jia-Jia Xu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zheng-Hao Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Min-Wei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shi-Xiao Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Cui Yang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-Ling Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ping Luo
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi-Jiang Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Tang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Rong Tang, ; Zhong-Gui Shan,
| | - Zhong-Gui Shan
- Department of Cardiac Surgery, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Rong Tang, ; Zhong-Gui Shan,
| |
Collapse
|
15
|
Trybus W, Król T, Trybus E. Rhein induces changes in the lysosomal compartment of HeLa cells. J Cell Biochem 2022; 123:1506-1524. [PMID: 35901236 DOI: 10.1002/jcb.30311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
Rhein is an anthraquinone found in Rheum palmatum, used in Chinese medicine. Due to potential anticancer properties, the study assessed its effect on the lysosomal compartment, which indirectly influences cell death. The experiment was performed on HeLa cells by treating them with rhein at concentrations of 100-300 µM. LC3-II protein and caspase 3/7 activity, level of apoptosis, the concentration of reactive oxide species (ROS), and mitochondrial potential (Δψm) were evaluated by the cytometric method. To evaluate the permeability of the lysosomal membrane (LMP), staining with acridine orange and the assessment of activity of cathepsin D and L in the lysosomal and extralysosomal fractions were used. Cell viability was assessed by -(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) and neutral red (NR) assays. Changes in cells were also demonstrated at the level of electron, optical, confocal, and fluorescence microscopy. Inhibition of autophagy was done using chloroquine. Rhein-induced degradation processes were confirmed by an increase in the number of primary lysosomes, autophagosomes, and autolysosomes. At high concentrations, rhein caused the generation of ROS, which induced LMP expressed by quenching of acridine orange fluorescence. These results correlated with a reduction of lysosomes, as visualized in graphical modeling, with the decreased uptake of NR by lysosomes, and increased activity of cathepsin D and L in the extralysosomal fraction. The studies also showed an increase in the activity of caspase 3/7 and a decrease in the expression of Bcl-2 protein, indicative of rhein-stimulated apoptosis. At the same time, we demonstrated that preincubation of cells with chloroquine inhibited rhein-induced autophagy and contributed to increased cytotoxicity to HeLa cells. Rhein also induced DNA damage and led to cycle arrest in the S phase. Our results indicate that rhein, by inducing changes in the lysosomal compartment, indirectly affects apoptosis of HeLa cells and in combination with autophagy inhibitors may be an effective form of anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Trybus
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Teodora Król
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Ewa Trybus
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
16
|
Sidarala V, Zhu J, Levi-D'Ancona E, Pearson GL, Reck EC, Walker EM, Kaufman BA, Soleimanpour SA. Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis. Nat Commun 2022; 13:2340. [PMID: 35487893 PMCID: PMC9055072 DOI: 10.1038/s41467-022-29945-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamin-like GTPases Mitofusin 1 and 2 (Mfn1 and Mfn2) are essential for mitochondrial function, which has been principally attributed to their regulation of fission/fusion dynamics. Here, we report that Mfn1 and 2 are critical for glucose-stimulated insulin secretion (GSIS) primarily through control of mitochondrial DNA (mtDNA) content. Whereas Mfn1 and Mfn2 individually were dispensable for glucose homeostasis, combined Mfn1/2 deletion in β-cells reduced mtDNA content, impaired mitochondrial morphology and networking, and decreased respiratory function, ultimately resulting in severe glucose intolerance. Importantly, gene dosage studies unexpectedly revealed that Mfn1/2 control of glucose homeostasis was dependent on maintenance of mtDNA content, rather than mitochondrial structure. Mfn1/2 maintain mtDNA content by regulating the expression of the crucial mitochondrial transcription factor Tfam, as Tfam overexpression ameliorated the reduction in mtDNA content and GSIS in Mfn1/2-deficient β-cells. Thus, the primary physiologic role of Mfn1 and 2 in β-cells is coupled to the preservation of mtDNA content rather than mitochondrial architecture, and Mfn1 and 2 may be promising targets to overcome mitochondrial dysfunction and restore glucose control in diabetes.
Collapse
Affiliation(s)
- Vaibhav Sidarala
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Jie Zhu
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Elena Levi-D'Ancona
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Emma C Reck
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Emily M Walker
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Brett A Kaufman
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48105, United States.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, United States.
| |
Collapse
|
17
|
Rhein Ameliorates Cognitive Impairment in an APP/PS1 Transgenic Mouse Model of Alzheimer's Disease by Relieving Oxidative Stress through Activating the SIRT1/PGC-1 α Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2524832. [PMID: 35360200 PMCID: PMC8964225 DOI: 10.1155/2022/2524832] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/08/2022] [Indexed: 01/05/2023]
Abstract
Mitochondrial oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). Recently, antioxidant therapy has been considered an effective strategy for the treatment of AD. Our previous work discovered that rhein relieved mitochondrial oxidative stress in β-amyloid (Aβ) oligomer-induced primary neurons by improving the sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha- (PGC-1α-) regulated mitochondrial biogenesis. While encouraging results have been provided, mechanisms underlying the beneficial effect of rhein on AD are yet to be elucidated in vivo. In this study, we evaluated the therapeutic effect of rhein on an APP/PS1 transgenic (APP/PS1) mouse model of AD and explored its antioxidant mechanisms. As a result, rhein significantly reduced Aβ burden and neuroinflammation and eventually ameliorated cognitive impairment in APP/PS1 mice. Moreover, rhein reversed oxidative stress in the brain of APP/PS1 mice and protected neurons from oxidative stress-associated apoptosis. Further study revealed that rhein promoted mitochondrial biogenesis against oxidative stress by upregulating SIRT1 and its downstream PGC-1α as well as nuclear respiratory factor 1. Improved mitochondrial biogenesis not only increased the activity of superoxide dismutase to scavenge excess reactive oxygen species (ROS) but also repaired mitochondria by mitochondrial fusion to inhibit the production of ROS from the electron transport chain. Notably, the exposure of rhein in the brain analyzed by tissue distribution study indicated that rhein could permeate into the brain to exert its therapeutic effects. In conclusion, these findings drive rhein to serve as a promising therapeutic antioxidant for the treatment of AD. Our research highlights the therapeutic efficacy for AD through regulating mitochondrial biogenesis via the SIRT1/PGC-1α pathway.
