1
|
Visagie JL, Aruwajoye GS, van der Sluis R. Pharmacokinetics of aspirin: evaluating shortcomings in the literature. Expert Opin Drug Metab Toxicol 2024:1-14. [PMID: 39092921 DOI: 10.1080/17425255.2024.2386368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Aspirin is known for its therapeutic benefits in preventing strokes and relieving pain. However, it is toxic to some individuals, and the biological mechanisms causing toxicity are unknown. Limited literature is available on the role of glycine conjugation as the principal pathway in aspirin detoxification. Previous studies have quantified this two-step enzyme reaction as a singular enzymatic process. Consequently, the individual contributions of these enzymes to the kinetics remain unclear. AREAS COVERED This review summarized the available information on the pharmacokinetics and detoxification of aspirin by the glycine conjugation pathway. Literature searches were conducted using Google Scholar and the academic journal databases accessible through the North-West University Library. Furthermore, the factors affecting interindividual variation in aspirin metabolism and what is known regarding aspirin toxicity were discussed. EXPERT OPINION The greatest drawback in understanding the pharmacokinetics of aspirin is the limited information available on the substrate preference of the xenobiotic ligase (ACSM) responsible for activating salicylate to salicyl-CoA. Furthermore, previous pharmacokinetic studies did not consider the contribution of other substrates from the diet or genetic variants, to the detoxification rate of glycine conjugation. Impaired glycine conjugation might contribute to adverse health effects seen in Reye's syndrome and cancer.
Collapse
Affiliation(s)
- Jacobus Lukas Visagie
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Shamshoum H, Medak KD, McKie GL, Jeromson S, Hahn MK, Wright DC. Salsalate and/or metformin therapy confer beneficial metabolic effects in olanzapine treated female mice. Biomed Pharmacother 2023; 168:115671. [PMID: 37839107 DOI: 10.1016/j.biopha.2023.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
Antipsychotic medications are used in the management of schizophrenia and a growing number of off-label conditions. While effective at reducing psychoses, these drugs possess noted metabolic side effects including weight gain, liver lipid accumulation and disturbances in glucose and lipid metabolism. To counter the side effects of antipsychotics standard of care has typically included metformin. Unfortunately, metformin does not protect against antipsychotic induced metabolic disturbances in all patients and thus additional treatment approaches are needed. One potential candidate could be salsalate, the prodrug of salicylate, which acts synergistically with metformin to improve indices of glucose and lipid metabolism in obese mice. The purpose of the current investigation was to compare the effects of salsalate, metformin and a combination of both drugs, on weight gain and indices of metabolic health in female mice treated with the antipsychotic, olanzapine. Herein we demonstrate that salsalate was equally as effective as metformin in protecting against olanzapine induced weight gain and liver lipid accumulation with no additional benefit of combining both drugs. Conversely, metformin treatment, either alone or in combination with salsalate, improved indices of glucose metabolism and increased energy expenditure in olanzapine treated mice. Collectively, our findings provide evidence that dual therapy with both metformin and salsalate could be an efficacious approach with which to dampen the metabolic consequences of antipsychotic medications.
Collapse
Affiliation(s)
- Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2 W1, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2 W1, Canada
| | - Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2 W1, Canada
| | - Stewart Jeromson
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; BC Children's Hospital Research Institute, 950 W. 28th Ave., Vancouver, British Columbia V5Z 4H4, Canada
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Wright
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; BC Children's Hospital Research Institute, 950 W. 28th Ave., Vancouver, British Columbia V5Z 4H4, Canada; Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
3
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
4
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Cal K, Leyva A, Rodríguez-Duarte J, Ruiz S, Santos L, Colella L, Ingold M, Vilaseca C, Galliussi G, Ziegler L, Peclat TR, Bresque M, Handy RM, King R, dos Reis LM, Espasandin C, Breining P, Dapueto R, Lopez A, Thompson KL, Agorrody G, DeVallance E, Meadows E, Lewis SE, Barbosa GCS, de Souza LOL, Chichierchio MS, Valez V, Aicardo A, Contreras P, Vendelbo MH, Jakobsen S, Kamaid A, Porcal W, Calliari A, Verdes JM, Du J, Wang Y, Hollander JM, White TA, Radi R, Moyna G, Quijano C, O’Doherty R, Moraes-Vieira P, Holloway GP, Leonardi R, Mori MA, Camacho-Pereira J, Kelley EE, Duran R, Lopez GV, Batthyány C, Chini EN, Escande C. A nitroalkene derivative of salicylate alleviates diet-induced obesity by activating creatine metabolism and non-shivering thermogenesis. RESEARCH SQUARE 2023:rs.3.rs-3101395. [PMID: 37502859 PMCID: PMC10371099 DOI: 10.21203/rs.3.rs-3101395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.
Collapse
Affiliation(s)
- Karina Cal
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
- Unidad Biofísica, Departamento de Biociencias, Facultad de Veterinaria, Udelar, Uruguay
| | - Alejandro Leyva
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, IIBCE, Uruguay
| | - Jorge Rodríguez-Duarte
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
| | - Santiago Ruiz
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
| | - Leonardo Santos
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
| | - Lucía Colella
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
- Departamento de Química Orgánica, Facultad de Química, Udelar, Uruguay
| | - Mariana Ingold
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
- Departamento de Química Orgánica, Facultad de Química, Udelar, Uruguay
| | - Cecilia Vilaseca
- Departamento de Fisiología, Facultad de Medicina, Udelar, Uruguay
| | - German Galliussi
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
- Laboratory of Immunoregulation and Inflammation; Institut Pasteur Montevideo, Uruguay
| | - Lucía Ziegler
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Udelar, Maldonado, Uruguay
| | - Thais R. Peclat
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
| | - Mariana Bresque
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
| | - Rachel M Handy
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rachel King
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown WV, USA
| | - Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, SP, Brazil
| | - Camila Espasandin
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
- Unidad Bioquìmica, Facultad de Veterinaria, Udelar, Uruguay
| | | | - Rosina Dapueto
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
- Área I+D Biomédico, CUDIM, Uruguay
| | - Andrés Lopez
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte, Udelar, Uruguay
| | - Katie L. Thompson
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
| | - Guillermo Agorrody
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Udelar, Uruguay
| | - Evan DeVallance
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Ethan Meadows
- Mitochondria, Metabolism and Bioenergetics Working Group; School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sara E. Lewis
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group; School of Medicine, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, USA
| | - Gabriele Catarine Santana Barbosa
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Leonardo Osbourne Lai de Souza
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Marina Santos Chichierchio
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Valeria Valez
- Cátedra de Bioquímica y Biofísica, Facultad de Odontología, Udelar, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Udelar, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Udelar, Uruguay
| | - Adrián Aicardo
- Centro de Investigaciones Biomédicas (CEINBIO), Udelar, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Udelar, Uruguay
- Departamento de Nutrición Clínica, Escuela de Nutrición, Udelar, Uruguay
| | - Paola Contreras
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
- Departamento de Fisiología, Facultad de Medicina, Udelar, Uruguay
| | - Mikkel H. Vendelbo
- Department of Biomedicine, Aarhus University, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark
| | - Andrés Kamaid
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, IIBCE, Uruguay
- Unidad de Bioimagenología Avanzada. Institut Pasteur de Montevideo, Uruguay
| | - Williams Porcal
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
- Departamento de Química Orgánica, Facultad de Química, Udelar, Uruguay
| | - Aldo Calliari
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
- Unidad Biofísica, Departamento de Biociencias, Facultad de Veterinaria, Udelar, Uruguay
| | - José Manuel Verdes
- Unidad Patología, Departamento de Patobiología; Facultad de Veterinaria, Udelar, Uruguay
| | - Jianhai Du
- Mitochondria, Metabolism and Bioenergetics Working Group; School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry, West Virginia University, Morgantown, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry, West Virginia University, Morgantown, USA
| | - John M Hollander
- Mitochondria, Metabolism and Bioenergetics Working Group; School of Medicine, West Virginia University, Morgantown, WV, USA
- Division of Exercise Physiology, West Virginia University, Morgantown, USA
| | - Thomas A. White
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Udelar, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Udelar, Uruguay
| | - Guillermo Moyna
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte, Udelar, Uruguay
| | - Celia Quijano
- Centro de Investigaciones Biomédicas (CEINBIO), Udelar, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Udelar, Uruguay
| | - Robert O’Doherty
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pennsylvania
- Department of Microbiology and Molecular Genetics; University of Pittsburgh, Pennsylvania
| | - Pedro Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, SP, Brazil
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Roberta Leonardi
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group; School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), Campinas, SP, Brazil; Instituto Nacional de Obesidade e Diabetes, Campinas, SP, Brazil
| | - Juliana Camacho-Pereira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Eric E. Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group; School of Medicine, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, USA
| | - Rosario Duran
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, IIBCE, Uruguay
| | - Gloria V. Lopez
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
- Departamento de Química Orgánica, Facultad de Química, Udelar, Uruguay
| | - Carlos Batthyány
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Uruguay
| | - Eduardo N. Chini
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Carlos Escande
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur Montevideo, Uruguay
| |
Collapse
|
6
|
Wei X, Lin L, Yuan QQ, Wang XY, Zhang Q, Zhang XM, Tang KC, Guo MY, Dong TY, Han W, Huang DK, Qi YL, Zhang M, Zhang HB. Bavachin protects against diet-induced hepatic steatosis and obesity in mice. Acta Pharmacol Sin 2023; 44:1416-1428. [PMID: 36721007 PMCID: PMC10310714 DOI: 10.1038/s41401-023-01056-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health concern worldwide, and the incidence of metabolic disorders associated with NAFLD is rapidly increasing because of the obesity epidemic. There are currently no approved drugs that prevent or treat NAFLD. Recent evidence shows that bavachin, a flavonoid isolated from the seeds and fruits of Psoralea corylifolia L., increases the transcriptional activity of PPARγ and insulin sensitivity during preadipocyte differentiation, but the effect of bavachin on glucose and lipid metabolism remains unclear. In the current study we investigated the effects of bavachin on obesity-associated NAFLD in vivo and in vitro. In mouse primary hepatocytes and Huh7 cells, treatment with bavachin (20 μM) significantly suppressed PA/OA or high glucose/high insulin-induced increases in the expression of fatty acid synthesis-related genes and the number and size of lipid droplets. Furthermore, bavachin treatment markedly elevated the phosphorylation levels of AKT and GSK-3β, improving the insulin signaling activity in the cells. In HFD-induced obese mice, administration of bavachin (30 mg/kg, i.p. every other day for 8 weeks) efficiently attenuated the increases in body weight, liver weight, blood glucose, and liver and serum triglyceride contents. Moreover, bavachin administration significantly alleviated hepatic inflammation and ameliorated HFD-induced glucose intolerance and insulin resistance. We demonstrated that bavachin protected against HFD-induced obesity by inducing fat thermogenesis and browning subcutaneous white adipose tissue (subWAT). We revealed that bavachin repressed the expression of lipid synthesis genes in the liver of obese mice, while promoting the expression of thermogenesis, browning, and mitochondrial respiration-related genes in subWAT and brown adipose tissue (BAT) in the mice. In conclusion, bavachin attenuates hepatic steatosis and obesity by repressing de novo lipogenesis, inducing fat thermogenesis and browning subWAT, suggesting that bavachin is a potential drug for NAFLD therapy.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Li Lin
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Qian-Qian Yuan
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiu-Yun Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Min Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ke-Chao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Man-Yu Guo
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ting-Yu Dong
- The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Da-Ke Huang
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yin-Liang Qi
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Mei Zhang
- Health Management Center, The First Affiliated Hospital of the University of Sciences and Technology of China (Anhui Provincial Hospital), Hefei, 230001, China.
