1
|
de Souza EA, Mennitti LV, Santamarina AB, Minari TP, Jucá A, Sertorio MN, Pisani LP. Maternal preconception glucose intolerance and fatty acid intake from conception to weaning: impact on offspring energy homeostasis in both male and female. Eur J Nutr 2024; 63:3013-3024. [PMID: 39231868 DOI: 10.1007/s00394-024-03485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Environmental factors in the early life stages can lead the descendant to adaptations in gene expression, permanently impacting several structures and organs. The amount and quality of fatty acids in the maternal diet in pregnancy and lactation were found to impact offspring metabolism. So, maternal diet and insulin resistance can affect the male and female descendants through distinct pathways and at different time points. We hypothesized that maternal high-fat diet (HFD) intake before conception and an adequate amount of different fatty acids intake during pregnancy and lactation could influence the energy homeostasis system of 21-day-old offspring. Female rats received control diet (C) or HFD (HF) for 8 weeks before pregnancy. During pregnancy and lactation C group remained with same diet (C-C), HF group were distributed into 4 groups and received C diet (HF-C), normolipidic diet based on saturated fatty acids (HF-S) or based on polyunsaturated fatty acids n-3 (HF-P) or remained in same diet (HF-HF). Maternal HFD in preconception, pregnancy, and lactation (HF-HF) led to lower glucagon-like peptide-1 levels in male (HF-HF21) compared to other groups (C-C21, HF-C21, and HF-P21) and compared to HF-HF21 females. Neuropeptide YY levels were higher in the HF-HF21, HF-C21, and HF-S21 male offspring compared to HF-P21. HF-P21 was similar to C-C21. Positive correlations were found among the energy homeostasis markers genes expressed in the offspring hypothalamus. Maternal diet changes to adequate quantities of fatty acids during pregnancy and lactation showed less impaired results but was not entirely avoided. A maternal diet based on PUFA n-3 during pregnancy and lactation seems to reverse the damage of an HFD in preconception. These results of homeostasis energy system disturbance in the offspring at weaning give us clues about changes that precede the onset of the disease in adult life - adding notes to the knowledge for future investigations of prevention and treatment of chronic diseases.
Collapse
Affiliation(s)
- Esther Alves de Souza
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Laís Vales Mennitti
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
- Institute of Metabolic Science, Metabolic Research Laboratories, Department of Clinical Biochemistry, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Aline Boveto Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Tatiana Palotta Minari
- Department of Diabetes, Hypertension, and Obesity, State Faculty of Medicine in São José do Rio Preto (FAMERP), Medical School, São José do Rio Preto, São Paulo, Brazil
| | - Andrea Jucá
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Marcela Nascimento Sertorio
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana Pellegrini Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
- 136, Nutrition and Endocrine Physiology Laboratory, Biosciences Department, 311, 3th floor, Vila Mathias, Santos, 11015021, SP, Brazil.
| |
Collapse
|
2
|
Huang W, Xie C, Jones KL, Horowitz M, Rayner CK, Wu T. Reply to 'Letter to the Editor: Sex differences in the plasma glucagon responses to a high carbohydrate meal and a glucose drink in type 2 diabetes'. Diabetes Res Clin Pract 2024; 217:111880. [PMID: 39366639 DOI: 10.1016/j.diabres.2024.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Weikun Huang
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Cong Xie
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Karen L Jones
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Tongzhi Wu
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
3
|
Holst JJ. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab 2024; 6:1866-1885. [PMID: 39160334 DOI: 10.1038/s42255-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15-25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
McRae AN, Ticho AL, Liu Y, Ricardo-Silgado ML, Mangena NN, Jassir FF, Gonzalez-Izundegui D, Calderon G, Rohakhtar FR, Simon V, Li Y, Leggett C, Hurtado D, LaRusso N, Acosta AJ. Regulator of G-protein signaling expression in human intestinal enteroendocrine cells and potential role in satiety hormone secretion in health and obesity. EBioMedicine 2024; 107:105283. [PMID: 39142076 PMCID: PMC11367526 DOI: 10.1016/j.ebiom.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Gut L-type enteroendocrine cells (EECs) are intestinal chemosensory cells that secrete satiety hormones GLP-1 and PYY in response to activation of G-protein coupled receptors (GPCRs) by luminal components of nutrient digestion and microbial fermentation. Regulator of G-protein Signaling (RGS) proteins are negative regulators of GPCR signaling. The expression profile of RGS in EECs, and their potential role in satiety hormone secretion and obesity is unknown. METHODS Transcriptomic profiling of RGS was completed in native colonic EECs was completed using single-cell RNA sequencing (scRNA-Seq) in lean and obesity, and human jejunal EECs with data obtained from a publicly available RNAseq dataset (GSE114853). RGS validation studies were completed using whole mucosal intestinal tissue obtained during endoscopy in 61 patients (n = 42 OB, n = 19 Lean); a subset of patients' postprandial plasma was assayed for GLP-1 and PYY. Ex vivo human intestinal cultures and in vitro NCI-H716 cells overexpressing RGS9 were exposed to GLP-1 secretagogues in conjunction with a nonselective RGS-inhibitor and assayed for GLP-1 secretion. FINDINGS Transcriptomic profiling of colonic and jejunal enteroendocrine cells revealed a unique RGS expression profile in EECs, and further within GLP-1+ L-type EECs. In obesity the RGS expression profile was altered in colonic EECs. Human gut RGS9 expression correlated positively with BMI and negatively with postprandial GLP-1 and PYY. RGS inhibition in human intestinal cultures increased GLP-1 release from EECs ex vivo. NCI-H716 cells overexpressing RGS9 displayed defective nutrient-stimulated GLP-1 secretion. INTERPRETATION This study introduces the expression profile of RGS in human EECs, alterations in obesity, and suggests a role for RGS proteins as modulators of GLP-1 and PYY secretion from intestinal EECs. FUNDING AA is supported by the NIH(C-Sig P30DK84567, K23 DK114460), a Pilot Award from the Mayo Clinic Center for Biomedical Discovery, and a Translational Product Development Fund from The Mayo Clinic Center for Clinical and Translational Science Office of Translational Practice in partnership with the University of Minnesota Clinical and Translational Science Institute.
Collapse
Affiliation(s)
- Alison N McRae
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alexander L Ticho
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yuanhang Liu
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Maria Laura Ricardo-Silgado
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nothando N Mangena
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Fauzi Feris Jassir
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Gonzalez-Izundegui
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gerardo Calderon
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Vernadette Simon
- Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN, USA
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Cadman Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Daniela Hurtado
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Mayo Clinic, Jacksonville, FL, USA
| | - Nicholas LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Andres J Acosta
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Persson SMT, Casselbrant A, Alarai A, Elebring E, Fändriks L, Wallenius V. Role of FFAR3 in ketone body regulated glucagon-like peptide 1 secretion. Biochem Biophys Rep 2024; 39:101749. [PMID: 38910871 PMCID: PMC11192792 DOI: 10.1016/j.bbrep.2024.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Background Roux-en-Y gastric bypass (RYGB) is an effective treatment for obesity, resulting in long-term weight loss and rapid remission of type 2 diabetes mellitus. Improved glucagon-like peptide 1 (GLP-1) levels is one factor that contributes to the positive effects. Prior to RYGB, GLP-1 response is blunted which can be attributed to intestinal ketogenesis. Intestinal produced ketone bodies inhibit GLP-1 secretion in enteroendocrine cells via an unidentified G-protein coupled receptors (GPCRs). A possible class of GPCRs through which ketone bodies may reach are the free fatty acid receptors (FFARs) located at the basolateral membrane of enteroendocrine cells. Aim To evaluate FFAR3 expression in enteroendocrine cells of the small intestine under different circumstances, such as diet and bariatric surgery, as well as explore the link between ketone bodies and GLP-1 secretion. Materials and methods FFAR3 and enteroendocrine cell expression was analyzed using Western blot and immunohistochemistry in biopsies from healthy volunteers, obese patients undergoing RYGB and mice. GLUTag cells were used to study GLP-1 secretion and FFAR3 signaling pathways. Results The expression of FFAR3 is markedly influenced by diet, especially high fat diet, which increased FFAR3 protein expression. Lack of substrate such as free fatty acids in the alimentary limb after RYGB, downregulate FFAR3 expression. The number of enteroendocrine cells was affected by diet in the normal weight individuals but not in the subjects with obesity. In GLUTag cells, we show that the ketone bodies exert its blocking effect on GLP-1 secretion via the FFAR3, and the Gαi/o signaling pathway. Conclusion Our findings that ketone bodies via FFAR3 inhibits GLP-1 secretion bring important insight into the pathophysiology of T2D. This highlights the role of FFAR3 as a possible target for future anti-diabetic drugs and treatments.
Collapse
Affiliation(s)
- Sara MT. Persson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Casselbrant
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Aiham Alarai
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erik Elebring
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital Östra, Gothenburg, Sweden
| |
Collapse
|
6
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
7
|
Eriksen R, White MC, Dawed AY, Perez IG, Posma JM, Haid M, Sharma S, Prehn C, Thomas EL, Koivula RW, Bizzotto R, Mari A, Giordano GN, Pavo I, Schwenk JM, De Masi F, Tsirigos KD, Brunak S, Viñuela A, Mahajan A, McDonald TJ, Kokkola T, Rutters F, Beulens J, Muilwijk M, Blom M, Elders P, Hansen TH, Fernandez-Tajes J, Jones A, Jennison C, Walker M, McCarthy MI, Pedersen O, Ruetten H, Forgie I, Holst JJ, Thomsen HS, Ridderstråle M, Bell JD, Adamski J, Franks PW, Hansen T, Holmes E, Frost G, Pearson ER. The Association of Cardiometabolic, Diet and Lifestyle Parameters With Plasma Glucagon-like Peptide-1: An IMI DIRECT Study. J Clin Endocrinol Metab 2024; 109:e1697-e1707. [PMID: 38686701 PMCID: PMC11318998 DOI: 10.1210/clinem/dgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 05/02/2024]
Abstract
CONTEXT The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHODS We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. RESULTS Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.