Collapse
|
18
|
Kong L, Sun Y, Sun H, Zhang AH, Zhang B, Ge N, Wang XJ. Chinmedomics Strategy for Elucidating the Pharmacological Effects and Discovering Bioactive Compounds From Keluoxin Against Diabetic Retinopathy. Front Pharmacol 2022; 13:728256. [PMID: 35431942 PMCID: PMC9008273 DOI: 10.3389/fphar.2022.728256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Keluoxin (KLX) is an active agent in the treatment of diabetic retinopathy (DR). However, its mechanism, targets, and effective constituents against DR are still unclear, which seriously restricts its clinical application. Chinmedomics has the promise of explaining the pharmacological effects of herbal medicines and investigating the effective mechanisms. The research results from electroretinography and electron microscope showed that KLX could reduce retinal dysfunction and pathological changes by the DR mouse model. Based on effectiveness, we discovered 64 blood biomarkers of DR by nontargeted metabolomics analysis, 51 of which returned to average levels after KLX treatment including leukotriene D4 and A4, l-tryptophan, 6-hydroxymelatonin, l-phenylalanine, l-tyrosine, and gamma-linolenic acid (GLA). The metabolic pathways involved were phenylalanine metabolism, steroid hormone biosynthesis, sphingolipid metabolism, etc. Adenosine monophosphate-activated protein kinase (AMPK), extracellular signal-regulated protein kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase (PI3K), and protein 70 S6 kinase (p70 S6K) might be potential targets of KLX against DR. This was related to the mammalian target of rapamycin (mTOR) signaling and AMPK signaling pathways. We applied the chinmedomics strategy, integrating serum pharm-chemistry of traditional Chinese medicine (TCM) with metabolomics, to discover astragaloside IV (AS-IV), emodin, rhein, chrysophanol, and other compounds, which were the core effective constituents of KLX when against DR. Our study was the first to apply the chinmedomics strategy to discover the effective constituents of KLX in the treatment of DR, which fills the gap of unclear effective constituents of KLX. In the next step, the research of effective constituents can be used to optimize prescription preparation, improve the quality standard, and develop an innovative drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Tagaya M, Kume S, Yasuda-Yamahara M, Kuwagata S, Yamahara K, Takeda N, Tanaka Y, Chin-Kanasaki M, Nakae Y, Yokoi H, Mukoyama M, Ishihara N, Nomura M, Araki SI, Maegawa H. Inhibition of mitochondrial fission protects podocytes from albumin-induced cell damage in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166368. [DOI: 10.1016/j.bbadis.2022.166368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
20
|
Zheng Y, Ding Q, Wei Y, Gou X, Tian J, Li M, Tong X. Effect of traditional Chinese medicine on gut microbiota in adults with type 2 diabetes: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153455. [PMID: 33478831 DOI: 10.1016/j.phymed.2020.153455] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite advances in research on type 2 diabetes mellitus (T2DM) with the development of science and technology, the pathogenesis and treatment response of T2DM remain unclear. Recent studies have revealed a significant role of the microbiomein the development of T2DM, and studies have found that the gut microbiota may explain the therapeutic effect of traditional Chinese medicine (TCM), a primary branch of alternative and complementary medicine, in the treatment of T2DM. The aim of this study was to systematically review all randomized controlled trials (RCTs) on TCM for gut microbiota to assess the effectiveness and safety of TCM in T2DM patients. METHODS All RCTs investigating the effects of TCM interventions on modulating gut microbiota and improving glucose metabolism in the treatment of T2DM adults were included. Meta-analyses were conducted when sufficient data were available, other results were reported narratively. The study protocol was pre-specified, documented, and published in PROSPERO (registration no. CRD42020188043). RESULTS Five studies met the eligibility criteria ofthe systematic review. All five studies reported the effects of TCM interventions on the gut microbiota modulation and blood glucose control. There were statistically significant improvements in HbA1c (mean difference [MD]: -0.69%; [95% CI -0.24, -0.14]; p = 0.01, I2 = 86%), fasting blood glucose (MD: -0.87 mmol/l; [95% CI -1.26, -0.49]; p < 0.00001, I2 = 75%) and 2-h postprandial blood glucose(MD: -0.83mmol/l; [95% CI: -1.01, -0.65]; p < 0.00001, I2 = 0%). In addition, there were also statistically significant improvements in homeostasis model assessment of insulin resistance (HOMA-IR) (standardized mean difference [SMD]: -0.99, [95% CI -1.25 to -0.73]; p < 0.00001, I2 = 0%) and homeostasis model assessment of β-cell function (HOMA-β) (SMD: 0.54, [95% CI 0.21 to 0.87]; p = 0.001, I2 = 0%).There was a significant change in the relative abundance of bacteria in the genera Bacteroides (standardized mean difference [SMD] 0.87%; [95% CI 0.58, 1.16], however, the change in Enterococcus abundance was not statistically significant (SMD: -1.71%; [95% CI: -3.64, 0.23]; p = 0.08) when comparing TCM supplementaltreatment with comparator groups. Other changes in the gut microbiota, including changes in the relative abundances of some probiotics and opportunistic pathogens at various taxon levels, and changes in diversity matrices (α and β), were significant by narrative analysis. However, insufficient evidences were found to support that TCM intervention had an effect on inflammation. CONCLUSION TCM had the effect of modulating gut microbiota and improving glucose metabolisms in T2DM patients. Although the results of the included studies are encouraging, further well-conducted studies on TCM interventions targeting the gut microbiota are needed.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowen Gou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Yu J, He J, Yang W, Wang X, Shi G, Duan Y, Wang H, Han C. Diabetes impairs the protective effects of sevoflurane postconditioning in the myocardium subjected to ischemia/ reperfusion injury in rats: important role of Drp1. BMC Cardiovasc Disord 2021; 21:96. [PMID: 33593294 PMCID: PMC7885510 DOI: 10.1186/s12872-021-01906-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sevoflurane postconditioning (SevP) effectively relieves myocardial ischemia/reperfusion (I/R) injury but performs poorly in the diabetic myocardium. Previous studies have revealed the important role of increased oxidative stress in diabetic tissues. Notably, mitochondrial fission mediated by dynamin-related protein 1 (Drp1) is an upstream pathway of reactive oxygen production. Whether the ineffectiveness of SevP in the diabetic myocardium is related to Drp1-dependent mitochondrial fission remains unknown. This study aimed to explore the important role of Drp1 in the diabetic myocardium and investigate whether Drp1 inhibition could restore the cardioprotective effect of SevP. METHODS In the first part of the study, adult male Sprague-Dawley rats were divided into 6 groups. Rats in the diabetic groups were fed with high-fat and high-sugar diets for 8 weeks and injected intraperitoneally with streptozotocin (35 mg/kg). Myocardial I/R was induced by 30 min of occlusion of the left anterior descending branch of the coronary artery followed by 120 min of reperfusion. SevP was applied by continuous inhalation of 2.5 % sevoflurane 1 min before reperfusion, which lasted for 10 min. In the second part of the study, we applied mdivi-1 to investigate whether Drp1 inhibition could restore the cardioprotective effect of SevP in the diabetic myocardium. The myocardial infarct size, mitochondrial ultrastructure, apoptosis index, SOD activity, MDA content, and Drp1 expression were detected. RESULTS TTC staining and TUNEL results showed that the myocardial infarct size and apoptosis index were increased in the diabetic myocardium. However, SevP significantly alleviated myocardial I/R injury in the normal myocardium but not in the diabetic myocardium. Additionally, we found an elevation in Drp1 expression, accompanied by more severe fission-induced structural damage and oxidative stress in the diabetic myocardium. Interestingly, we discovered that the beneficial effect of SevP was restored by mdivi-1, which significantly suppressed mitochondrial fission and oxidative stress. CONCLUSIONS Our study demonstrates the crucial role of mitochondrial fission dependent on Drp1 in the diabetic myocardium subjected to I/R, and strongly indicates that Drp1 inhibition may restore the cardioprotective effect of SevP in diabetic rats.