| | - Hua-Bing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
- The Affiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou), Chuzhou, 239001, China.
| |
Collapse
|
7
|
Hüttl M, Markova I, Miklánková D, Zapletalova I, Kujal P, Šilhavý J, Pravenec M, Malinska H. Hypolipidemic and insulin sensitizing effects of salsalate beyond suppressing inflammation in a prediabetic rat model. Front Pharmacol 2023; 14:1117683. [PMID: 37077818 PMCID: PMC10106727 DOI: 10.3389/fphar.2023.1117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Background and aims: Low-grade chronic inflammation plays an important role in the pathogenesis of metabolic syndrome, type 2 diabetes and their complications. In this study, we investigated the effects of salsalate, a non-steroidal anti-inflammatory drug, on metabolic disturbances in an animal model of prediabetes—a strain of non-obese hereditary hypertriglyceridemic (HHTg) rats.Materials and Methods: Adult male HHTg and Wistar control rats were fed a standard diet without or with salsalate delivering a daily dose of 200 mg/kg of body weight for 6 weeks. Tissue sensitivity to insulin action was measured ex vivo according to basal and insulin-stimulated 14C-U-glucose incorporation into muscle glycogen or adipose tissue lipids. The concentration of methylglyoxal and glutathione was determined using the HPLC-method. Gene expression was measured by quantitative RT-PCR.Results: Salsalate treatment of HHTg rats when compared to their untreated controls was associated with significant amelioration of inflammation, dyslipidemia and insulin resistance. Specificaly, salsalate treatment was associated with reduced inflammation, oxidative and dicarbonyl stress when inflammatory markers, lipoperoxidation products and methylglyoxal levels were significantly decreased in serum and tissues. In addition, salsalate ameliorated glycaemia and reduced serum lipid concentrations. Insulin sensitivity in visceral adipose tissue and skeletal muscle was significantly increased after salsalate administration. Further, salsalate markedly reduced hepatic lipid accumulation (triglycerides −29% and cholesterol −14%). Hypolipidemic effects of salsalate were associated with differential expression of genes coding for enzymes and transcription factors involved in lipid synthesis (Fas, Hmgcr), oxidation (Pparα) and transport (Ldlr, Abc transporters), as well as changes in gene expression of cytochrome P450 proteins, in particular decreased Cyp7a and increased Cyp4a isoforms.Conclusion: These results demonstrate important anti-inflammatory and anti-oxidative effects of salsalate that were associated with reduced dyslipidemia and insulin resistance in HHTg rats. Hypolipidemic effects of salsalate were associated with differential expression of genes regulating lipid metabolism in the liver. These results suggest potential beneficial use of salsalate in prediabetic patients with NAFLD symptoms.
Collapse
Affiliation(s)
- Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech
| | - Irena Markova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech
| | - Denisa Miklánková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech
| | - Iveta Zapletalova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech
| | - Petr Kujal
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech
| | - Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Hana Malinska
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech
- *Correspondence: Hana Malinska,
| |
Collapse
|
8
|
Dagorn PG, Buchholz B, Kraus A, Batchuluun B, Bange H, Blockken L, Steinberg GR, Moller DE, Hallakou-Bozec S. A novel direct adenosine monophosphate kinase activator ameliorates disease progression in preclinical models of Autosomal Dominant Polycystic Kidney Disease. Kidney Int 2023; 103:917-929. [PMID: 36804411 DOI: 10.1016/j.kint.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) mainly results from mutations in the PKD1 gene, which encodes polycystin 1. It is the most common inherited kidney disease and is characterized by a progressive bilateral increase in cyst number and size, often leading to kidney failure. The cellular energy sensor and regulator adenosine monophosphate stimulated protein kinase (AMPK) has been implicated as a promising new therapeutic target. To address this hypothesis, we determined the effects of a potent and selective clinical stage direct allosteric AMPK activator, PXL770, in canine and patient-derived 3D cyst models and an orthologous mouse model of ADPKD. PXL770 induced AMPK activation and dose-dependently reduced cyst growth in principal-like Madin-Darby Canine Kidney cells stimulated with forskolin and kidney epithelial cells derived from patients with ADPKD stimulated with desmopressin. In an inducible, kidney epithelium-specific Pkd1 knockout mouse model, PXL770 produced kidney AMPK pathway engagement, prevented the onset of kidney failure (reducing blood urea by 47%), decreased cystic index by 26% and lowered the kidney weight to body weight ratio by 35% compared to untreated control Pkd1 knockout mice. These effects were accompanied by a reduction of markers of cell proliferation (-48%), macrophage infiltration (-53%) and tissue fibrosis (-37%). Thus, our results show the potential of direct allosteric AMPK activation in the treatment of ADPKD and support the further development of PXL770 for this indication.
Collapse
Affiliation(s)
| | - Bjoern Buchholz
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Kraus
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hester Bange
- Crown Bioscience Netherlands B.V., The Netherlands
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
9
|
Song X, Leonhard WN, Kanhai AA, Steinberg GR, Pei Y, Peters DJM. Preclinical evaluation of tolvaptan and salsalate combination therapy in a Pkd1-mouse model. Front Mol Biosci 2023; 10:1058825. [PMID: 36743216 PMCID: PMC9893022 DOI: 10.3389/fmolb.2023.1058825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder and an important cause of end stage renal disease (ESRD). Tolvaptan (a V2R antagonist) is the first disease modifier drug for treatment of ADPKD, but also causes severe polyuria. AMPK activators have been shown to attenuate cystic kidney disease. Methods: In this study, we tested the efficacy of the combined administration of salsalate (a direct AMPK activator) and tolvaptan using clinically relevant doses in an adult-onset conditional Pkd1 knock-out (KO) mouse model. Results: Compared to untreated Pkd1 mutant mice, the therapeutic effects of salsalate were similar to that of tolvaptan. The combined treatment tended to be more effective than individual drugs used alone, and was associated with improved kidney survival (p < 0.0001) and reduced kidney weight to body weight ratio (p < 0.0001), cystic index (p < 0.001) and blood urea levels (p < 0.001) compared to untreated animals, although the difference between combination and single treatments was not statistically significant. Gene expression profiling and protein expression and phosphorylation analyses support the mild beneficial effects of co-treatment, and showed that tolvaptan and salsalate cooperatively attenuated kidney injury, cell proliferation, cell cycle progression, inflammation and fibrosis, and improving mitochondrial health, and cellular antioxidant response. Conclusion: These data suggest that salsalate-tolvaptan combination, if confirmed in clinical testing, might represent a promising therapeutic strategy in the treatment of ADPKD.
Collapse
Affiliation(s)
- Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Wouter N. Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Anish A. Kanhai
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada,*Correspondence: York Pei, ; Dorien J. M. Peters,
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: York Pei, ; Dorien J. M. Peters,
| |
Collapse
|
10
|
The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids. Proc Natl Acad Sci U S A 2022; 119:e2119824119. [PMID: 36409897 PMCID: PMC9860314 DOI: 10.1073/pnas.2119824119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fatty acids are vital for the survival of eukaryotes, but when present in excess can have deleterious consequences. The AMP-activated protein kinase (AMPK) is an important regulator of multiple branches of metabolism. Studies in purified enzyme preparations and cultured cells have shown that AMPK is allosterically activated by small molecules as well as fatty acyl-CoAs through a mechanism involving Ser108 within the regulatory AMPK β1 isoform. However, the in vivo physiological significance of this residue has not been evaluated. In the current study, we generated mice with a targeted germline knock-in (KI) mutation of AMPKβ1 Ser108 to Ala (S108A-KI), which renders the site phospho-deficient. S108A-KI mice had reduced AMPK activity (50 to 75%) in the liver but not in the skeletal muscle. On a chow diet, S108A-KI mice had impairments in exogenous lipid-induced fatty acid oxidation. Studies in mice fed a high-fat diet found that S108A-KI mice had a tendency for greater glucose intolerance and elevated liver triglycerides. Consistent with increased liver triglycerides, livers of S108A-KI mice had reductions in mitochondrial content and respiration that were accompanied by enlarged mitochondria, suggestive of impairments in mitophagy. Subsequent studies in primary hepatocytes found that S108A-KI mice had reductions in palmitate- stimulated Cpt1a and Ppargc1a mRNA, ULK1 phosphorylation and autophagic/mitophagic flux. These data demonstrate an important physiological role of AMPKβ1 Ser108 phosphorylation in promoting fatty acid oxidation, mitochondrial biogenesis and autophagy under conditions of high lipid availability. As both ketogenic diets and intermittent fasting increase circulating free fatty acid levels, AMPK activity, mitochondrial biogenesis, and mitophagy, these data suggest a potential unifying mechanism which may be important in mediating these effects.
