1
|
Xuan W, Wu X, Zheng L, Jia H, Zhang X, Zhang X, Cao B. Gut microbiota-derived acetic acids promoted sepsis-induced acute respiratory distress syndrome by delaying neutrophil apoptosis through FABP4. Cell Mol Life Sci 2024; 81:438. [PMID: 39453486 PMCID: PMC11511807 DOI: 10.1007/s00018-024-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing. Then, the cecal ligation and puncture (CLP) method was applied to induce the mouse sepsis model. After intervention with differential SCFAs sodium acetate, neutrophil apoptosis and FABP4 expression were further analyzed. Then, FABP4 inhibitor BMS309403 was used to treat neutrophils. We found CLP group had increased lung injury score, lung tissue wet/dry ratio, lung vascular permeability, and inflammatory factors IL-1β, TNF-α, IL-6, IFN-γ, and CCL3 levels in both bronchoalveolar lavage fluid and lung tissue. Additionally, FABP4 was lower in neutrophils of ARDS patients and mice. Meanwhile, CLP-induced dysbiosis of gut microbiota and changes in SCFAs levels were observed. Further verification showed that acetic acids reduced neutrophil apoptosis and FABP4 expression via FFAR2. Besides, FABP4 affected neutrophil apoptosis through endoplasmic reticulum (ER) stress, and neutrophil depletion alleviated the promotion of ARDS development by BMS309403. Moreover, FABP4 in neutrophils regulated the injury of RLE-6TN through inflammatory factors. In conclusion, FABP4 affected by gut microbiota-derived SCFAs delayed neutrophil apoptosis through ER stress, leading to increased inflammatory factors mediating lung epithelial cell damage.
Collapse
Affiliation(s)
- Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Longcheng Zheng
- People's Hospital of Henan University, Department of Respiratory and Critical Care Medicine, People's Hospital of Henan Province, Zhengzhou, 450003, China
| | - Huayun Jia
- Hunan Province Center for Disease Control and Prevention, Changsha, 410000, Hunan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Maestas MM, Bui MH, Millman JR. Recent progress in modeling and treating diabetes using stem cell-derived islets. Stem Cells Transl Med 2024; 13:949-958. [PMID: 39159002 PMCID: PMC11465181 DOI: 10.1093/stcltm/szae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.
Collapse
Affiliation(s)
- Marlie M Maestas
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Maggie H Bui
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jeffrey R Millman
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| |
Collapse
|
3
|
Wang G, Li ZA, Chen L, Lugar H, Hershey T. Clinical Trials for Wolfram Syndrome Neurodegeneration: Novel Design, Endpoints, and Analysis Models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.10.24313426. [PMID: 39314971 PMCID: PMC11419225 DOI: 10.1101/2024.09.10.24313426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objective Wolfram syndrome, an ultra-rare condition, currently lacks effective treatment options. The rarity of this disease presents significant challenges in conducting clinical trials, particularly in achieving sufficient statistical power (e.g., 80%). The objective of this study is to propose a novel clinical trial design based on real-world data to reduce the sample size required for conducting clinical trials for Wolfram syndrome. Methods We propose a novel clinical trial design with three key features aimed at reducing sample size and improve efficiency: (i) Pooling historical/external controls from a longitudinal observational study conducted by the Washington University Wolfram Research Clinic. (ii) Utilizing run-in data to estimate model parameters. (iii) Simultaneously tracking treatment effects in two endpoints using a multivariate proportional linear mixed effects model. Results Comprehensive simulations were conducted based on real-world data obtained through the Wolfram syndrome longitudinal observational study. Our simulations demonstrate that this proposed design can substantially reduce sample size requirements. Specifically, with a bivariate endpoint and the inclusion of run-in data, a sample size of approximately 30 per group can achieve over 80% power, assuming the placebo progression rate remains consistent during both the run-in and randomized periods. In cases where the placebo progression rate varies, the sample size increases to approximately 50 per group. Conclusions For rare diseases like Wolfram syndrome, leveraging existing resources such as historical/external controls and run-in data, along with evaluating comprehensive treatment effects using bivariate/multivariate endpoints, can significantly expedite the development of new drugs.
Collapse
Affiliation(s)
- Guoqiao Wang
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Ling Chen
- Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Heather Lugar
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Tamara Hershey
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
4
|
Veronese-Paniagua DA, Hernandez-Rincon DC, Taylor JP, Tse HM, Millman JR. Coxsackievirus B infection invokes unique cell-type specific responses in primary human pancreatic islets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604861. [PMID: 39211206 PMCID: PMC11361082 DOI: 10.1101/2024.07.23.604861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Coxsackievirus B (CVB) infection has long been considered an environmental factor precipitating Type 1 diabetes (T1D), an autoimmune disease marked by loss of insulin-producing β cells within pancreatic islets. Previous studies have shown CVB infection negatively impacts islet function and viability but do not report on how virus infection individually affects the multiple cell types present in human primary islets. Therefore, we hypothesized that the various islet cell populations have unique transcriptional responses to CVB infection. Here, we performed single-cell RNA sequencing on human cadaveric islets treated with either CVB or poly(I:C), a viral mimic, for 24 and 48 hours. Our global analysis reveals CVB differentially induces dynamic transcriptional changes associated with multiple cell processes and functions over time whereas poly(I:C) promotes an immune response that progressively increases with treatment duration. At the single-cell resolution, we find CVB infects all islet cell types at similar rates yet induces unique cell-type specific transcriptional responses with β, α, and ductal cells having the strongest response. Sequencing and functional data suggest that CVB negatively impacts mitochondrial respiration and morphology in distinct ways in β and α cells, while also promoting the generation of reactive oxygen species. We also observe an increase in the expression of the long-noncoding RNA MIR7-3HG in β cells with high viral titers and reveal its knockdown reduces gene expression of viral proteins as well as apoptosis in stem cell-derived islets. Together, these findings demonstrate a cell-specific transcriptional, temporal, and functional response to CVB infection and provide new insights into the relationship between CVB infection and T1D.
Collapse
|
5
|
Maestas MM, Ishahak M, Augsornworawat P, Veronese-Paniagua DA, Maxwell KG, Velazco-Cruz L, Marquez E, Sun J, Shunkarova M, Gale SE, Urano F, Millman JR. Identification of unique cell type responses in pancreatic islets to stress. Nat Commun 2024; 15:5567. [PMID: 38956087 PMCID: PMC11220140 DOI: 10.1038/s41467-024-49724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Diabetes involves the death or dysfunction of pancreatic β-cells. Analysis of bulk sequencing from human samples and studies using in vitro and in vivo models suggest that endoplasmic reticulum and inflammatory signaling play an important role in diabetes progression. To better characterize cell type-specific stress response, we perform multiplexed single-cell RNA sequencing to define the transcriptional signature of primary human islet cells exposed to endoplasmic reticulum and inflammatory stress. Through comprehensive pair-wise analysis of stress responses across pancreatic endocrine and exocrine cell types, we define changes in gene expression for each cell type under different diabetes-associated stressors. We find that β-, α-, and ductal cells have the greatest transcriptional response. We utilize stem cell-derived islets to study islet health through the candidate gene CIB1, which was upregulated under stress in primary human islets. Our findings provide insights into cell type-specific responses to diabetes-associated stress and establish a resource to identify targets for diabetes therapeutics.
Collapse
Affiliation(s)
- Marlie M Maestas
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
| | - Matthew Ishahak
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
| | - Punn Augsornworawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Daniel A Veronese-Paniagua
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
| | - Kristina G Maxwell
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
| | - Leonardo Velazco-Cruz
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
| | - Erica Marquez
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
| | - Jiameng Sun
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
| | - Mira Shunkarova
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
| | - Sarah E Gale
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
| | - Fumihiko Urano
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Jeffrey R Millman
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, St. Louis, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA.
| |
Collapse
|
6
|
Li Y, Xu M, Chen J, Huang J, Cao J, Chen H, Zhang J, Luo Y, Wang Y, Sun J. Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus. Stem Cell Res Ther 2024; 15:188. [PMID: 38937834 PMCID: PMC11210168 DOI: 10.1186/s13287-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus, a significant global public health challenge, severely impacts human health worldwide. The organoid, an innovative in vitro three-dimensional (3D) culture model, closely mimics tissues or organs in vivo. Insulin-secreting islet organoid, derived from stem cells induced in vitro with 3D structures, has emerged as a potential alternative for islet transplantation and as a possible disease model that mirrors the human body's in vivo environment, eliminating species difference. This technology has gained considerable attention for its potential in diabetes treatment. Despite advances, the process of stem cell differentiation into islet organoid and its cultivation demonstrates deficiencies, prompting ongoing efforts to develop more efficient differentiation protocols and 3D biomimetic materials. At present, the constructed islet organoid exhibit limitations in their composition, structure, and functionality when compared to natural islets. Consequently, further research is imperative to achieve a multi-tissue system composition and improved insulin secretion functionality in islet organoid, while addressing transplantation-related safety concerns, such as tumorigenicity, immune rejection, infection, and thrombosis. This review delves into the methodologies and strategies for constructing the islet organoid, its application in diabetes treatment, and the pivotal scientific challenges within organoid research, offering fresh perspectives for a deeper understanding of diabetes pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yushan Li
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meiqi Xu
- Department of Biomedical Engineering, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiali Chen
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiansong Huang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaying Cao
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huajing Chen
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yukun Luo
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Chen J, Lu J, Wang SN, Miao CY. Application and challenge of pancreatic organoids in therapeutic research. Front Pharmacol 2024; 15:1366417. [PMID: 38855754 PMCID: PMC11157021 DOI: 10.3389/fphar.2024.1366417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
The in-vivo non-human primate animal and in-vitro cell disease models play a crucial part in the study of the mechanisms underlying the occurrence and development of pancreatic diseases, but with increasingly prominent limitations with in-depth research. Organoids derived from human pluripotent and adult stem cells resemble human in-vivo organs in their cellular composition, spatial tissue structure and physiological function, making them as an advantageous research tool. Up until now, numerous human organoids, including pancreas, have been effectively developed, demonstrating significant potential for research in organ development, disease modeling, drug screening, and regenerative medicine. However, different from intestine, liver and other organs, the pancreas is the only special organ in the human body, consisting of an exocrine gland and an endocrine gland. Thus, the development of pancreatic organoid technology faces greater challenges, and how to construct a composite pancreatic organoid with exocrine and endocrine gland is still difficult in current research. By reviewing the fundamental architecture and physiological role of the human pancreas, along with the swiftly developing domain of pancreatic organoids, we summarize the method and characteristics of human pancreatic organoids, and its application in modeling pancreatic diseases, as a platform for individualized drug screening and in regenerative medicine study. As the first comprehensive review that focus on the pharmacological study of human pancreatic organoid, the review hopes to help scholars to have a deeper understanding in the study of pancreatic organoid.