Collapse
Affiliation(s)
- Rebeca Eriksen
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Margaret C White
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Adem Y Dawed
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Isabel Garcia Perez
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Joram M Posma
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
- Health Data Research UK, London NW1 2BE, UK
| | - Mark Haid
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Sapna Sharma
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764 Bavaria, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Robert W Koivula
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Skåne University Hospital, 221 00 Malmö, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Roberto Bizzotto
- Institute of Neuroscience–National Research Council, 35127 Padua, Italy
| | - Andrea Mari
- Institute of Neuroscience–National Research Council, 35127 Padua, Italy
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Skåne University Hospital, 221 00 Malmö, Sweden
| | - Imre Pavo
- Eli Lilly Regional Operations GmbH, 1030 Vienna, Austria
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH—Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Federico De Masi
- Department of Health Technology, Kgs Lyngby and The Novo Nordisk Foundation Center for Protein Research, Technical University of Denmark, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantinos D Tsirigos
- Department of Health Technology, Kgs Lyngby and The Novo Nordisk Foundation Center for Protein Research, Technical University of Denmark, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Brunak
- Department of Health Technology, Kgs Lyngby and The Novo Nordisk Foundation Center for Protein Research, Technical University of Denmark, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ana Viñuela
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Timothy J McDonald
- NIHR Exeter Clinical Research Facility, Royal Devon & Exeter Hospital, Exeter EX2 5DW, UK
| | - Tarja Kokkola
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - Femke Rutters
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Joline Beulens
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Mirthe Muilwijk
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Marieke Blom
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Petra Elders
- Department of Epidemiology and data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, 1007 Amsterdam, the Netherlands
| | - Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Angus Jones
- NIHR Exeter Clinical Research Facility, Royal Devon & Exeter Hospital, Exeter EX2 5DW, UK
| | - Chris Jennison
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Mark Walker
- Institute of Cellular Medicine (Diabetes), Newcastle University, Newcastle upon Tyne NE3 1DQ, UK
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LH, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hartmut Ruetten
- Sanofi-Aventis Deutschland GmbH, R&D, 65926 Frankfurt am Main, Germany
| | - Ian Forgie
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik S Thomsen
- Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Skåne University Hospital, 221 00 Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elaine Holmes
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Gary Frost
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Ewan R Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
8
|
Lin L, Pan X, Feng Y, Yang J. Chronic kidney disease combined with metabolic syndrome is a non-negligible risk factor. Ther Adv Endocrinol Metab 2024; 15:20420188241252309. [PMID: 39071115 PMCID: PMC11273817 DOI: 10.1177/20420188241252309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/10/2024] [Indexed: 07/30/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of conditions characterized by hypertension (HTN), hyperglycaemia or insulin resistance (IR), hyperlipidaemia, and abdominal obesity. MetS is associated with a high incidence of cardiovascular events and mortality and is an independent risk factor for chronic kidney disease (CKD). MetS can cause CKD or accelerate the progression of kidney disease. Recent studies have found that MetS and kidney disease have a cause-and-effect relationship. Patients with CKD, those undergoing kidney transplantation, or kidney donors have a significantly higher risk of developing MetS than normal people. The present study reviewed the possible mechanisms of MetS in patients with CKD, including the disorders of glucose and fat metabolism after kidney injury, IR, HTN and the administration of glucocorticoid and calcineurin inhibitors. In addition, this study reviewed the effect of MetS in patients with CKD on important target organs such as the kidney, heart, brain and blood vessels, and the treatment and prevention of CKD combined with MetS. The study aims to provide strategies for the diagnosis, treatment and prevention of CKD in patients with MetS.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - Xianfeng Pan
- Department of Nephrology, Chongqing Kaizhou District People’s Hospital of Chongqing, Chongqing, China
| | - Yuanjun Feng
- Department of Nephrology, Guizhou Aerospace Hospital, Guizhou 563000, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| |
Collapse
|
9
|
Cordiner RLM, Bedair K, Mari A, Pearson E. Low-Dose Sulfonylurea Plus DPP4 Inhibitor Lower Blood Glucose and Enhance Beta-Cell Function Without Hypoglycemia. J Clin Endocrinol Metab 2024; 109:2106-2115. [PMID: 38267622 PMCID: PMC11244179 DOI: 10.1210/clinem/dgae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
CONTEXT Low-dose sulfonylureas (SUs) have been found to augment the classical incretin effect, increase glucose sensitivity and late phase incretin potentiation. OBJECTIVE To evaluate potential synergy between low-dose SU plus a dipeptidyl peptidase 4 (DPP4) inhibitor. METHODS Unblinded randomized crossover study at the Clinical Research Centre, University of Dundee. Thirty participants with T2DM (HbA1c < 64 mmol/mol) were treated with diet or metformin. Participants completed 4, 14-day blocks in a random order: control, gliclazide 20 mg (SU), sitagliptin 100 mg (DPP4 inhibitor [DPP4i]), or combination (SUDPP4i). A mixed meal test was conducted after each intervention. The primary outcome was the effect of treatment on beta-cell glucose sensitivity. Secondary outcomes included frequency of glucose <3 mmol/L on continuous glucose monitoring, subanalyses by genotype (KNCJ11 E23K), gender, and body mass index. RESULTS SU combination with DPP4i showed additive effect on glucose lowering: mean glucose area under the curve (mean 95% CI) (mmol/L) was control 11.5 (10.7-12.3), DPP4i 10.2 (9.4-11.1), SU 9.7 (8.9-10.5), SUDPP4i 8.7 (7.9-9.5) (P < .001). Glucose sensitivity mirrored the additive effect (pmol min-1 m-2 mM-1): control 71.5 (51.1-91.9), DPP4i 75.9 (55.7-96.0), SU 86.3 (66.1-106.4), SUDPP4i 94.1 (73.9-114.3) (P = .04). The additive effect was seen in men but not women. Glucose time in range <3 mmol/L on continuous glucose monitoring (%) was unaffected: control 1 (2-4), DPP4i 2 (3-6), SU 1 (0-4), SUDPP4i 3 (2-7) (P = .65). CONCLUSION Low-dose sulfonylurea plus DPP4i has a potent glucose-lowering effect through augmentation of beta-cell function. A double-blind randomized controlled trial would formalize efficacy and safety of this combination, which may avoid negative aspects of SU.
Collapse
Affiliation(s)
- Ruth L M Cordiner
- Division of Population, Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Khaled Bedair
- Division of Population, Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andrea Mari
- National Research Council, Institute of Neuroscience, University of Padua, 35127 Padua, Italy
| | - Ewan Pearson
- Division of Population, Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
10
|
Cannarella R, Curto R, Condorelli RA, Lundy SD, La Vignera S, Calogero AE. Molecular insights into Sertoli cell function: how do metabolic disorders in childhood and adolescence affect spermatogonial fate? Nat Commun 2024; 15:5582. [PMID: 38961093 PMCID: PMC11222552 DOI: 10.1038/s41467-024-49765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Male infertility is a major public health concern globally with unknown etiology in approximately half of cases. The decline in total sperm count over the past four decades and the parallel increase in childhood obesity may suggest an association between these two conditions. Here, we review the molecular mechanisms through which obesity during childhood and adolescence may impair future testicular function. Several mechanisms occurring in obesity can interfere with the delicate metabolic processes taking place at the testicular level during childhood and adolescence, providing the molecular substrate to hypothesize a causal relationship between childhood obesity and the risk of low sperm counts in adulthood.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Scott D Lundy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Peng Z, Bao L, Iben J, Wang S, Shi B, Shi YB. Protein arginine methyltransferase 1 regulates mouse enteroendocrine cell development and homeostasis. Cell Biosci 2024; 14:70. [PMID: 38835047 DOI: 10.1186/s13578-024-01257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis. However, regulation of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine methyltransferase (PRMT) 1, a histone methyltransferase and transcription co-activator, is important for adult intestinal epithelial homeostasis. RESULTS To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA-Seq on small intestinal crypts of tamoxifen-induced intestinal epithelium-specific PRMT1 knockout and PRMT1fl/fl adult mice. We found that PRMT1fl/fl and PRMT1-deficient small intestinal crypts exhibited markedly different mRNA profiles. Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding enteroendocrine-specific hormones and transcription factors were upregulated in PRMT1-deficient small intestine. Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, Neurogenin 3-positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knockout mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, including Neuod1, Pax4, Insm1, in PRMT1-deficient crypts. CONCLUSIONS Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendocrine cell development, most likely via inhibition of Neurogenin 3-mediated commitment to EEC lineage. It further suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect metabolism and metabolic diseases.
Collapse
Affiliation(s)
- Zhaoyi Peng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Cannarella R, Crafa A, Curto R, Condorelli RA, La Vignera S, Calogero AE. Obesity and male fertility disorders. Mol Aspects Med 2024; 97:101273. [PMID: 38593513 DOI: 10.1016/j.mam.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Often associated with obesity, male infertility represents a widespread condition that challenges the wellbeing of the couple. In this article, we provide a comprehensive and critical analysis of studies exploring the association between obesity and male reproductive function, to evaluate the frequency of this association, and establish the effects of increased body weight on conventional and biofunctional sperm parameters and infertility. In an attempt to find possible molecular markers of infertility in obese male patients, the numerous mechanisms responsible for infertility in overweight/obese patients are reviewed in depth. These include obesity-related functional hypogonadism, insulin resistance, hyperinsulinemia, chronic inflammation, adipokines, irisin, gut hormones, gut microbiome, and sperm transcriptome. According to meta-analytic evidence, excessive body weight negatively influences male reproductive health. This can occurr through a broad array of molecular mechanisms. Some of these are not yet fully understood and need to be further elucidated in the future. A better understanding of the effects of metabolic disorders on spermatogenesis and sperm fertilizing capacity is very useful for identifying new diagnostic markers and designing therapeutic strategies for better clinical management of male infertility.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Bannon CA, Meek CL, Reimann F, Gribble FM. Fasting and post prandial pancreatic and enteroendocrine hormone levels in obese and non-obese participants. Peptides 2024; 176:171186. [PMID: 38490484 DOI: 10.1016/j.peptides.2024.171186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Circulating insulin levels are known to be increased in people with higher body mass index (BMI) due to effects of adiposity on insulin resistance, whilst gut hormones have a more complex relationship, with fasting peptideYY (PYY) reported to be inversely related to BMI. This study aimed to further explore fasting and post prandial pancreatic and gut hormone concentrations in plasma samples from obese and non-obese participants. Participants with healthy BMI (n=15), overweight BMI (n=29) and obesity (n=161) had samples taken fasting and 30 min post mixed liquid meal for analysis of glucagon-like peptide-1 (GLP-1), PYY, glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon. Data visualiation used linear discriminant analysis for dimensionality reduction, to visualise the data and assess scaling of each hormone. Fasting levels of insulin, GIP and PYY were shown to be key classifiers between the 3 groups on ANCOVA analysis, with an observation of increased GIP levels in overweight, but not obese participants. In non-obese subjects, fasting GIP, PYY and insulin correlated with BMI, whereas in subjects with obesity only the pancreatic hormones glucagon and insulin correlated with BMI. Concentrations of total GLP-1 in the fasting state correlated strongly with glucagon levels, highlighting potential assay cross-reactivities. The study, which included a relatively large number of subjects with severe obesity, supported previous evidence of BMI correlating negatively with fasting PYY and positively with fasting insulin. The observation of increased fasting GIP levels in overweight but not obese participants deserves further validation and mechanistic investigation.
Collapse
Affiliation(s)
- Christopher A Bannon
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ UK.
| | - Claire L Meek
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ UK; Current addresses: Leicester Diabetes Centre, University of Leicester, Gwendoline Road, Leicester LE5 4PW, UK; and University Hospitals Leicester, Leicester General Hospitals, Gwendoline Road, Leicester LE5 4PW, UK
| | - Frank Reimann
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Fiona M Gribble
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
14
|
Stinson SE, Fernández de Retana Alzola I, Brünner Hovendal ED, Lund MAV, Fonvig CE, Holm LA, Jonsson AE, Frithioff-Bøjsøe C, Christiansen M, Pedersen O, Ängquist L, Sørensen TIA, Holst JJ, Hartmann B, Holm JC, Hansen T. Altered Glucagon and GLP-1 Responses to Oral Glucose in Children and Adolescents With Obesity and Insulin Resistance. J Clin Endocrinol Metab 2024; 109:1590-1600. [PMID: 38087928 PMCID: PMC11099488 DOI: 10.1210/clinem/dgad728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 05/18/2024]
Abstract
CONTEXT Pediatric obesity is characterized by insulin resistance, yet it remains unclear whether insulin resistance contributes to abnormalities in glucagon and incretin secretion. OBJECTIVE To examine whether fasting and stimulated glucagon, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) concentrations differ between children and adolescents with obesity and insulin resistance (OIR), obesity and normal insulin sensitivity (OIS), and controls with normal weight (NW). METHODS 80 (34 boys) children and adolescents, aged 7-17 years with OIR (n = 22), OIS (n = 22), and NW (n = 36) underwent an oral glucose tolerance test with measurements of serum insulin, plasma glucose, glucagon, total GLP-1, and total GIP. Homeostatic model assessment of insulin resistance (HOMA-IR), single point insulin sensitivity estimator (SPISE), Matsuda index, insulinogenic index (IGI), and oral disposition index (ODI) were calculated. RESULTS Fasting concentrations of glucagon and GLP-1 were higher in the OIR group, with no significant differences for GIP. The OIR group had higher glucagon total area under the curve (tAUC0-120) and lower GLP-1 incremental AUC (iAUC0-120), with no significant differences in GIP iAUC0-120. Higher fasting glucagon was associated with higher HOMA-IR, lower Matsuda index, lower SPISE, higher IGI, and higher plasma alanine transaminase, whereas higher fasting GLP-1 was associated with higher HOMA-IR, lower Matsuda index, and lower ODI. Higher glucagon tAUC0-120 was associated lower SPISE and lower Matsuda index, whereas lower GLP-1 iAUC0-120 was associated with a higher HOMA-IR, lower Matsuda index, and lower ODI. CONCLUSION Children and adolescents with OIR have elevated fasting concentrations of glucagon and GLP-1, higher glucagon and lower GLP-1 responses during an OGTT compared to those with OIS and NW. In contrast, individuals with OIS have similar hormone responses to those with NW.