Collapse
|
11
|
Reyad-ul-Ferdous M, Song Y. Histone deacetylase (HDAC) inhibitor Curcumin upregulates mitochondrial uncoupling protein1 (UCP1) and mitochondrial function in brown adipocytes, in-Silico study and screening natural drug library. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Zhang CS, Li M, Wang Y, Li X, Zong Y, Long S, Zhang M, Feng JW, Wei X, Liu YH, Zhang B, Wu J, Zhang C, Lian W, Ma T, Tian X, Qu Q, Yu Y, Xiong J, Liu DT, Wu Z, Zhu M, Xie C, Wu Y, Xu Z, Yang C, Chen J, Huang G, He Q, Huang X, Zhang L, Sun X, Liu Q, Ghafoor A, Gui F, Zheng K, Wang W, Wang ZC, Yu Y, Zhao Q, Lin SY, Wang ZX, Piao HL, Deng X, Lin SC. The aldolase inhibitor aldometanib mimics glucose starvation to activate lysosomal AMPK. Nat Metab 2022; 4:1369-1401. [PMID: 36217034 PMCID: PMC9584815 DOI: 10.1038/s42255-022-00640-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023]
Abstract
The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.
Collapse
Affiliation(s)
- Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yue Zong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jin-Wei Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Wenhua Lian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Teng Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qi Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yaxin Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zhenhua Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zheni Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Guohong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingxia He
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Abdul Ghafoor
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Fu Gui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Kaili Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Zhi-Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
13
|
Silva VRR, Molinaro A, Gaudi AU, Fryk E, Sardi C, Hammarlund M, Mjörnstedt F, Johansson ME, Becattini B, Jansson PA, Solinas G. Somatic ablation of IKKβ in liver and leukocytes is not tolerated in obese mice but hepatic IKKβ deletion improves fatty liver and insulin sensitivity. FASEB J 2022; 36:e22512. [PMID: 36001064 DOI: 10.1096/fj.202200694r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
The kinase IKKβ controls pro-inflammatory gene expression, and its activity in the liver and leukocytes was shown to drive metabolic inflammation and insulin resistance in obesity. However, it was also proposed that liver IKKβ signaling protects obese mice from insulin resistance and endoplasmic reticulum (ER) stress by increasing XBP1s protein stability. Furthermore, mice lacking IKKβ in leukocytes display increased lethality to lipopolysaccharides. This study aims at improving our understanding of the role of IKKβ signaling in obesity. We induced IKKβ deletion in hematopoietic cells and liver of obese mice by Cre-LoxP recombination, using an INF-inducible system, or a liver-specific IKKβ deletion in obese mice by adenovirus delivery of the Cre recombinase. The histopathological, immune, and metabolic phenotype of the mice was characterized. IKKβ deletion in the liver and hematopoietic cells was not tolerated in mice with established obesity exposed to the TLR3 agonist poly(I:C) and exacerbated liver damage and ER-stress despite elevated XBP1s. By contrast, liver-specific ablation of IKKβ in obese mice reduced steatosis and improved insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of de-novo lipogenesis genes. We conclude that IKKβ blockage in liver and leukocytes is not tolerated in obese mice exposed to TLR3 agonists. However, selective hepatic IKKβ ablation improves fatty liver and insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of lipogenic genes.
Collapse
Affiliation(s)
- Vagner Ramon R Silva
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Angela Molinaro
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Usseglio Gaudi
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emanuel Fryk
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Sardi
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Barbara Becattini
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Per-Anders Jansson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Pileggi C, Hooks B, McPherson R, Dent R, Harper ME. Targeting skeletal muscle mitochondrial health in obesity. Clin Sci (Lond) 2022; 136:1081-1110. [PMID: 35892309 PMCID: PMC9334731 DOI: 10.1042/cs20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Breana G. Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert R.M. Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
15
|
Georgiev A, Granata C, Roden M. The role of mitochondria in the pathophysiology and treatment of common metabolic diseases in humans. Am J Physiol Cell Physiol 2022; 322:C1248-C1259. [PMID: 35508191 DOI: 10.1152/ajpcell.00035.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Common metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease significantly contribute to morbidity and mortality worldwide. They frequently associate with insulin resistance and altered mitochondrial functionality. Insulin-responsive tissues can show changes in mitochondrial features such as oxidative capacity, mitochondrial content and turnover, which do not necessarily reflect abnormalities but rather adaption to a certain metabolic condition. Lifestyle modifications and classic or novel drugs can modify these alterations and help treating these metabolic diseases. This review addresses the role of mitochondria in human metabolic diseases and discusses potential future research directions.
Collapse
Affiliation(s)
- Asen Georgiev
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Cesare Granata
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Michael Roden
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
de Siqueira DVF, Strazza PS, Benites NM, Leão RM. Salicylate activates KATP channels and reduces spontaneous firing in glycinergic cartwheel neurons in the dorsal cochlear nucleus of rats. Eur J Pharmacol 2022; 926:175026. [DOI: 10.1016/j.ejphar.2022.175026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
|
17
|
Pouget C, Dunyach-Remy C, Bernardi T, Provot C, Tasse J, Sotto A, Lavigne JP. A Relevant Wound-Like in vitro Media to Study Bacterial Cooperation and Biofilm in Chronic Wounds. Front Microbiol 2022; 13:705479. [PMID: 35464992 PMCID: PMC9019750 DOI: 10.3389/fmicb.2022.705479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Biofilm on the skin surface of chronic wounds is an important factor in the pathology, inhibiting wound healing. The polymicrobial nature of these infected wounds and bacterial interactions inside this pathogenic biofilm are the keys for understanding chronic infection. The aim of our work was to develop an innovative in vitro medium that closely mimics the chronic wound emphasizing the microbiological, cellular, and inflammatory environment of chronic wounds but also focusing on the pH found at the wound level. This new medium, called chronic wound medium (CWM), will thus facilitate the study of pathogenic biofilm organization. Clinical Staphylococcus aureus and Pseudomonas aeruginosa strains coisolated from diabetic foot infection were collected and cultivated in this new medium for 24 h in monoculture and coculture. Bacterial growth (growth curves), presence of small colony variant (SCV), biofilm formation (BioFilm Ring Test® assay, biofilm biomass quantification), and virulence (survival curve in a Caenorhabditis elegans model) were evaluated. After 24 h in the in vitro conditions, we observed that P. aeruginosa growth was not affected, compared with a control bacterial medium, whereas for S. aureus, the stationary phase was reduced by two logs. Interestingly, S. aureus growth increased when cocultured with P. aeruginosa in CWM. In coculture with P. aeruginosa, SCV forms of S. aureus were detected. Biofilm studies showed that bacteria, alone and in combination, formed biofilm faster (as soon as 3 h) than the bacteria exposed in a control medium (as soon as 5 h). The virulence of all strains decreased in the nematode model when cultivated in our new in vitro medium. Taken together, our data confirmed the impact of the chronic wound environment on biofilm formation and bacteria virulence. They indicated that P. aeruginosa and S. aureus cooperated in coinfected wounds. Therefore, this in vitro model provides a new tool for bacterial cooperation investigation and polymicrobial biofilm formation.
Collapse
Affiliation(s)
- Cassandra Pouget
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Nîmes, France.,Biofilm Pharma SAS, Saint-Beauzire, France
| | - Catherine Dunyach-Remy
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | | | | | | | - Albert Sotto
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| |
Collapse
|
18
|
Sanders MJ, Ratinaud Y, Neopane K, Bonhoure N, Day EA, Ciclet O, Lassueur S, Naranjo Pinta M, Deak M, Brinon B, Christen S, Steinberg GR, Barron D, Sakamoto K. Natural (dihydro)phenanthrene plant compounds are direct activators of AMPK through its allosteric drug and metabolite-binding site. J Biol Chem 2022; 298:101852. [PMID: 35331736 PMCID: PMC9108889 DOI: 10.1016/j.jbc.2022.101852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a central energy sensor that coordinates the response to energy challenges to maintain cellular ATP levels. AMPK is a potential therapeutic target for treating metabolic disorders, and several direct synthetic activators of AMPK have been developed that show promise in preclinical models of type 2 diabetes. These compounds have been shown to regulate AMPK through binding to a novel allosteric drug and metabolite (ADaM)–binding site on AMPK, and it is possible that other molecules might similarly bind this site. Here, we performed a high-throughput screen with natural plant compounds to identify such direct allosteric activators of AMPK. We identified a natural plant dihydrophenathrene, Lusianthridin, which allosterically activates and protects AMPK from dephosphorylation by binding to the ADaM site. Similar to other ADaM site activators, Lusianthridin showed preferential activation of AMPKβ1-containing complexes in intact cells and was unable to activate an AMPKβ1 S108A mutant. Lusianthridin dose-dependently increased phosphorylation of acetyl-CoA carboxylase in mouse primary hepatocytes, which led to a corresponding decrease in de novo lipogenesis. This ability of Lusianthridin to inhibit lipogenesis was impaired in hepatocytes from β1 S108A knock-in mice and mice bearing a mutation at the AMPK phosphorylation site of acetyl-CoA carboxylase 1/2. Finally, we show that activation of AMPK by natural compounds extends to several analogs of Lusianthridin and the related chemical series, phenanthrenes. The emergence of natural plant compounds that regulate AMPK through the ADaM site raises the distinct possibility that other natural compounds share a common mechanism of regulation.
