1
|
Zhang X, Qiu W, Huang J, Pang X, Su Y, Ye J, Zhou S, Tang Z, Wang R, Su R. Insulin combined with N-acetylcysteine attenuates type 1 diabetes-induced splenic inflammatory injury in canines by inhibiting the MAPKs-NF-κB signaling pathway and pyroptosis. J Diabetes Complications 2024; 38:108805. [PMID: 39089052 DOI: 10.1016/j.jdiacomp.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE Type 1 diabetes (T1DM) is a chronic metabolic disorder that can cause damage to multiple organs including the spleen. Sole insulin therapy is not satisfactory. This study aims to investigate the effects and mechanisms of combined treatment with insulin and N-acetylcysteine (NAC) on spleen damage in T1DM canines, in order to identify drugs that may better assist patients in the management of diabetes and its complications. METHODS The canine model of T1DM was established by intravenous injection of alloxan (ALX) and streptozotocin (STZ). The therapeutic effects of insulin and NAC were evaluated by clinical manifestations, spleen protein and mRNA expression. RESULTS The results indicate that the combined treatment of insulin and NAC can alleviate hyperglycemia and hematologic abnormalities, improve splenic histopathological changes, prevent fibrous tissue proliferation, and glycogen deposition. In addition, we observed that this combination treatment significantly suppressed the protein expression of p-P65/P65 (17.6 %, P < 0.05), NLRP3 (46.8 %, P < 0.05), and p-P38/P38 (37.1 %, P < 0.05) induced by T1DM when compared to insulin treatment alone. Moreover, it also significantly decreased the mRNA expression of TLR4 (45.0 %, P < 0.01), TNF-α (30.3 %, P < 0.05), and NLRP3 (43.3 %, P < 0.05). CONCLUSIONS This combination has the potential to mitigate splenic inflammatory injury in T1DM canines by suppressing the activation of MAPKs-NF-κB pathway and pyroptosis. These findings provide a reference for the treatment strategies of diabetes and its complications.
Collapse
Affiliation(s)
- Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Shuilian Zhou
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Rongmei Wang
- Henry Fok College of Biology and Agriculture, Shaoguan University, No. 288, Daxue Road, Zhenjiang District, Shaoguan, 512005, People's Republic of China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
2
|
Wu X, Cheong LY, Yuan L, Jin L, Zhang Z, Xiao Y, Zhou Z, Xu A, Hoo RLC, Shu L. Islet-Resident Memory T Cells Orchestrate the Immunopathogenesis of Type 1 Diabetes through the FABP4-CXCL10 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308461. [PMID: 38884133 PMCID: PMC11321687 DOI: 10.1002/advs.202308461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/18/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes (T1D) is a chronic disease characterized by self-destruction of insulin-producing pancreatic β cells by cytotoxic T cell activity. However, the pathogenic mechanism of T cell infiltration remains obscure. Recently, tissue-resident memory T (TRM) cells have been shown to contribute to cytotoxic T cell recruitment. TRM cells are found present in human pancreas and are suggested to modulate immune homeostasis. Here, the role of TRM cells in the development of T1D is investigated. The presence of TRM cells in pancreatic islets is observed in non-obese diabetic (NOD) mice before T1D onset. Mechanistically, elevated fatty acid-binding protein 4 (FABP4) potentiates the survival and alarming function of TRM cells by promoting fatty acid utilization and C-X-C motif chemokine 10 (CXCL10) secretion, respectively. In NOD mice, genetic deletion of FABP4 or depletion of TRM cells using CD69 neutralizing antibodies resulted in a similar reduction of pancreatic cytotoxic T cell recruitment, a delay in diabetic incidence, and a suppression of CXCL10 production. Thus, targeting FABP4 may represent a promising therapeutic strategy for T1D.