Collapse
Affiliation(s)
- Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military University /Naval Medical University, Shanghai, China
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| | - Jin Lu
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military University /Naval Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Wang X, Liu X, Wang Y, Yang K, Yeertai Y, Jia Q, Li L, Jiang K, Du G, Ling J. Chaihu Shugan Powder inhibits interstitial cells of cajal mitophagy through USP30 in the treatment of functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117695. [PMID: 38163556 DOI: 10.1016/j.jep.2023.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu Shugan Powder (CHSGP) has significant clinical efficacy in the treatment of functional dyspepsia (FD), but the specific mechanism requires further study. AIM OF STUDY The aim of this study was to investigate the therapeutic effect of CHSGP on FD rats and the underlying mechanism of the effect on interstitial cells of cajal (ICC) mitophagy. MATERIALS AND METHODS The tail-clamping stimulation method was utilized to establish an FD rat model in vivo. Gastric emptying rate and small intestinal propulsion rate test, H&E staining, and Immunohistochemistry were conducted to evaluate the therapeutic effects of CHSGP on FD rats. In vitro, the regulatory effect of CHSGP on CCCP-mediated ICC mitophagy was further investigated by CCK8, Transmission electron microscope, immunofluorescence co-staining, Quantitative polymerase chain reaction and Western blot to reveal the potential mechanisms of CHSGP inhibited ICC mitophagy. RESULTS Animal experiments provided evidence that CHSGP promoted gastric motility, increased ICC numbers, reduced Parkin expression, and elevated USP30 expression in FD rats. In vitro, further mechanism research demonstrated that CHSGP decreased LC3Ⅱ/LC3Ⅰ、PINK1、Parkin、PHB2 protein expression and increased USP30 protein expression. Furthermore, CHSGP increased Mfn2 protein expression by suppressing activation of the PINK1/Parkin pathway when USP30 is knocked down, consequently reducing CCCP-induced ICC mitophagy. CONCLUSIONS These results suggest that CHSGP may treat FD against CCCP-induced ICC mitophagy by the up-regulation of via PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Xuejiao Liu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yujiao Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Keming Yang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yeliya Yeertai
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Qingling Jia
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Li Li
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Kailin Jiang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Guangli Du
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Jianghong Ling
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
9
|
Hu R, Chen X, Su Q, Wang Z, Wang X, Gong M, Xu M, Le R, Gao Y, Dai P, Zhang ZN, Shao L, Li W. ISR inhibition reverses pancreatic β-cell failure in Wolfram syndrome models. Cell Death Differ 2024; 31:322-334. [PMID: 38321214 PMCID: PMC10923889 DOI: 10.1038/s41418-024-01258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic β-cell failure by WFS1 deficiency is manifested in individuals with wolfram syndrome (WS). The lack of a suitable human model in WS has impeded progress in the development of new treatments. Here, human pluripotent stem cell derived pancreatic islets (SC-islets) harboring WFS1 deficiency and mouse model of β cell specific Wfs1 knockout were applied to model β-cell failure in WS. We charted a high-resolution roadmap with single-cell RNA-seq (scRNA-seq) to investigate pathogenesis for WS β-cell failure, revealing two distinct cellular fates along pseudotime trajectory: maturation and stress branches. WFS1 deficiency disrupted β-cell fate trajectory toward maturation and directed it towards stress trajectory, ultimately leading to β-cell failure. Notably, further investigation of the stress trajectory identified activated integrated stress response (ISR) as a crucial mechanism underlying WS β-cell failure, characterized by aberrant eIF2 signaling in WFS1-deficient SC-islets, along with elevated expression of genes in regulating stress granule formation. Significantly, we demonstrated that ISRIB, an ISR inhibitor, efficiently reversed β-cell failure in WFS1-deficient SC-islets. We further validated therapeutic efficacy in vivo with β-cell specific Wfs1 knockout mice. Altogether, our study provides novel insights into WS pathogenesis and offers a strategy targeting ISR to treat WS diabetes.
Collapse
Affiliation(s)
- Rui Hu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiangyi Chen
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiang Su
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhaoyue Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xushu Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mengting Gong
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Minglu Xu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yawei Gao
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Peng Dai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhen-Ning Zhang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Li Shao
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Pudong District, Shanghai, 200123, China.
| | - Weida Li
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai, 200120, China.
| |
Collapse
|
10
|
Morikawa S, Tanabe K, Kaneko N, Hishimura N, Nakamura A. Comprehensive overview of disease models for Wolfram syndrome: toward effective treatments. Mamm Genome 2024; 35:1-12. [PMID: 38351344 DOI: 10.1007/s00335-023-10028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024]
Abstract
Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential therapeutic approaches.
Collapse
Affiliation(s)
- Shuntaro Morikawa
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan.
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Haematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoya Kaneko
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| | - Nozomi Hishimura
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| | - Akie Nakamura
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
11
|
Zhang Y, Sui L, Du Q, Haataja L, Yin Y, Viola R, Xu S, Nielsson CU, Leibel RL, Barbetti F, Arvan P, Egli D. Permanent neonatal diabetes-causing insulin mutations have dominant negative effects on beta cell identity. Mol Metab 2024; 80:101879. [PMID: 38237895 PMCID: PMC10839447 DOI: 10.1016/j.molmet.2024.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM), requiring insulin therapy similar to T1D. While the negative effects on insulin processing and secretion are known, how dominant insulin mutations result in a continued decline of beta cell function after birth is not well understood. METHODS We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations using patient-derived iPSCs and mutated hESCs. RESULTS we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on beta-cell mass and function after transplantation into mice. In addition to anticipated ER stress, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. CONCLUSIONS These results highlight a novel mechanism, the loss of beta cell identity, contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.
Collapse
Affiliation(s)
- Yuwei Zhang
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Lina Sui
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Qian Du
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Leena Haataja
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Yishu Yin
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Ryan Viola
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Shuangyi Xu
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Christian Ulrik Nielsson
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Monogenic Diabetes Clinic, Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, Rome 00164, Italy
| | - Peter Arvan
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States.
| |
Collapse
|
12
|
Du D, Tuhuti A, Ma Y, Abuduniyimu M, Li S, Ma G, Zynat J, Guo Y. Wolfram syndrome type 1: a case series. Orphanet J Rare Dis 2023; 18:359. [PMID: 37974252 PMCID: PMC10652474 DOI: 10.1186/s13023-023-02938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Wolfram syndrome (WS) is a rare autosomal recessive multisystem neurodegenerative disease characterized by non-autoimmune insulin-dependent diabetes mellitus, optic atrophy, sensorineural deafness, and diabetes as the main features. Owing to clinical phenotypic heterogeneity, the misdiagnosis rate is high. However, early accurate diagnosis and comprehensive management are key to improving quality of life and prolonging life. RESULTS Eleven patients from seven WS pedigrees with 10 mutation sites (c.1314_1317delCTTT, c.C529T, c.C529A, c.G2105A, c.C1885T, c.1859_1860del, c.G2020A, c.C529A, c.G2105A, and c.G1393C) in the WFS1 gene were included. We conducted further expert department analysis to clarify the diagnosis and analyze the correlation between genes and phenotypes. CONCLUSIONS The genotypes of these patients were closely associated with their phenotypes. The clinical data of the patients were analyzed to provide a basis for the diagnosis and clinical management of the disease.