Collapse
MESH Headings
- Anesthetics, Inhalation/pharmacology
- Animals
- Apoptosis/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Dynamins/metabolism
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondrial Dynamics/drug effects
- Myocardial Infarction/complications
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/complications
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Sevoflurane/pharmacology
- Rats
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanxi Bethune Hospital, 99, Longcheng Street, 030032, Taiyuan, China
| | - Jiandong He
- Department of Anesthesiology, Shanxi Bethune Hospital, 99, Longcheng Street, 030032, Taiyuan, China
| | - Wenqu Yang
- Department of Anesthesiology, Shanxi Bethune Hospital, 99, Longcheng Street, 030032, Taiyuan, China
| | - Xiang Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, 99, Longcheng Street, 030032, Taiyuan, China
| | - Gaoxiang Shi
- Department of Anesthesiology, Shanxi Bethune Hospital, 99, Longcheng Street, 030032, Taiyuan, China
| | - Yinglei Duan
- Department of Anesthesiology, Shanxi Bethune Hospital, 99, Longcheng Street, 030032, Taiyuan, China
| | - Hui Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, 99, Longcheng Street, 030032, Taiyuan, China
| | - Chongfang Han
- Department of Anesthesiology, Shanxi Bethune Hospital, 99, Longcheng Street, 030032, Taiyuan, China.
| |
Collapse
|
22
|
Almezgagi M, Zhang Y, Hezam K, Shamsan E, Gamah M, Al-Shaebi F, Abbas AB, Shoaib M, Saif B, Han Y, Jia R, Zhang W. Diacerein: Recent insight into pharmacological activities and molecular pathways. Biomed Pharmacother 2020; 131:110594. [PMID: 32858499 DOI: 10.1016/j.biopha.2020.110594] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/11/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Diacerein is a symptomatic slow-acting drug in osteoarthritis (SYSADOA) and the active metabolite is rhein. It is a non-steroidal anti-inflammatory drug with unique pharmacological properties as anti-oxidant and anti-apoptosis. Diacerein has recently shown to have a potential role by mediating anti-inflammatory as well as anti-oxidant and anti-apoptosis in kidney injury, diabetes mullites, and a beneficial effect on pain relief. It may have a therapeutic role in cancer, ulcerative colitis, testicular injury and cervical hyperkeratosis. Furthermore, diacerein has a valuable addition in combination therapy as a synergetic agent. This review, the first of its kind, highlights the proposed roles of diacerein in osteoarthritis and discusses recent results supporting its emerging roles with a particular focus on how these new insights may facilitate the rational development of diacerein for targeted therapies in the future.
Collapse
Affiliation(s)
- Maged Almezgagi
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China; Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China; Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb City 70270, Yemen
| | - Yu Zhang
- Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China
| | - Kamal Hezam
- Nankai University School of Medicine, Tianjin 300071, China
| | - Emad Shamsan
- Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China
| | - Mohammed Gamah
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China; Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China
| | - Fadhl Al-Shaebi
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Abdul Baset Abbas
- Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb City 70270, Yemen
| | - Muhammad Shoaib
- Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China
| | - Bassam Saif
- Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb City 70270, Yemen
| | - Ying Han
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China
| | - Ruhan Jia
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China
| | - Wei Zhang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China; Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China.
| |
Collapse
|
23
|
Aghelan Z, Kiani S, Nasiri A, Sadeghi M, Farrokhi A, Khodarahmi R. Factors Influencing Mitochondrial Function as a Key Mediator of Glucose-Induced Insulin Release: Highlighting Nicotinamide Nucleotide Transhydrogenase. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:107-122. [PMID: 32934948 PMCID: PMC7489113 DOI: 10.22088/ijmcm.bums.9.2.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic β-cells recognize blood glucose changes and release insulin that is a peptide hormone responsible for stable glycemia. Diabetes, a chronic disorder of insulin insufficiency, leads to disturbed glucose homeostasis and multi-organ problems. Glucose and insulin are key markers in the follow-up and control of this disease. Mitochondrial metabolism of pancreatic beta cells is a crucial part of glucose-stimulated cascade of insulin secretion. Effective factors on β-cells mitochondrial function in production of compounds such as tricarboxylic acid intermediates, glutamate, nicotinamide adenine dinucleotide phosphate, and reactive oxygen species can have great effects on the secretion of insulin under diabetes. This review enhances our knowledge of factors influencing mitochondrial function as a key mediator of glucose-induced insulin release that accordingly will be helpful to further our understanding of the mechanisms implicated in the progressive beta cell failure that results in diabetes.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abolfazl Nasiri
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Farrokhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
24
|
Apaya MK, Kuo TF, Yang MT, Yang G, Hsiao CL, Chang SB, Lin Y, Yang WC. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol Res 2020; 156:104754. [DOI: 10.1016/j.phrs.2020.104754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
25
|
Zeng X, Cai G, Liang T, Li Q, Yang Y, Zhong X, Zou X, Qin M, Mi Z. Rhubarb and Astragalus Capsule Attenuates Renal Interstitial Fibrosis in Rats with Unilateral Ureteral Obstruction by Alleviating Apoptosis through Regulating Transforming Growth Factor beta1 (TGF-β1)/p38 Mitogen-Activated Protein Kinases (p38 MAPK) Pathway. Med Sci Monit 2020; 26:e920720. [PMID: 32205836 PMCID: PMC7111584 DOI: 10.12659/msm.920720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rhubarb and astragalus capsule (RAC) has been used in the clinical treatment of chronic kidney disease for decades. However, the mechanism of RAC has not been fully elucidated. This study aimed to investigate the protective effect and mechanisms of RAC on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MATERIAL AND METHODS The main components of RAC are detected by high-performance liquid phase (HPLC). A rat model of UUO was established, and a subset of rats underwent treatment with RAC. Renal function and renal pathology were examined at 14 days and 21 days after the UUO operation. Renal cell apoptosis was detected by TUNEL staining. The levels of Bcl-2 and Bax in the kidney were examined by western blotting, and the levels of collagen I, alpha-SMA, transforming growth factor (TGF)-ß1, and p38 MAPK in the kidneys were detected by immunohistochemistry. RESULTS High-performance liquid phase chromatography showed that RAC contained 1.12 mg/g aloe-emodin, 2.25 mg/g rhein, 1.75 mg/g emodin, and 4.50 mg/g chrysophanol. Administration of RAC significantly decreased the levels of urinary N-acetyl-ß-D-glucosaminidase (NAG), serum blood urea nitrogen (BUN), and creatinine (Scr) and also reduced renal tissue damages and interstitial fibrosis induced by UUO in rats. Moreover, the increased levels of collagen I, alpha-SMA, TGF-ß1, p38 MAPK, and the Bax/Bcl-2 ratio, as well as cell apoptosis in the kidney, were induced by UUO, and were all found deceased by RAC treatment. CONCLUSIONS RAC can improve the renal interstitial fibrosis induced by UUO, and the mechanism may be related to inhibition of renal tubular cell apoptosis via TGF-ß1/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guozhen Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Taolin Liang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qingqing Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaobin Zhong