Collapse
Affiliation(s)
- Xiaoping Wu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of MedicineThe University of Hong KongHong Kong999077P. R. China
| | - Lufengzi Yuan
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of MedicineThe University of Hong KongHong Kong999077P. R. China
| | - Zixuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
| | - Yang Xiao
- Second Xiangya HospitalKey Laboratory of Diabetes ImmunologyNational Clinical Research Center for Metabolic DiseasesCentral South UniversityChangshaHunan410083P. R. China
| | - Zhiguang Zhou
- Second Xiangya HospitalKey Laboratory of Diabetes ImmunologyNational Clinical Research Center for Metabolic DiseasesCentral South UniversityChangshaHunan410083P. R. China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
- Department of MedicineThe University of Hong KongHong Kong999077P. R. China
| | - Ruby LC Hoo
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- Department of Pharmacology & PharmacyThe University of Hong KongHong Kong999077P. R. China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for Cancer, Department of Hematological OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
3
|
Vaitaitis G, Webb T, Webb C, Sharkey C, Sharkey S, Waid D, Wagner DH. Canine diabetes mellitus demonstrates multiple markers of chronic inflammation including Th40 cell increases and elevated systemic-immune inflammation index, consistent with autoimmune dysregulation. Front Immunol 2024; 14:1319947. [PMID: 38318506 PMCID: PMC10839093 DOI: 10.3389/fimmu.2023.1319947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Canine diabetes mellitus (CDM) is a relatively common endocrine disease in dogs. Many CDM clinical features resemble human type 1 diabetes mellitus (T1DM), but lack of autoimmune biomarkers makes calling the disease autoimmune controversial. Autoimmune biomarkers linking CDM and T1DM would create an alternative model for drug development impacting both human and canine disease. Methods We examined peripheral blood of diagnosed CDM dog patients comparing it to healthy control (HC) dogs. Dogs were recruited to a study at the Colorado State University Veterinary Teaching Hospital and blood samples collected for blood chemistry panels, complete blood counts (CBC), and immunologic analysis. Markers of disease progression such as glycated albumin (fructosamine, the canine equivalent of human HbA1c) and c-peptide were addressed. Results Significant differences in adaptive immune lymphocytes, innate immune macrophages/monocytes and neutrophils and differences in platelets were detected between CDM and HC based on CBC. Significant differences in serum glucose, cholesterol and the liver function enzyme alkaline phosphatase were also detected. A systemic immune inflammation index (SII) and chronic inflammation index (CII) as measures of dynamic changes in adaptive and innate cells between inflammatory and non-inflammatory conditions were created with highly significant differences between CDM and HC. Th40 cells (CD4+CD40+ T cells) that are demonstrably pathogenic in mouse T1DM and able to differentiate diabetic from non-diabetic subjects in human T1DM were significantly expanded in peripheral blood mononuclear cells. Conclusions Based on each clinical finding, CDM can be categorized as an autoimmune condition. The association of significantly elevated Th40 cells in CDM when compared to HC or to osteoarthritis, a chronic but non-autoimmune disease, suggests peripheral blood Th40 cell numbers as a biomarker that reflects CDM chronic inflammation. The differences in SII and CII further underscore those findings.
Collapse
Affiliation(s)
- Gisela Vaitaitis
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tracy Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Craig Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Christina Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Steve Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Dan Waid
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| | - David H. Wagner
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| |
Collapse
|
4
|
Ji Y, Yang Y, Wu Z. Programming of metabolic and autoimmune diseases in canine and feline: linkage to the gut microbiome. Microb Pathog 2023; 185:106436. [PMID: 37913827 DOI: 10.1016/j.micpath.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Metabolic and autoimmune disorders have long represented challenging health problems because of their growing prevalence in companion animals. The gut microbiome, made up of trillions of microorganisms, is implicated in multiple physiological and pathological processes. Similar to human beings, the complicated microbiome harbored in the gut of canines and felines emerges as a key factor determining a wide range of normal and disease conditions. Evidence accumulated from recent findings on canine and feline research uncovered that the gut microbiome is actively involved in host metabolism and immunity. Notably, the composition, abundance, activity, and metabolites of the gut microbiome are all elements that shape clinical outcomes concerning metabolism and immune function. This review highlights the implications of the gut microbiome for metabolic disorders (obesity, diabetes, and hepatic lipidosis) and autoimmune diseases (inflammatory bowel disease, osteoarthritis, asthma, and myasthenia gravis) in canine and feline animals, providing novel strategies and therapeutic targets for the prevention and treatment of pet diseases.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Batdorf HM, Lawes LDL, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Noland RC, Burke SJ, Collier JJ. NOD mice have distinct metabolic and immunologic profiles when compared with genetically similar MHC-matched ICR mice. Am J Physiol Endocrinol Metab 2023; 325:E336-E345. [PMID: 37610410 PMCID: PMC10642984 DOI: 10.1152/ajpendo.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.
Collapse
Affiliation(s)
- Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Luz de Luna Lawes
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Jeremy T Richardson
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - David H Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
6
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Heeley AM, Brodbelt DC, O'Neill DG, Church DB, Davison LJ. Assessment of glucocorticoid and antibiotic exposure as risk factors for diabetes mellitus in selected dog breeds attending UK primary-care clinics. Vet Rec 2023; 192:e2785. [PMID: 37004211 PMCID: PMC10952602 DOI: 10.1002/vetr.2785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is an important endocrine disorder in dogs. This study explored prior exposure to glucocorticoids or antibiotic treatment as risk factors for developing DM in dogs attending primary-care VetCompass clinics in the UK. METHODS A breed frequency matched case-control study nested in a cohort of dogs (n = 480,469) aged 3 years or over was used to explore associations between glucocorticoid and antibiotic exposure and the odds of developing DM. RESULTS A total of 565 cases and 2179 controls were included. Dogs with DM had over four times the odds of exposure to glucocorticoids within 6 weeks prior to diagnosis (odds ratio [OR] 4.07, 95% confidence interval [CI] 2.41-6.89, p < 0.001) compared to controls within 6 weeks prior to a randomly selected quasi-date of diagnosis. Dogs that had only one unique documented antibiotic course had a decreased odds of developing DM (OR 0.65, 95% CI 0.46-0.91, p = 0.012) compared to dogs that had no documented courses of antibiotics. LIMITATIONS This study only included selected breeds, so the results may not be generalisable to all dog breeds. CONCLUSIONS Exposure to glucocorticoids is associated with a substantial increase in the risk of developing DM for the dog breeds included in this analysis.