Collapse
Affiliation(s)
- Danyang Du
- Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Aihemaitijiang Tuhuti
- Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Yanrong Ma
- Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Munila Abuduniyimu
- Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Suli Li
- Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Guoying Ma
- Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Jazyra Zynat
- Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Yanying Guo
- Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China.
| |
Collapse
|
13
|
Zhao Z, D’Oliveira Albanus R, Taylor H, Tang X, Han Y, Orchard P, Varshney A, Zhang T, Manickam N, Erdos M, Narisu N, Taylor L, Saavedra X, Zhong A, Li B, Zhou T, Naji A, Liu C, Collins F, Parker SCJ, Chen S. An integrative single-cell multi-omics profiling of human pancreatic islets identifies T1D associated genes and regulatory signals. RESEARCH SQUARE 2023:rs.3.rs-3343318. [PMID: 37886586 PMCID: PMC10602166 DOI: 10.21203/rs.3.rs-3343318/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Genome wide association studies (GWAS) have identified over 100 signals associated with type 1 diabetes (T1D). However, translating any given T1D GWAS signal into mechanistic insights, including putative causal variants and the context (cell type and cell state) in which they function, has been limited. Here, we present a comprehensive multi-omic integrative analysis of single-cell/nucleus resolution profiles of gene expression and chromatin accessibility in healthy and autoantibody+ (AAB+) human islets, as well as islets under multiple T1D stimulatory conditions. We broadly nominate effector cell types for all T1D GWAS signals. We further nominated higher-resolution contexts, including effector cell types, regulatory elements, and genes for three independent T1D risk variants acting through islet cells within the pancreas at the DLK1/MEG3, RASGRP1, and TOX loci. Subsequently, we created isogenic gene knockouts DLK1-/-, RASGRP1-/-, and TOX-/-, and the corresponding regulatory region knockout, RASGRP1Δ, and DLK1Δ hESCs. Loss of RASGRP1 or DLK1, as well as knockout of the regulatory region of RASGRP1 or DLK1, increased β cell apoptosis. Additionally, pancreatic β cells derived from isogenic hESCs carrying the risk allele of rs3783355A/A exhibited increased β cell death. Finally, RNA-seq and ATAC-seq identified five genes upregulated in both RASGRP1-/- and DLK1-/- β-like cells, four of which are associated with T1D. Together, this work reports an integrative approach for combining single cell multi-omics, GWAS, and isogenic hESC-derived β-like cells to prioritize the T1D associated signals and their underlying context-specific cell types, genes, SNPs, and regulatory elements, to illuminate biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Zeping Zhao
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | | | - Henry Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuming Tang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tuo Zhang
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Nandini Manickam
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Mike Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaxia Saavedra
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Aaron Zhong
- Genomic Resource Core Facility, Weill Cornell Medical College, NY 10065, USA
| | - Bo Li
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Ting Zhou
- Genomic Resource Core Facility, Weill Cornell Medical College, NY 10065, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Francis Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen CJ Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| |
Collapse
|
14
|
Carvalho MM, Jesus R, Mendes A, Guimarães P, Conde B. Wolfram Syndrome: A Curious Case of Repetitive Loss of Consciousness. Cureus 2023; 15:e46426. [PMID: 37927661 PMCID: PMC10621881 DOI: 10.7759/cureus.46426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Wolfram syndrome is a rare, multisystemic, progressive, and autosomal-recessive genetic disease, characterized by diabetes mellitus and diabetes insipidus, optic nerve atrophy, deafness, and other neurological signs. The diagnosis is usually based on history and clinical manifestations but genetic tests are necessary for confirmation. Currently, there are no treatments available to cure or delay disease progression. This report describes a case of a 23-year-old male diagnosed with Wolfram syndrome who presented to the emergency department with several episodes of loss of consciousness. This case reinforces the need for an early diagnosis of obstructive and central apneas, respiratory failure, and dysphagia, in order to prevent and treat the complications of this disease and to improve patients' quality of life.
Collapse
Affiliation(s)
| | - Rafael Jesus
- Neurology, Tras-os-Montes and Alto Douro Hospital Centre, Vila Real, PRT
| | - Ana Mendes
- Neurophysiology, Tras-os-Montes and Alto Douro Hospital Centre, Vila Real, PRT
| | - Pedro Guimarães
- Neurology, Tras-os-Montes and Alto Douro Hospital Centre, Vila Real, PRT
| | - Bebiana Conde
- Pulmonology, Tras-os-Montes and Alto Douro Hospital Centre, Vila Real, PRT
| |
Collapse
|
15
|
Zhang Y, Sui L, Du Q, Haataja L, Yin Y, Viola R, Xu S, Nielsson CU, Leibel RL, Barbetti F, Arvan P, Egli D. Permanent Neonatal diabetes-causing Insulin mutations have dominant negative effects on beta cell identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555839. [PMID: 37745320 PMCID: PMC10515756 DOI: 10.1101/2023.09.01.555839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM) that results from beta cell failure. We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations. Using b and mutated hESCs, we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on the in vivo performance of patient-derived SC-beta cells after transplantation into NSG mice. These insulin mutations derange endoplasmic reticulum (ER) homeostasis, and result in the loss of beta-cell mass and function. In addition to anticipated apoptosis, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. These results highlight both known and novel mechanisms contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.
Collapse
Affiliation(s)
- Yuwei Zhang
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- These authors contributed equally
| | - Lina Sui
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- These authors contributed equally
| | - Qian Du
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Leena Haataja
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Yishu Yin
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Ryan Viola
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Shuangyi Xu
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Christian Ulrik Nielsson
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Monogenic Diabetes Clinic, Endocrinology and Diabetes Unit, Bambino Gesù Children’s Hospital, Rome 00164, Italy
| | - Peter Arvan
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- Lead Contact
| |
Collapse
|
16
|
Kumar J, Ahmed A, Khan M, Ahmed Y. There's More Than Meets the Eye: Wolfram Syndrome in a Type I Diabetic Patient. J Med Cases 2023; 14:265-269. [PMID: 37560547 PMCID: PMC10409535 DOI: 10.14740/jmc4128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative and genetic disorder, also known by the synonym DIDMOAD, which stands for diabetes insipidus (DI), childhood-onset diabetes mellitus (DM), optic atrophy (OA), and deafness (D). We present a case of a 25-year-old diabetic patient, using insulin for 15 years, who had increasing polyuria and polydipsia, along with progressive hearing and vision loss. Laboratory tests revealed elevated hemoglobin A1c (HbA1c) and blood sugar levels. Optic nerve, optic chiasm, pons, and brain stem atrophy was seen on magnetic resonance imaging (MRI) of brain. After workup, a diagnosis of DI was made. Once the diagnosis was reached, treatment with subcutaneous insulin and nasal desmopressin improved patient's symptoms. In juvenile diabetic patients presenting with new onset or worsening polyuria and polydipsia, the possibility of WS should be considered. Early diagnosis and initiation of appropriate management leads to improved outcomes and the quality of life.
Collapse
Affiliation(s)
- Jasvindar Kumar
- Internal Medicine at Basset Medical Center, Cooperstown, NY, USA
| | - Atif Ahmed
- Department of Psychiatry, Khyber Medical University, Peshawar, Pakistan
| | - Mashal Khan
- Khyber Medical University, Peshawar, Pakistan
- Department of Internal Medicine, United Health Services Hospitals, Binghamton, NY, USA
| | - Yasir Ahmed
- Department of Internal Medicine, United Health Services Hospitals, Binghamton, NY, USA
| |
Collapse
|
17
|
Mu-U-Min RBA, Diane A, Allouch A, Al-Siddiqi HH. Ca 2+-Mediated Signaling Pathways: A Promising Target for the Successful Generation of Mature and Functional Stem Cell-Derived Pancreatic Beta Cells In Vitro. Biomedicines 2023; 11:1577. [PMID: 37371672 DOI: 10.3390/biomedicines11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is a chronic disease affecting over 500 million adults globally and is mainly categorized as type 1 diabetes mellitus (T1DM), where pancreatic beta cells are destroyed, and type 2 diabetes mellitus (T2DM), characterized by beta cell dysfunction. This review highlights the importance of the divalent cation calcium (Ca2+) and its associated signaling pathways in the proper functioning of beta cells and underlines the effects of Ca2+ dysfunction on beta cell function and its implications for the onset of diabetes. Great interest and promise are held by human pluripotent stem cell (hPSC) technology to generate functional pancreatic beta cells from diabetic patient-derived stem cells to replace the dysfunctional cells, thereby compensating for insulin deficiency and reducing the comorbidities of the disease and its associated financial and social burden on the patient and society. Beta-like cells generated by most current differentiation protocols have blunted functionality compared to their adult human counterparts. The Ca2+ dynamics in stem cell-derived beta-like cells and adult beta cells are summarized in this review, revealing the importance of proper Ca2+ homeostasis in beta-cell function. Consequently, the importance of targeting Ca2+ function in differentiation protocols is suggested to improve current strategies to use hPSCs to generate mature and functional beta-like cells with a comparable glucose-stimulated insulin secretion (GSIS) profile to adult beta cells.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Asma Allouch
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
18
|
Zatyka M, Rosenstock TR, Sun C, Palhegyi AM, Hughes GW, Lara-Reyna S, Astuti D, di Maio A, Sciauvaud A, Korsgen ME, Stanulovic V, Kocak G, Rak M, Pourtoy-Brasselet S, Winter K, Varga T, Jarrige M, Polvèche H, Correia J, Frickel EM, Hoogenkamp M, Ward DG, Aubry L, Barrett T, Sarkar S. Depletion of WFS1 compromises mitochondrial function in hiPSC-derived neuronal models of Wolfram syndrome. Stem Cell Reports 2023; 18:1090-1106. [PMID: 37163979 PMCID: PMC10202695 DOI: 10.1016/j.stemcr.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/12/2023] Open
Abstract
Mitochondrial dysfunction involving mitochondria-associated ER membrane (MAM) dysregulation is implicated in the pathogenesis of late-onset neurodegenerative diseases, but understanding is limited for rare early-onset conditions. Loss of the MAM-resident protein WFS1 causes Wolfram syndrome (WS), a rare early-onset neurodegenerative disease that has been linked to mitochondrial abnormalities. Here we demonstrate mitochondrial dysfunction in human induced pluripotent stem cell-derived neuronal cells of WS patients. VDAC1 is identified to interact with WFS1, whereas loss of this interaction in WS cells could compromise mitochondrial function. Restoring WFS1 levels in WS cells reinstates WFS1-VDAC1 interaction, which correlates with an increase in MAMs and mitochondrial network that could positively affect mitochondrial function. Genetic rescue by WFS1 overexpression or pharmacological agents modulating mitochondrial function improves the viability and bioenergetics of WS neurons. Our data implicate a role of WFS1 in regulating mitochondrial functionality and highlight a therapeutic intervention for WS and related rare diseases with mitochondrial defects.