- Regenerative Medicine Research Center, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mengyuan Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhengcheng Mi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
26
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
27
|
Hu HC, Zheng LT, Yin HY, Tao Y, Luo XQ, Wei KS, Yin LP. A Significant Association Between Rhein and Diabetic Nephropathy in Animals: A Systematic Review and Meta-Analysis. Front Pharmacol 2019; 10:1473. [PMID: 31920660 PMCID: PMC6923681 DOI: 10.3389/fphar.2019.01473] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Rhein is considered to have beneficial influence on diabetic nephropathy. Animal experiments suggested that the mechanisms of rhein against diabetic nephropathy may involve many processes, but the credibility of the evidence is unclear. Therefore, we conducted systematic review and meta-analysis of pre-clinical animal data to assess the current evidence for rhein effects and mechanisms in treating diabetic nephropathy. Methods: The databases of PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, VIP information database, Wanfang Data Information Site, and Chinese Biomedical Literature were searched for this review. SYRCLE’s risk of bias tool for animal studies was applied to assess the methodological quality of studies. A meta-analysis was performed according to the Cochrane Handbook for Systematic Reviews of Interventions by using RevMan 5.3 and STATA/SE 12.0 software. This study was registered with PROSPERO, number CRD42018105220. Results: Twenty-five studies involving 537 animals were included. There was significant association of rhein with levels of blood glucose (P < 0.05), serum creatinine (Scr) (P < 0.05), urine protein (P < 0.05), kidney tubules injury index (P < 0.05), relative area of kidney collagen (P < 0.05), transforming growth factor-β1 (P < 0.05), malondialdehyde (P < 0.05), and superoxide dismutase (P < 0.05) compared with that in the control group. No significant association between rhein and endothelin (P > 0.05) was found. Subgroup analysis showed that the hypoglycemic effect of rhein on type 2 diabetic nephropathy was better than on type 1 diabetic nephropathy (P < 0.05). Conclusions: These findings suggested that rhein has beneficial effects on animal models of diabetic nephropathy, and that the mechanisms are mostly involved with ameliorating levels of TGF-β1, renal fibrosis, metabolism, and oxidative stress status. However, some factors such as possible publication bias, methodological quality, and sample size may affect the accuracy of positive findings. These limitations suggested that a cautious interpretation of the positive results of this systematic review and meta-analysis is necessary. Therefore, high methodological quality and well-reported animal experiments are needed in future research.
Collapse
Affiliation(s)
- Heng-Chang Hu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liu-Tao Zheng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Yan Yin
- Department of Acupuncture, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Qiong Luo
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai-Shan Wei
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Ping Yin
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Mohammed A, Ibrahim MA, Tajuddeen N, Aliyu AB, Isah MB. Antidiabetic potential of anthraquinones: A review. Phytother Res 2019; 34:486-504. [PMID: 31773816 DOI: 10.1002/ptr.6544] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Aminu Mohammed
- Department of BiochemistryAhmadu Bello University Zaria Nigeria
| | | | - Nasir Tajuddeen
- Department of ChemistryAhmadu Bello University Zaria Nigeria
| | | | | |
Collapse
|
29
|
Mo Y, Deng S, Zhang L, Huang Y, Li W, Peng Q, Liu Z, Ai Y. SS-31 reduces inflammation and oxidative stress through the inhibition of Fis1 expression in lipopolysaccharide-stimulated microglia. Biochem Biophys Res Commun 2019; 520:171-178. [PMID: 31582222 DOI: 10.1016/j.bbrc.2019.09.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
SS-31 is a kind of mitochondrion-targeted peptide. Recent studies indicated significant neuroprotective effects of SS-31. In this study, we investigated that SS-31 protected the murine cultured microglial cells (BV-2) against lipopolysaccharide (LPS)-induced inflammation and oxidative stress through stabilizing mitochondrial morphology. The morphological study showed that SS-31 preserved LPS-induced mitochondrial ultrastructure by reducing the fission protein 1 (Fis1) expression. Flow cytometry and Western blot verified that SS-31 defended the BV-2 cells against LPS-stimulated inflammation and oxidative stress via suppressing Fis1. To sum up, our study represents that SS-31 preserves BV-2 cells from LPS-stimulated inflammation and oxidative stress by down-regulating the Fis1 expression.
Collapse
Affiliation(s)
- Yunan Mo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Yan Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Wenchao Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Zhiyong Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
30
|
Ghorbani A, Amiri MS, Hosseini A. Pharmacological properties of Rheum turkestanicum Janisch. Heliyon 2019; 5:e01986. [PMID: 31294125 PMCID: PMC6595136 DOI: 10.1016/j.heliyon.2019.e01986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/14/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Medicinal herbs have been increasingly used worldwide for diseases prevention and treatment. Rheum turkestanicum Janisch. is a perennial shrub of the Polygonaceae family. Genus Rheum includes more than 60 species growing around the world which are used in foods and traditional medicines. R. turkestanicum is believed to be able to improve different kinds of disorders including diabetes, hypertension, jaundice and cancer. In recent years, this medicinal plant has been a subject of many experimental studies to document its health-beneficial properties. These studies have revealed antidiabetic, anticancer, nephroprotective, cardioprotective, and hepatoprotective properties of R. turkestanicum. The presence of flavonoids (e.g. epicatechin and quercetin) and anthraquinones (e.g. chrysophanol, physcion, and emodin) in R. turkestanicum justifies its health-beneficial effects. Nevertheless, possible therapeutic applications and safety of this plant still need to be elucidated in further clinical studies.