Collapse
Affiliation(s)
- Angela M. Heeley
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - Dave C. Brodbelt
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - Dan G. O'Neill
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - David B. Church
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHatfieldUK
| | - Lucy J. Davison
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHatfieldUK
| |
Collapse
|
8
|
O'Kell AL, Davison LJ. Etiology and Pathophysiology of Diabetes Mellitus in Dogs. Vet Clin North Am Small Anim Pract 2023; 53:493-510. [PMID: 36854636 DOI: 10.1016/j.cvsm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Canine diabetes results from a wide spectrum of clinical pathophysiological processes that cause a similar set of clinical signs. Various causes of insulin deficiency and beta cell loss, insulin resistance, or both characterize the disease, with genetics and environment playing a role. Understanding the genetic and molecular causes of beta cell loss will provide future opportunities for precision medicine, both from a therapeutic and preventative perspective. This review presents current knowledge of the etiology and pathophysiology of canine diabetes, including the importance of disease classification. Examples of potential targets for future precision medicine-based approaches to therapy are discussed.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32610, USA.
| | - Lucy J Davison
- Royal Veterinary College, Clinical Sciences and Services, Hawkshead Lane, Hertfordshire AL9 7TA, UK.
| |
Collapse
|
9
|
Suemanotham N, Phochantachinda S, Chatchaisak D, Sakcamduang W, Chansawhang A, Pitchakarn P, Chantong B. Antidiabetic effects of Andrographis paniculata supplementation on biochemical parameters, inflammatory responses, and oxidative stress in canine diabetes. Front Pharmacol 2023; 14:1077228. [PMID: 36865924 PMCID: PMC9971231 DOI: 10.3389/fphar.2023.1077228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Diabetes mellitus is a common endocrine disorder that causes hyperglycemia in dogs. Persistent hyperglycemia can induce inflammation and oxidative stress. This study aimed to investigate the effects of A. paniculata (Burm.f.) Nees (Acanthaceae) (A. paniculata) on blood glucose, inflammation, and oxidative stress in canine diabetes. A total of 41 client-owned dogs (23 diabetic and 18 clinically healthy) were included in this double-blind, placebo-controlled trial. Methods: The diabetic dogs were further divided into two treatments protocols: group 1 received A. paniculata extract capsules (50 mg/kg/day; n = 6) or received placebo for 90 days (n = 7); and group 2 received A. paniculata extract capsules (100 mg/kg/day; n = 6) or received a placebo for 180 days (n = 4). Blood and urine samples were collected every month. No significant differences in fasting blood glucose, fructosamine, interleukin-6, tumor necrosis factor-alpha, superoxide dismutase, and malondialdehyde levels were observed between the treatment and placebo groups (p > 0.05). Results and Discussion: The levels of alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, and creatinine were stable in the treatment groups. The blood glucose levels and concentrations of inflammatory and oxidative stress markers in the client-owned diabetic dogs were not altered by A. paniculata supplementation. Furthermore, treatment with this extract did not have any adverse effects on the animals. Non-etheless, the effects of A. paniculata on canine diabetes must be appropriately evaluated using a proteomic approach and involving a wider variety of protein markers.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Boonrat Chantong,
| |
Collapse
|
10
|
Repeated Low-Dose Streptozotocin and Alloxan Induced Long-Term and Stable Type 1 Diabetes Model in Beagle Dogs. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5422287. [PMID: 35978645 PMCID: PMC9377912 DOI: 10.1155/2022/5422287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic disease represented by insulin-causing pancreatic β-cell disruption and hyperglycemia. Therefore, it is necessary to establish a variety of animal models of diabetes to study the pathogenesis and pathophysiology of it. However, there are few reports on the use of beagle dogs to establish an animal model of type 1 diabetes. This study aimed to explore a simple and feasible modeling method to establish a long-term and stable type 1 diabetes model in beagle dogs. Forty adult beagle dogs were randomly divided into control group and model group. After 24 h of fasting, streptozotocin (20 mg/kg) and alloxan (20 mg/kg) were injected through the cephalic vein. The second intravenous injection was given on the 4th day after the first injection. Insulin release testing was performed on the 7th day after the last intravenous injection. Fasting blood glucose and body weight were recorded monthly. Four months after the last injection, the serum fructosamine content and the ratio of glycated hemoglobin were detected. Then, the pancreatic tissue was harvested for histopathological examination. The results showed that the level of fasting blood glucose of the 16 dogs in the model group was consistently higher than 11.1 mmol/L for 4 consecutive months. Moreover, compared with the control group, the insulin release curve of the model group was flat with no increase. The body weight of the model group was significantly reduced, and the ratios of blood glucose, fructosamine, and glycosylated hemoglobin were significantly higher than those in the control group. Meanwhile, histopathological examination of the pancreas showed that the islet beta cells appeared to have vacuoles or even necrosis. In the model group, pancreatic β-cells were damaged and insulin release was reduced. These results suggest that the above modeling methods can induce long-term and stable type 1 diabetes models in beagle dogs.