Collapse
Affiliation(s)
- Malgorzata Zatyka
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tatiana R Rosenstock
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adina M Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina W Hughes
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Dewi Astuti
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alessandro di Maio
- Tech Hub Microscopy Facility, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Axel Sciauvaud
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vesna Stanulovic
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gamze Kocak
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Malgorzata Rak
- Université Paris Cité, INSERM, NeuroDiderot, 75019 Paris, France
| | | | - Katherine Winter
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Thiago Varga
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Margot Jarrige
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France; CECS/AFM, I-STEM, 91100 Corbeil-Essonnes, France
| | | | - Joao Correia
- COMPARE Advanced Imaging Facility, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Douglas G Ward
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Endocrinology, Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
19
|
Beydag-Tasöz BS, Yennek S, Grapin-Botton A. Towards a better understanding of diabetes mellitus using organoid models. Nat Rev Endocrinol 2023; 19:232-248. [PMID: 36670309 PMCID: PMC9857923 DOI: 10.1038/s41574-022-00797-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/22/2023]
Abstract
Our understanding of diabetes mellitus has benefited from a combination of clinical investigations and work in model organisms and cell lines. Organoid models for a wide range of tissues are emerging as an additional tool enabling the study of diabetes mellitus. The applications for organoid models include studying human pancreatic cell development, pancreatic physiology, the response of target organs to pancreatic hormones and how glucose toxicity can affect tissues such as the blood vessels, retina, kidney and nerves. Organoids can be derived from human tissue cells or pluripotent stem cells and enable the production of human cell assemblies mimicking human organs. Many organ mimics relevant to diabetes mellitus are already available, but only a few relevant studies have been performed. We discuss the models that have been developed for the pancreas, liver, kidney, nerves and vasculature, how they complement other models, and their limitations. In addition, as diabetes mellitus is a multi-organ disease, we highlight how a merger between the organoid and bioengineering fields will provide integrative models.
Collapse
Affiliation(s)
- Belin Selcen Beydag-Tasöz
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Siham Yennek
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Paul Langerhans Institute Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Endoplasmic reticulum stress inhibition ameliorated WFS1 expression alterations and reduced pancreatic islets' insulin secretion induced by high-fat diet in rats. Sci Rep 2023; 13:1860. [PMID: 36725880 PMCID: PMC9892558 DOI: 10.1038/s41598-023-28329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in the development of glucose homeostasis impairment. When ER stress occurs, the unfolded protein response (UPR) is activated to cope with it. One of the UPR components is WFS1 (Wolfram syndrome 1), which plays important roles in ER homeostasis and pancreatic islets glucose-stimulated insulin secretion (GSIS). Accordingly and considering that feeding high-fat food has a major contribution in metabolic disorders, this study aimed to investigate the possible involvement of pancreatic ER stress in glucose metabolism impairment induced by feeding high-fat diet (HFD) in male rats. After weaning, the rats were divided into six groups, and fed on normal diet and HFD for 20 weeks, then 4-phenyl butyric acid (4-PBA, an ER stress inhibitor) was administered. Subsequently, in all groups, after performing glucose tolerance test, the animals were dissected and their pancreases were removed to extract ER, islets isolation and assessment of GSIS. Moreover, the pancreatic ER stress [binding of immunoglobulin protein (BIP) and enhancer-binding protein homologous protein (CHOP)] and oxidative stress [malondialdehyde (MDA), glutathione (GSH) and catalase] biomarkers as well as WFS1 expression level were evaluated. HFD decreased pancreatic WFS1 protein and GSH levels, and enhanced pancreatic catalase activity, MDA content, BIP and CHOP protein and mRNA levels as well as Wfs1 mRNA amount. Accordingly, it increased BIP, CHOP and WFS1 protein levels in the extracted ER of pancreas. In addition, the HFD caused glucose intolerance, and decreased the islets' GSIS and insulin content. However, 4-PBA administration restored the alterations. It seems that, HFD consumption through inducing pancreatic ER stress, altered WFS1 expression levels, reduced the islets' GSIS and insulin content and finally impaired glucose homeostasis.
Collapse
|
21
|
Halliez C, Ibrahim H, Otonkoski T, Mallone R. In vitro beta-cell killing models using immune cells and human pluripotent stem cell-derived islets: Challenges and opportunities. Front Endocrinol (Lausanne) 2023; 13:1076683. [PMID: 36726462 PMCID: PMC9885197 DOI: 10.3389/fendo.2022.1076683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Type 1 diabetes (T1D) is a disease of both autoimmunity and β-cells. The β-cells play an active role in their own demise by mounting defense mechanisms that are insufficient at best, and that can become even deleterious in the long term. This complex crosstalk is important to understanding the physiological defense mechanisms at play in healthy conditions, their alterations in the T1D setting, and therapeutic agents that may boost such mechanisms. Robust protocols to develop stem-cell-derived islets (SC-islets) from human pluripotent stem cells (hPSCs), and islet-reactive cytotoxic CD8+ T-cells from peripheral blood mononuclear cells offer unprecedented opportunities to study this crosstalk. Challenges to develop in vitro β-cell killing models include the cluster morphology of SC-islets, the relatively weak cytotoxicity of most autoimmune T-cells and the variable behavior of in vitro expanded CD8+ T-cells. These challenges may however be highly rewarding in light of the opportunities offered by such models. Herein, we discuss these opportunities including: the β-cell/immune crosstalk in an islet microenvironment; the features that make β-cells more sensitive to autoimmunity; therapeutic agents that may modulate β-cell vulnerability; and the possibility to perform analyses in an autologous setting, i.e., by generating T-cell effectors and SC-islets from the same donor.
Collapse
Affiliation(s)
- Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
22
|
Rodrigues Oliveira SM, Rebocho A, Ahmadpour E, Nissapatorn V, de Lourdes Pereira M. Type 1 Diabetes Mellitus: A Review on Advances and Challenges in Creating Insulin Producing Devices. MICROMACHINES 2023; 14:151. [PMID: 36677212 PMCID: PMC9867263 DOI: 10.3390/mi14010151] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is the most common autoimmune chronic disease in young patients. It is caused by the destruction of pancreatic endocrine β-cells that produce insulin in specific areas of the pancreas, known as islets of Langerhans. As a result, the body becomes insulin deficient and hyperglycemic. Complications associated with diabetes are life-threatening and the current standard of care for T1DM consists still of insulin injections. Lifesaving, exogenous insulin replacement is a chronic and costly burden of care for diabetic patients. Alternative therapeutic options have been the focus in these fields. Advances in molecular biology technologies and in microfabrication have enabled promising new therapeutic options. For example, islet transplantation has emerged as an effective treatment to restore the normal regulation of blood glucose in patients with T1DM. However, this technique has been hampered by obstacles, such as limited islet availability, extensive islet apoptosis, and poor islet vascular engraftment. Many of these unsolved issues need to be addressed before a potential cure for T1DM can be a possibility. New technologies like organ-on-a-chip platforms (OoC), multiplexed assessment tools and emergent stem cell approaches promise to enhance therapeutic outcomes. This review will introduce the disorder of type 1 diabetes mellitus, an overview of advances and challenges in the areas of microfluidic devices, monitoring tools, and prominent use of stem cells, and how they can be linked together to create a viable model for the T1DM treatment. Microfluidic devices like OoC platforms can establish a crucial platform for pathophysiological and pharmacological studies as they recreate the pancreatic environment. Stem cell use opens the possibility to hypothetically generate a limitless number of functional pancreatic cells. Additionally, the integration of stem cells into OoC models may allow personalized or patient-specific therapies.
Collapse
Affiliation(s)
- Sonia M. Rodrigues Oliveira
- HMRI-Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Rebocho
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Allied Health Sciences, Southeast Asia Water Team (SEAWater Team), World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
The Role of ER Stress in Diabetes: Exploring Pathological Mechanisms Using Wolfram Syndrome. Int J Mol Sci 2022; 24:ijms24010230. [PMID: 36613674 PMCID: PMC9820298 DOI: 10.3390/ijms24010230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cytosolic organelle that plays an essential role in the folding and processing of new secretory proteins, including insulin. The pathogenesis of diabetes, a group of metabolic disorders caused by dysfunctional insulin secretion (Type 1 diabetes, T1DM) or insulin sensitivity (Type 2 diabetes, T2DM), is known to involve the excess accumulation of "poorly folded proteins", namely, the induction of pathogenic ER stress in pancreatic β-cells. ER stress is known to contribute to the dysfunction of the insulin-producing pancreatic β-cells. T1DM and T2DM are multifactorial diseases, especially T2DM; both environmental and genetic factors are involved in their pathogenesis, making it difficult to create experimental disease models. In recent years, however, the development of induced pluripotent stem cells (iPSCs) and other regenerative technologies has greatly expanded research capabilities, leading to the development of new candidate therapies. In this review, we will discuss the mechanism by which dysregulated ER stress responses contribute to T2DM pathogenesis. Moreover, we describe new treatment methods targeting protein folding and ER stress pathways with a particular focus on pivotal studies of Wolfram syndrome, a monogenic form of syndromic diabetes caused by pathogenic variants in the WFS1 gene, which also leads to ER dysfunction.