Collapse
Affiliation(s)
- Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ierai Fernández de Retana Alzola
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Emilie Damgaard Brünner Hovendal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Morten Asp Vonsild Lund
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Anna Elisabet Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Frithioff-Bøjsøe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte University Hospital, 2900 Copenhagen, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
15
|
Huber H, Schieren A, Holst JJ, Simon MC. Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions - a narrative review. Am J Clin Nutr 2024; 119:599-627. [PMID: 38218319 PMCID: PMC10972717 DOI: 10.1016/j.ajcnut.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide and central mediator of glucose metabolism, is secreted by L cells in the intestine in response to food intake. Postprandial secretion of GLP-1 is triggered by nutrient-sensing via transporters and G-protein-coupled receptors (GPCRs). GLP-1 secretion may be lower in adults with obesity/overweight (OW) or type 2 diabetes mellitus (T2DM) than in those with normal glucose tolerance (NGT), but these findings are inconsistent. Because of the actions of GLP-1 on stimulating insulin secretion and promoting weight loss, GLP-1 and its analogs are used in pharmacologic preparations for the treatment of T2DM. However, physiologically stimulated GLP-1 secretion through the diet might be a preventive or synergistic method for improving glucose metabolism in individuals who are OW, or have impaired glucose tolerance (IGT) or T2DM. This narrative review focuses on fasting and postprandial GLP-1 secretion in individuals with different metabolic conditions and degrees of glucose intolerance. Further, the influence of relevant diet-related factors (e.g., specific diets, meal composition, and size, phytochemical content, and gut microbiome) that could affect fasting and postprandial GLP-1 secretion are discussed. Some studies showed diminished glucose- or meal-stimulated GLP-1 response in participants with T2DM, IGT, or OW compared with those with NGT, whereas other studies have reported an elevated or unchanged GLP-1 response in T2DM or IGT. Meal composition, especially the relationship between macronutrients and interventions targeting the microbiome can impact postprandial GLP-1 secretion, although it is not clear which macronutrients are strong stimulants of GLP-1. Moreover, glucose tolerance, antidiabetic treatment, grade of overweight/obesity, and sex were important factors influencing GLP-1 secretion. The results presented in this review highlight the potential of nutritional and physiologic stimulation of GLP-1 secretion. Further research on fasting and postprandial GLP-1 concentrations and the resulting metabolic consequences under different metabolic conditions is needed.
Collapse
Affiliation(s)
- Hanna Huber
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden; Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Alina Schieren
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Marie-Christine Simon
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany.
| |
Collapse
|
16
|
Evans LL, Lee WG, Karimzada M, Patel VH, Aribindi VK, Kwiat D, Graham JL, Cummings DE, Havel PJ, Harrison MR. Evaluation of a Magnetic Compression Anastomosis for Jejunoileal Partial Diversion in Rhesus Macaques. Obes Surg 2024; 34:515-523. [PMID: 38135738 PMCID: PMC10810932 DOI: 10.1007/s11695-023-07012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Metabolic surgery remains underutilized for treating type 2 diabetes, as less invasive alternative interventions with improved risk profiles are needed. We conducted a pilot study to evaluate the feasibility of a novel magnetic compression device to create a patent limited caliber side-to-side jejunoileal partial diversion in a nonhuman primate model. MATERIALS AND METHODS Using an established nonhuman primate model of diet-induced insulin resistance, a magnetic compression device was used to create a side-to-side jejunoileal anastomosis. Primary outcomes evaluated feasibility (e.g., device mating and anastomosis patency) and safety (e.g., device-related complications). Secondary outcomes evaluated the device's ability to produce metabolic changes associated with jejunoileal partial diversion (e.g., homeostatic model assessment of insulin resistance [HOMA-IR] and body weight). RESULTS Device mating, spontaneous detachment, and excretion occurred in all animals (n = 5). There were no device-related adverse events. Upon completion of the study, ex vivo anastomoses were widely patent with healthy mucosa and no evidence of stricture. At 6 weeks post-device placement, HOMA-IR improved to below baseline values (p < 0.05). Total weight also decreased in a linear fashion (R2 = 0.97) with total weight loss at 6 weeks post-device placement of 14.4% (p < 0.05). CONCLUSION The use of this novel magnetic compression device to create a limited caliber side-to-side jejunoileal anastomosis is safe and likely feasible in a nonhuman primate model. The observed glucoregulatory and metabolic effects of a partial jejunoileal bypass with this device warrant further investigation to validate the long-term glucometabolic impact of this approach.
Collapse
Affiliation(s)
- Lauren L Evans
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - William G Lee
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Mohammad Karimzada
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Veeshal H Patel
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Vamsi K Aribindi
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Dillon Kwiat
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, USA
| | - David E Cummings
- Division of Metabolism, Endocrinology and Nutrition, University of Washington and VA Puget Sound Health Care System, Seattle, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, USA
| | - Michael R Harrison
- Department of Surgery, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
17
|
Sodum N, Mattila O, Sharma R, Kamakura R, Lehto VP, Walkowiak J, Herzig KH, Raza GS. Nutrient Combinations Sensed by L-Cell Receptors Potentiate GLP-1 Secretion. Int J Mol Sci 2024; 25:1087. [PMID: 38256160 PMCID: PMC10816371 DOI: 10.3390/ijms25021087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity is a risk factor for cardiometabolic diseases. Nutrients stimulate GLP-1 release; however, GLP-1 has a short half-life (<2 min), and only <10-15% reaches the systemic circulation. Human L-cells are localized in the distal ileum and colon, while most nutrients are absorbed in the proximal intestine. We hypothesized that combinations of amino acids and fatty acids potentiate GLP-1 release via different L-cell receptors. GLP-1 secretion was studied in the mouse enteroendocrine STC-1 cells. Cells were pre-incubated with buffer for 1 h and treated with nutrients: alpha-linolenic acid (αLA), phenylalanine (Phe), tryptophan (Trp), and their combinations αLA+Phe and αLA+Trp with dipeptidyl peptidase-4 (DPP4) inhibitor. After 1 h GLP-1 in supernatants was measured and cell lysates taken for qPCR. αLA (12.5 µM) significantly stimulated GLP-1 secretion compared with the control. Phe (6.25-25 mM) and Trp (2.5-10 mM) showed a clear dose response for GLP-1 secretion. The combination of αLA (6.25 µM) and either Phe (12.5 mM) or Trp (5 mM) significantly increased GLP-1 secretion compared with αLA, Phe, or Trp individually. The combination of αLA and Trp upregulated GPR120 expression and potentiated GLP-1 secretion. These nutrient combinations could be used in sustained-delivery formulations to the colon to prolong GLP-1 release for diminishing appetite and preventing obesity.
Collapse
Affiliation(s)
- Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Orvokki Mattila
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Remi Kamakura
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Vesa-Pekka Lehto
- Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznań, Poland;
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznań, Poland;
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| |
Collapse
|
18
|
Pappa E, Busygina K, Harada S, Hermann H, Then C, Lechner A, Ferrari U, Seissler J. Association of GLP-1 secretion with parameters of glycemic control in women after gestational diabetes mellitus. BMJ Open Diabetes Res Care 2024; 12:e003706. [PMID: 38199777 PMCID: PMC10806896 DOI: 10.1136/bmjdrc-2023-003706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Women with a history of gestational diabetes mellitus (GDM) are at high risk of developing type 2 diabetes, while the exact mechanisms underlying its pathophysiology are still unclear. We investigated the association of glucagon-like peptide-1 (GLP-1) response to oral glucose with parameters of glycemic control in women with previous GDM in the prospective PPSDiab (Prediction, Prevention, and Subclassification of Type 2 Diabetes) study. RESEARCH DESIGN AND METHODS Glucose metabolism parameters and GLP-1 secretion were analyzed during oral glucose tolerance test (OGTT) in women with previous GDM (n=129) and women with a history of normal glucose tolerance (n=67) during pregnancy (controls). First- and second-phase insulin and GLP-1 secretion in relation to plasma glucose (PG) levels were assessed, and development of pre-diabetes was analyzed after 5-year follow-up among women with previous GDM and a normal glycemic state at baseline (n=58). RESULTS The area under the curve (AUC during the OGTT 0-120 min) of PG and insulin but not GLP-1 differed significantly between post-GDM women and controls. However, women with previous GDM had a significantly decreased GLP-1 response in relation to PG and plasma insulin during the second phase of the OGTT. After a follow-up of 5 years, 19.0% post-GDM women with a normal glycemic state at the baseline visit developed abnormal glucose metabolism. The total, first- and second-phase AUC GLP-1/PG and GLP-1/insulin ratios were not associated with development of abnormal glucose tolerance. CONCLUSIONS Women with previous GDM showed a reduced GLP-1 response in relation to PG and insulin concentrations indicating early abnormalities in glucose metabolism. However, the altered GLP-1 response to oral glucose did not predict progression to pre-diabetes and type 2 diabetes in the first 5 years after GDM.
Collapse
Affiliation(s)
- Eleni Pappa
- Diabetes Zentrum - Campus Innenstadt, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Kristina Busygina
- Diabetes Zentrum - Campus Innenstadt, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Saori Harada
- Diabetes Zentrum - Campus Innenstadt, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), LMU Medizinische Fakultät, Munich, Germany
| | - Hana Hermann
- Diabetes Zentrum - Campus Innenstadt, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Cornelia Then
- Diabetes Zentrum - Campus Innenstadt, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Andreas Lechner
- Diabetes Zentrum - Campus Innenstadt, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Uta Ferrari
- Diabetes Zentrum - Campus Innenstadt, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Jochen Seissler
- Diabetes Zentrum - Campus Innenstadt, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
19
|
Barakat G, Assi G, Khalil H, El Khatib S. A Comprehensive Review on GLP-1 Signaling Pathways in the Management of Diabetes Mellitus - Focus on the Potential Role of GLP-1 Receptors Agonists and Selenium among Various Organ Systems. Curr Diabetes Rev 2024; 21:e160424228945. [PMID: 38629376 DOI: 10.2174/0115733998287178240403055901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 10/30/2024]
Abstract
Diabetes Mellitus develops when the body becomes unable to fuel its cells with glucose, which results in the accumulation of sugar excess in the bloodstream. Because it has diverse pathophysiological impacts on the body, diabetes mellitus represents a significant issue of concern in an attempt to find suitable treatment modalities and medications for afflicted diabetic patients. Glucagon-like peptide 1 (GLP-1) plays a pivotal role in the incretin effect, emerging as a prospective treatment for diabetes mellitus and a promising means of regenerating pancreatic cells, whether directly or through its receptor agonists. It has been shown that GLP-1 efficiently increases insulin production, lowers blood sugar levels in patients with type 2 diabetes mellitus, and decreases appetite, craving, and hunger, therefore amplifying the sensation of fullness and satiety. Moreover, since they are all dependent on GLP-1 effect, intricate signaling pathways share some similarities during specific phases, although the pathways continue to exhibit significant divergence engendered by specific reactions and effects in each organ, which encompasses the rationale behind observed differences. This triggers an expanding range of GLP-1 R agonists, creating new unforeseen research and therapeutic application prospects. This review aims to explain the incretin effect, discuss how GLP-1 regulates blood glucose levels, and how it affects different body organs, as well as how it transmits signals, before introducing selenium's role in the incretin impact.