Collapse
|
11
|
Khosravi-Maharlooei M, Madley R, Borsotti C, Ferreira LMR, Sharp RC, Brehm MA, Greiner DL, Parent AV, Anderson MS, Sykes M, Creusot RJ. Modeling human T1D-associated autoimmune processes. Mol Metab 2022; 56:101417. [PMID: 34902607 PMCID: PMC8739876 DOI: 10.1016/j.molmet.2021.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to β-cell antigens and progressive destruction of insulin-producing β-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chiara Borsotti
- Department of Health Sciences, Histology laboratory, Università del Piemonte Orientale, Novara, Italy
| | - Leonardo M R Ferreira
- Departments of Microbiology & Immunology, and Regenerative Medicine & Cell Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Sharp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
O'Kell AL, Wasserfall C, Guingab-Cagmat J, Webb-Roberston BJM, Atkinson MA, Garrett TJ. Targeted metabolomic analysis identifies increased serum levels of GABA and branched chain amino acids in canine diabetes. Metabolomics 2021; 17:100. [PMID: 34775536 PMCID: PMC8693811 DOI: 10.1007/s11306-021-01850-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Dogs with naturally occurring diabetes mellitus represent a potential model for human type 1 diabetes, yet significant knowledge voids exist in terms of the pathogenic mechanisms underlying the canine disorder. Untargeted metabolomic studies from a limited number of diabetic dogs identified similarities to humans with the disease. OBJECTIVE To expand and validate earlier metabolomic studies, identify metabolites that differ consistently between diabetic and healthy dogs, and address whether certain metabolites might serve as disease biomarkers. METHODS Untargeted metabolomic analysis via liquid chromatography-mass spectrometry was performed on serum from diabetic (n = 15) and control (n = 15) dogs. Results were combined with those of our previously published studies using identical methods (12 diabetic and 12 control dogs) to identify metabolites consistently different between the groups in all 54 dogs. Thirty-two candidate biomarkers were quantified using targeted metabolomics. Biomarker concentrations were compared between the groups using multiple linear regression (corrected P < 0.0051 considered significant). RESULTS Untargeted metabolomics identified multiple persistent differences in serum metabolites in diabetic dogs compared with previous studies. Targeted metabolomics showed increases in gamma amino butyric acid, valine, leucine, isoleucine, citramalate, and 2-hydroxyisobutyric acid in diabetic versus control dogs while indoxyl sulfate, N-acetyl-L-aspartic acid, kynurenine, anthranilic acid, tyrosine, glutamine, and tauroursodeoxycholic acid were decreased. CONCLUSION Several of these findings parallel metabolomic studies in both human diabetes and other animal models of this disease. Given recent studies on the role of GABA and branched chain amino acids in human diabetes, the increase in serum concentrations in canine diabetes warrants further study of these metabolites as potential biomarkers, and to identify similarity in mechanisms underlying this disease in humans and dogs.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Florida, 2015 SW 16th Ave, Box 100116, Gainesville, FL, 32608, USA.