Collapse
|
24
|
NCS1 overexpression restored mitochondrial activity and behavioral alterations in a zebrafish model of Wolfram syndrome. Mol Ther Methods Clin Dev 2022; 27:295-308. [PMID: 36320410 PMCID: PMC9594121 DOI: 10.1016/j.omtm.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disease resulting in deafness, optic atrophy, diabetes, and neurological disorders. Currently, no treatment is available for patients. The mutated gene, WFS1, encodes an endoplasmic reticulum (ER) protein, Wolframin. We previously reported that Wolframin regulated the ER-mitochondria Ca2+ transfer and mitochondrial activity by protecting NCS1 from degradation in patients' fibroblasts. We relied on a zebrafish model of WS, the wfs1ab KO line, to analyze the functional and behavioral impact of NCS1 overexpression as a novel therapeutic strategy. The wfs1ab KO line showed an increased locomotion in the visual motor and touch-escape responses. The absence of wfs1 did not impair the cellular unfolded protein response, in basal or tunicamycin-induced ER stress conditions. In contrast, metabolic analysis showed an increase in mitochondrial respiration in wfs1ab KO larvae. Interestingly, overexpression of NCS1 using mRNA injection restored the alteration of mitochondrial respiration and hyperlocomotion. Taken together, these data validated the wfs1ab KO zebrafish line as a pertinent experimental model of WS and confirmed the therapeutic potential of NCS1. The wfs1ab KO line therefore appeared as an efficient model to identify novel therapeutic strategies, such as gene or pharmacological therapies targeting NCS1 that will correct or block WS symptoms.
Collapse
|
25
|
Kitamura RA, Maxwell KG, Ye W, Kries K, Brown CM, Augsornworawat P, Hirsch Y, Johansson MM, Weiden T, Ekstein J, Cohen J, Klee J, Leslie K, Simeonov A, Henderson MJ, Millman JR, Urano F. Multidimensional analysis and therapeutic development using patient iPSC-derived disease models of Wolfram syndrome. JCI Insight 2022; 7:156549. [PMID: 36134655 PMCID: PMC9675478 DOI: 10.1172/jci.insight.156549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Wolfram syndrome is a rare genetic disorder largely caused by pathogenic variants in the WFS1 gene and manifested by diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Recent genetic and clinical findings have revealed Wolfram syndrome as a spectrum disorder. Therefore, a genotype-phenotype correlation analysis is needed for diagnosis and therapeutic development. Here, we focus on the WFS1 c.1672C>T, p.R558C variant, which is highly prevalent in the Ashkenazi Jewish population. Clinical investigation indicated that patients carrying the homozygous WFS1 c.1672C>T, p.R558C variant showed mild forms of Wolfram syndrome phenotypes. Expression of WFS1 p.R558C was more stable compared with the other known recessive pathogenic variants associated with Wolfram syndrome. Human induced pluripotent stem cell-derived (iPSC-derived) islets (SC-islets) homozygous for WFS1 c.1672C>T variant recapitulated genotype-related Wolfram syndrome phenotypes. Enhancing residual WFS1 function through a combination treatment of chemical chaperones mitigated detrimental effects caused by the WFS1 c.1672C>T, p.R558C variant and increased insulin secretion in SC-islets. Thus, the WFS1 c.1672C>T, p.R558C variant causes a mild form of Wolfram syndrome phenotypes, which can be remitted with a combination treatment of chemical chaperones. We demonstrate that our patient iPSC-derived disease model provides a valuable platform for further genotype-phenotype analysis and therapeutic development for Wolfram syndrome.
Collapse
Affiliation(s)
- Rie Asada Kitamura
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kristina G Maxwell
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wenjuan Ye
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Kelly Kries
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Cris M Brown
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Punn Augsornworawat
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yoel Hirsch
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Martin M Johansson
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Tzvi Weiden
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, Israel
| | - Joseph Ekstein
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Joshua Cohen
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Justin Klee
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Kent Leslie
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Jeffrey R Millman
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Gruber N, Pinhas-Hamiel O. Diabetes Out-of-the-Box: Diabetes Mellitus and Impairment in Hearing and Vision. Curr Diab Rep 2022; 22:423-432. [PMID: 35789979 DOI: 10.1007/s11892-022-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 01/19/2023]
Abstract
PURPOSEOF REVIEW This review aims to provide an update on the etiologies of diabetes that are due to genetic disorders and that co-occur with impaired hearing or vision and to compare them. The potential mechanisms, including novel treatments, will be detailed. RECENT FINDINGS Wolfram syndrome, Kearns-Sayre syndrome, thiamine-responsive megaloblastic anemia, and maternally inherited diabetes and deafness are genetic disorders characterized by diabetes, impaired hearing, and vision. They differ in mode of inheritance, age at presentation, and the involvement of other organs; they are often misdiagnosed as type 1 or type 2 diabetes. Suspicion of a genetic diabetes syndrome should be raised when pancreatic autoantibodies are negative, other organs are involved, and family history includes diabetes. Correct diagnosis of the various syndromes is important for tailoring the most advanced treatment, preventing disease progression, and enabling proper genetic counseling.
Collapse
Affiliation(s)
- Noah Gruber
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Orit Pinhas-Hamiel
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- The National Juvenile Diabetes Center, Maccabi Health Care Services, Ra'anana, Israel.
| |
Collapse
|
27
|
β-cyclodextrin based nano gene delivery using pharmaceutical applications to treat Wolfram syndrome. Ther Deliv 2022; 13:449-462. [PMID: 36748654 DOI: 10.4155/tde-2022-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wolfram syndrome is a rare multisystem autosomal recessive neurodegenerative disorder that affects the brain and central nervous system. Currently, there is no cure or treatment for Wolfram syndrome. Therefore, new techniques are needed to target the loss of the WFS1 gene. Gene therapy approach to introduce a functional gene using a viral or a non-viral vector could be a treatment strategy for Wolfram syndrome 1 (WS1). Viral vectors have therapeutic benefits and greater efficiency; however, they pose a high health risk. Recently pharmaceutical therapeutic research has developed cell-penetrating non-viral nano molecules that could be used as vectors for gene delivery. Among nonviral vectors, the unique properties of β-cyclodextrin suggest that it can be a promising safe vector for gene delivery.
Collapse
|
28
|
González BJ, Zhao H, Niu J, Williams DJ, Lee J, Goulbourne CN, Xing Y, Wang Y, Oberholzer J, Blumenkrantz MH, Chen X, LeDuc CA, Chung WK, Colecraft HM, Gromada J, Shen Y, Goland RS, Leibel RL, Egli D. Reduced calcium levels and accumulation of abnormal insulin granules in stem cell models of HNF1A deficiency. Commun Biol 2022; 5:779. [PMID: 35918471 PMCID: PMC9345898 DOI: 10.1038/s42003-022-03696-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/11/2022] [Indexed: 12/30/2022] Open
Abstract
Mutations in HNF1A cause Maturity Onset Diabetes of the Young (HNF1A-MODY). To understand mechanisms of β-cell dysfunction, we generated stem cell-derived pancreatic endocrine cells with hypomorphic mutations in HNF1A. HNF1A-deficient β-cells display impaired basal and glucose stimulated-insulin secretion, reduced intracellular calcium levels in association with a reduction in CACNA1A expression, and accumulation of abnormal insulin granules in association with SYT13 down-regulation. Knockout of CACNA1A and SYT13 reproduce the relevant phenotypes. In HNF1A deficient β-cells, glibenclamide, a sulfonylurea drug used in the treatment of HNF1A-MODY patients, increases intracellular calcium, and restores insulin secretion. While insulin secretion defects are constitutive in β-cells null for HNF1A, β-cells heterozygous for hypomorphic HNF1A (R200Q) mutations lose the ability to secrete insulin gradually; this phenotype is prevented by correction of the mutation. Our studies illuminate the molecular basis for the efficacy of treatment of HNF1A-MODY with sulfonylureas, and suggest promise for the use of cell therapies.
Collapse
Affiliation(s)
- Bryan J González
- Naomi Berrie Diabetes Center & Departments of Pediatrics and Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Institute of Human Nutrition, Columbia University Medical Center, New York, NY, 10032, USA
| | - Haoquan Zhao
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jacqueline Niu
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Damian J Williams
- Stem Cell Core Facility, Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, 10032, USA
| | - Jaeyop Lee
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Yuan Xing
- Department of Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jose Oberholzer
- Department of Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Maria H Blumenkrantz
- Naomi Berrie Diabetes Center & Departments of Pediatrics and Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Department of Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Charles A LeDuc
- Naomi Berrie Diabetes Center & Departments of Pediatrics and Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Wendy K Chung
- Naomi Berrie Diabetes Center & Departments of Pediatrics and Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA.,Vertex Cell and Genetic Therapies, Watertown, MA, 02472, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Robin S Goland
- Naomi Berrie Diabetes Center & Departments of Pediatrics and Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center & Departments of Pediatrics and Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Departments of Pediatrics and Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
29
|
Wolfram Syndrome 1: From Genetics to Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063225. [PMID: 35328914 PMCID: PMC8949990 DOI: 10.3390/ijerph19063225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
Wolfram syndrome 1 (WS1) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. It is characterized by diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and sensorineural hearing loss (D) (DIDMOAD). The clinical picture may be complicated by other symptoms, such as urinary tract, endocrinological, psychiatric, and neurological abnormalities. WS1 is caused by mutations in the WFS1 gene located on chromosome 4p16 that encodes a transmembrane protein named wolframin. Many studies have shown that wolframin regulates some mechanisms of ER calcium homeostasis and therefore plays a role in cellular apoptosis. More than 200 mutations are responsible for WS1. However, abnormal phenotypes of WS with or without DM, inherited in an autosomal dominant mode and associated with one or more WFS1 mutations, have been found. Furthermore, recessive Wolfram-like disease without DM has been described. The prognosis of WS1 is poor, and the death occurs prematurely. Although there are no therapies that can slow or stop WS1, a careful clinical monitoring can help patients during the rapid progression of the disease, thus improving their quality of life. In this review, we describe natural history and etiology of WS1 and suggest criteria for a most pertinent approach to the diagnosis and clinical follow up. We also describe the hallmarks of new therapies for WS1.