Collapse
Affiliation(s)
- Ghinwa Barakat
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hussein Khalil
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
20
|
Jones LA, Sun EW, Lumsden AL, Thorpe DW, Peterson RA, De Fontgalland D, Sposato L, Rabbitt P, Hollington P, Wattchow DA, Keating DJ. Alterations in GLP-1 and PYY release with aging and body mass in the human gut. Mol Cell Endocrinol 2023; 578:112072. [PMID: 37739120 DOI: 10.1016/j.mce.2023.112072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The lining of our intestinal surface contains an array of hormone-producing cells that are collectively our bodies' largest endocrine cell reservoir. These "enteroendocrine" (EE) cells reside amongst the billions of absorptive epithelial and other cell types that line our gastrointestinal tract and can sense and respond to the ever-changing internal environment in our gut. EE cells release an array of important signalling molecules that can act as hormones, including glucagon-like peptide (GLP-1) and peptide YY (PYY) which are co-secreted from L cells. While much is known about the effects of these hormones on metabolism, insulin secretion and food intake, less is understood about their secretion from human intestinal tissue. In this study we assess whether GLP-1 and PYY release differs across human small and large intestinal tissue locations within the gastrointestinal tract, and/or by sex, body weight and the age of an individual. We identify that the release of both hormones is greater in more distal regions of the human colon, but is not different between sexes. We observe a negative correlation of GLP-1 and BMI in the small, but not large, intestine. Increased aging correlates with declining secretion of both GLP-1 and PYY in human large, but not small, intestine. When the data for large intestine is isolated by region, this relationship with age remains significant for GLP-1 in the ascending and descending colon and in the descending colon for PYY. This is the first demonstration that site-specific differences in GLP-1 and PYY release occur in human gut, as do site-specific relationships of L cell secretion with aging and body mass.
Collapse
Affiliation(s)
- Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Amanda L Lumsden
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, and South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Daniel W Thorpe
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Rochelle A Peterson
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Dayan De Fontgalland
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Luigi Sposato
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
21
|
Visentin R, Brodersen K, Richelsen B, Møller N, Dalla Man C, Pedersen AK, Abrahamsen J, Holst JJ, Nielsen MF. Increased Insulin Secretion and Glucose Effectiveness in Obese Patients with Type 2 Diabetes following Bariatric Surgery. J Diabetes Res 2023; 2023:7127426. [PMID: 38020201 PMCID: PMC10663093 DOI: 10.1155/2023/7127426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background β-cell dysfunction and insulin resistance are the main mechanisms causing glucose intolerance in type 2 diabetes (T2D). Bariatric surgeries, i.e., sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), are procedures both known to induce weight loss, increase insulin action, and enhance β-cell function, but hepatic insulin extraction and glucose effectiveness may also play a role. Methods To determine the contribution of these regulators on glucose tolerance after bariatric surgery, an oral glucose tolerance test (OGTT) was performed before and 2 months after surgery in 9 RYGB and 7 SG subjects. Eight healthy subjects served as metabolic controls. Plasma glucose, insulin, C-peptide, GLP-1, and GIP were measured during each OGTT. Insulin sensitivity and secretion, glucose effectiveness, and glucose rate of appearance were determined via oral minimal models. Results RYGB and SG resulted in similar weight reductions (13%, RYGB (p < 0.01); 14%, SG (p < 0.05)). Two months after surgery, insulin secretion (p < 0.05) and glucose effectiveness both improved equally in the two groups (11%, RYGB (p < 0.01); 8%, SG (p > 0.05)), whereas insulin sensitivity remained virtually unaltered. Bariatric surgery resulted in a comparable increase in the GLP-1 response during the OGTT, whereas GIP concentrations remained unaltered. Following surgery, oral glucose intake resulted in a comparable increase in hepatic insulin extraction, the response in both RYGB and SG patients significantly exceeding the response observed in the control subjects. Conclusions These results demonstrate that the early improvement in glucose tolerance in obese T2D after RYGB and SG surgeries is attributable mainly to increased insulin secretion and glucose effectiveness, while insulin sensitivity seems to play only a minor role. This trial is registered with NCT02713555.
Collapse
Affiliation(s)
- Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Bjørn Richelsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital & Clinical Medicine, Aarhus University, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital & Clinical Medicine, Aarhus University, Denmark
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Jan Abrahamsen
- Department of Radiology, Viborg General Hospital, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation, Center of Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
22
|
Abstract
Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
23
|
Drucker DJ, Holst JJ. The expanding incretin universe: from basic biology to clinical translation. Diabetologia 2023; 66:1765-1779. [PMID: 36976349 DOI: 10.1007/s00125-023-05906-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023]
Abstract
Incretin hormones, principally glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(GLP-1), potentiate meal-stimulated insulin secretion through direct (GIP + GLP-1) and indirect (GLP-1) actions on islet β-cells. GIP and GLP-1 also regulate glucagon secretion, through direct and indirect pathways. The incretin hormone receptors (GIPR and GLP-1R) are widely distributed beyond the pancreas, principally in the brain, cardiovascular and immune systems, gut and kidney, consistent with a broad array of extrapancreatic incretin actions. Notably, the glucoregulatory and anorectic activities of GIP and GLP-1 have supported development of incretin-based therapies for the treatment of type 2 diabetes and obesity. Here we review evolving concepts of incretin action, focusing predominantly on GLP-1, from discovery, to clinical proof of concept, to therapeutic outcomes. We identify established vs uncertain mechanisms of action, highlighting biology conserved across species, while illuminating areas of active investigation and uncertainty that require additional clarification.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Jalleh RJ, Marathe CS, Trahair LG, Jones KL, Horowitz M. A Biphasic Glucose Response during an Oral Glucose Tolerance Test Is Associated with Greater Plasma Insulin and GLP-1 Responses and a Reduction in 1-Hour Glucose but Does Not Relate to the Rate of Gastric Emptying in Healthy, Older Adults. Nutrients 2023; 15:3889. [PMID: 37764673 PMCID: PMC10534830 DOI: 10.3390/nu15183889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The pattern of the plasma glucose response curve during an oral glucose tolerance test (OGTT) is of prognostic significance with "biphasic" when compared with "monophasic" patterns being associated with greater insulin sensitivity/secretion and a reduced risk of progression to diabetes. The relationships of the glucose response curves with gastric emptying and incretin hormone secretion are not known. METHODS Thirty-six adults (age > 65 years) without known diabetes consumed a 300 mL drink containing 75 g glucose and 150 mg C13-acetate at baseline and follow-up after 5.8 ± 0.1 years. Plasma glucose, glucagon-like peptide-1 (GLP-1), glucose independent insulinotropic polypeptide (GIP) and insulin were measured, and participants classified according to the pattern of their glucose response. Gastric emptying was measured on breath samples (stable isotope breath test). RESULTS At baseline, 22 participants had a "monophasic" and 14 a "biphasic" glucose response. The 1 h plasma glucose response curve was greater and the GLP-1 AUC0-120 min and insulin secretion lower in the monophasic group. There were no differences in gastric emptying, GIP or insulin sensitivity. At the follow-up, the 1 h glucose response curve was greater again, while GLP-1 AUC0-120 min was lower in the monophasic group. CONCLUSIONS A biphasic curve is associated with a higher 60 min glucose response curve and increases in GLP-1, but no difference in either GIP or gastric emptying.
Collapse
Affiliation(s)
- Ryan J Jalleh
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia
| | - Chinmay S Marathe
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Laurence G Trahair
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Karen L Jones
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
25
|
Lee MH, Febriana E, Lim M, Baig S, Halter JB, Magkos F, Toh SA. Asian females without diabetes are protected from obesity-related dysregulation of glucose metabolism compared with males. Obesity (Silver Spring) 2023; 31:2304-2314. [PMID: 37534562 DOI: 10.1002/oby.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE The impact of obesity on the risk for type 2 diabetes differs between males and females; however, the underlying reasons are unclear. This study aimed to investigate the effect of sex on obesity-driven changes in the mechanisms regulating glucose metabolism (insulin sensitivity and secretion) among Asian individuals without diabetes in Singapore. METHODS The study assessed glucose tolerance using oral glucose tolerance test, insulin-mediated glucose uptake using hyperinsulinemic-euglycemic clamp, acute insulin response using an intravenous glucose challenge, and insulin secretion rates in the fasting state and in response to glucose ingestion using mathematical modeling in 727 males and 952 females who had normal body weight (n = 602, BMI < 23 kg/m2 ), overweight (n = 662, 23 ≤ BMI < 27.5), or obesity (n = 415, BMI ≥ 27.5). RESULTS There were no sex differences among lean individuals. Obesity gradually worsened metabolic function, and the progressive adverse effects of obesity on insulin action and secretion were more pronounced in males than females, such that among participants with obesity, females had greater insulin sensitivity, lower insulin secretion, and lower fasting insulin concentration than males. The increase in waist to hip ratio with increasing BMI was more pronounced in males than females. CONCLUSIONS The female sex exerts a protective effect on obesity-driven dysregulation of glucose metabolism in Asian individuals without diabetes.
Collapse
Affiliation(s)
- Michelle H Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eveline Febriana
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maybritte Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, National University Hospital, Singapore
| | - Sonia Baig
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeffrey B Halter
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, København, Denmark
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, National University Hospital, Singapore
- NOVI Health, Singapore
- Regional Health System Office, National University Health System, Singapore
| |
Collapse
|
26
|
Xie C, Huang W, Sun Y, Xiang C, Trahair L, Jones KL, Horowitz M, Rayner CK, Wu T. Disparities in the Glycemic and Incretin Responses to Intraduodenal Glucose Infusion Between Healthy Young Men and Women. J Clin Endocrinol Metab 2023; 108:e712-e719. [PMID: 36987568 PMCID: PMC10438868 DOI: 10.1210/clinem/dgad176] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
CONTEXT Premenopausal women are at a lower risk of type 2 diabetes (T2D) compared to men, but the underlying mechanism(s) remain elusive. The secretion of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), from the small intestine is a major determinant of glucose homeostasis and may be influenced by sex. OBJECTIVES This study compared blood glucose and plasma insulin and incretin responses to intraduodenal glucose infusions in healthy young males and females. DESIGN In Study 1, 9 women and 20 men received an intraduodenal glucose infusion at 2 kcal/min for 60 minutes. In Study 2, 10 women and 26 men received an intraduodenal glucose at 3 kcal/min for 60 minutes. Venous blood was sampled every 15 minutes for measurements of blood glucose and plasma insulin, GLP-1 and GIP. RESULTS In response to intraduodenal glucose at 2 kcal/min, the incremental area under the curve between t = 0-60 minutes (iAUC0-60min) for blood glucose and plasma GIP did not differ between the 2 groups. However, iAUC0-60min for plasma GLP-1 (P = 0.016) and insulin (P = 0.011) were ∼2-fold higher in women than men. In response to intraduodenal glucose at 3 kcal/min, iAUC0-60min for blood glucose, plasma GIP, and insulin did not differ between women and men, but GLP-1 iAUC0-60min was 2.5-fold higher in women (P = 0.012). CONCLUSION Healthy young women exhibit comparable GIP but a markedly greater GLP-1 response to intraduodenal glucose than men. This disparity warrants further investigations to delineate the underlying mechanisms and may be of relevance to the reduced risk of diabetes in premenopausal women when compared to men.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
| | - Yixuan Sun
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
| | - Chunjie Xiang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Laurence Trahair
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
27
|
Stefanakis K, Kokkinos A, Simati S, Argyrakopoulou G, Konstantinidou SK, Kouvari M, Kumar A, Kalra B, Mantzoros CS. Circulating levels of all proglucagon-derived peptides are differentially regulated postprandially by obesity status and in response to high-fat meals vs. high-carbohydrate meals. Clin Nutr 2023; 42:1369-1378. [PMID: 37418844 DOI: 10.1016/j.clnu.2023.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND & AIMS We measured all proglucagon-derived peptides (PGDPs) levels in response to administration of three mixed meal tolerance tests (MMTs), examining differences in postprandial PGDP responses in subjects with leanness and obesity or between high-fat vs. high carbohydrate meals. METHODS We designed three physiology interventional studies, administering MMTs over a 180-min period to individuals without diabetes after an overnight fast. In Study 1, a 450 kcal MMT was administered to n = 4 normal weight and n = 9 individuals with obesity. In Study 2, a 600 kcal high-fat MMT was administered to n = 15 normal-weight and n = 15 individuals with obesity. In Study 3, n = 32 participants with obesity were assigned to receive a 600-kcal high-fat (n = 15) or an isocaloric high-carbohydrate MMT (n = 17). Fasting and postprandial levels of c-peptide and PGDPs (proglucagon, GLP-1, GLP-2, glicentin, oxyntomodulin, glucagon, major proglucagon fragment [MPGF]) were assessed. RESULTS In study 1, individuals with normal weight displayed elevated glicentin postprandial secretion compared with people with obesity (p = 0.002). Following a high-fat MMT with 33% higher energy content in study 2, all postprandial PGDPs levels were elevated (p-time<0.001), irrespective of weight status. In study 3, a prolonged postprandial upregulation of PGDPs during the high-fat MMT was observed in contrast with the acute, short-term (max 60 min) PGDP responses to a high-carbohydrate MMT (p-time∗meal<0.001). Across both studies 2 and 3, the postprandial responses of glucagon and MPGF were higher in subjects with male sex whereas glicentin was higher in subjects with female sex. CONCLUSIONS Fat and carbohydrate content of a meal can substantially affect the postprandial levels of PGDPs. Circulating levels of PGDPs are influenced by the energy content of the meal, and additionally, the presence of leanness or obesity affects circulating levels of select PGDPs. These results, which are to be confirmed by additional studies, expand our understanding of PGDP physiology in leanness and obesity. CLINICALTRIALS GOV REGISTRATION NUMBERS: (NCT04170010, NCT04430946, NCT04575194).