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, The University of Florida, Gainesville, FL, USA
| | - Bobbie-Jo M Webb-Roberston
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Hamilton K, O'Kell AL, Gilor C. Serum trypsin-like immunoreactivity in dogs with diabetes mellitus. J Vet Intern Med 2021; 35:1713-1719. [PMID: 34196025 PMCID: PMC8295701 DOI: 10.1111/jvim.16208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Concurrent exocrine pancreatic dysfunction and decreased pancreatic organ size are common findings in various stages of human type 1 diabetes mellitus (DM). Exocrine pancreatic insufficiency (EPI) is incompletely described in diabetic dogs. Objective To compare canine trypsin‐like immunoreactivity (cTLI) of diabetic dogs with that of healthy controls. A secondary aim was to evaluate the correlation between duration of DM and cTLI. Animals Thirty client‐owned diabetic dogs and thirty client‐owned control dogs. Methods Cross‐sectional study. Diabetic and healthy control dogs were included if they had no clinical evidence of pancreatitis and if serum samples obtained after food was withheld were available. Serum cTLI was measured at a reference laboratory and compared between groups. Canine pancreatic lipase immunoreactivity (cPLI) was analyzed concurrently as an indicator of pancreatitis. Results The median cTLI concentration in all diabetic dogs (36.4 μg/L [range, 7.0‐288 μg/L]) did not differ from control dogs (28.7 μg/L [range, 12.8‐58.6 μg/L]) (P = .07; difference −7.8 μg/L [95% Confidence Interval (CI), −23.5 to 0.6 μg/L]). There was still no difference in cTLI between groups after exclusion of dogs with cPLI consistent with pancreatitis (n = 8 diabetic dogs). There was no correlation between cTLI and DM duration in all diabetic dogs (r = −0.07, [95% CI, −0.43 to 0.3], P = .7). Conclusions and Clinical Importance There was no evidence of EPI as evaluated using cTLI in this cohort of diabetic dogs, but concurrent increases in cPLI suggest cTLI might not be the optimal indicator of exocrine pancreatic dysfunction in dogs with DM.
Collapse
Affiliation(s)
- Kristen Hamilton
- Small Animal Hospital, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Chen Gilor
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Fenofibrate promotes PPARα-targeted recovery of the intestinal epithelial barrier at the host-microbe interface in dogs with diabetes mellitus. Sci Rep 2021; 11:13454. [PMID: 34188162 PMCID: PMC8241862 DOI: 10.1038/s41598-021-92966-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Diabetes mellitus (DM) is associated with a dysfunctional intestinal barrier and an increased risk for systemic infection and inflammation in people, though the pathogenic mechanisms leading to this are poorly understood. Using a canine model of DM, we showed that the peroxisomal proliferator-activated receptor-α agonist fenofibrate modulates plasma lipid profiles and markers of intestinal barrier function. A 3-week course of fenofibrate reduced fasting interstitial glucose and inflammatory cytokine IL-8 and TNF-α concentrations, which correlated with reduced triglyceride levels. The lipidomic profile exhibited significantly lower levels of triacylglycerols, phosphatidylethanolamines, diacylglycerols, and ceramides following fenofibrate administration. On histopathological analysis, we observed an aberrant amount of intraepithelial CD3+ T lymphocytes (IEL) in the small intestine of dogs with spontaneous and induced-DM. Fenofibrate reduced IEL density in the duodenum of dogs with DM and enhanced markers of intestinal barrier function in vivo and in vitro. There were minimal changes in the intestinal microbial composition following fenofibrate administration, suggesting that repair of intestinal barriers can be achieved independently of the resident microbiota. Our findings indicate that lipid metabolism is critical to functionality of the intestinal epithelium, which can be rescued by PPARα activation in dogs with DM.
Collapse
|
15
|
Sanz CR, Sevane N, Pérez-Alenza MD, Valero-Lorenzo M, Dunner S. Polymorphisms in canine immunoglobulin heavy chain gene cluster: a double-edged sword for diabetes mellitus in the dog. Anim Genet 2021; 52:333-341. [PMID: 33621396 DOI: 10.1111/age.13047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Insulin deficiency diabetes (IDD) in dogs is an endocrine disease similar to human type 1 diabetes. There are breeds more commonly affected, such as Yorkshire Terrier and Samoyed, suggesting an underlying genetic component. However, the genetic basis for canine diabetes mellitus (DM) is not fully established. We conducted both whole-genome scans for selection signatures and GWASs to compare the genomes of 136 dogs belonging to 29 breeds previously described at low or high risk for developing DM. Candidate variants were tested in dogs with a diagnosis of IDD and controls attending the Complutense Veterinary Teaching Hospital. The only genomic region under selection (CFA8:72 700 000-74 600 000; CanFam3.1) retrieved by our analyses is included in the immunoglobulin heavy chain gene cluster, which has already been related to human human type 1 diabetes susceptibility. This region contains two non-synonymous variants, rs852072969 and rs851728071, showing significant associations with high or low risk for IDD, respectively. The first variant, rs852072969, alters a protein poorly characterised in the dog. In contrast, rs851728071 was predicted to block the synthesis of an immunoglobulin variable (V) domain in breeds at low risk for DM. Although a large and diverse V gene repertoire is thought to offer a fitness advantage, we suggest that rs851728071 prevents the formation of an auto-reactive immunoglobulin V domain probably involved in the pathophysiology of IDD and, thus, decreases the risk for the disease. These results should be interpreted with caution until the functional roles of the proposed variants have been proved in larger studies.