Collapse
Affiliation(s)
- Matthew J Sanders
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland.
| | - Yann Ratinaud
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Katyayanee Neopane
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Bonhoure
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Emily A Day
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Olivier Ciclet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Steve Lassueur
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Martine Naranjo Pinta
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Maria Deak
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Stefan Christen
- Nestle Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Denis Barron
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Kajani S, Curley S, O'Reilly ME, Yin X, Dillon ET, Guo W, Nilaweera KN, Brennan L, Roche HM, McGillicuddy FC. Sodium salicylate rewires hepatic metabolic pathways in obesity and attenuates IL-1β secretion from adipose tissue - implications for obesity-impaired reverse cholesterol transport. Mol Metab 2021; 56:101425. [PMID: 34954383 PMCID: PMC8762459 DOI: 10.1016/j.molmet.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction High-fat diet (HFD)-induced obesity impairs clearance of cholesterol through the Reverse Cholesterol Transport (RCT) pathway, with downregulation in hepatic expression of cholesterol and bile acid transporters, namely ABCG5/8 and ABCB11, and reduced high-density lipoprotein (HDL) cholesterol efflux capacity (CEC). In the current study, we hypothesized that the development of hepatosteatosis, secondary to adipose-tissue dysfunction, contributes to obesity-impaired RCT and that such effects could be mitigated using the anti-inflammatory drug sodium salicylate (NaS). Materials and methods C57BL/6J mice, fed HFD ± NaS or low-fat diet (LFD) for 24 weeks, underwent glucose and insulin tolerance testing. The 3H-cholesterol movement from macrophage-to-feces was assessed in vivo. HDL-CEC was determined ex vivo. Cytokine secretion from adipose-derived stromal vascular fraction (SVF) cells was measured ex vivo. Liver and HDL proteins were determined by mass spectrometry and analyzed using Ingenuity Pathway Analysis. Results NaS delayed HFD-induced weight gain, abrogated priming of pro-IL-1β in SVFs, attenuated insulin resistance, and prevented steatohepatitis (ectopic fat accumulation in the liver). Prevention of hepatosteatosis coincided with increased expression of PPAR-alpha/beta-oxidation proteins with NaS and reduced expression of LXR/RXR-induced proteins including apolipoproteins. The latter effects were mirrored within the HDL proteome in circulation. Despite remarkable protection shown against steatosis, HFD-induced hypercholesterolemia and repression of the liver-to-bile cholesterol transporter, ABCG5/8, could not be rescued with NaS. Discussions and conclusions The cardiometabolic health benefits of NaS may be attributed to the reprogramming of hepatic metabolic pathways to increase fatty acid utilization in the settings of nutritional overabundance. Reduced hepatic cholesterol levels, coupled with reduced LXR/RXR-induced proteins, may underlie the lack of rescue of ABCG5/8 expression with NaS. This remarkable protection against HFD-induced hepatosteatosis did not translate to improvements in cholesterol homeostasis. Sodium salicylate (NaS) initially delays weight-gain in mice fed high-fat diet (HFD) - catch-up evident in weeks 12–24. NaS prevents HFD-induced insulin resistance, hepatosteatosis and pro-IL-1β priming in adipose tissue even upon weight-gain. Hepatic expression of proteins involved in beta oxidation, oxidative phosphorylation and TCA cycle upregulated with NaS. Hepatic expression of LXR/RXR proteins eg. apolipoproteins reduced with NaS; these effects were mirrored in HDL proteome. NaS failed to improve HFD-impaired Reverse Cholesterol Transport or hypercholesterolemia despite preventing hepatosteatosis.
Collapse
Affiliation(s)
- Sarina Kajani
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Sean Curley
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Marcella E O'Reilly
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Xiaofei Yin
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | - Weili Guo
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Kanishka N Nilaweera
- Teagasc Food Research Centre; VistaMilk Research Centre, Moorepark, Fermoy, Ireland
| | - Lorraine Brennan
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Helen M Roche
- Diabetes Complications Research Centre; UCD Conway Institute; Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science; UCD Institute of Food and Health
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health.
| |
Collapse
|
20
|
Day EA, Ford RJ, Smith BK, Houde VP, Stypa S, Rehal S, Lhotak S, Kemp BE, Trigatti BL, Werstuck GH, Austin RC, Fullerton MD, Steinberg GR. Salsalate reduces atherosclerosis through AMPKβ1 in mice. Mol Metab 2021; 53:101321. [PMID: 34425254 PMCID: PMC8429104 DOI: 10.1016/j.molmet.2021.101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Salsalate is a prodrug of salicylate that lowers blood glucose in people with type 2 diabetes. AMP-activated protein kinase (AMPK) is an αβγ heterotrimer which inhibits macrophage inflammation and the synthesis of fatty acids and cholesterol in the liver through phosphorylation of acetyl-CoA carboxylase (ACC) and HMG-CoA reductase (HMGCR), respectively. Salicylate binds to and activates AMPKβ1-containing heterotrimers that are highly expressed in both macrophages and liver, but the potential importance of AMPK and ability of salsalate to reduce atherosclerosis have not been evaluated. Methods ApoE−/− and LDLr−/− mice with or without (−/−) germline or bone marrow AMPKβ1, respectively, were treated with salsalate, and atherosclerotic plaque size was evaluated in serial sections of the aortic root. Studies examining the effects of salicylate on markers of inflammation, fatty acid and cholesterol synthesis and proliferation were conducted in bone marrow–derived macrophages (BMDMs) from wild-type mice or mice lacking AMPKβ1 or the key AMPK-inhibitory phosphorylation sites on ACC (ACC knock-in (KI)-ACC KI) or HMGCR (HMGCR-KI). Results Salsalate reduced atherosclerotic plaques in the aortic roots of ApoE−/− mice, but not ApoE−/− AMPKβ1−/− mice. Similarly, salsalate reduced atherosclerosis in LDLr−/− mice receiving wild-type but not AMPKβ1−/− bone marrow. Reductions in atherosclerosis by salsalate were associated with reduced macrophage proliferation, reduced plaque lipid content and reduced serum cholesterol. In BMDMs, this suppression of proliferation by salicylate required phosphorylation of HMGCR and the suppression of cholesterol synthesis. Conclusions These data indicate that salsalate suppresses macrophage proliferation and atherosclerosis through an AMPKβ1-dependent pathway, which may involve HMGCR phosphorylation and cholesterol synthesis. Since rapidly-proliferating macrophages are a hallmark of atherosclerosis, these data indicate further evaluation of salsalate as a potential therapeutic agent for treating atherosclerotic cardiovascular disease. Salsalate (a dimer of salicylate) activates AMPK in macrophages and reduces atherosclerosis. Salicylate-induced reductions in atherosclerosis are associated with reduced macrophage proliferation and serum cholesterol. AMPK phosphorylation of HMG-CoA reductase is required for suppressing cholesterol synthesis and macrophage proliferation.
Collapse
Affiliation(s)
- Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Rebecca J Ford
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Brennan K Smith
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Vanessa P Houde
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Stephanie Stypa
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Sonia Rehal
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Sarka Lhotak
- Department of Medicine, McMaster University, Canada; Hamilton Centre for Kidney Research, St. Joseph's Healthcare Hamilton, Canada
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia
| | - Bernardo L Trigatti
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| | - Geoff H Werstuck
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| | - Richard C Austin
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada; Hamilton Centre for Kidney Research, St. Joseph's Healthcare Hamilton, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, Centre for Catalysis Research and Innovation, Faculty of Medicine, University of Ottawa, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada.
| |
Collapse
|
21
|
Guo X, Li X, Yang W, Liao W, Shen JZ, Ai W, Pan Q, Sun Y, Zhang K, Zhang R, Qiu Y, Dai Q, Zheng H, Guo S. Metformin Targets Foxo1 to Control Glucose Homeostasis. Biomolecules 2021; 11:biom11060873. [PMID: 34208360 PMCID: PMC8231152 DOI: 10.3390/biom11060873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022] Open
Abstract
Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus (T2D). Metformin exerts its glucose-lowering effect primarily through decreasing hepatic glucose production (HGP). However, the precise molecular mechanisms of metformin remain unclear due to supra-pharmacological concentration of metformin used in the study. Here, we investigated the role of Foxo1 in metformin action in control of glucose homeostasis and its mechanism via the transcription factor Foxo1 in mice, as well as the clinical relevance with co-treatment of aspirin. We showed that metformin inhibits HGP and blood glucose in a Foxo1-dependent manner. Furthermore, we identified that metformin suppresses glucagon-induced HGP through inhibiting the PKA→Foxo1 signaling pathway. In both cells and mice, Foxo1-S273D or A mutation abolished the suppressive effect of metformin on glucagon or fasting-induced HGP. We further showed that metformin attenuates PKA activity, decreases Foxo1-S273 phosphorylation, and improves glucose homeostasis in diet-induced obese mice. We also provided evidence that salicylate suppresses HGP and blood glucose through the PKA→Foxo1 signaling pathway, but it has no further additive improvement with metformin in control of glucose homeostasis. Our study demonstrates that metformin inhibits HGP through PKA-regulated transcription factor Foxo1 and its S273 phosphorylation.