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; First Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11527, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11527, Greece
| | - Stamatia Simati
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11527, Greece
| | | | - Sofia K Konstantinidou
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11527, Greece; Diabetes and Obesity Unit, Athens Medical Center, Athens 15125, Greece
| | - Matina Kouvari
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
28
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
29
|
Lopes KG, da Silva VL, de Azevedo Marques Lopes F, Bouskela E, Coelho de Souza MDG, Kraemer-Aguiar LG. Ghrelin and glucagon-like peptide-1 according to body adiposity and glucose homeostasis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000611. [PMID: 37252699 PMCID: PMC10665067 DOI: 10.20945/2359-3997000000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/17/2022] [Indexed: 05/31/2023]
Abstract
Objective We investigated the biological behavior of ghrelin and glucagon-like peptide-1 (GLP-1) after a standard liquid meal according to body adiposity and glucose homeostasis. Subjects and methods This cross-sectional study included 41 individuals (92.7% women; aged 38.3 ± 7.8 years; BMI 32.2 ± 5.5 kg/m2) allocated into three groups according to body adiposity and glucose homeostasis, as follows: normoglycemic eutrophic controls (CON, n = 11), normoglycemic with obesity (NOB, n = 15), and dysglycemic with obesity (DOB, n = 15). They were tested at fasting and 30 and 60 min after the ingestion of a standard liquid meal in which we measured active ghrelin, active GLP-1, insulin, and plasma glucose levels. Results As expected, DOB exhibited the worst metabolic status (glucose, insulin, HOMA-IR, HbA1c) and an inflammatory status (TNF-α) at fasting, besides a more significant increase in glucose than postprandial NOB (p ≤ 0.05). At fasting, no differences between groups were detected in lipid profile, ghrelin, and GLP-1 (p ≥ 0.06). After the standard meal, all groups exhibited a reduction in ghrelin levels between fasting vs. 60 min (p ≤ 0.02). Additionally, we noticed that GLP-1 and insulin increased equally in all groups after the standard meal (fasting vs. 30 and 60 min). Although glucose levels increased in all groups after meal intake, these changes were significantly more significant in DOB vs. CON and NOB at 30 and 60 min post-meal (p ≤ 0.05). Conclusion Time course of ghrelin and GLP-1 levels during the postprandial period was not influenced by body adiposity or glucose homeostasis. Similar behaviors occurred in controls and patients with obesity, independently of glucose homeostasis.
Collapse
Affiliation(s)
- Karynne Grutter Lopes
- Unidade de Obesidade, Centro de Pesquisas Clínicas Multiusuário (CePeM), Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Fisiopatologia Clínica e Experimental (Fisclinex), Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Vicente Lopes da Silva
- Programa de Pós-graduação em Fisiopatologia Clínica e Experimental (Fisclinex), Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fernanda de Azevedo Marques Lopes
- Programa de Pós-graduação em Fisiopatologia Clínica e Experimental (Fisclinex), Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Eliete Bouskela
- Unidade de Obesidade, Centro de Pesquisas Clínicas Multiusuário (CePeM), Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Fisiopatologia Clínica e Experimental (Fisclinex), Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Maria das Graças Coelho de Souza
- Unidade de Obesidade, Centro de Pesquisas Clínicas Multiusuário (CePeM), Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Fisiopatologia Clínica e Experimental (Fisclinex), Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Luiz Guilherme Kraemer-Aguiar
- Unidade de Obesidade, Centro de Pesquisas Clínicas Multiusuário (CePeM), Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Fisiopatologia Clínica e Experimental (Fisclinex), Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Endocrinologia, Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil,
| |
Collapse
|
30
|
Umapathysivam MM, Araldi E, Hastoy B, Dawed AY, Vatandaslar H, Sengupta S, Kaufmann A, Thomsen S, Hartmann B, Jonsson AE, Kabakci H, Thaman S, Grarup N, Have CT, Færch K, Gjesing AP, Nawaz S, Cheeseman J, Neville MJ, Pedersen O, Walker M, Jennison C, Hattersley AT, Hansen T, Karpe F, Holst JJ, Jones AG, Ristow M, McCarthy MI, Pearson ER, Stoffel M, Gloyn AL. Type 2 Diabetes risk alleles in Peptidyl-glycine Alpha-amidating Monooxygenase influence GLP-1 levels and response to GLP-1 Receptor Agonists. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288197. [PMID: 37090505 PMCID: PMC10120798 DOI: 10.1101/2023.04.07.23288197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.
Collapse
Affiliation(s)
- Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- Department of Endocrinology, Queen Elizabeth Hospital, SA Health, Australia
- Southern Adelaide and Diabetes and Endocrinology Service, Bedford Park, Australia
- NHRMC Centre of Clinical research Excellence in Nutritional Physiology, Interventions and outcomes University of Adelaide, South Australia, Australia
| | - Elisa Araldi
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Department of Cardiology and Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Adem Y Dawed
- Division of Population Health & Genomics, School of Medicine, University of Dundee, UK
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Adrian Kaufmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Søren Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
| | - Anna E Jonsson
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Hasan Kabakci
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, USA
| | - Niels Grarup
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christian T Have
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kristine Færch
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anette P Gjesing
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Jane Cheeseman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Matthew J Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, UK
| | | | | | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Angus G Jones
- University of Exeter College of Medicine & Health, Exeter, UK
| | - Michael Ristow
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | - Ewan R Pearson
- Division of Population Health & Genomics, School of Medicine, University of Dundee, UK
| | - Markus Stoffel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, USA
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
- Stanford Diabetes Research Centre, Stanford, USA
| |
Collapse
|
31
|
Nagahisa T, Kosugi S, Yamaguchi S. Interactions between Intestinal Homeostasis and NAD + Biology in Regulating Incretin Production and Postprandial Glucose Metabolism. Nutrients 2023; 15:nu15061494. [PMID: 36986224 PMCID: PMC10052115 DOI: 10.3390/nu15061494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The intestine has garnered attention as a target organ for developing new therapies for impaired glucose tolerance. The intestine, which produces incretin hormones, is the central regulator of glucose metabolism. Glucagon-like peptide-1 (GLP-1) production, which determines postprandial glucose levels, is regulated by intestinal homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT)-mediated nicotinamide adenine dinucleotide (NAD+) biosynthesis in major metabolic organs such as the liver, adipose tissue, and skeletal muscle plays a crucial role in obesity- and aging-associated organ derangements. Furthermore, NAMPT-mediated NAD+ biosynthesis in the intestines and its upstream and downstream mediators, adenosine monophosphate-activated protein kinase (AMPK) and NAD+-dependent deacetylase sirtuins (SIRTs), respectively, are critical for intestinal homeostasis, including gut microbiota composition and bile acid metabolism, and GLP-1 production. Thus, boosting the intestinal AMPK-NAMPT-NAD+-SIRT pathway to improve intestinal homeostasis, GLP-1 production, and postprandial glucose metabolism has gained significant attention as a novel strategy to improve impaired glucose tolerance. Herein, we aimed to review in detail the regulatory mechanisms and importance of intestinal NAMPT-mediated NAD+ biosynthesis in regulating intestinal homeostasis and GLP-1 secretion in obesity and aging. Furthermore, dietary and molecular factors regulating intestinal NAMPT-mediated NAD+ biosynthesis were critically explored to facilitate the development of new therapeutic strategies for postprandial glucose dysregulation.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
32
|
Hoffmann C, Schwarz PE, Mantzoros CS, Birkenfeld AL, Wolfrum C, Solimena M, Bornstein SR, Perakakis N. Circulating levels of gastrointestinal hormones in prediabetes reversing to normoglycemia or progressing to diabetes in a year-A cross-sectional and prospective analysis. Diabetes Res Clin Pract 2023; 199:110636. [PMID: 36940795 DOI: 10.1016/j.diabres.2023.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
AIMS We aimed to compare the concentrations of GLP-1, glucagon and GIP (established regulators of glucose homeostasis) and glicentin (emerging new metabolic marker)during an OGTT in patients with normal glucose tolerance (NGT), prediabetes and diabetes at onset, and one-year before, when all had prediabetes. METHODS GLP-1, glucagon, GIP and glicentin concentrations were measured and compared with markers of body composition, insulin sensitivity and β-cell function at a 5-timepoint OGTT in 125 subjects (30 diabetes, 65 prediabetes, 30 NGT) and in 106 of them one-year before, when all had prediabetes. RESULTS At baseline, when all subjects were in prediabetic state, hormonal levels did not differ between groups. One year later, patients progressing to diabetes had lower postprandial increases of glicentin and GLP-1, lower postprandial decrease of glucagon, and higher levels of fasting GIP compared to patients regressing to NGT. Changes in glicentin and GLP-1 AUC within this year correlated negatively with changes in Glucose AUC of OGTT and with changes in markers of beta cell function. CONCLUSION Incretins, glucagon and glicentin profiles in prediabetic state cannot predict future glycemic traits, but prediabetes progressing to diabetes is accompanied by deterioration of postprandial increases of GLP-1 and glicentin.
Collapse
Affiliation(s)
- Carlotta Hoffmann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Peter E Schwarz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), IngolstädterLandstrasse 1, 85764 Neuherberg, Germany
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD e.V.), Department of Internal Medicine IV, Department of Endocrinology, Diabetology and Nephrology, University Hospital of Eberhard-Karls-University Tübingen,Geissweg 3, 72076 Tübingen, Germany; Diabetes and Nutritional Sciences, King's College London, Strand, London WC2R 2LS, UK; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls University of Tübingen, Geissweg 3, 72076 Tübingen, Germany
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), IngolstädterLandstrasse 1, 85764 Neuherberg, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), IngolstädterLandstrasse 1, 85764 Neuherberg, Germany; Diabetes and Nutritional Sciences, King's College London, Strand, London WC2R 2LS, UK
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), IngolstädterLandstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
33
|
Song LL, Wang N, Zhang JP, Yu LP, Chen XP, Zhang B, Yang WY. Postprandial glucagon-like peptide 1 secretion is associated with urinary albumin excretion in newly diagnosed type 2 diabetes patients. World J Diabetes 2023; 14:279-289. [PMID: 37035218 PMCID: PMC10075041 DOI: 10.4239/wjd.v14.i3.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Microalbuminuria is an early and informative marker of diabetic nephropathy. Our study found that microalbuminuria developed in patients with newly diagnosed type 2 diabetes mellitus (T2DM).