Collapse
Affiliation(s)
- Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Hirsutella sinensis Treatment Shows Protective Effects on Renal Injury and Metabolic Modulation in db/db Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4732858. [PMID: 31080482 PMCID: PMC6475559 DOI: 10.1155/2019/4732858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Hirsutella sinensis (HS) is the anamorph of the traditional Chinese medicine Cordyceps sinensis. Although the renal protective effect of HS has been reported, its effect on diabetic nephropathy (DN) remains unclear. In this study, db/db mice were used as the DN model, and the renal protective effect was evaluated after oral administration of HS for 6 and 12 weeks. Plasma, urine, and kidney samples were collected, and biochemical indicator measurements, pathological analysis, and metabolomics studies were performed. Biochemical assays showed that HS reduced the levels of fasting blood glucose (FBG), urinary albumin/creatinine ratio (ACR), and N-acetyl-beta-D-glucosaminidase (NAG) and increased the creatinine clearance (Ccr). HS alleviated glomerular and tubular glycogen accumulation and fibrosis and normalized the disordered ultrastructure of the glomerular filtration barrier. Metabolomics analysis of metabolites in the plasma, urine, and kidney indicated that HS modulated the perturbed glycolipid metabolism and amino acid turnover. HS reduced the elevated levels of metabolites involved in energy metabolism (TCA cycle, glycolysis, and pentose phosphate pathway) and nucleotide metabolism (pyrimidine metabolism and purine metabolism) in the kidneys of db/db mice. These results suggest that HS can protect against renal injury and that its efficacy involved metabolic modulation of the disturbed metabolome in db/db mice.
Collapse
|
32
|
He J, Gao HX, Yang N, Zhu XD, Sun RB, Xie Y, Zeng CH, Zhang JW, Wang JK, Ding F, Aa JY, Wang GJ. The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacol Sin 2019; 40:86-97. [PMID: 29930278 DOI: 10.1038/s41401-018-0043-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023] Open
Abstract
Epalrestat is an inhibitor of aldose reductase in the polyol pathway and is used for the management of diabetic neuropathy clinically. Our pilot experiments and accumulated evidences showed that epalrestat inhibited polyol pathway and reduced sorbitol production, and suggested the potential renal protection effects of epalrestat on diabetic nephropathy (DN). To evaluate the protective effect of epalrestat, the db/db mice were used and exposed to epalrestat for 8 weeks, both the physiopathological condition and function of kidney were examined. For the first time, we showed that epalrestat markedly reduced albuminuria and alleviated the podocyte foot process fusion and interstitial fibrosis of db/db mice. Metabolomics was employed, and metabolites in the plasma, renal cortex, and urine were profiled using a gas chromatography-mass spectrometry (GC/MS)-based metabolomic platform. We observed an elevation of sorbitol and fructose, and a decrease of myo-inositol in the renal cortex of db/db mice. Epalrestat reversed the renal accumulation of the polyol pathway metabolites of sorbitol and fructose, and increased myo-inositol level. Moreover, the upregulation of aldose reductase, fibronectin, collagen III, and TGF-β1 in renal cortex of db/db mice was downregulated by epalrestat. The data suggested that epalrestat has protective effects on DN, and the inhibition of aldose reductase and the modulation of polyol pathway in nephritic cells be a potentially therapeutic strategy for DN.
Collapse
|
33
|
Liu J, Li Y, Tang Y, Cheng J, Wang J, Li J, Ma X, Zhuang W, Gong J, Liu Z. Rhein protects the myocardiac cells against hypoxia/reoxygention-induced injury by suppressing GSK3β activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:1-6. [PMID: 30466606 DOI: 10.1016/j.phymed.2018.06.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rhein, an anthraquinone compound isolated from rhubarb, has been shown to protect the pancreatic β cells from hyperglycemia induced apoptosis in our previous studies. PURPOSE In the present study, we examined whether rhein can protect myocardial cells against ischemia reperfusion (I/R)-induced apoptosis and investigated the underlying mechanism. METHODS We used an in vitro model of myocardial hypoxia/reoxygenation (H/R) injury. H9c2 cells were incubated with rhein for 1 h and then subjected to hypoxia for 6 h, followed by reoxygenation for 2 h. Cells viability, apoptosis and ROS were assayed for the treated cells. AKT, p-AKT, GSK3β, p- GSK3β, P38 and p-P38 proteins were analyzed using Western blotting. PI3K/AKT inhibitor, LY294002, and GSK3β siRNA were also used to determine the signaling pathways involved in the protection by rhein. RESULTS Rhein increased viability, decreased apoptosis and ROS production, of the cells that were exposed to H/R. Rhein also increased the phosphorylation of AKT and GSK3β, an effect that was eliminated by LY294002. GSK3β silencing by siRNA showed similar effect as LY294002. The p-P38 level was upregulated by H/R and downregulated in the presence of rhein; however, the p-P38 downregulation was completely abolished by GSK3β silencing. CONCLUSION Rhein protects myocardial H9c2 cells against hypoxia/reoxygenation induced injury via AKT/ GSK3β/p38 pathway.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yanming Li
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Tang
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jinghua Cheng
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jianhua Li
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xiaohua Ma
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Wei Zhuang
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jianbin Gong
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China.
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Wang W, Yan X, Lin Y, Ge H, Tan Q. Wnt7a promotes wound healing by regulation of angiogenesis and inflammation: Issues on diabetes and obesity. J Dermatol Sci 2018; 91:S0923-1811(18)30103-8. [PMID: 29853224 DOI: 10.1016/j.jdermsci.2018.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/04/2018] [Accepted: 02/12/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Diabetic skin heals wounds poorly. Though obesity is the common risk factor of diabetes mellitus, few studies have investigated its effects on wound healing. OBJECTIVES This study aimed to evaluate the morphology and possible mechanism of human umbilical vein endothelial cells (HUVEC-C) in response to different levels of glucose and palmitic acid, and explore the role of Wnt7a in wound healing. METHODS The functional changes of HUVEC-C and mRNA expression of Wnt signaling were determined by analyzing cell viability, migration, tube formation and rt-PCR in gradients of glucose and palmitic acid. Recombinant Wnt7a protein was injected around wounds made on streptozotocin (STZ) -induced diabetic rats with (HF) or without (DM) high-fat diet. Angiogenesis and inflammatory statement were mainly analyzed by immunohistochemistry, ELISA, cytometry and Western blotting. RESULTS The expression of Wnt7a significantly decreased in high Glc/PA cultured cells or DM and HF wounded rats. Impaired wound healing was also observed in DM and HF groups. The healing rate significantly accelerated after localized injection with Wnt7a at d10. Moreover, the expression of CD31, eNOS phosphorylation and NO were increased; the reduction of local neutrophils influx, ICAM-1 and IL-6/8 expression levels were obvious especially in diabetic with obesity rats at d10 after Wnt7a treatment. CONCLUSION This study indicates the potential role of Wnt7a, which is beneficial for regeneration of damaged vessels, moderation of inflammatory statement in diabetic wound healing with or without obesity, thus demonstrating its possible utility as a topical administration to promote healing rate.