Collapse
Affiliation(s)
- Xiaoqin Guo
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Xiaopeng Li
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Wang Liao
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - James Zheng Shen
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
| | - Kebin Zhang
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Rui Zhang
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Yuyang Qiu
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Qian Dai
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
| | - Hongting Zheng
- Xinqiao Hospital, Army Medical University, Chongqing 400037, China; (X.G.); (K.Z.); (R.Z.); (Y.Q.); (Q.D.)
- Correspondence: (H.Z.); (S.G.)
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA; (X.L.); (W.Y.); (W.L.); (J.Z.S.); (W.A.); (Q.P.); (Y.S.)
- Correspondence: (H.Z.); (S.G.)
| |
Collapse
|
22
|
Sevoflurane-induced hyperglycemia is attenuated by salsalate in obese insulin-resistant mice. Can J Anaesth 2021; 68:972-979. [PMID: 33580878 DOI: 10.1007/s12630-021-01935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Perioperative hyperglycemia is common and is associated with significant morbidity. Although patient characteristics and surgery influence perioperative glucose metabolism, anesthetics have a significant impact. We hypothesized that mice that were obese and insulin-resistant would experience greater hyperglycemia in response to sevoflurane anesthesia compared with lean controls. We further hypothesized that sevoflurane-induced hyperglycemia would be attenuated by salsalate pre-treatment. METHODS Lean and obese male C57BL/6J mice were anesthetized with sevoflurane for 60 min with or without pre-treatment of 62.5 mg·kg-1 salsalate. Blood glucose, plasma insulin, and glucose uptake into different tissues were measured. RESULTS Under sevoflurane anesthesia, obese mice had higher blood glucose compared to lean mice. Increases in blood glucose were attenuated with acute salsalate pre-treatment at 60 min under anesthesia in obese mice (mean ± standard error of the mean [SEM], delta blood glucose; vehicle 5.79 ± 1.09 vs salsalate 1.91 ± 1.32 mM; P = 0.04) but did not reach statistical significance in lean mice (delta blood glucose, vehicle 4.39 ± 0.55 vs salsalate 2.79 ± 0.71 mM; P = 0.10). This effect was independent of changes in insulin but associated with an approx. 1.7-fold increase in glucose uptake into brown adipose tissue (vehicle 45.28 ± 4.57 vs salsalate 76.89 ± 12.23 µmol·g-1 tissue·hr-1; P < 0.001). CONCLUSION These data show that salsalate can reduce sevoflurane-induced hyperglycemia in mice. This indicates that salsalate may represent a new class of therapeutics that, in addition to its anti-inflammatory and analgesic properties, may be useful to reduce perioperative hyperglycemia.
Collapse
|
23
|
Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Mol Metab 2021; 46:101178. [PMID: 33545391 PMCID: PMC8085597 DOI: 10.1016/j.molmet.2021.101178] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial uncouplers shuttle protons across the inner mitochondrial membrane via a pathway that is independent of adenosine triphosphate (ATP) synthase, thereby uncoupling nutrient oxidation from ATP production and dissipating the proton gradient as heat. While initial toxicity concerns hindered their therapeutic development in the early 1930s, there has been increased interest in exploring the therapeutic potential of mitochondrial uncouplers for the treatment of metabolic diseases. Scope of review In this review, we cover recent advances in the mechanisms by which mitochondrial uncouplers regulate biological processes and disease, with a particular focus on metabolic associated fatty liver disease (MAFLD), nonalcoholic hepatosteatosis (NASH), insulin resistance, and type 2 diabetes (T2D). We also discuss the challenges that remain to be addressed before synthetic and natural mitochondrial uncouplers can successfully enter the clinic. Major conclusions Rodent and non-human primate studies suggest that a myriad of small molecule mitochondrial uncouplers can safely reverse MAFLD/NASH with a wide therapeutic index. Despite this, further characterization of the tissue- and cell-specific effects of mitochondrial uncouplers is needed. We propose targeting the dosing of mitochondrial uncouplers to specific tissues such as the liver and/or developing molecules with self-limiting properties to induce a subtle and sustained increase in mitochondrial inefficiency, thereby avoiding systemic toxicity concerns.
Collapse
|
24
|
Li H, Wang C, Li L, Li L. Skeletal muscle non-shivering thermogenesis as an attractive strategy to combat obesity. Life Sci 2021; 269:119024. [PMID: 33450257 DOI: 10.1016/j.lfs.2021.119024] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/05/2023]
Abstract
Obesity is a chronic disease derived from disequilibrium between energy intake and energy expenditure and evolving as a challenging epidemiological disease in the 21st century. It is urgently necessary to solve this issue by searching for effective strategies and safe drugs. Skeletal muscle could be a potential therapeutic target for the prevention and treatment of obesity and its associated complications due to non-shivering thermogenesis (NST) function. Skeletal muscle NST is based dominantly on futile sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump cycling that leads to a rise in cytosolic Ca2+, increased adenosine triphosphate (ATP) hydrolysis and heat production. This review will highlight the mechanisms of skeletal muscle NST, including SLN mediated SERCA pump futile cycling, SR-mitochondrial crosstalk and increased mitochondrial biogenesis, and thermogenesis induced by uncoupling proteins 3 (UCP3). We then summarize natural products targeting the pathogenesis of obesity via skeletal muscle NST, offering new insights into pharmacotherapy and potential drug candidates to combat obesity.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Section of Endocrinology, School of Medicine, Yale University, New Haven 06520, USA.
| | - Can Wang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lingqiao Li
- Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou 317306, PR China
| |
Collapse
|
25
|
Kabir F, Nahar K, Rahman MM, Mamun F, Lasker S, Khan F, Yasmin T, Akter KA, Subhan N, Alam MA. Etoricoxib treatment prevented body weight gain and ameliorated oxidative stress in the liver of high-fat diet-fed rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:33-47. [PMID: 32780227 DOI: 10.1007/s00210-020-01960-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The main focus of this study was to determine the role of etoricoxib in counterbalancing the oxidative stress, metabolic disturbances, and inflammation in high-fat (HF) diet-induced obese rats. To conduct this study, 28 male Wistar rats (weighing 190-210 g) were distributed randomly into four groups: control, control + etoricoxib, HF, and HF + etoricoxib. After 8 weeks of treatment with etoricoxib (200 mg/kg), all the animals were sacrificed followed by the collection of blood and tissue samples in order to perform biochemical tests along with histological staining on hepatic tissues. According to this study, etoricoxib treatment prevented the body weight gain in HF diet-fed rats. Furthermore, rats of HF + etoricoxib group exhibited better blood glucose tolerance than the rats of HF diet-fed group. In addition, etoricoxib also markedly normalized HF diet-mediated rise of hepatic enzyme activity. Etoricoxib treatment lowered the level of oxidative stress indicators significantly with a parallel augmentation of antioxidant enzyme activities. Furthermore, etoricoxib administration helped in preventing inflammatory cell invasion, collagen accumulation, and fibrotic catastrophe in HF diet-fed rats. The findings of the present work are suggestive of the helpful role of etoricoxib in deterring the metabolic syndrome as well as other deleterious pathological changes afflicting the HF diet-fed rats.
Collapse
Affiliation(s)
- Fariha Kabir
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Kamrun Nahar
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Fariha Mamun
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Shoumen Lasker
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Tahmina Yasmin
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh.
| |
Collapse
|
26
|
The SGLT2 inhibitor canagliflozin suppresses lipid synthesis and interleukin-1 beta in ApoE deficient mice. Biochem J 2020; 477:2347-2361. [PMID: 32510137 DOI: 10.1042/bcj20200278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors such as canagliflozin lower blood glucose and reduce cardiovascular events in people with type 2 diabetes through mechanisms that are not fully understood. Canagliflozin has been shown to increase the activity of the AMP-activated protein kinase (AMPK), a metabolic energy sensor important for increasing fatty acid oxidation and energy expenditure and suppressing lipogenesis and inflammation, but whether AMPK activation is important for mediating some of the beneficial metabolic effects of canagliflozin has not been determined. We, therefore, evaluated the effects of canagliflozin in female ApoE-/- and ApoE-/-AMPK β1-/- mice fed a western diet. Canagliflozin increased fatty acid oxidation and energy expenditure and lowered adiposity, blood glucose and the respiratory exchange ratio independently of AMPK β1. Canagliflozin also suppressed liver lipid synthesis and the expression of ATP-citrate lyase, acetyl-CoA carboxylase and sterol response element-binding protein 1c independently of AMPK β1. Canagliflozin lowered circulating IL-1β and studies in bone marrow-derived macrophages indicated that in contrast with the metabolic adaptations, this effect required AMPK β1. Canagliflozin had no effect on the size of atherosclerotic plaques in either ApoE-/- and ApoE-/-AMPK β1-/- mice. Future studies investigating whether reductions in liver lipid synthesis and macrophage IL-1β are important for the cardioprotective effects of canagliflozin warrant further investigation.