AIM To investigate the association between glucagon-like peptide 1 (GLP-1) and microalbuminuria in newly diagnosed T2DM patients.
METHODS In total, 760 patients were recruited for this cross-sectional study. The GLP-1 levels during a standard meal test and urinary albumin-creatinine ratio (UACR) were determined.
RESULTS Patients with microalbuminuria exhibited lower GLP-1 levels at 30 min and 120 min during a standard meal test than patients with normal albuminuria (30 min GLP-1, 16.7 ± 13.3 pmol vs 19.9 ± 15.6 pmol, P = 0.007; 120 min GLP-1, 16.0 ± 14.1 pmol vs 18.4 ± 13.8 pmol, P = 0.037). The corresponding area under the curve for active GLP-1 (AUCGLP-1) was also lower in microalbuminuria patients (2257, 1585 to 3506 vs 2896, 1763 to 4726, pmol × min, P = 0.003). Postprandial GLP-1 levels at 30 min and 120 min and AUCGLP-1 were negatively correlated with the UACR (r = 0.159, r = 0.132, r = 0.206, respectively, P < 0.001). The prevalence of microalbuminuria in patients with newly diagnosed T2DM was 21.7%, which decreased with increasing quartiles of AUCGLP-1 levels (27.4%, 25.3%, 18.9% and 15.8%). After logistic regression analysis adjusted for sex, age, hemoglobin A1c, body mass index, systolic blood pressure, estimated glomerular filtration rate, homeostasis model assessment of insulin resistance, AUCglucose and AUCglucagon, patients in quartile 4 of the AUCGLP-1 presented a lower risk of microalbuminuria compared with the patients in quartile 1 (odds ratio = 0.547, 95% confidence interval: 0.325-0.920, P = 0.01). A consistent association was also found between 30 min GLP-1 or 120 min GLP-1 and microalbuminuria.
CONCLUSION Postprandial GLP-1 levels were independently associated with microalbuminuria in newly diagnosed Chinese T2DM patients.
Collapse
Affiliation(s)
- Lu-Lu Song
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Na Wang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jin-Ping Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Ping Yu
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Ping Chen
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bo Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wen-Ying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
34
|
Hassanzadeh-Rostami Z, Ghobadi S, Faghih S. Effects of whole grain intake on glucagon-like peptide 1 and glucose-dependent insulinotropic peptide: a systematic review and meta-analysis. Nutr Rev 2023; 81:384-396. [PMID: 35960172 DOI: 10.1093/nutrit/nuac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Whole grain intake may control help glycemia and reduce food intake by affecting the secretion of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). OBJECTIVE This systematic review and meta-analysis aimed to assess the postprandial and long-term effects of whole grains on GLP-1 and GIP levels. DATA SOURCES PubMed, Web of Science, and Scopus online databases were searched systematically to identify relevant randomized clinical trials (RCTs) published up to April 2021. STUDY SELECTION RCTs that evaluated the effects of whole grains, compared with refined grains, on the postprandial area under the curve (AUC) value, the postprandial serum concentration of incretins from 0 to 180 minutes, or the fasting level of incretins after at least 14 days of intervention were included. RESULTS Nineteen studies were included in the meta-analysis. The results showed that acute intake of whole grains could not significantly change the AUC value of GLP-1 or GIP. However, the AUC value of GIP was reduced more significantly in (1) unhealthy participants (standard mean difference [SMD] -1.08; 95%CI, -2.07 to -0.10; I2 = 75.9%) compared with healthy participants, and (2) those with a baseline fasting blood glucose of ≥99 mg/dL (SMD -0.71; 95%CI, -1.30 to -0.11; I2 = 74.4%) compared with those with a baseline value of < 99 mg/dL. On the other hand, the results of time-response evaluation during 0 to 180 minutes after the intake of test meals showed that serum concentrations of GIP decreased significantly from 0 to 30 minutes (coefficient = -44.72; P = 0.005), but increased from 60 to 180 minutes (coefficient = 27.03; P = 0.005). However, long-term studies found no significant effects of whole grains on fasting concentrations of GLP-1 or GIP. CONCLUSION Whole grain intake did not affect postprandial levels of GLP-1 but enhanced postprandial levels of GIP from 60 to 180 minutes. Further high-quality trials are required to assess the long-term effects of whole grain intake on serum levels of incretins. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021256695.
Collapse
Affiliation(s)
- Zahra Hassanzadeh-Rostami
- are with the Department of Community Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Ghobadi
- is with the Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shiva Faghih
- are with the Department of Community Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia 2023; 66:986-1002. [PMID: 36897358 PMCID: PMC10163139 DOI: 10.1007/s00125-023-05891-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
The prevalence of type 2 diabetes mellitus is increasing in both sexes, but men are usually diagnosed at a younger age and lower body fat mass than women. Worldwide, an estimated 17.7 million more men than women have diabetes mellitus. Women appear to bear a greater risk factor burden at the time of their type 2 diabetes diagnosis, especially obesity. Moreover, psychosocial stress might play a more prominent role in diabetes risk in women. Across their lifespan, women experience greater hormone fluctuations and body changes due to reproductive factors than men. Pregnancies can unmask pre-existing metabolic abnormalities, resulting in the diagnosis of gestational diabetes, which appears to be the most prominent risk factor for progression to type 2 diabetes in women. Additionally, menopause increases women's cardiometabolic risk profile. Due to the progressive rise in obesity, there is a global increase in women with pregestational type 2 diabetes, often with inadequate preconceptual care. There are differences between men and women regarding type 2 diabetes and other cardiovascular risk factors with respect to comorbidities, the manifestation of complications and the initiation of and adherence to therapy. Women with type 2 diabetes show greater relative risk of CVD and mortality than men. Moreover, young women with type 2 diabetes are currently less likely than men to receive the treatment and CVD risk reduction recommended by guidelines. Current medical recommendations do not provide information on sex-specific or gender-sensitive prevention strategies and management. Thus, more research on sex differences, including the underlying mechanisms, is necessary to increase the evidence in the future. Nonetheless, intensified efforts to screen for glucose metabolism disorders and other cardiovascular risk factors, as well as the early establishment of prophylactic measures and aggressive risk management strategies, are still required for both men and women at increased risk of type 2 diabetes. In this narrative review we aim to summarise sex-specific clinical features and differences between women and men with type 2 diabetes into risk factors, screening, diagnosis, complications and treatment.
Collapse
Affiliation(s)
- Alexandra Kautzky-Willer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria.
- Gender Institute, Lapura Women's Health Resort, Gars am Kamp, Austria.
| | - Michael Leutner
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Watkins JD, Carter S, Atkinson G, Koumanov F, Betts JA, Holst JJ, Gonzalez JT. Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism 2023; 140:155375. [PMID: 36502882 DOI: 10.1016/j.metabol.2022.155375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this systematic review was to synthesise the study findings on whether GLP-1 secretion in response to a meal tolerance test is affected by the presence of type 2 diabetes (T2D). The influence of putative moderators such as age, sex, meal type, meal form, and assay type were also explored. METHODS A literature search identified 32 relevant studies. The sample mean and SD for fasting GLP-1TOTAL and GLP-1TOTAL iAUC were extracted and used to calculate between-group standardised mean differences (SMD), which were meta-analysed using a random-effects model to derive pooled estimates of Hedges' g and 95 % prediction intervals (PI). RESULTS Pooled across 18 studies, the overall SMD in GLP-1TOTAL iAUC between individuals with T2D (n = 270, 1047 ± 930 pmol·L-1·min) and individuals without T2D (n = 402, 1204 ± 937 pmol·L-1·min) was very small, not statistically significant and heterogenous across studies (g = -0.15, p = 0.43, PI: -1.53, 1.23). Subgroup analyses demonstrated an effect of assay type whereby Hedges' g for GLP-1 iAUC was greater in individuals with, versus those without T2D when using ELISA or Mesoscale (g = 0.67 [moderate], p = 0.009), but not when using RIA (g = -0.30 [small], p = 0.10). Pooled across 30 studies, the SMD in fasting GLP-1TOTAL between individuals with T2D (n = 580, 16.2 ± 6.9 pmol·L-1) versus individuals without T2D (n = 1363, 12.4 ± 5.7 pmol·L-1) was small and heterogenous between studies (g = 0.24, p = 0.21, PI: -1.55, 2.02). CONCLUSIONS Differences in fasting GLP-1TOTAL and GLP-1TOTAL iAUC between individuals with, versus those without T2D were generally small and inconsistent between studies. Factors influencing study heterogeneity such as small sample sizes and poor matching of groups may help to explain the wide prediction intervals observed. Considerations to improve comparisons of GLP-1 secretion in T2D and potential mediating factors more important than T2D diagnosis per se are outlined. PROSPERO ID CRD42020195612.
Collapse
Affiliation(s)
- J D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| | - S Carter
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - G Atkinson
- Liverpool John Moores University, Liverpool, UK
| | - F Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J J Holst
- Biomedical Sciences, Endocrinology Research Section, University of Copenhagen, Denmark
| | - J T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| |
Collapse
|
37
|
La Valle A, d'Annunzio G, Campanello C, Tantari G, Pistorio A, Napoli F, Patti G, Crocco M, Bassi M, Minuto N, Piccolo G, Maghnie M. Are glucose and insulin levels at all time points during OGTT a reliable marker of diabetes mellitus risk in pediatric obesity? J Endocrinol Invest 2023:10.1007/s40618-023-02030-6. [PMID: 36763246 DOI: 10.1007/s40618-023-02030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE Childhood overweight and obesity associated with insulin resistance and metabolic syndrome represent the new global pandemic and the main causative factors for dysglycemia, prediabetes, and Type 2 Diabetes Mellitus (T2DM). Predictors, such as HOMA-IR, HOMA-β%, and QUICKI lack specific reference values in children. OGTT is a gold standard for glycometabolic assessment. Recently, a glycemic level higher than 155 mg/dl at + 60' after glucose ingestion has been defined as a risk factor for T2DM in obese adolescents. We aim to analyze and correlate fasting insulin-resistance markers with OGTT results in overweight/obese children and adolescents. METHODS We retrospectively evaluated glucose and insulin values during a 2-h OGTT every 30 min in 236 overweight/obese patients. Glucose values and insulin sum during OGTT were compared to glycometabolic indexes and different cut-off values for insulin sum. RESULTS A 1-h glucose > 155 mg/dl and insulin sum > 535 microU/ml at all times during OGTT are the best predictors of diabetes risk in obese youths. A1-h glucose > 155 mg/dl is significantly associated with HbA1c > 5.7%, while no association was observed between HbA1c > 5.7% and glucose levels at baseline and 2 h. The ability of the standardized HOMA-IR to predict the prediabetes status is clearly lower than the total insulin sum at OGTT. CONCLUSION Our study demonstrates that also 1-h post-OGTT glucose, together with HbA1c, is an effective diabetes predictor.