Collapse
|
30
|
Harvey JP, Sladen PE, Yu-Wai-Man P, Cheetham ME. Induced Pluripotent Stem Cells for Inherited Optic Neuropathies-Disease Modeling and Therapeutic Development. J Neuroophthalmol 2022; 42:35-44. [PMID: 34629400 DOI: 10.1097/wno.0000000000001375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inherited optic neuropathies (IONs) cause progressive irreversible visual loss in children and young adults. There are limited disease-modifying treatments, and most patients progress to become severely visually impaired, fulfilling the legal criteria for blind registration. The seminal discovery of the technique for reprogramming somatic nondividing cells into induced pluripotent stem cells (iPSCs) has opened several exciting opportunities in the field of ION research and treatment. EVIDENCE ACQUISITION A systematic review of the literature was conducted with PubMed using the following search terms: autosomal dominant optic atrophy, ADOA, dominant optic atrophy, DOA, Leber hereditary optic neuropathy, LHON, optic atrophy, induced pluripotent stem cell, iPSC, iPSC derived, iPS, stem cell, retinal ganglion cell, and RGC. Clinical trials were identified on the ClinicalTrials.gov website. RESULTS This review article is focused on disease modeling and the therapeutic strategies being explored with iPSC technologies for the 2 most common IONs, namely, dominant optic atrophy and Leber hereditary optic neuropathy. The rationale and translational advances for cell-based and gene-based therapies are explored, as well as opportunities for neuroprotection and drug screening. CONCLUSIONS iPSCs offer an elegant, patient-focused solution to the investigation of the genetic defects and disease mechanisms underpinning IONs. Furthermore, this group of disorders is uniquely amenable to both the disease modeling capability and the therapeutic potential that iPSCs offer. This fast-moving area will remain at the forefront of both basic and translational ION research in the coming years, with the potential to accelerate the development of effective therapies for patients affected with these blinding diseases.
Collapse
Affiliation(s)
- Joshua Paul Harvey
- UCL Institute of Ophthalmology (JPH, PES, PY-W-M, MC), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, PY-W-M), London, United Kingdom; Department of Clinical Neurosciences (PY-W-M), Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom; and Department of Clinical Neurosciences (PY-W-M), John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
31
|
Iafusco D, Zanfardino A, Piscopo A, Curto S, Troncone A, Chianese A, Rollato AS, Testa V, Iafusco F, Maione G, Pennarella A, Boccabella L, Ozen G, Palma PL, Mazzaccara C, Tinto N, Miraglia del Giudice E. Metabolic Treatment of Wolfram Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2755. [PMID: 35270448 PMCID: PMC8910219 DOI: 10.3390/ijerph19052755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022]
Abstract
Wolfram Syndrome (WS) is a very rare genetic disorder characterized by several symptoms that occur from childhood to adulthood. Usually, the first clinical sign is non-autoimmune diabetes even if other clinical features (optic subatrophy, neurosensorial deafness, diabetes insipidus) may be present in an early state and may be diagnosed after diabetes' onset. Prognosis is poor, and the death occurs at the median age of 39 years as a consequence of progressive respiratory impairment, secondary to brain atrophy and neurological failure. The aim of this paper is the description of the metabolic treatment of the WS. We reported the experience of long treatment in patients with this syndrome diagnosed in pediatric age and followed also in adult age. It is known that there is a correlation between metabolic control of diabetes, the onset of other associated symptoms, and the progression of the neurodegenerative alterations. Therefore, a multidisciplinary approach is necessary in order to prevent, treat and carefully monitor all the comorbidities that may occur. An extensive understanding of WS from pathophysiology to novel possible therapy is fundamental and further studies are needed to better manage this devastating disease and to guarantee to patients a better quality of life and a longer life expectancy.
Collapse
Affiliation(s)
- Dario Iafusco
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Angela Zanfardino
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Alessia Piscopo
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Stefano Curto
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Alda Troncone
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Antonietta Chianese
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Assunta Serena Rollato
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Veronica Testa
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Fernanda Iafusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.); (C.M.); (N.T.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Giovanna Maione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.); (C.M.); (N.T.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Alessandro Pennarella
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Lucia Boccabella
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Gulsum Ozen
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Pier Luigi Palma
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.); (C.M.); (N.T.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.); (C.M.); (N.T.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Emanuele Miraglia del Giudice
- Regional Center of Pediatric Diabetology “G.Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.Z.); (A.P.); (S.C.); (A.T.); (A.C.); (A.S.R.); (V.T.); (A.P.); (L.B.); (G.O.); (P.L.P.); (E.M.d.G.)
| |
Collapse
|
32
|
Salzano G, Rigoli L, Valenzise M, Chimenz R, Passanisi S, Lombardo F. Clinical Peculiarities in a Cohort of Patients with Wolfram Syndrome 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010520. [PMID: 35010780 PMCID: PMC8744633 DOI: 10.3390/ijerph19010520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023]
Abstract
Wolfram syndrome 1 is a rare, autosomal recessive, neurodegenerative, progressive disorder. Insulin-dependent, non-autoimmune diabetes mellitus and bilateral progressive optic atrophy are both sensitive and specific criteria for clinical diagnosis. The leading cause of death is central respiratory failure resulting from brainstem atrophy. We describe the clinical features of fourteen patients from seven different families followed in our Diabetes Center. The mean age at Wolfram syndrome 1 diagnosis was 12.4 years. Diabetes mellitus was the first clinical manifestation, in all patients. Sensorineural hearing impairment and central diabetes insipidus were present in 85.7% of patients. Other endocrine findings included hypogonadotropic hypogonadism (7.1%), hypergonadotropic hypogonadism (7.1%), and Hashimoto’s thyroiditis (21.4%). Neuropsychiatric disorders were detected in 35.7% of patients, and urogenital tract abnormalities were present in 21.4%. Finally, heart diseases were found in 14.2% of patients. Eight patients (57.1%) died at the mean age of 27.3 years. The most common cause of death was respiratory failure which occurred in six patients. The remaining two died due to end-stage renal failure and myocardial infarction. Our data are superimposable with those reported in the literature in terms of mean age of onset, the clinical course of the disease, and causes of death. The frequency of deafness and diabetes insipidus was higher in our patients. The incidence of urogenital diseases was lower although it led to the death of one patient. Long-term follow-up studies including large patient cohorts are necessary to establish potential genotype-phenotype correlation in order to personalize the most suitable clinical approach for each patient.
Collapse
Affiliation(s)
- Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
- Correspondence: ; Tel.: +39-090-2213-023; Fax: +39-090-2213-170
| | - Luciana Rigoli
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| | - Mariella Valenzise
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Dialysis, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (L.R.); (M.V.); (S.P.); (F.L.)
| |
Collapse
|
33
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
34
|
Maxwell KG, Kim MH, Gale SE, Millman JR. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:322-331. [PMID: 35294547 PMCID: PMC8968674 DOI: 10.1093/stcltm/szab013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022] Open
Abstract
Insulin-producing stem cell-derived islets (SC-islets) provide a virtually unlimited cell source for diabetes cell replacement therapy. While SC-islets are less functional when first differentiated in vitro compared to isolated cadaveric islets, transplantation into mice has been shown to increase their maturation. To understand the effects of transplantation on maturation and function of SC-islets, we examined the effects of cell dose, transplantation strategy, and diabetic state in immunocompromised mice. Transplantation of 2 and 5, but not 0.75 million SC-islet cells underneath the kidney capsule successfully reversed diabetes in mice with pre-existing diabetes. SQ and intramuscular injections failed to reverse diabetes at all doses and had undetectable expression of maturation markers, such as MAFA and FAM159B. Furthermore, SC-islets had similar function and maturation marker expression regardless of diabetic state. Our results illustrate that transplantation parameters are linked to SC-islet function and maturation, providing ideal mouse models for preclinical diabetes SC therapy research.