Collapse
Affiliation(s)
- Wei Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
35
|
Zhao Q, Wang X, Chen A, Cheng X, Zhang G, Sun J, Zhao Y, Huang Y, Zhu Y. Rhein protects against cerebral ischemic‑/reperfusion‑induced oxidative stress and apoptosis in rats. Int J Mol Med 2018; 41:2802-2812. [PMID: 29436613 PMCID: PMC5846655 DOI: 10.3892/ijmm.2018.3488] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the protective effects of rhein on cerebral ischemic/reperfusion (I/R) injury in rats. The present study focused on the effect of rhein on oxidative stress and apoptotic factors, which are considered to serve an important role in the onset of I/R injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion. Neurological functional scores (NFSs) were evaluated according to the Zea Longa's score criteria and the area of brain infarct was determined by triphenyltetrazolium chloride staining. The morphology of the nerve cells in the cortex was observed following hematoxylin and eosin staining. In addition, levels of oxidative stress were assessed by measuring the levels of superoxide dismutase (SOD), glutathione-peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA). Levels of B-cell lymphoma-2 (Bcl-2), apoptosis regulator Bax (BAX), caspase-9, caspase-3 and cleaved caspase-3 expression were analyzed using western blot analysis. Levels of caspase-9 and caspase-3 mRNA expression were obtained using reverse transcription-quantitative polymerase chain reaction. The results revealed that treatment with 50 or 100 mg/kg rhein significantly improved the NFS and markedly attenuated the area of infarction. Rhein also significantly reduced the content of MDA and significantly increased SOD, GSH-Px and CAT activity. Western blot analysis indicated that rhein significantly decreased the expression of BAX and enhanced the expression of Bcl-2. Compared with the I/R group, levels of caspase-9, caspase-3 and cleaved caspase-3 protein expression were significantly decreased in the rhein treatment groups. Additionally, rhein treatment significantly reduced levels of caspase-9 and caspase-3 mRNA expression. These results suggest that rhein exhibits protective effects during cerebral I/R injury and its underlying mechanism of action may involve the inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Qipeng Zhao
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaobo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ailing Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiuli Cheng
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guoxin Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jianmin Sun
- College of Basic Medicine, Yinchuan, Ningxia 750004, P.R. China
| | - Yunsheng Zhao
- Ningxia Hui Modern Medicine Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu Huang
- Ningxia Hui Modern Medicine Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yafei Zhu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
36
|
Rhein ameliorates adenomyosis by inhibiting NF-κB and β-Catenin signaling pathway. Biomed Pharmacother 2017; 94:231-237. [DOI: 10.1016/j.biopha.2017.07.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/06/2023] Open
|
37
|
Cardoso CRL, Leite NC, Carlos FO, Loureiro AA, Viegas BB, Salles GF. Efficacy and Safety of Diacerein in Patients With Inadequately Controlled Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2017; 40:1356-1363. [PMID: 28818994 DOI: 10.2337/dc17-0374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess, in a randomized, double-blind, and placebo-controlled trial, the efficacy and safety of diacerein, an immune modulator anti-inflammatory drug, in improving glycemic control of patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Eighty-four patients with HbA1c between 7.5 and 9.5% (58-80 mmol/mol) were randomized to 48-week treatment with placebo (n = 41) or diacerein 100 mg/day (n = 43). The primary outcome was the difference in mean HbA1c changes during treatment. Secondary outcomes were other efficacy and safety measurements. A general linear regression with repeated measures, adjusted for age, sex, diabetes duration, and each baseline value, was used to estimate differences in mean changes. Both intention-to-treat (ITT) analysis and per-protocol analysis (excluding 10 patients who interrupted treatment) were performed. RESULTS Diacerein reduced HbA1c compared with placebo by 0.35% (3.8 mmol/mol; P = 0.038) in the ITT analysis and by 0.41% (4.5 mmol/mol; P = 0.023) in the per-protocol analysis. The peak of effect occurred at the 24th week of treatment (-0.61% [6.7 mmol/mol; P = 0.014] and -0.78% [8.5 mmol/mol; P = 0.005], respectively), but it attenuated toward nonsignificant differences at the 48th week. No significant effect of diacerein was observed in other efficacy and safety measures. Diarrhea occurred in 65% of patients receiving diacerein and caused treatment interruption in 16%. Seven patients in the diacerein group reduced insulin dosage, whereas 10 in the placebo group increased it; however, mild hypoglycemic events were equally observed. CONCLUSIONS Diacerein reduced mean HbA1c levels, with peak of effect at the 24th week of treatment. The drug was well tolerated and may be indicated as adjunct treatment in patients with type 2 diabetes, particularly in those with osteoarthritis.
Collapse
Affiliation(s)
- Claudia R L Cardoso
- Department of Internal Medicine, University Hospital Clementino Fraga Filho, and School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalie C Leite
- Department of Internal Medicine, University Hospital Clementino Fraga Filho, and School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda O Carlos
- Department of Internal Medicine, University Hospital Clementino Fraga Filho, and School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréia A Loureiro
- Department of Internal Medicine, University Hospital Clementino Fraga Filho, and School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca B Viegas
- Department of Internal Medicine, University Hospital Clementino Fraga Filho, and School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gil F Salles
- Department of Internal Medicine, University Hospital Clementino Fraga Filho, and School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Luo J, Tao Y, Liang X, Chen Y, Zhang L, Jiang F, Liu S, Ye Z, Li Z, Shi W. Flow control effect of necrostatin-1 on cell death of the NRK-52E renal tubular epithelial cell line. Mol Med Rep 2017; 16:57-62. [PMID: 28487950 PMCID: PMC5482151 DOI: 10.3892/mmr.2017.6556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/14/2017] [Indexed: 01/18/2023] Open
Abstract
Apoptosis and necroptosis occur in renal tubular epithelial cell (RTEC) death in acute kidney injury (AKI), and may be regulated by several methods. The present study identified a protective effect of necrostatin-1 (Nec-1) on RTECs via a flow-control-like effect. The results established a hypoxic-ischemic injury model of rat NRK-52E RTECs using tumour necrosis factor-α followed by ATP depletion with antimycin A and the pan-caspase pathway blocker, benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketone. Following pre-treatment of cells with Nec-1, cell organelle inflation, fragmentation inhibition and improved cell viability were observed with a parallel reduced expression of microtubule-associated protein 1A/1B-light chain 3-II. Nec-1 was involved in flow control in the process of cell injury and death. In conclusion, the present study indicated that Nec-1 provides a protective effect and serves an important role in the prevention of AKI in an NRK-52E cell model. Further studies will be required to fully investigate the role of Nec-1 in the development of AKI in vivo.