Collapse
|
27
|
Li J, Chen C, Zhang W, Bi J, Yang G, Li E. Salsalate reverses metabolic disorders in a mouse model of non-alcoholic fatty liver disease through AMPK activation and caspase-6 activity inhibition. Basic Clin Pharmacol Toxicol 2020; 128:394-409. [PMID: 33200549 DOI: 10.1111/bcpt.13535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Salsalate, an ester formed by 2 salicylic acid molecules, has beneficial effect against metabolic disorders in clinical trials and in animal studies. This study focused on the mechanistic aspects of salsalate activity against non-alcoholic fatty liver disease (NAFLD). Using high-fat diet (HFD) fed mice, we showed that salsalate treatment decreased body-weight gains, reduced white adipose tissue mass and improved glycaemic control. Mice in salsalate-treated group also had reduced obese adipose tissue and hepatic macrophage infiltration and inflammation and adipogenesis gene expression. Histology analysis revealed predominant decreases in hepatosteatosis, including both macrovesicular and microvesicular steatoses. The treatment reversed AMPK activity repression that was accompanied by reduced caspase-6 activity and cleavage. Enzymatic assay and cell culture studies showed that salsalate promoted AMPK activation by directly activating AMPK. This study links salsalate effect against metabolic disorders to its activity on reversion of AMPK repression in NAFLD mice and on suppression of adipogenic gene induction.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Changmai Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jing'ai Bi
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Guang Yang
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
29
|
Targeting AMP-activated protein kinase (AMPK) for treatment of autosomal dominant polycystic kidney disease. Cell Signal 2020; 73:109704. [DOI: 10.1016/j.cellsig.2020.109704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
|
30
|
Axelrod CL, King WT, Davuluri G, Noland RC, Hall J, Hull M, Dantas WS, Zunica ERM, Alexopoulos SJ, Hoehn KL, Langohr I, Stadler K, Doyle H, Schmidt E, Nieuwoudt S, Fitzgerald K, Pergola K, Fujioka H, Mey JT, Fealy C, Mulya A, Beyl R, Hoppel CL, Kirwan JP. BAM15-mediated mitochondrial uncoupling protects against obesity and improves glycemic control. EMBO Mol Med 2020; 12:e12088. [PMID: 32519812 PMCID: PMC7338798 DOI: 10.15252/emmm.202012088] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Obesity is a leading cause of preventable death worldwide. Despite this, current strategies for the treatment of obesity remain ineffective at achieving long-term weight control. This is due, in part, to difficulties in identifying tolerable and efficacious small molecules or biologics capable of regulating systemic nutrient homeostasis. Here, we demonstrate that BAM15, a mitochondrially targeted small molecule protonophore, stimulates energy expenditure and glucose and lipid metabolism to protect against diet-induced obesity. Exposure to BAM15 in vitro enhanced mitochondrial respiratory kinetics, improved insulin action, and stimulated nutrient uptake by sustained activation of AMPK. C57BL/6J mice treated with BAM15 were resistant to weight gain. Furthermore, BAM15-treated mice exhibited improved body composition and glycemic control independent of weight loss, effects attributable to drug targeting of lipid-rich tissues. We provide the first phenotypic characterization and demonstration of pre-clinical efficacy for BAM15 as a pharmacological approach for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - William T King
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Sarcopenia and Malnutrition LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Robert C Noland
- Skeletal Muscle Metabolism LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Jacob Hall
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Michaela Hull
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Elizabeth RM Zunica
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of NutritionCase Western Reserve UniversityClevelandOHUSA
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Ingeborg Langohr
- Department of Pathobiological SciencesLouisiana State UniversityBaton RougeLAUSA
| | - Krisztian Stadler
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Haylee Doyle
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Eva Schmidt
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Stephan Nieuwoudt
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Kelly Fitzgerald
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Kathryn Pergola
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Hisashi Fujioka
- Cryo‐Electron Microscopy CoreCase Western Reserve UniversityClevelandOHUSA
| | - Jacob T Mey
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Ciaran Fealy
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Anny Mulya
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Robbie Beyl
- Department of BiostatisticsPennington Biomedical Research CenterBaton RougeLAUSA
| | - Charles L Hoppel
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of PharmacologyCase Western Reserve UniversityClevelandOHUSA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
- Department of NutritionCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
31
|
Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H. Low-Dose Sorafenib Acts as a Mitochondrial Uncoupler and Ameliorates Nonalcoholic Steatohepatitis. Cell Metab 2020; 31:892-908.e11. [PMID: 32375062 PMCID: PMC9375823 DOI: 10.1016/j.cmet.2020.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming one of the leading causes of hepatocellular carcinoma (HCC). Sorafenib is the only first-line therapy for advanced HCC despite its serious adverse effects. Here, we report that at an equivalent of approximately one-tenth the clinical dose for HCC, sorafenib treatment effectively prevents the progression of NASH in both mice and monkeys without any observed significant adverse events. Mechanistically, sorafenib's benefit in NASH is independent of its canonical kinase targets in HCC, but involves the induction of mild mitochondrial uncoupling and subsequent activation of AMP-activated protein kinase (AMPK). Collectively, our findings demonstrate a previously unappreciated therapeutic effect and signaling mechanism of low-dose sorafenib treatment in NASH. We envision that this new therapeutic strategy for NASH has the potential to translate into a beneficial anti-NASH therapy with fewer adverse events than is observed in the drug's current use in HCC.
Collapse
Affiliation(s)
- Chongshu Jian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jiajun Fu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoming Wang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shan Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
32
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
33
|
Morrow NM, Burke AC, Samsoondar JP, Seigel KE, Wang A, Telford DE, Sutherland BG, O'Dwyer C, Steinberg GR, Fullerton MD, Huff MW. The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK. J Lipid Res 2020; 61:387-402. [PMID: 31964763 DOI: 10.1194/jlr.ra119000542] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Indexed: 01/05/2023] Open
Abstract
Obesity, dyslipidemia, and insulin resistance, the increasingly common metabolic syndrome, are risk factors for CVD and type 2 diabetes that warrant novel therapeutic interventions. The flavonoid nobiletin displays potent lipid-lowering and insulin-sensitizing properties in mice with metabolic dysfunction. However, the mechanisms by which nobiletin mediates metabolic protection are not clearly established. The central role of AMP-activated protein kinase (AMPK) as an energy sensor suggests that AMPK is a target of nobiletin. We tested the hypothesis that metabolic protection by nobiletin required phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in mouse hepatocytes, in mice deficient in hepatic AMPK (Ampkβ1 -/-), in mice incapable of inhibitory phosphorylation of ACC (AccDKI), and in mice with adipocyte-specific AMPK deficiency (iβ1β2AKO). We fed mice a high-fat/high-cholesterol diet with or without nobiletin. Nobiletin increased phosphorylation of AMPK and ACC in primary mouse hepatocytes, which was associated with increased FA oxidation and attenuated FA synthesis. Despite loss of ACC phosphorylation in Ampkβ1 -/- hepatocytes, nobiletin suppressed FA synthesis and enhanced FA oxidation. Acute injection of nobiletin into mice did not increase phosphorylation of either AMPK or ACC in liver. In mice fed a high-fat diet, nobiletin robustly prevented obesity, hepatic steatosis, dyslipidemia, and insulin resistance, and it improved energy expenditure in Ampkβ1 -/-, AccDKI, and iβ1β2AKO mice to the same extent as in WT controls. Thus, the beneficial metabolic effects of nobiletin in vivo are conferred independently of hepatic or adipocyte AMPK activation. These studies further underscore the therapeutic potential of nobiletin and begin to clarify possible mechanisms.
Collapse
Affiliation(s)
- Nadya M Morrow
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Amy C Burke
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Joshua P Samsoondar
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Kyle E Seigel
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Andrew Wang
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7 .,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
34
|
Shamshoum H, Medak KD, Townsend LK, Ashworth KE, Bush ND, Halm MK, Kemp BE, Wright DC. AMPK β1 activation suppresses antipsychotic‐induced hyperglycemia in mice. FASEB J 2019; 33:14010-14021. [DOI: 10.1096/fj.201901820r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hesham Shamshoum
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Kyle D. Medak
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Logan K. Townsend
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Kristen E. Ashworth
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | | | - Margaret K. Halm
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Bruce E. Kemp
- Department of MedicineSt Vincent's Institute, University of MelbourneMelbourneVictoriaAustralia
- Mary MacKillop Institute for Health Research, Australian Catholic UniversityFitzroyVictoriaAustralia
| | - David C. Wright
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
35
|
Martínez-Hervás S, González-Navarro H. Terapias antiinflamatorias para la enfermedad cardiovascular: vías de señalización y mecanismos. Rev Esp Cardiol 2019. [DOI: 10.1016/j.recesp.2019.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Leonhard WN, Song X, Kanhai AA, Iliuta IA, Bozovic A, Steinberg GR, Peters DJM, Pei Y. Salsalate, but not metformin or canagliflozin, slows kidney cyst growth in an adult-onset mouse model of polycystic kidney disease. EBioMedicine 2019; 47:436-445. [PMID: 31473186 PMCID: PMC6796518 DOI: 10.1016/j.ebiom.2019.08.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multiple preclinical studies have highlighted AMP-activated protein kinase (AMPK) as a potential therapeutic target for autosomal dominant polycystic kidney disease (ADPKD). Both metformin and canagliflozin indirectly activate AMPK by inhibiting mitochondrial function, while salsalate is a direct AMPK activator. Metformin, canagliflozin and salsalate (a prodrug dimer of salicylate) are approved for clinical use with excellent safety profile. Although metformin treatment had been shown to attenuate experimental cystic kidney disease, there are concerns that therapeutic AMPK activation in human kidney might require a higher oral metformin dose than can be achieved clinically. METHODS In this study, we tested metformin-based combination therapies for their additive (metformin plus canagliflozin) and synergistic (metformin plus salsalate) effects and each drug individually in an adult-onset conditional Pkd1 knock-out mouse model (n = 20 male/group) using dosages expected to yield clinically relevant drug levels. FINDINGS Compared to untreated mutant mice, treatment with salsalate or metformin plus salsalate improved kidney survival (i.e. blood urea nitrogen <20 mmol/L at the time of sacrifice) and reduced cystic kidney disease severity. However, the effects of metformin plus salsalate did not differ from salsalate alone; and neither metformin nor canagliflozin was effective. Protein expression and phosphorylation analyses indicated that salsalate treatment was associated with reduction in mTOR (mammalian target of rapamycin) activity and cellular proliferation in Pkd1 mutant mouse kidneys. Global gene expression analyses suggested that these effects were linked to restoration of mitochondrial function and suppression of inflammation and fibrosis. INTERPRETATION Salsalate is a highly promising candidate for drug repurposing and clinical testing in ADPKD.