Collapse
Affiliation(s)
- Kristina G Maxwell
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington, University in St. Louis, St. Louis, MO, USA
| | - Michelle H Kim
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah E Gale
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington, University in St. Louis, St. Louis, MO, USA
- Corresponding author: Jeffrey R. Millman, Washington University School of Medicine, Southwest Tower 8th Floor, MSC 8127-057-08, 660 Euclid Avenue, St. Louis, MO 63110, USA. Tel: +1 (314) 362-3268; Fax: (314) 362-7641;
| |
Collapse
|
35
|
Memon B, Abdelalim EM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:704-714. [PMID: 35640144 PMCID: PMC9299517 DOI: 10.1093/stcltm/szac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/09/2022] [Indexed: 11/14/2022] Open
Abstract
Although genome profiling provides important genetic and phenotypic details for applying precision medicine to diabetes, it is imperative to integrate in vitro human cell models, accurately recapitulating the genetic alterations associated with diabetes. The absence of the appropriate preclinical human models and the unavailability of genetically relevant cells substantially limit the progress in developing personalized treatment for diabetes. Human pluripotent stem cells (hPSCs) provide a scalable source for generating diabetes-relevant cells carrying the genetic signatures of the patients. Remarkably, allogenic hPSC-derived pancreatic progenitors and β cells are being used in clinical trials with promising preliminary results. Autologous hiPSC therapy options exist for those with monogenic and type 2 diabetes; however, encapsulation or immunosuppression must be accompanied with in the case of type 1 diabetes. Furthermore, genome-wide association studies-identified candidate variants can be introduced in hPSCs for deciphering the associated molecular defects. The hPSC-based disease models serve as excellent resources for drug development facilitating personalized treatment. Indeed, hPSC-based diabetes models have successfully provided valuable knowledge by modeling different types of diabetes, which are discussed in this review. Herein, we also evaluate their strengths and shortcomings in dissecting the underlying pathogenic molecular mechanisms and discuss strategies for improving hPSC-based disease modeling investigations.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Essam M Abdelalim
- Corresponding author: Essam M. Abdelalim, Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa, University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar. Tel: +974 445 46432; Fax: +974 445 41770;
| |
Collapse
|
36
|
Dabi YT, Degechisa ST. Genome Editing and Human Pluripotent Stem Cell Technologies for in vitro Monogenic Diabetes Modeling. Diabetes Metab Syndr Obes 2022; 15:1785-1797. [PMID: 35719247 PMCID: PMC9199525 DOI: 10.2147/dmso.s366967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a metabolic disease characterized by chronic hyperglycemia. Polygenic diabetes, which encompasses type-1 and type-2 diabetes, is the most prevalent kind of diabetes and is caused by a combination of different genetic and environmental factors, whereas rare phenotype monogenic diabetes is caused by a single gene mutation. Monogenic diabetes includes Neonatal diabetes mellitus and Maturity-onset diabetes of the young. The majority of our current knowledge about the pathogenesis of diabetes stems from studies done on animal models. However, the genetic difference between these creatures and humans makes it difficult to mimic human clinical pathophysiology, limiting their value in modeling key aspects of human disease. Human pluripotent stem cell technologies combined with genome editing techniques have been shown to be better alternatives for creating in vitro models that can provide crucial knowledge about disease etiology. This review paper addresses genome editing and human pluripotent stem cell technologies for in vitro monogenic diabetes modeling.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Wollega University, Nekemte, Ethiopia
- Correspondence: Yosef Tsegaye Dabi, Email
| | - Sisay Teka Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
37
|
Crouzier L, Richard EM, Diez C, Alzaeem H, Denus M, Cubedo N, Delaunay T, Glendenning E, Baxendale S, Liévens JC, Whitfield TT, Maurice T, Delprat B. OUP accepted manuscript. Hum Mol Genet 2022; 31:2711-2727. [PMID: 35325133 PMCID: PMC9402244 DOI: 10.1093/hmg/ddac065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Wolfram syndrome (WS) is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years of age, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and there is an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after tunicamycin treatment. Interestingly, both mutants lead to a decrease in their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for WS.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Camille Diez
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | - Hala Alzaeem
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | - Morgane Denus
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | - Nicolas Cubedo
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Emily Glendenning
- Development, Regeneration and Neurophysiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sarah Baxendale
- Development, Regeneration and Neurophysiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Tanya T Whitfield
- Development, Regeneration and Neurophysiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Tangui Maurice
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France
| | - Benjamin Delprat
- To whom correspondence should be addressed: Tel: +33 467143623; Fax: +33 47149295;
| |
Collapse
|
38
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
39
|
Urinary Tract Involvement in Wolfram Syndrome: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211994. [PMID: 34831749 PMCID: PMC8624443 DOI: 10.3390/ijerph182211994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
Wolfram Syndrome (WS) is a rare neurodegenerative disease with autosomal recessive inheritance and characterized by juvenile onset, non-autoimmune diabetes mellitus and later followed by optic atrophy leading to blindness, diabetes insipidus, hearing loss, and other neurological and endocrine dysfunctions. A wide spectrum of neurodegenerative abnormalities affecting the central nervous system has been described. Among these complications, neurogenic bladder and urodynamic abnormalities also deserve attention. Urinary tract dysfunctions (UTD) up to end stage renal disease are a life-threatening complication of WS patients. Notably, end stage renal disease is reported as one of the most common causes of death among WS patients. UTD have been also reported in affected adolescents. Involvement of the urinary tract occurs in about 90% of affected patients, at a median age of 20 years and with peaks at 13, 21 and 33 years. The aim of our narrative review was to provide an overview of the most important papers regarding urological impairment in Wolfram Syndrome. A comprehensive search on PubMed including Wolfram Syndrome and one or more of the following terms: chronic renal failure, bladder dysfunction, urological aspects, and urinary tract dysfunction, was done. The exclusion criteria were studies not written in English and not including urinary tract dysfunction deep evaluation and description. Studies mentioning general urologic abnormalities without deep description and/or follow-up were not considered. Due to the rarity of the condition, we considered not only papers including pediatric patients, but also papers with pediatric and adult case reports
Collapse
|
40
|
Pourtoy-Brasselet S, Sciauvaud A, Boza-Moran MG, Cailleret M, Jarrige M, Polvèche H, Polentes J, Chevet E, Martinat C, Peschanski M, Aubry L. Human iPSC-derived neurons reveal early developmental alteration of neurite outgrowth in the late-occurring neurodegenerative Wolfram syndrome. Am J Hum Genet 2021; 108:2171-2185. [PMID: 34699745 DOI: 10.1016/j.ajhg.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
Recent studies indicate that neurodegenerative processes that appear during childhood and adolescence in individuals with Wolfram syndrome (WS) occur in addition to early brain development alteration, which is clinically silent. Underlying pathological mechanisms are still unknown. We have used induced pluripotent stem cell-derived neural cells from individuals affected by WS in order to reveal their phenotypic and molecular correlates. We have observed that a subpopulation of Wolfram neurons displayed aberrant neurite outgrowth associated with altered expression of axon guidance genes. Selective inhibition of the ATF6α arm of the unfolded protein response prevented the altered phenotype, although acute endoplasmic reticulum stress response-which is activated in late Wolfram degenerative processes-was not detected. Among the drugs currently tried in individuals with WS, valproic acid was the one that prevented the pathological phenotypes. These results suggest that early defects in axon guidance may contribute to the loss of neurons in individuals with WS.
Collapse
Affiliation(s)
| | - Axel Sciauvaud
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Maria-Gabriela Boza-Moran
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Michel Cailleret
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Margot Jarrige
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France; CECS/AFM, I-STEM, Corbeil-Essonnes 91100, France
| | | | | | - Eric Chevet
- INSERM U1242, Université Rennes 1, Rennes 35000, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes 35000, France
| | - Cécile Martinat
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Marc Peschanski
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France; CECS/AFM, I-STEM, Corbeil-Essonnes 91100, France
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France.
| |
Collapse
|
41
|
Cairns G, Burté F, Price R, O'Connor E, Toms M, Mishra R, Moosajee M, Pyle A, Sayer JA, Yu-Wai-Man P. A mutant wfs1 zebrafish model of Wolfram syndrome manifesting visual dysfunction and developmental delay. Sci Rep 2021; 11:20491. [PMID: 34650143 PMCID: PMC8516871 DOI: 10.1038/s41598-021-99781-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Wolfram syndrome (WS) is an ultra-rare progressive neurodegenerative disorder defined by early-onset diabetes mellitus and optic atrophy. The majority of patients harbour recessive mutations in the WFS1 gene, which encodes for Wolframin, a transmembrane endoplasmic reticulum protein. There is limited availability of human ocular and brain tissues, and there are few animal models for WS that replicate the neuropathology and clinical phenotype seen in this disorder. We, therefore, characterised two wfs1 zebrafish knockout models harbouring nonsense wfs1a and wfs1b mutations. Both homozygous mutant wfs1a-/- and wfs1b-/- embryos showed significant morphological abnormalities in early development. The wfs1b-/- zebrafish exhibited a more pronounced neurodegenerative phenotype with delayed neuronal development, progressive loss of retinal ganglion cells and clear evidence of visual dysfunction on functional testing. At 12 months of age, wfs1b-/- zebrafish had a significantly lower RGC density per 100 μm2 (mean ± standard deviation; 19 ± 1.7) compared with wild-type (WT) zebrafish (25 ± 2.3, p < 0.001). The optokinetic response for wfs1b-/- zebrafish was significantly reduced at 8 and 16 rpm testing speeds at both 4 and 12 months of age compared with WT zebrafish. An upregulation of the unfolded protein response was observed in mutant zebrafish indicative of increased endoplasmic reticulum stress. Mutant wfs1b-/- zebrafish exhibit some of the key features seen in patients with WS, providing a versatile and cost-effective in vivo model that can be used to further investigate the underlying pathophysiology of WS and potential therapeutic interventions.