Collapse
Affiliation(s)
- C R Sanz
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - N Sevane
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - M D Pérez-Alenza
- Department of Animal Medicine, Surgery and Pathology, Veterinary Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - M Valero-Lorenzo
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - S Dunner
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
16
|
Brito-Casillas Y, Melián C, Holder A, Wiebe JC, Navarro A, Quesada-Canales Ó, Expósito-Montesdeoca AB, Catchpole B, Wägner AM. Studying the heterogeneous pathogenesis of canine diabetes: Observational characterization of an island population. Vet Med Sci 2021; 7:1071-1081. [PMID: 33621402 PMCID: PMC8294365 DOI: 10.1002/vms3.452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Canine diabetes mellitus has mostly been studied in northern European, Australian and American populations, whereas other regions have received less attention. OBJECTIVES We evaluated the epidemiological, clinical and histopathological features of diabetic dogs in Gran Canaria, Spain. METHODS Prevalence and incidence were estimated. Clinical features were analysed, and serum and genomic DNA were obtained. Dogs with presumed idiopathic or immune-mediated diabetes, were DLA-typed and antibodies against GAD65 and IA-2 were assessed. Pancreases from ten diabetic dogs were examined and compared with pancreases from non-diabetic dogs. RESULTS AND CONCLUSIONS Twenty-nine diabetic dogs were identified in a population of 5,213 (prevalence: 0.56%; incidence: 0.37%). Most were female (79%) and sexually intact (87% of females, 83% of males). Diabetes secondary to dioestrus (55.2%) and insulin-deficient diabetes (20.7%) were the most frequent types. Antibodies against GAD65 and IA-2 were identified in two out of five cases and DLA-genotyping revealed novel haplotypes. Breed distribution differed between diabetic and non-diabetic dogs. Reduced number of pancreatic islets and β-cell mass were observed, with vacuolation of islet cells and ductal epithelium. In this population, where neutering is not standard practice, diabetes secondary to dioestrus is the most frequent diabetes subtype. Genetic susceptibility also differed from previous studies. These results support the heterogeneous pathogenesis of canine diabetes.
Collapse
Affiliation(s)
- Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlos Melián
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos, ULPGC, Arucas, Spain
| | - Angela Holder
- Department of Pathology & Pathogen Biology, Royal Veterinary College, University of London, London, UK
| | - Julia C Wiebe
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Navarro
- Grupo de Investigación en Acuicultura (GIA), ULPGC, Arucas, Spain
| | - Óscar Quesada-Canales
- Unidad de Histología y Patología Veterinaria, Instituto Universitario de Sanidad Animal (IUSA), ULPGC, Arucas, Canarias, Spain
| | - Ana B Expósito-Montesdeoca
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Brian Catchpole
- Department of Pathology & Pathogen Biology, Royal Veterinary College, University of London, London, UK
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
17
|
Denyer AL, Catchpole B, Davison LJ. Genetics of canine diabetes mellitus part 2: Current understanding and future directions. Vet J 2021; 270:105612. [PMID: 33641811 DOI: 10.1016/j.tvjl.2021.105612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
Part 1 of this 2-part review outlined the importance of disease classification in diabetes genetic studies, as well as the ways in which genetic variants may contribute to risk of a complex disease within an individual, or within a particular group of individuals. Part 2, presented here, describes in more detail our current understanding of the genetics of canine diabetes mellitus compared to our knowledge of the human disease. Ongoing work to improve our knowledge, using new technologies, is also introduced.
Collapse
Affiliation(s)
- Alice L Denyer
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Lucy J Davison
- Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
18
|
Winiarczyk D, Winiarczyk M, Winiarczyk S, Michalak K, Adaszek Ł. Proteomic Analysis of Tear Film Obtained from Diabetic Dogs. Animals (Basel) 2020; 10:ani10122416. [PMID: 33348610 PMCID: PMC7766195 DOI: 10.3390/ani10122416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Canine diabetes is a serious disease, which can lead to severe complications, eventually even death. Currently, all the diagnostic procedures are the invasive ones, with blood collection remaining as a golden standard for both initial diagnosis, and later follow-up. Tears can be obtained in a non-invasive manner, which makes them a perfect candidate for a screening tool in canine diabetes. In this study we aimed to analyze the protein composition of the tears collected from the healthy animals and compared it to the diabetic group. There are significant differences between these two groups, and we believe that the identified proteins hold promise as a potential diagnostic tool, which can be later on used both in clinical practice, and for better understanding of the disease. Abstract Canine diabetes mellitus is a significant health burden, followed with numerous systemic complications, including diabetic cataracts and retinopathy, leading to blindness. Diabetes should be considered as a disease damaging all the body organs, including gastrointestinal tract, through a complex combination of vascular and metabolic pathologies, leading to impaired gut function. Tear film can be obtained in a non-invasive way, which makes it a feasible biomarker source. In this study we compared proteomic changes ongoing in tear film of diabetic dogs. The study group consisted of 15 diabetic dogs, and 13 dogs served as a control group. After obtaining tear film with Schirmer strips, we performed 2-dimensional electrophoresis, followed by Delta2D software analysis, which allowed to select statistically significant differentially expressed proteins. After their identification with MALDI-TOF (matrix assisted laser desorption and ionisation time of flight) spectrometry we found one up-regulated protein in tear film of diabetic dogs—SRC kinase signaling inhibitor 1 (SRCIN1). Eight proteins were down-regulated: phosphatidylinositol-4 kinase type 2 alpha (PI4KIIα), Pro-melanin concentrating hormone (Pro-MCH), Flotillin-1, Protein mono-ADP ribosyltransferase, GRIP and coiled coil domain containing protein 2, tetratricopeptide repeat protein 36, serpin, and Prelamin A/C. Identified proteins were analyzed by Panther Gene Ontology software, and their possible connections with diabetic etiopathology were discussed. We believe that this is the first study to target tear film proteome in canine diabetes. We believe that combined with traditional examination, the tear film proteomic analysis can be a new source of biomarkers both for clinical practice, and experimental research.