Collapse
Affiliation(s)
- Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Xuewen Song
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Anish A Kanhai
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ioan-Andrei Iliuta
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Bozovic
- Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
38
|
Mitochondrial dysfunction in diabetic kidney disease. Clin Chim Acta 2019; 496:108-116. [PMID: 31276635 DOI: 10.1016/j.cca.2019.07.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
Although diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease worldwide, the pathogenic mechanisms are poorly understood. There is increasing evidence that mitochondrial dysfunction contributes to the development and progression of DKD. Because the kidney is the organ with the second highest oxygen consumption in our body, it is distinctly sensitive to mitochondrial dysfunction. Mitochondrial dysfunction contributes to the progression of chronic kidney disease irrespective of underlying cause. More importantly, high plasma glucose directly damages renal tubular cells, resulting in a wide range of metabolic and cellular dysfunction. Overproduction of reactive oxygen species (ROS), activation of apoptotic pathway, and defective mitophagy are interlinked mechanisms that play pivotal roles in the progression of DKD. Although renal tubular cells have the highest mitochondrial content, podocytes, mesangial cells, and glomerular endothelial cells may all be affected by diabetes-induced mitochondrial injury. Urinary mitochondrial DNA (mtDNA) is readily detectable and may serve as a marker of mitochondrial damage in DKD. Unfortunately, pharmacologic modulation of mitochondrial dysfunction for the treatment of DKD is still in its infancy. Nonetheless, understanding the pathobiology of mitochondrial dysfunction in DKD would facilitate the development of novel therapeutic strategies.
Collapse
|
39
|
Anti-inflammatory Therapies for Cardiovascular Disease: Signaling Pathways and Mechanisms. ACTA ACUST UNITED AC 2019; 72:767-773. [PMID: 31155366 DOI: 10.1016/j.rec.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases (CVD) are the clinical manifestation of atherosclerosis, a chronic inflammatory disease promoted by several risk factors such as dyslipidemia, type 2 diabetes mellitus, hypertension, and smoking. Acute CVD events are the result of an unresolved inflammatory chronic state that promotes the rupture of unstable plaque lesions. Of note, the existing intensive therapies modify risk factors but do not prevent life-threatening recurrent ischemic events in high-risk patients, who have a residual inflammatory risk displayed by increased C-reactive protein (CRP) levels. Better understanding of the role of innate and adaptive immunity in plaque development and rupture has led to intensive investigation of anti-inflammatory strategies for CVD. Some of them are being tested in specific clinical trials and use lower doses of existing medications originally developed for other inflammatory diseases such as rheumatoid arthritis and psoriasis, which have high CVD risk. Other investigations are retrospective and meta-analyses of existing clinical trials that evaluate the incidence of CVD in these inflammatory diseases. Others are based on preclinical testing such as vaccines. In this article, we summarize the main anti-inflammatory strategies and associated molecular mechanisms that are being evaluated in preclinical or clinical CVD studies.
Collapse
|
40
|
Broadfield LA, Marcinko K, Tsakiridis E, Zacharidis PG, Villani L, Lally JSV, Menjolian G, Maharaj D, Mathurin T, Smoke M, Farrell T, Muti P, Steinberg GR, Tsakiridis T. Salicylate enhances the response of prostate cancer to radiotherapy. Prostate 2019; 79:489-497. [PMID: 30609074 DOI: 10.1002/pros.23755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Radiotherapy (RT) is a key therapeutic modality for prostate cancer (PrCa), but RT resistance necessitates dose-escalation, often causing bladder and rectal toxicity. Aspirin, a prodrug of salicylate (SAL), has been associated with improved RT response in clinical PrCa cases, but the potential mechanism mediating this effect is unknown. SAL activates the metabolic stress sensor AMP-activated protein kinase (AMPK), which inhibits de novo lipogenesis, and protein synthesis via inhibition of Acetyl-CoA Carboxylase (ACC), and the mammalian Target of Rapamycin (mTOR), respectively. RT also activates AMPK through a mechanism distinctly different from SAL. Therefore, combining these two therapies may have synergistic effects on suppressing PrCa. Here, we examined the potential of SAL to enhance the response of human PrCa cells and tumors to RT. METHODS Androgen-insensitive (PC3) and -sensitive (LNCaP) PrCa cells were subjected to proliferation and clonogenic survival assays after treatment with clinically relevant doses of SAL and RT. Balb/c nude mice with PC3 xenografts were fed standard chow diet or chow diet supplemented with 2.5 g/kg salsalate (SAL pro-drug dimer) one week prior to a single dose of 0 or 10 Gy RT. Immunoblotting analysis of signaling events in the DNA repair and AMPK-mTOR pathways and lipogenesis were assessed in cells treated with SAL and RT. RESULTS SAL inhibited proliferation and clonogenic survival in PrCa cells and enhanced the inhibition mediated by RT. Salsalate, added to diet, enhanced the anti-tumor effects of RT in PC3 tumor xenografts. RT activated genotoxic stress markers and the activity of mTOR pathway and AMPK and mediated inhibitory phosphorylation of ACC. Interestingly, SAL enhanced the effects of RT on AMPK and ACC but blocked markers of mTOR activation. CONCLUSIONS Our results show that SAL can enhance RT responses in PrCa. Salsalate is a promising agent to investigate this concept in prospective clinical trials of PrCa in combination with RT.
Collapse
Affiliation(s)
- Lindsay A Broadfield
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katarina Marcinko
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Evangelia Tsakiridis
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Panayiotis G Zacharidis
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Linda Villani
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James S V Lally
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gabe Menjolian
- Division of Radiotherapy, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Danitra Maharaj
- Division of Radiotherapy, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Tammy Mathurin
- Division of Radiotherapy, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Marcia Smoke
- Division of Radiotherapy, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Thomas Farrell
- Division of Physics, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Paola Muti
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Theodoros Tsakiridis
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
- Divisions of Radiation Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
41
|
Montgomery S, Mamedova L, Zachut M, Kra G, Häussler S, Vaughn M, Gonzalez J, Bradford B. Effects of sodium salicylate on glucose kinetics and insulin signaling in postpartum dairy cows. J Dairy Sci 2019; 102:1617-1629. [DOI: 10.3168/jds.2018-15312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
|
42
|
Lee HW, Pyo S. Acrylamide induces adipocyte differentiation and obesity in mice. Chem Biol Interact 2018; 298:24-34. [PMID: 30409764 DOI: 10.1016/j.cbi.2018.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
Obesity is a critical risk factor for various diseases including type II diabetes, cerebral infarction, cardiovascular diseases, and various cancers. Acrylamide (ACR) is present in wide range of foods, including fried potato products, root vegetables, bakery products, chips, cakes, cereals, and coffee. In this study, ACR treatment dramatically increased the accumulation of lipid droplets. We also examined expression levels of peroxisome proliferator-activated receptors γ (PPARγ), CCAAT enhancer binding protein α (c/EBPα), and CCAAT enhancer binding protein β (c/EBPβ) as adipogenic transcription factors for adipocyte differentiation. They were dose-dependently increased by treatment of ACR. Moreover, effects of ACR on mitogen-activated protein kinases (MAPKs) and 5' AMP-activated protein kinase (AMPK)-Acetyl-CoA carboxylase (ACC) activation were investigated. Results also showed that ACR induced phosphorylation of MAPKs and AMPK-ACC. ACR also induced expression of adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), sterol regulatory element-binding protein (SREBP)-1c, and fatty acid synthase (FAS). Exposure of ACR to high fat diet (HFD)-fed mice significantly increased body weight, organ weight, and fat mass of mice. Collectively, these result showed that ACR can act as an enhancer of adipocyte. Therefore, we suggest that up-regulation of the adipogenesis by ACR may be related to the regulation of the MAPKs and AMPK-ACC pathway.
Collapse
Affiliation(s)
- Hee-Weon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
43
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
44
|
Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep 2018; 18:80. [PMID: 30120579 DOI: 10.1007/s11892-018-1049-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The global prevalence of type 2 diabetes (T2D) is escalating at alarming rates, demanding the development of additional classes of therapeutics to further reduce the burden of disease. Recent studies have indicated that increasing the metabolic activity of brown and beige adipose tissue may represent a novel means to reduce circulating glucose and lipids in people with T2D. The AMP-activated protein kinase (AMPK) is a cellular energy sensor that has recently been demonstrated to be important in potentially regulating the metabolic activity of brown and beige adipose tissue. The goal of this review is to summarize recent work describing the role of AMPK in brown and beige adipose tissue, focusing on its role in adipogenesis and non-shivering thermogenesis. RECENT FINDINGS Ablation of AMPK in mouse adipocytes results in cold intolerance, a reduction in non-shivering thermogenesis in brown adipose tissue (BAT), and the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance; effects associated with a defect in mitochondrial specific autophagy (mitophagy) within BAT. The effects of a β3-adrenergic agonist on the induction of BAT thermogenesis and the browning of white adipose tissue (WAT) are also blunted in mice lacking adipose tissue AMPK. A specific AMPK activator, A-769662, also results in the activation of BAT and the browning of WAT, effects which may involve demethylation of the PR domain containing 16 (Prdm16) promoter region, which is important for BAT development. AMPK plays an important role in the development and maintenance of brown and beige adipose tissue. Adipose tissue AMPK is reduced in people with insulin resistance, consistent with findings that mice lacking adipocyte AMPK develop greater NAFLD and insulin resistance. These data suggest that pharmacologically targeting adipose tissue AMPK may represent a promising strategy to enhance energy expenditure and reduce circulating glucose and lipids, which may be effective for the treatment of NAFLD and T2D.