Collapse
Affiliation(s)
- A La Valle
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - G d'Annunzio
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - C Campanello
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - G Tantari
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - A Pistorio
- Epidemiology and Biostatistics Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - F Napoli
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - G Patti
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - M Crocco
- Gastroenterology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - M Bassi
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - N Minuto
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - G Piccolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
- Neurooncology Unit, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - M Maghnie
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
38
|
Gerstenberg MK, Andersen DB, Torz L, Castorena CM, Bookout AL, Hartmann B, Rehfeld JF, Petersen N, Holst JJ, Kuhre RE. Weight loss by calorie restriction does not alter appetite-regulating gut hormone responses from perfused rat small intestine. Acta Physiol (Oxf) 2023; 238:e13947. [PMID: 36755506 DOI: 10.1111/apha.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
AIM Postprandial secretion of the appetite-inhibiting hormones, glucagon-like peptide-1 (GLP-1), and peptide YY are reduced with obesity. It is unclear if the reduced secretion persists following weight loss (WL), if other appetite-inhibiting hormones are also reduced, and if so whether reduced secretion results from intrinsic changes in the gut. METHODS To address whether WL may restore secretion of GLP-1 and other appetite-inhibiting hormones, we performed a gut perfusion study of the small intestine in diet-induced obese (DIO) rats after WL. A 20% weight loss (means ± SEM (g): 916 ± 53 vs. 703 ± 35, p < 0.01, n = 7) was induced by calorie restriction, and maintained stable for ≥7 days prior to gut perfusion to allow for complete renewal of enteroendocrine cells. Age-matched DIO rats were used as comparator. Several gut hormones were analyzed from the venous effluent, and gene expression was performed on gut tissue along the entire length of the intestine. RESULTS Secretion of cholecystokinin, gastrin, glucose-dependent insulinotropic peptide, GLP-1, neurotensin, and somatostatin was not affected by WL during basal conditions (p ≥ 0.25) or in response to macronutrients and bile acids (p ≥ 0.14). Glucose absorption was indistinguishable following WL. The expression of genes encoding the studied peptides, macronutrient transporters (glucose, fructose, and di-/tripeptides) and bile acid receptors did also not differ between DIO and WL groups. CONCLUSIONS These data suggest that the attenuated postprandial responses of GLP-1, as well as reduced responses of other appetite-inhibiting gut hormones, in people living with obesity may persist after weight loss and may contribute to their susceptibility for weight regain.
Collapse
Affiliation(s)
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lola Torz
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | - Angie L Bookout
- Global Drug Discovery, Novo Nordisk A/S, Seattle, Washington, USA
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
39
|
Gulati S, Misra A, Tiwari R, Sharma M, Pandey RM, Upadhyay AD, Sati HC. Beneficial effects of premeal almond load on glucose profile on oral glucose tolerance and continuous glucose monitoring: randomized crossover trials in Asian Indians with prediabetes. Eur J Clin Nutr 2023; 77:586-595. [PMID: 36732571 PMCID: PMC10169634 DOI: 10.1038/s41430-023-01263-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Rapid conversion from prediabetes to diabetes and frequent postprandial hyperglycemia (PPHG) is seen in Asian Indians. These should be the target of dietary strategies. OBJECTIVES We hypothesized that dietary intervention of preloading major meals with almonds in participants with prediabetes will decrease overall glycemia and PPHG. DESIGN The study included two phases: (1) an oral glucose tolerance test (OGTT)-based crossover randomized control study, the effect of a single premeal almond load (20 g) given before OGTT was evaluated (n = 60, 30 each period). (2) The continuous glucose monitoring system (CGMS)-based study for 3 days including premeal almond load before three major meals was a free-living, open-labeled, crossover randomized control trial, where control and premeal almond load diets were compared for glycaemic control (n = 60, 30 in each period). The study was registered at clinicaltrials.gov (registration no. NCT04769726). RESULTS In the OGTT-based study phase, the overall AUC for blood glucose, serum insulin, C-peptide, and plasma glucagon post-75 g oral glucose load was significantly lower for treatment vs. control diet (p < 0.001). Specifically, with the former diet, PPHG was significantly lower (18.05% in AUC on OGTT, 24.8% at 1-h, 28.9% at 2-h post OGTT, and 10.07% during CGMS). The CGMS data showed that premeal almond load significantly improved 24-glucose variability; SD of mean glucose concentration and mean of daily differences. Daily glycaemic control improved significantly as per the following: mean 24-h blood glucose concentration (M), time spent above 7.8 mmol/L of blood glucose, together with the corresponding AUC values. Premeal almond load significantly decreased following: overall hyperglycemia (glucose AUC), PPHG, peak 24-h glycaemia, and minimum glucose level during night. CONCLUSION Incorporation of 20 g of almonds, 30 min before each major meal led to a significant decrease in PPHG (as revealed in OGTT-based study phase) and also improved insulin, C-peptide, glucagon levels, and improved glucose variability and glycemic parameters on CGMS in participants with prediabetes. CLINICAL TRIAL REGISTRY The study was registered at clinicaltrials.gov (registration no. NCT04769726).
Collapse
Affiliation(s)
- Seema Gulati
- Diabetes Foundation (India), New Delhi, India.,National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India.,Center of Nutrition & Metabolic Research (C-NET), New Delhi, India
| | - Anoop Misra
- Diabetes Foundation (India), New Delhi, India. .,National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India. .,Center of Nutrition & Metabolic Research (C-NET), New Delhi, India. .,Fortis C-DOC Centre for Excellence for Diabetes, Metabolic Disease, and Endocrinology, New Delhi, India.
| | - Rajneesh Tiwari
- National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India
| | - Meenu Sharma
- National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India
| | | | | | | |
Collapse
|
40
|
Krystynik O, Karasek D, Kahle M, Kubickova V, Macakova D, Cibickova L, Mraz M, Haluzik M. Non-altered incretin secretion in women with impaired fasting plasma glucose in the early stage of pregnancy: a case control study. Diabetol Metab Syndr 2023; 15:12. [PMID: 36717953 PMCID: PMC9885569 DOI: 10.1186/s13098-023-00981-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUNDS Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) may be involved in pathogenesis of gestational diabetes mellitus (GDM). The aim was to compare GLP-1 and GIP production in fasting state and during 3 h mixed meal tolerance test (MMTT) measured by mean area under the curve (AUC) between pregnant women with normal and impaired fasting glucose in an early phase of pregnancy, and healthy non-pregnant controls. METHODS This study was undertaken as a case-control study. Repeated measurement of fasting plasma glucose ≥ 5.1 mmol/L and < 7.0 mmol/L during the first trimester of pregnancy and exclusion of overt diabetes according to IADSPG criteria was used to find women with impaired fasting glucose (n = 22). Age-matched controls consisted of healthy pregnant (n = 25) and non-pregnant (n = 24) women. In addition to incretins, anthropometric parameters and markers of insulin resistance and beta-cell function were assessed. Variables were summarized as median (interquartile range). RESULTS Fasting GLP-1 and GIP concentration or their AUC during MMTT did not significantly differ between pregnant women with impaired fasting plasma glucose [GLP-1AUC 19.0 (53.1) and GIPAUC 302 (100) pg/mL/min] and healthy pregnant women [GLP-1AUC 16.7 (22.3) and GIPAUC 297 (142) pg/mL/min] or non-pregnant controls [GLP-1AUC 16.8 (9.8) and for GIPAUC 313 (98) pg/mL/min]. Although women with impaired fasting glucose were more obese and showed decreased beta-cell function, there were not significant correlations between incretin production and parameters of insulin secretion, insulin resistance, or obesity. CONCLUSIONS Women with impaired fasting plasma glucose did not show altered incretin production in the first trimester of pregnancy. In contrast to type 2 diabetes, impaired incretin secretion does not seem to play a major role in the early development of GDM.
Collapse
Affiliation(s)
- Ondrej Krystynik
- Third Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
| | - David Karasek
- Third Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, I. P. Pavlova 6, 77900, Olomouc, Czech Republic.
| | - Michal Kahle
- Department of Data Science, Institute for Clinical and Experimental Medicine, Vídeňská 1958,140 21, Prague, Czech Republic
| | - Veronika Kubickova
- Department of Clinical Biochemistry, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
| | - Dominika Macakova
- Third Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
| | - Lubica Cibickova
- Third Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
| | - Milos Mraz
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958, 140 21, Prague, Czech Republic
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958, 140 21, Prague, Czech Republic
| |
Collapse
|
41
|
Jujić A, Godina C, Belting M, Melander O, Juul Holst J, Ahlqvist E, Gomez MF, Nilsson PM, Jernström H, Magnusson M. Endogenous incretin levels and risk of first incident cancer: a prospective cohort study. Sci Rep 2023; 13:382. [PMID: 36611045 PMCID: PMC9825393 DOI: 10.1038/s41598-023-27509-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
Concerns have been raised regarding a potentially increased risk of cancer associated with treatment with glucagon-like peptide-1 (GLP-1) receptor agonists. Here, we explored whether fasting and oral glucose tolerance test post-challenge glucose-dependent insulinotropic peptide (GIP) and GLP-1 levels were associated with incident first cancer. Within the cardiovascular re-examination arm of the population-based Malmö Diet Cancer study (n = 3734), 685 participants with a previous cancer diagnosis were excluded, resulting in 3049 participants (mean age 72.2 ± 5.6 years, 59.5% women), of whom 485 were diagnosed with incident first cancer (median follow-up time 9.9 years). Multivariable Cox-regression and competing risk regression (death as competing risk) were used to explore associations between incretin levels and incident first cancer. Higher levels of fasting GLP-1 (462 incident first cancer cases/2417 controls) showed lower risk of incident first cancer in competing risk regression (sub-hazard ratio 0.90; 95% confidence interval 0.82-0.99; p = 0.022). No association was seen for fasting GIP, post-challenge GIP, or post-challenge GLP-1 and incident first cancer. In this prospective study, none of the fasting and post-challenge levels of GIP and GLP-1 were associated with higher risk of incident first cancer; by contrast, higher levels of fasting GLP-1 were associated with lower risk of incident first cancer.
Collapse
Affiliation(s)
- Amra Jujić
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden. .,Department of Cardiology, Skåne University Hospital, Malmö, Sweden. .,Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden. .,Clinical Research Centre, Lund University, Box 50332, 202 13, Malmö, Sweden.
| | - Christopher Godina
- grid.411843.b0000 0004 0623 9987Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Mattias Belting
- grid.411843.b0000 0004 0623 9987Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden ,grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olle Melander
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Jens Juul Holst
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences and NNF Center for Basal Metabolic Research, The Panum Institute, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNNF Center for Basal Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Emma Ahlqvist
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Maria F. Gomez
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Peter M. Nilsson
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Helena Jernström
- grid.411843.b0000 0004 0623 9987Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Martin Magnusson
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden ,grid.411843.b0000 0004 0623 9987Department of Cardiology, Skåne University Hospital, Malmö, Sweden ,grid.4514.40000 0001 0930 2361Wallenberg Center for Molecular Medicine, Lund University, Malmö, Sweden ,grid.25881.360000 0000 9769 2525Hypertension in Africa Research Team (HART), Northwest University Potchefstroom, Potchefstroom, South Africa
| |
Collapse
|
42
|
Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, Julian V, Thivel D, Mörwald K, Mangge H, Dalus C, Aigner E, Furthner D, Weghuber D, Maruszczak K. The relationship between glucose and the liver-alpha cell axis - A systematic review. Front Endocrinol (Lausanne) 2023; 13:1061682. [PMID: 36686477 PMCID: PMC9849557 DOI: 10.3389/fendo.2022.1061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Schneider
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Lukas
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Karin Gramlinger
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
| | - Valérie Julian
- Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, Human Nutrition Research Center (CRNH), INRA, University Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), University of Clermont Auvergne, Clermont-Ferrand, France
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Christopher Dalus
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
43
|
Arioglu-Inan E, Kayki-Mutlu G. Sex Differences in Glucose Homeostasis. Handb Exp Pharmacol 2023; 282:219-239. [PMID: 37439847 DOI: 10.1007/164_2023_664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Sexual dimorphism has been demonstrated to have an effect on various physiological functions. In this regard, researchers have investigated its impact on glucose homeostasis in both preclinical and clinical studies. Sex differences mainly arise from physiological factors such as sex hormones, body fat and muscle distribution, and sex chromosomes. The sexual dimorphism has also been studied in the context of diabetes. Reflecting the prevalence of the disease among the population, studies focusing on the sex difference in type 1 diabetes (T1D) are not common as the ones in type 2 diabetes (T2D). T1D is reported as the only major specific autoimmune disease that exhibits a male predominance. Clinical studies have demonstrated that impaired fasting glucose is more frequent in men whereas women more commonly exhibit impaired glucose tolerance. Understanding the sex difference in glucose homeostasis becomes more attractive when focusing on the findings that highlight sexual dimorphism on the efficacy or adverse effect profile of antidiabetic medications. Thus, in this chapter, we aimed to discuss the impact of sex on the glucose homeostasis both in health and in diabetes.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
44
|
Su Y, Zhang S, Wu Z, Liu W, Chen J, Deng F, Chen F, Zhu D, Hou K. Pharmacoeconomic analysis (CER) of Dulaglutide and Liraglutide in the treatment of patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1054946. [PMID: 36755915 PMCID: PMC9899911 DOI: 10.3389/fendo.2023.1054946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
AIM To evaluate the treatment effect Fand pharmacoeconomic value of Dugaglutide in women with type 2 diabetes. METHODS Women (n=96) with type 2 diabetes recruited from June 2019 to December 2021 were randomized into two equal groups. The control group was treated with Liraglutide, and the observation group was treated with Dulaglutide, both for 24 weeks. The blood glucose levels, biochemical index, insulin resistance index (HOMA-IR), cost-effect ratio (CER), and drug safety were determined and compared between the two groups. RESULTS Blood glucose levels, the biochemical index, and HOMA-IR were lower in both groups after the treatment (P < 0.05), and there was no statistical difference in the blood glucose levels, biochemical index and HOMA-IR between the two groups (P > 0.05). The CER levels did not differ statistically between the two groups (P > 0.05). Both the cost and the incidence of drug side effects during solution injection were lower in the observation group than in the control group after 24 weeks of treatment (P < 0.05). CONCLUSION Both Dulaglutide and Liraglutide can reduce blood glucose levels, improve biochemical index, and HOMA-IR levels in women with type 2 diabetes. Dulaglutide is more cost-effective and safe. CLINICAL TRIAL REGISTRATION https://www.chictr.org.cn/index.aspx, identifier ChiCTR1900026514.