Collapse
Affiliation(s)
- Dagmara Winiarczyk
- Department of Internal Diseases of Small Animals, University of Life Sciences of Lublin, 20-950 Lublin, Poland;
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, 20-950 Lublin, Poland;
| | - Stanisław Winiarczyk
- Department of Epizootiology, University of Life Sciences of Lublin, 20-950 Lublin, Poland; (S.W.); (K.M.)
| | - Katarzyna Michalak
- Department of Epizootiology, University of Life Sciences of Lublin, 20-950 Lublin, Poland; (S.W.); (K.M.)
| | - Łukasz Adaszek
- Department of Epizootiology, University of Life Sciences of Lublin, 20-950 Lublin, Poland; (S.W.); (K.M.)
- Correspondence:
| |
Collapse
|
19
|
Gilor C, Duesberg C, Elliott DA, Feldman EC, Mundinger TO, Taborsky GJ, Nelson RW, Havel PJ. Co-impairment of autonomic and glucagon responses to insulin-induced hypoglycemia in dogs with naturally occurring insulin-dependent diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 319:E1074-E1083. [PMID: 33044845 PMCID: PMC7792666 DOI: 10.1152/ajpendo.00379.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aimed to investigate the contributions of two factors potentially impairing glucagon response to insulin-induced hypoglycemia (IIH) in insulin-deficient diabetes: 1) loss of paracrine disinhibition by intra-islet insulin and 2) defects in the activation of the autonomic inputs to the islet. Plasma glucagon responses during hyperinsulinemic-hypoglycemic clamps ([Formula: see text]40 mg/dL) were assessed in dogs with spontaneous diabetes (n = 13) and in healthy nondiabetic dogs (n = 6). Plasma C-peptide responses to intravenous glucagon were measured to assess endogenous insulin secretion. Plasma pancreatic polypeptide, epinephrine, and norepinephrine were measured as indices of parasympathetic and sympathoadrenal autonomic responses to IIH. In 8 of the 13 diabetic dogs, glucagon did not increase during IIH (diabetic nonresponder [DMN]; ∆ = -6 ± 12 pg/mL). In five other diabetic dogs (diabetic responder [DMR]), glucagon responses (∆ = +26 ± 12) were within the range of nondiabetic control dogs (∆ = +27 ± 16 pg/mL). C-peptide responses to intravenous glucagon were absent in diabetic dogs. Activation of all three autonomic responses were impaired in DMN dogs but remained intact in DMR dogs. Each of the three autonomic responses to IIH was positively correlated with glucagon responses across the three groups. The study conclusions are as follows: 1) Impairment of glucagon responses in DMN dogs is not due to generalized impairment of α-cell function. 2) Loss of tonic inhibition of glucagon secretion by insulin is not sufficient to produce loss of the glucagon response; impairment of autonomic activation is also required. 3) In dogs with major β-cell function loss, activation of the autonomic inputs is sufficient to mediate an intact glucagon response to IIH.NEW & NOTEWORTHY In dogs with naturally occurring, insulin-dependent (C-peptide negative) diabetes mellitus, impairment of glucagon responses is not due to generalized impairment of α-cell function. Loss of tonic inhibition of glucagon secretion by insulin is not sufficient, by itself, to produce loss of the glucagon response. Rather, impaired activation of the parasympathetic and sympathoadrenal autonomic inputs to the pancreas is also required. Activation of the autonomic inputs to the pancreas is sufficient to mediate an intact glucagon response to insulin-induced hypoglycemia in dogs with naturally occurring diabetes mellitus. These results have important implications that include leading to a greater understanding and insight into the pathophysiology, prevention, and treatment of hypoglycemia during insulin treatment of diabetes in companion dogs and in human patients.