Collapse
Affiliation(s)
- Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
45
|
Baroni MD, Colombo S, Martegani E. Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:344-356. [PMID: 29992130 PMCID: PMC6035838 DOI: 10.15698/mic2018.07.640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Aspirin and its main metabolite salicylate are promising molecules in preventing cancer and metabolic diseases. S. cerevisiae cells have been used to study some of their effects: (i) salicylate induces the reversible inhibition of both glucose transport and the biosyntheses of glucose-derived sugar phosphates, (ii) Aspirin/salicylate causes apoptosis associated with superoxide radical accumulation or early cell necrosis in MnSOD-deficient cells growing in ethanol or in glucose, respectively. So, treatment with (acetyl)-salicylic acid can alter the yeast metabolism and is associated with cell death. We describe here the dramatic effects of salicylate on cellular control of the exit from a quiescence state. The growth recovery of long-term stationary phase cells was strongly inhibited in the presence of salicylate, to a degree proportional to the drug concentration. At high salicylate concentration, growth reactivation was completely repressed and associated with a dramatic loss of cell viability. Strikingly, both of these phenotypes were fully suppressed by increasing the cAMP signal without any variation of the exponential growth rate. Upon nutrient exhaustion, salicylate induced a premature lethal cell cycle arrest in the budded-G2/M phase that cannot be suppressed by PKA activation. We discuss how the dramatic antagonism between cAMP and salicylate could be conserved and impinge common targets in yeast and humans. Targeting quiescence of cancer cells with stem-like properties and their growth recovery from dormancy are major challenges in cancer therapy. If mechanisms underlying cAMP-salicylate antagonism will be defined in our model, this might have significant therapeutic implications.
Collapse
Affiliation(s)
| | - Sonia Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| | - Enzo Martegani
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| |
Collapse
|
46
|
Steinberg GR. Cellular Energy Sensing and Metabolism-Implications for Treating Diabetes: The 2017 Outstanding Scientific Achievement Award Lecture. Diabetes 2018; 67:169-179. [PMID: 29358486 DOI: 10.2337/dbi17-0039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022]
Abstract
The Outstanding Scientific Achievement Award recognizes distinguished scientific achievement in the field of diabetes, taking into consideration independence of thought and originality. Gregory R. Steinberg, PhD, professor of medicine, Canada Research Chair, J. Bruce Duncan Endowed Chair in Metabolic Diseases, and codirector of the Metabolism and Childhood Obesity Research Program at McMaster University, Hamilton, Ontario, Canada, received the prestigious award at the American Diabetes Association's 77th Scientific Sessions, 9-13 June 2017, in San Diego, CA. He presented the Outstanding Scientific Achievement Award Lecture, "Cellular Energy Sensing and Metabolism-Implications for Treating Diabetes," on Monday, 12 June 2017.The survival of all cells is dependent on the constant challenge to match energetic demands with nutrient availability, a task that is mediated through a highly conserved network of metabolic fuel sensors that orchestrate both cellular and whole-organism energy balance. A mismatch between cellular energy demand and nutrient availability is a key factor contributing to the development of type 2 diabetes; thus, understanding the fundamental mechanisms by which cells sense nutrient availability and demand may lead to the development of new treatments. Glucose-lowering therapies, such as caloric restriction, exercise, and metformin, all induce an energetic challenge that results in the activation of the cellular energy sensor AMP-activated protein kinase (AMPK). Activation of AMPK in turn suppresses lipid synthesis and inflammation while increasing glucose uptake, fatty acid oxidation, and mitochondrial function. In contrast, high levels of nutrient availability suppress AMPK activity while also increasing the production of peripheral serotonin, a gut-derived endocrine factor that suppresses β-adrenergic-induced activation of brown adipose tissue. Identifying new ways to manipulate these two ancient fuel gauges by activating AMPK and inhibiting peripheral serotonin may lead to the development of new therapies for treating type 2 diabetes.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adipose Tissue, Beige/drug effects
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Beige/pathology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Awards and Prizes
- Caloric Restriction
- Cell Survival/drug effects
- Combined Modality Therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/prevention & control
- Diabetes Mellitus, Type 2/therapy
- Endocrinology
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Enzyme Activation/drug effects
- Exercise
- Feedback, Physiological/drug effects
- Humans
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Models, Biological
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Serotonin/blood
- Serotonin/metabolism
Collapse
Affiliation(s)
- Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
Boudaba N, Marion A, Huet C, Pierre R, Viollet B, Foretz M. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development. EBioMedicine 2018; 28:194-209. [PMID: 29343420 PMCID: PMC5835560 DOI: 10.1016/j.ebiom.2018.01.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK) is viewed as a pathogenic factor in the development of fatty liver its role has not been directly demonstrated. Unexpectedly, we show here that liver-specific AMPK KO mice display normal hepatic lipid homeostasis and are not prone to fatty liver development, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Mechanistically, AMPK activation reduces hepatic triglyceride content both by inhibiting lipid synthesis and by stimulating fatty acid oxidation in an LKB1-dependent manner, through a transcription-independent mechanism. Furthermore, the effect of the antidiabetic drug metformin on lipogenesis inhibition and fatty acid oxidation stimulation was enhanced by combination treatment with small-molecule AMPK activators in primary hepatocytes from mice and humans. Overall, these results demonstrate that AMPK downregulation is not a triggering factor in fatty liver development but in contrast, establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease. Hepatic AMPK deficiency is not sufficient to trigger fatty liver development Re-activation of downregulated AMPK in fatty liver normalizes hepatic lipid content Hepatic AMPK activation both inhibits lipogenesis and stimulates fatty acid oxidation AMPK activation modulates lipid metabolism via a transcription-independent mechanism Small-molecule AMPK activators enhance metformin effects on hepatic lipid metabolism
Nonalcoholic fatty liver disease is a highly prevalent component of metabolic syndrome, for which treatment options are limited. Downregulation of the energy sensor AMPK is viewed as a pathogenic factor in the development of fatty liver. However, we show here hepatic AMPK suppression is not sufficient to promote hepatic lipid accumulation, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Thus, these results establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Nadia Boudaba
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Allison Marion
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Camille Huet
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Rémi Pierre
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
| |
Collapse
|
48
|
Samuel VT, Shulman GI. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab 2018; 27:22-41. [PMID: 28867301 PMCID: PMC5762395 DOI: 10.1016/j.cmet.2017.08.002] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
NAFLD is closely linked with hepatic insulin resistance. Accumulation of hepatic diacylglycerol activates PKC-ε, impairing insulin receptor activation and insulin-stimulated glycogen synthesis. Peripheral insulin resistance indirectly influences hepatic glucose and lipid metabolism by increasing flux of substrates that promote lipogenesis (glucose and fatty acids) and gluconeogenesis (glycerol and fatty acid-derived acetyl-CoA, an allosteric activator of pyruvate carboxylase). Weight loss with diet or bariatric surgery effectively treats NAFLD, but drugs specifically approved for NAFLD are not available. Some new pharmacological strategies act broadly to alter energy balance or influence pathways that contribute to NAFLD (e.g., agonists for PPAR γ, PPAR α/δ, FXR and analogs for FGF-21, and GLP-1). Others specifically inhibit key enzymes involved in lipid synthesis (e.g., mitochondrial pyruvate carrier, acetyl-CoA carboxylase, stearoyl-CoA desaturase, and monoacyl- and diacyl-glycerol transferases). Finally, a novel class of liver-targeted mitochondrial uncoupling agents increases hepatocellular energy expenditure, reversing the metabolic and hepatic complications of NAFLD.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Veterans Affairs Medical Center, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
49
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
50
|
Huang XB, Mu XH, Wan QL, He XM, Wu GS, Luo HR. Aspirin increases metabolism through germline signalling to extend the lifespan of Caenorhabditis elegans. PLoS One 2017; 12:e0184027. [PMID: 28910305 PMCID: PMC5598954 DOI: 10.1371/journal.pone.0184027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023] Open
Abstract
Aspirin is a prototypic cyclooxygenase inhibitor with a variety of beneficial effects on human health. It prevents age-related diseases and delays the aging process. Previous research has shown that aspirin might act through a dietary restriction-like mechanism to extend lifespan. To explore the mechanism of action of aspirin on aging, we determined the whole-genome expression profile of Caenorhabditis elegans treated with aspirin. Transcriptome analysis revealed the RNA levels of genes involved in metabolism were primarily increased. Reproduction has been reported to be associated with metabolism. We found that aspirin did not extend the lifespan or improve the heat stress resistance of germline mutants of glp-1. Furthermore, Oil Red O staining showed that aspirin treatment decreased lipid deposition and increased expression of lipid hydrolysis and fatty acid β-oxidation-related genes. The effect of germline ablation on lifespan was mainly mediated by DAF-12 and DAF-16. Next, we performed genetic analysis with a series of worm mutants and found that aspirin did not further extend the lifespans of daf-12 and daf-16 single mutants, glp-1;daf-12 and glp-1;daf-16 double mutants, or glp-1;daf-12;daf-16 triple mutants. The results suggest that aspirin increase metabolism and regulate germline signalling to activate downstream DAF-12 and DAF-16 to extend lifespan.
Collapse
Affiliation(s)
- Xiao-Bing Huang
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Hui Mu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qin-Li Wan
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ming He
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Gui-Sheng Wu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Huai-Rong Luo
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|