Collapse
Affiliation(s)
- Yu Su
- Center of Teaching Evaluation and Faculty Development, Anhui University of Chinese medicine, Hefei, Anhui, China
| | - Shuo Zhang
- Medical College of Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Zezhen Wu
- Medical College of Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Weiting Liu
- School of nursing, Anhui University of Chinese medicine, Hefei, Anhui, China
| | - Jingxian Chen
- Medical College of Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Feiying Deng
- Medical College of Shantou University, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, China
- *Correspondence: Kaijian Hou,
| |
Collapse
|
45
|
Wang S, Qian X, Shen C, Sun Q, Jing Y, Liu B, Zhang K, Li M, Wang J, Zhou H, Dong C. The protective effects of lipoxin A4 on type 2 diabetes mellitus: A Chinese prospective cohort study. Front Endocrinol (Lausanne) 2023; 14:1109747. [PMID: 36742389 PMCID: PMC9892446 DOI: 10.3389/fendo.2023.1109747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Several cellular and animal studies have suggested that lipoxin A4 (LXA4) has a protective effect on type 2 diabetes mellitus (T2DM) development. However, little is known about whether LXA4 influences T2DM development at the population level. METHODS We included 2755 non-diabetic participants from a cohort study in China who were followed for about seven years. Cox proportional hazards model was used to estimate hazard ratios (HRs) and 95% confidence intervals (CI) for the association between LXA4 and incident T2DM. Mediation models were used to examine how serum lipids as mediators impact the association between LXA4 and T2DM. RESULTS In total, 172 newly diagnosed T2DM cases were identified. Multivariate-adjusted HR for T2DM in the fourth compared with the first quartile of LXA4 was 0.62 (95% CI: 0.40-0.96). When used the optimal cutoff value determined by the receiver operating characteristic curve, the results showed participants with LXA4 > 2.84 ng/mL had a decreased T2DM risk compared to those with LXA4 ≤ 2.84 ng/mL (HR: 0.63, 95% CI: 0.45-0.89). The effect of LXA4 on incident T2DM was significantly modified by gender (P -interaction = 0.024) and family history of diabetes (P -interaction = 0.025). Additionally, the association between LXA4 and incident T2DM was partially suppressed by the TyG and TG/HDL-c ratio, with a suppression proportion of 22.2% and 16.0%, respectively. CONCLUSIONS Higher LXA4 levels are significantly associated with a lower risk of T2DM development. The present findings would be helpful in understanding the effect of LXA4 on T2DM development at the population level.
Collapse
Affiliation(s)
- Sudan Wang
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, China
| | - Xiaoyan Qian
- Division of non-communicable diseases, Suzhou Industrial Park Centers for Disease Control and Prevention, Soochow, China
| | - Chao Shen
- Division of non-communicable diseases, Suzhou Industrial Park Centers for Disease Control and Prevention, Soochow, China
| | - Qian Sun
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, China
| | - Yang Jing
- Division of non-communicable diseases, Suzhou Industrial Park Centers for Disease Control and Prevention, Soochow, China
| | - Bingyue Liu
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, China
| | - Kexin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, China
| | - Mengyuan Li
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, China
| | - Junrong Wang
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, China
| | - Hui Zhou
- Division of non-communicable diseases, Suzhou Industrial Park Centers for Disease Control and Prevention, Soochow, China
- *Correspondence: Chen Dong, ; Hui Zhou,
| | - Chen Dong
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, China
- *Correspondence: Chen Dong, ; Hui Zhou,
| |
Collapse
|
46
|
Mirzaei F, Khodadadi I, Majdoub N, Vafaei SA, Tayebinia H, Abbasi E. Role of Glucagon-like Peptide-1 (GLP-1) Agonists in the Management of Diabetic Patients with or without COVID-19. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2022. [DOI: 10.2174/18741045-v16-e2212130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone released after a meal, which alleviates hyperglycemia, increases β-cell survival, reduces body weight, and reduces inflammation. These thrilling effects motivated clinical studies to discover the potential use of GLP-1 receptor agonists (GLP-1 RAs) in the management of T2D. GLP-1 RAs are potential anti-diabetic agents that can reduce blood pressure, glucose levels, HbA1c and, weight loss without hypoglycemia risk. This manuscript reviews the importance of GLP-1 RAs and their role in the management of T2D with or without COVID-19 infection. Hence, this manuscript can help physicians and researchers to choose the most appropriate drugs for the individualized treatment of subjects.
Collapse
|
47
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
48
|
Chong SC, Sukor N, Robert SA, Ng KF, Kamaruddin NA. Fasting and stimulated glucagon-like peptide-1 exhibit a compensatory adaptive response in diabetes and pre-diabetes states: A multi-ethnic comparative study. Front Endocrinol (Lausanne) 2022; 13:961432. [PMID: 36157456 PMCID: PMC9501699 DOI: 10.3389/fendo.2022.961432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 12/26/2022] Open
Abstract
Background Impaired secretion of glucagon-like peptide-1 (GLP-1) among Caucasians contributes to reduced incretin effect in type 2 diabetes mellitus (T2DM) patients. However, studies emanating from East Asia suggested preserved GLP-1 levels in pre-diabetes (pre-DM) and T2DM. We aimed to resolve these conflicting findings by investigating GLP-1 levels during oral glucose tolerance test (OGTT) among Malay, Chinese, and Indian ethnicities with normal glucose tolerance (NGT), pre-DM, and T2DM. The association between total GLP-1 levels, insulin resistance, and insulin sensitivity, and GLP-1 predictors were also analyzed. Methods A total of 174 subjects were divided into NGT (n=58), pre-DM (n=54), and T2DM (n=62). Plasma total GLP-1 concentrations were measured at 0, 30, and 120 min during a 75-g OGTT. Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA of insulin sensitivity (HOMA-IS), and triglyceride-glucose index (TyG) were calculated. Results Total GLP-1 levels at fasting and 30 min were significantly higher in T2DM compared with pre-DM and NGT (27.18 ± 11.56 pmol/L vs. 21.99 ± 10.16 pmol/L vs. 16.24 ± 7.79 pmol/L, p=0.001; and 50.22 ± 18.03 pmol/L vs. 41.05 ± 17.68 pmol/L vs. 31.44 ± 22.59 pmol/L, p<0.001; respectively). Ethnicity was a significant determinant of AUCGLP-1, with the Indians exhibiting higher GLP-1 responses than Chinese and Malays. Indians were the most insulin resistant, whereas Chinese were the most insulin sensitive. The GLP-1 levels were positively correlated with HOMA-IR and TyG but negatively correlated with HOMA-IS. This relationship was evident among Indians who exhibited augmented GLP-1 responses proportionately to their high insulin-resistant states. Conclusion This is the first study that showed GLP-1 responses are augmented as IR states increase. Fasting and post-OGTT GLP-1 levels are raised in T2DM and pre-DM compared to that in NGT. This raises a possibility of an adaptive compensatory response that has not been reported before. Among the three ethnic groups, the Indians has the highest IR and GLP-1 levels supporting the notion of an adaptive compensatory secretion of GLP-1.
Collapse
Affiliation(s)
- Shiau Chin Chong
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Norlela Sukor
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Sarah Anne Robert
- Department of Pharmacy, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Kim Fong Ng
- Department of Cardiology, Hospital Sultanah Aminah Johor Bahru, Johor, Malaysia
| | - Nor Azmi Kamaruddin
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Exendin-4 Exacerbates Burn-Induced Mortality in Mice by Switching to Th2 Response. J Surg Res 2022; 280:333-347. [PMID: 36030610 DOI: 10.1016/j.jss.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION To determine if Exendin-4 could be a therapeutic agent for burn-induced hyperglycemia. MATERIALS AND METHODS Male Balb/c mice received a bolus of Exendin-4 intraperitoneally immediately after 15% total body surface area scald injury. Tail glucose levels were recorded and T-cell functions were analyzed at 4 h and 24 h postburn (pb). Pancreatic pathology was observed consecutively. The secretions of cytokines were detected in serum, spleen, and lung. Apoptosis of splenic CD3+ T-cells was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometry. RESULTS Although Exendin-4 could attenuate burn-induced hyperglycemia in mice at 4 h pb, it accelerated their survival dose dependently with progressive depletion of splenocyte number. T-cell function underwent two-phasic changes following Exendin-4 treatment. Compared to placebo mice, T-cell from Exendin-4-treated mice was manifested with increased proliferation, while decreased IL-2 secretion and lower ratio of IL-4/IFN-γ at 4 h pb. However, at 24 h pb, it showed decreased proliferation, while increased IL-2 secretion and higher ratio of IL-4/IFN-γ. Exendin-4 could elicit higher circulating IL-6 and IL-10 levels at 4 h pb, which were pronounced in the lung at 24 h pb. In the meanwhile, severe inflammation could be found in the pancreas. At 24 h pb, the numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling or caspase-3 positive cells and the apoptosis of CD3+ T-cells were significantly increased in the spleens of Exendin-4 mice relative to placebo mice. CONCLUSIONS These data support a pathogenic role of Exendin-4 signaling during thermal injury, warning against its clinical application in acute insults.
Collapse
|
50
|
Holst JJ. Glucagon and other proglucagon-derived peptides in the pathogenesis of obesity. Front Nutr 2022; 9:964406. [PMID: 35990325 PMCID: PMC9386348 DOI: 10.3389/fnut.2022.964406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Because of differential processing of the hormone precursor, proglucagon, numerous peptide products are released from the pancreatic alpha cells and the intestinal L-cells in which the (pro)glucagon gene is expressed. Of particular interest in relation to obesity are glucagon from the pancreas and oxyntomodulin and GLP-1 from the gut, all of which inhibit food intake, but the other products are also briefly discussed, because knowledge about these is required for selection and evaluation of the methods for measurement of the hormones. The distal intestinal L-cells also secrete the appetite-inhibiting hormone PYY. Characteristics of the secretion of the pancreatic and intestinal products are described, and causes of the hypersecretion of glucagon in obesity and type 2 diabetes are discussed. In contrast, the secretion of the products of the L-cells is generally impaired in obesity, raising questions about their role in the development of obesity. It is concluded that the impairment probably is secondary to obesity, but the lower plasma levels may contribute to the development.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|