Collapse
Affiliation(s)
- Jialun Luo
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yiming Tao
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xinling Liang
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Li Zhang
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fen Jiang
- Department of Nephrology, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan 421001, P.R. China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Zhiming Ye
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Zhilian Li
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Shi
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
39
|
Kabra UD, Pfuhlmann K, Migliorini A, Keipert S, Lamp D, Korsgren O, Gegg M, Woods SC, Pfluger PT, Lickert H, Affourtit C, Tschöp MH, Jastroch M. Direct Substrate Delivery Into Mitochondrial Fission-Deficient Pancreatic Islets Rescues Insulin Secretion. Diabetes 2017; 66:1247-1257. [PMID: 28174288 DOI: 10.2337/db16-1088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/29/2017] [Indexed: 11/13/2022]
Abstract
In pancreatic β-cells, mitochondrial bioenergetics control glucose-stimulated insulin secretion. Mitochondrial dynamics are generally associated with quality control, maintaining the functionality of bioenergetics. By acute pharmacological inhibition of mitochondrial fission protein Drp1, we demonstrate in this study that mitochondrial fission is necessary for glucose-stimulated insulin secretion in mouse and human islets. We confirm that genetic silencing of Drp1 increases mitochondrial proton leak in MIN6 cells. However, our comprehensive analysis of pancreatic islet bioenergetics reveals that Drp1 does not control insulin secretion via its effect on proton leak but instead via modulation of glucose-fueled respiration. Notably, pyruvate fully rescues the impaired insulin secretion of fission-deficient β-cells, demonstrating that defective mitochondrial dynamics solely affect substrate supply upstream of oxidative phosphorylation. The present findings provide novel insights into how mitochondrial dysfunction may cause pancreatic β-cell failure. In addition, the results will stimulate new thinking in the intersecting fields of mitochondrial dynamics and bioenergetics, as treatment of defective dynamics in mitochondrial diseases appears to be possible by improving metabolism upstream of mitochondria.
Collapse
Affiliation(s)
- Uma D Kabra
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Katrin Pfuhlmann
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Adriana Migliorini
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanne Keipert
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Moritz Gegg
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Paul T Pfluger
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, U.K
| | - Matthias H Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
40
|
Mao Y, Zhang M, Yang J, Sun H, Wang D, Zhang X, Yu F, Li J. The UCP2-related mitochondrial pathway participates in rhein-induced apoptosis in HK-2 cells. Toxicol Res (Camb) 2017; 6:297-304. [PMID: 30090499 PMCID: PMC6062232 DOI: 10.1039/c6tx00410e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
Rhein is one of the main active compounds in total rhubarb anthraquinones (TRAs) that were reported to cause nephrotoxicity. This paper explored the mechanism of how rhein induced apoptosis in human renal proximal tubular epithelial cells (HK-2 cells). In this study, rhein was found to induce apoptosis in HK-2 cells according to the results of annexin V/PI staining assay. The underlying mechanisms were investigated, and the mitochondria-mediated pathway was found to be critical. A series of related biological events were explored, including the disruption of mitochondrial membrane potential (MMP), the decrease of the ATP level, the release of cytochrome c (Cyt-c) from the mitochondrion to the cytosol, and down-regulation of Bcl-2 and up-regulation of Bax. Furthermore, rhein significantly increased the levels of ROS and inhibited the expression of mitochondrial uncoupling protein 2 (UCP2). UCP2 inhibition dramatically boosted oxidative stress and exacerbated rhein-induced apoptosis, whereas co-incubation with an ROS scavenger N-acetylcysteine (NAC) could decrease rhein-induced apoptosis. In conclusion, our results have demonstrated that rhein induced apoptosis in HK-2 cells via the UCP2-related mitochondrial pathway and rhein might be a weak inhibitor of UCP2. Our findings provide new evidence that UCP2 plays an important role in the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Yong Mao
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Mincheng Zhang
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Jiapei Yang
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Hao Sun
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Dandan Wang
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Xiaoxia Zhang
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Feng Yu
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Ji Li
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
| |
Collapse
|
41
|
Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. Int J Mol Sci 2017; 18:ijms18010144. [PMID: 28098754 PMCID: PMC5297777 DOI: 10.3390/ijms18010144] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Current research has demonstrated that mitochondrial morphology, distribution, and function are maintained by the balanced regulation of mitochondrial fission and fusion, and perturbation of the homeostasis between these processes has been related to cell or organ dysfunction and abnormal mitochondrial redistribution. Abnormal mitochondrial fusion induces the fragmentation of mitochondria from a tubular morphology into pieces; in contrast, perturbed mitochondrial fission results in the fusion of adjacent mitochondria. A member of the dynamin family of large GTPases, dynamin-related protein 1 (Drp1), effectively influences cell survival and apoptosis by mediating the mitochondrial fission process in mammals. Drp1-dependent mitochondrial fission is an intricate process regulating both cellular and organ dynamics, including development, apoptosis, acute organ injury, and various diseases. Only after clarification of the regulative mechanisms of this critical protein in vivo and in vitro will it set a milestone for preventing mitochondrial fission related pathological processes and refractory diseases.
Collapse
|
42
|
Nguyen PH, Choi HS, Ha TKQ, Seo JY, Yang JL, Jung DW, Williams DR, Oh WK. Anthraquinones from Morinda longissima and their insulin mimetic activities via AMP-activated protein kinase (AMPK) activation. Bioorg Med Chem Lett 2017; 27:40-44. [DOI: 10.1016/j.bmcl.2016.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
43
|
Zhao Q, Cheng X, Wang X, Wang J, Zhu Y, Ma X. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:140-147. [PMID: 27396346 DOI: 10.1016/j.jep.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/29/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The present study is to investigate the neuroprotective effect of Mu-Xiang-You-Fang (MXYF), a classic Traditional Chinese Medicine used by Chinese minorities to treat stroke, on cerebral ischemia-reperfusion (I/R) injury and the related signaling pathways. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into 6 groups: sham group, I/R group, nimodipine and MXYF (58, 116 and 232mg/kg respectively) groups. Cerebral ischemia model was induced by middle cerebral artery occlusion for 2h followed by reperfusion for 48h. Neurological functional score was evaluated according to the method of Zea longa's score and the infarct area was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48h after reperfusion. The protein expression of cytochrome c (cyt-c), Bcl-2, Bax, caspase-9, caspase-3 and caspase-7 were analyzed by western blot and the mRNA expression of Caspase-9, Caspase-3 and Caspase-7 were determined by the reverse transcription-polymerase chain reaction. RESULTS Oral administration of MXYF (116 and 232mg/kg) significantly reduced the neurological functional score and attenuated the cerebral infarct area. Western blot analysis showed that the expression of Bcl-2 is enhanced and Bax expression is inhibited after treatment with MXYF (116 and 232mg/kg), leading to significant increase of the ratio between Bcl-2 and Bax. Furthermore, the protein expression of cyt-c, caspase-9, caspase-3 and caspase-7 was significantly inhibited while the mRNA expression of caspase-9, caspase-3 and caspase-7 but not cyt-c was markedly inhibited in the MXYF (116 and 232mg/kg) treatment groups compared with the I/R group. CONCLUSIONS The above data suggested that MXYF has potential neuroprotective activities by the regulation of apoptotic pathway, MXYF is a promising agent in treatment of stroke.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Cytoprotection
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Gas Chromatography-Mass Spectrometry
- Gene Expression Regulation
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Male
- Neuroprotective Agents/isolation & purification
- Neuroprotective Agents/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Qipeng Zhao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiuli Cheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiaobo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yafei Zhu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Xueqin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
44
|
Zhang Q, Yin S, Liu L, Liu Z, Cao W. Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice. Sci Rep 2016; 6:34597. [PMID: 27703201 PMCID: PMC5050540 DOI: 10.1038/srep34597] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/15/2016] [Indexed: 11/15/2022] Open
Abstract
Renal fibrosis is the hallmark of chronic kidney diseases (CKD) and its development and progression are significantly affected by epigenetic modifications. Rhein, a plant-derived anthraquinone, displays strong anti-fibrosis properties, but its protective mode of action remains incompletely understood. Here we explore the mechanism of Rhein anti-renal fibrosis by investigating its regulation of Klotho, a known renal anti-fibrotic protein whose suppression after renal injury reportedly involves aberrant DNA methylation. We report that Rhein is an impressive up-regulator of Klotho and it markedly reversed Klotho down-regulation in unilateral ureteral occlusion-induced fibrotic kidney. Further examinations revealed that Klotho loss in fibrotic kidney is associated with Klotho promoter hypermethylation due to aberrant methyltransferase 1 and 3a expressions. However, Rhein significantly corrected all these epigenetic alterations and subsequently alleviated pro-fibrotic protein expression and renal fibrosis, whereas Klotho knockdown via RNA interferences largely abrogated the anti-renal fibrotic effects of Rhein, suggesting that Rhein epigenetic reversal of Klotho loss represents a critical mode of action that confers Rhein’s anti- renal fibrotic functions. Altogether our studies uncover a novel hypomethylating character of Rhein in preventing Klotho loss and renal fibrosis, and demonstrate the efficacy of Klotho-targeted epigenetic intervention in potential treatment of renal fibrosis-associated kidney diseases.