Collapse
Affiliation(s)
- G Cairns
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Interdisciplinary School of Health Science, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - F Burté
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - R Price
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - E O'Connor
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - M Toms
- UCL Institute of Ophthalmology, University College London, London, UK
| | - R Mishra
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M Moosajee
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation, Trust, London, UK
| | - A Pyle
- The Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - J A Sayer
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Renal Medicine, Freeman Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - P Yu-Wai-Man
- UCL Institute of Ophthalmology, University College London, London, UK.
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
42
|
Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, Li Z, Liu S, Feng H, Huang W, Duan R, Xu T, Raj N, Zhang F, Dou J, Xu C, Wu H, Bassell GJ, Warren ST, Allen EG, Jin P, Wen Z. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci 2021; 24:1377-1391. [PMID: 34413513 PMCID: PMC8484073 DOI: 10.1038/s41593-021-00913-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP), an RNA-binding protein that can regulate the translation of specific mRNAs. In this study, we developed an FXS human forebrain organoid model and observed that the loss of FMRP led to dysregulated neurogenesis, neuronal maturation and neuronal excitability. Bulk and single-cell gene expression analyses of FXS forebrain organoids revealed that the loss of FMRP altered gene expression in a cell-type-specific manner. The developmental deficits in FXS forebrain organoids could be rescued by inhibiting the phosphoinositide 3-kinase pathway but not the metabotropic glutamate pathway disrupted in the FXS mouse model. We identified a large number of human-specific mRNAs bound by FMRP. One of these human-specific FMRP targets, CHD2, contributed to the altered gene expression in FXS organoids. Collectively, our study revealed molecular, cellular and electrophysiological abnormalities associated with the loss of FMRP during human brain development.
Collapse
Affiliation(s)
- Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Yanfei Han
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Emory University, GA 30322, USA
| | - Weibo Niu
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shiying Liu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, USA
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Nisha Raj
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,To whom correspondence should be addressed: (P.J.) and (Z.W.)
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA;,To whom correspondence should be addressed: (P.J.) and (Z.W.)
| |
Collapse
|
43
|
Loncke J, Vervliet T, Parys JB, Kaasik A, Bultynck G. Uniting the divergent Wolfram syndrome-linked proteins WFS1 and CISD2 as modulators of Ca 2+ signaling. Sci Signal 2021; 14:eabc6165. [PMID: 34582248 DOI: 10.1126/scisignal.abc6165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Allen Kaasik
- University of Tartu, Institute of Biomedicine and Translational Medicine, Department of Pharmacology, Tartu, Estonia
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| |
Collapse
|
44
|
Agrawal A, Narayan G, Gogoi R, Thummer RP. Recent Advances in the Generation of β-Cells from Induced Pluripotent Stem Cells as a Potential Cure for Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:1-27. [PMID: 34426962 DOI: 10.1007/5584_2021_653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by high blood glucose levels due to insufficient insulin secretion, insulin action, or both. The present-day solution to diabetes mellitus includes regular administration of insulin, which brings about many medical complications in diabetic patients. Although islet transplantation from cadaveric subjects was proposed to be a permanent cure, the increased risk of infections, the need for immunosuppressive drugs, and their unavailability had restricted its use. To overcome this, the generation of renewable and transplantable β-cells derived from autologous induced pluripotent stem cells (iPSCs) has gained enormous interest as a potential therapeutic strategy to treat diabetes mellitus permanently. To date, extensive research has been undertaken to derive transplantable insulin-producing β-cells (iβ-cells) from iPSCs in vitro by recapitulating the in vivo developmental process of the pancreas. This in vivo developmental process relies on transcription factors, signaling molecules, growth factors, and culture microenvironment. This review highlights the various factors facilitating the generation of mature β-cells from iPSCs. Moreover, this review also describes the generation of pancreatic progenitors and β-cells from diabetic patient-specific iPSCs, exploring the potential of the diabetes disease model and drug discovery. In addition, the applications of genome editing strategies have also been discussed to achieve patient-specific diabetes cell therapy. Last, we have discussed the current challenges and prospects of iPSC-derived β-cells to improve the relative efficacy of the available treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
45
|
Siehler J, Blöchinger AK, Meier M, Lickert H. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov 2021; 20:920-940. [PMID: 34376833 DOI: 10.1038/s41573-021-00262-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is a metabolic disorder that affects more than 460 million people worldwide. Type 1 diabetes (T1D) is caused by autoimmune destruction of β-cells, whereas type 2 diabetes (T2D) is caused by a hostile metabolic environment that leads to β-cell exhaustion and dysfunction. Currently, first-line medications treat the symptomatic insulin resistance and hyperglycaemia, but do not prevent the progressive decline of β-cell mass and function. Thus, advanced therapies need to be developed that either protect or regenerate endogenous β-cell mass early in disease progression or replace lost β-cells with stem cell-derived β-like cells or engineered islet-like clusters. In this Review, we discuss the state of the art of stem cell differentiation and islet engineering, reflect on current and future challenges in the area and highlight the potential for cell replacement therapies, disease modelling and drug development using these cells. These efforts in stem cell and regenerative medicine will lay the foundations for future biomedical breakthroughs and potentially curative treatments for diabetes.
Collapse
Affiliation(s)
- Johanna Siehler
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.,Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anna Karolina Blöchinger
- Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Meier
- Technical University of Munich, Medical Faculty, Munich, Germany.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany. .,Technical University of Munich, Medical Faculty, Munich, Germany. .,German Center for Diabetes Research (DZD), Neuherberg, Germany. .,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
46
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Burgos JI, Vallier L, Rodríguez-Seguí SA. Monogenic Diabetes Modeling: In Vitro Pancreatic Differentiation From Human Pluripotent Stem Cells Gains Momentum. Front Endocrinol (Lausanne) 2021; 12:692596. [PMID: 34295307 PMCID: PMC8290520 DOI: 10.3389/fendo.2021.692596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of diabetes mellitus is characterized by pancreatic β cell loss and chronic hyperglycemia. While Type 1 and Type 2 diabetes are the most common types, rarer forms involve mutations affecting a single gene. This characteristic has made monogenic diabetes an interesting disease group to model in vitro using human pluripotent stem cells (hPSCs). By altering the genotype of the original hPSCs or by deriving human induced pluripotent stem cells (hiPSCs) from patients with monogenic diabetes, changes in the outcome of the in vitro differentiation protocol can be analyzed in detail to infer the regulatory mechanisms affected by the disease-associated genes. This approach has been so far applied to a diversity of genes/diseases and uncovered new mechanisms. The focus of the present review is to discuss the latest findings obtained by modeling monogenic diabetes using hPSC-derived pancreatic cells generated in vitro. We will specifically focus on the interpretation of these studies, the advantages and limitations of the models used, and the future perspectives for improvement.
Collapse
Affiliation(s)
- Juan Ignacio Burgos
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
48
|
Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, Morikawa S, Urano F, Millman JR. Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med 2021; 12:12/540/eaax9106. [PMID: 32321868 DOI: 10.1126/scitranslmed.aax9106] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/11/2019] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Differentiation of insulin-producing pancreatic β cells from induced pluripotent stem cells (iPSCs) derived from patients with diabetes promises to provide autologous cells for diabetes cell replacement therapy. However, current approaches produce patient iPSC-derived β (SC-β) cells with poor function in vitro and in vivo. Here, we used CRISPR-Cas9 to correct a diabetes-causing pathogenic variant in Wolfram syndrome 1 (WFS1) in iPSCs derived from a patient with Wolfram syndrome (WS). After differentiation to β cells with our recent six-stage differentiation strategy, corrected WS SC-β cells performed robust dynamic insulin secretion in vitro in response to glucose and reversed preexisting streptozocin-induced diabetes after transplantation into mice. Single-cell transcriptomics showed that corrected SC-β cells displayed increased insulin and decreased expression of genes associated with endoplasmic reticulum stress. CRISPR-Cas9 correction of a diabetes-inducing gene variant thus allows for robust differentiation of autologous SC-β cells that can reverse severe diabetes in an animal model.
Collapse
Affiliation(s)
- Kristina G Maxwell
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Punn Augsornworawat
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Leonardo Velazco-Cruz
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Michelle H Kim
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Rie Asada
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Shuntaro Morikawa
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. .,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
49
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
50
|
SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro. Cell Rep 2021; 31:107687. [PMID: 32460030 PMCID: PMC7304247 DOI: 10.1016/j.celrep.2020.107687] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
Generation of insulin-secreting β cells in vitro is a promising approach for diabetes cell therapy. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are differentiated to β cells (SC-β cells) and mature to undergo glucose-stimulated insulin secretion, but molecular regulation of this defining β cell phenotype is unknown. Here, we show that maturation of SC-β cells is regulated by the transcription factor SIX2. Knockdown (KD) or knockout (KO) of SIX2 in SC-β cells drastically limits glucose-stimulated insulin secretion in both static and dynamic assays, along with the upstream processes of cytoplasmic calcium flux and mitochondrial respiration. Furthermore, SIX2 regulates the expression of genes associated with these key β cell processes, and its expression is restricted to endocrine cells. Our results demonstrate that expression of SIX2 influences the generation of human SC-β cells in vitro. Velazco-Cruz et al. characterize the role of SIX2 in stem cell differentiation to β cells. SIX2 expression is restricted to late-stage endocrine cells. Generation of β cells does not require SIX2, but lack of SIX2 impairs maturation, as assessed by glucose-stimulated insulin secretion, calcium flux, mitochondrial respiration, and gene expression.
Collapse
|