Collapse
Affiliation(s)
- Qin Zhang
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Shasha Yin
- The Key lab of Jiangsu molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Lin Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Zhihong Liu
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Wangsen Cao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.,The Key lab of Jiangsu molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| |
Collapse
|
45
|
Zhang Q, Liu L, Lin W, Yin S, Duan A, Liu Z, Cao W. Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. Kidney Int 2016; 91:144-156. [PMID: 27692562 DOI: 10.1016/j.kint.2016.07.040] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022]
Abstract
Rhein is an anthraquinone compound isolated from the medicinal plant rhubarb and mainly used in the clinical treatment of diabetic nephropathy. Rhein exhibits various renoprotective functions, but the underlying mechanisms are not fully determined. However, its renoprotective properties recapitulate the role of Klotho, a renal-specific antiaging protein critical for maintaining kidney homeostasis. Here we explored the connections between rhein renoprotection and Klotho in a mouse model of adenine-induced chronic kidney disease. In addition to being an impressive Klotho upregulator, rhein remarkably reversed renal Klotho deficiency in adenine-treated mice. This effect was associated with significant improvement in disturbed serum biochemistry, profibrogenic protein expression, and kidney and bone damage. Further investigation of the molecular basis of Klotho loss revealed that these kidneys displayed marked inductions of DNA methyltransferase DNMT1/DNMT3a and Klotho promoter hypermethylation, whereas rhein treatment effectively corrected these alterations. The renal protective effects of rhein were largely abolished when Klotho was knocked-down by RNA interferences, suggesting that rhein reversal of Klotho deficiency is essential for its renoprotective actions. Thus, our study clarifies how rhein regulation of Klotho expression contributes to its renoprotection and brings new insights into Klotho-targeted strategy for the treatment of kidney diseases of various etiologies.
Collapse
Affiliation(s)
- Qin Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; The Key Lab of Jiangsu Molecular Medicine, Nanjing University School of Medicine, Nanjing, China; Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Lin Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wenjun Lin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shasha Yin
- The Key Lab of Jiangsu Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China.
| | - Wangsen Cao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; The Key Lab of Jiangsu Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
46
|
Reinhardt F, Schultz J, Waterstradt R, Baltrusch S. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun 2016; 474:646-651. [PMID: 27154223 DOI: 10.1016/j.bbrc.2016.04.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion.
Collapse
Affiliation(s)
- Florian Reinhardt
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Julia Schultz
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany.
| |
Collapse
|
47
|
Berberine Induces Cell Apoptosis through Cytochrome C/Apoptotic Protease-Activating Factor 1/Caspase-3 and Apoptosis Inducing Factor Pathway in Mouse Insulinoma Cells. Chin J Integr Med 2015; 25:853-860. [DOI: 10.1007/s11655-015-2280-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
|
48
|
Zhang J, Xu P, Wang Y, Wang M, Li H, Lin S, Mao C, Wang B, Song X, Lv C. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission. J Cell Mol Med 2015; 19:2215-31. [PMID: 26119034 PMCID: PMC4568926 DOI: 10.1111/jcmm.12609] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022] Open
Abstract
Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Jinjin Zhang
- Medicine Research Center, Binzhou Medical University, Yantai, China
| | - Pan Xu
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, China
| | - Youlei Wang
- School of Special Education, Binzhou Medical University, Yantai, China
| | - Meirong Wang
- Clinical Laboratory, Affiliated Hospital to Binzhou Medical University, Yantai, China
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, China
| | - Shengcui Lin
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Yantai, China
| | - Cuiping Mao
- Medicine Research Center, Binzhou Medical University, Yantai, China
| | - Bingsi Wang
- Medicine Research Center, Binzhou Medical University, Yantai, China
| | - Xiaodong Song
- Medicine Research Center, Binzhou Medical University, Yantai, China
| | - Changjun Lv
- Medicine Research Center, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, China
| |
Collapse
|
49
|
Rhein: A Review of Pharmacological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:578107. [PMID: 26185519 PMCID: PMC4491579 DOI: 10.1155/2015/578107] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
Rhein (4, 5-dihydroxyanthraquinone-2-carboxylic acid) is a lipophilic anthraquinone extensively found in medicinal herbs, such as Rheum palmatum L., Cassia tora L., Polygonum multiflorum Thunb., and Aloe barbadensis Miller, which have been used medicinally in China for more than 1,000 years. Its biological activities related to human health are being explored actively. Emerging evidence suggests that rhein has many pharmacological effects, including hepatoprotective, nephroprotective, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. The present review provides a comprehensive summary and analysis of the pharmacological properties of rhein, supporting the potential uses of rhein as a medicinal agent.
Collapse
|
50
|
Wei Y, Guan J, Ma X, Zhong Y, Ma J, Li F. Effect of glycyrrhizic acid on rhein renal penetration: a microdialysis study in rats. Xenobiotica 2015; 45:1116-21. [DOI: 10.3109/00498254.2015.1043660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|