Collapse
Affiliation(s)
- Chen Gilor
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida
| | - Cynthia Duesberg
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Denise A Elliott
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Edward C Feldman
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | | | - Gerald J Taborsky
- Department of Medicine, University of Washington, Seattle, Washington
| | - Richard W Nelson
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
20
|
Gilor C, Pires J, Greathouse R, Horn R, Huising MO, Marks SL, Murphy B, Kol A. Loss of sympathetic innervation to islets of Langerhans in canine diabetes and pancreatitis is not associated with insulitis. Sci Rep 2020; 10:19187. [PMID: 33154408 PMCID: PMC7645777 DOI: 10.1038/s41598-020-76091-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Canine diabetes mellitus (DM) affects 0.6% of the canine population and yet, its etiology is poorly understood. Most affected dogs are diagnosed as adults and are insulin-dependent. We compared pan-leukocyte and sympathetic innervation markers in pancreatic islets of adult dogs with spontaneous DM (sDM), spontaneous pancreatitis (sPanc), both (sDMPanc), toxin-induced DM (iDM) and controls. We found evidence of decreased islet sympathetic innervation but no significant infiltration of islets with leukocytes in all disease groups. We show that loss of sympathetic innervation is ongoing in canine DM and does not necessarily precede it. We further found selective loss of islet-associated beta cells in dogs with sDM and sDMPanc, suggesting that collateral damage from inflammation in the exocrine pancreas is not a likely cause of DM in these dogs. The cause of this selective loss of beta cells needs to be further elucidated but overall, our findings are not supportive of an autoimmune process as a cause of sDM in adult dogs. The loss of sympathetic innervation in sPanc in dogs that do not suffer from DM links the disease in the exocrine pancreas to a pathological process in the endocrine pancreas, suggesting pancreatitis might be a potential precursor to DM.
Collapse
Affiliation(s)
- Chen Gilor
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA. .,Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32610, USA.
| | - Jully Pires
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Rachel Greathouse
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Rebecca Horn
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Stanley L Marks
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Brian Murphy
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Mui ML, Famula TR, Henthorn PS, Hess RS. Heritability and complex segregation analysis of naturally-occurring diabetes in Australian Terrier Dogs. PLoS One 2020; 15:e0239542. [PMID: 32970763 PMCID: PMC7514011 DOI: 10.1371/journal.pone.0239542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
The Australian Terrier breed is the breed at highest risk for naturally-occurring diabetes mellitus in the United States, where it is 32 times more likely to develop diabetes compared to mixed breed dogs. However, the heritability and mode of inheritance of spontaneous diabetes in Australian Terriers has not been reported. The aim of this study was therefore to investigate the heritability and mode of inheritance of diabetes in Australian Terriers. A cohort of related Australian Terriers including 383 Australian Terriers without diabetes, 86 Australian Terriers with spontaneous diabetes, and 14 Australian Terriers with an unknown phenotype, was analyzed. A logistic regression model including the effects of sex was formulated to evaluate the heritability of diabetes. The inheritance pattern of spontaneous diabetes in Australian Terriers was investigated by use of complex segregation analysis. Six possible inheritance models were studied, and the Akaike Information Criterion was used to determine the best model for diabetes inheritance in Australian Terriers, among the models deemed biologically feasible. Heritability of diabetes in Australian Terriers was estimated at 0.18 (95% confidence interval 0.0-0.67). There was no significant difference in the effect of males and females on disease outcome. Complex segregation analysis suggested that the mode of diabetes inheritance in Australian Terriers is polygenic, with no evidence for a large effect single gene influencing diabetes. It is concluded that in the population of Australian Terriers bred in the United States, a relatively small degree of genetic variation contributes to spontaneous diabetes. A genetic uniformity for diabetes-susceptible genes within the population of Australian Terriers bred in the Unites States could increase the risk of diabetes in this cohort. These findings hold promise for future genetic studies of canine diabetes focused on this particular breed.
Collapse
Affiliation(s)
- Mei Lun Mui
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas R. Famula
- Department of Animal Science, University of California–Davis, Davis, California, United States of America
| | - Paula S. Henthorn
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecka S. Hess
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
22
|
Myneni SR, Brocavich K, Wang H. Biological strategies for the prevention of periodontal disease: Probiotics and vaccines. Periodontol 2000 2020; 84:161-175. [DOI: 10.1111/prd.12343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Srinivas Rao Myneni
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| | - Kristen Brocavich
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| | - Howard Wang
- Department of Periodontology Stony Brook School of Dental Medicine Stony Brook University Stony Brook NY USA
| |
Collapse
|
23
|
O'Kell AL, Wasserfall CH, Henthorn PS, Atkinson MA, Hess RS. Evaluation for type 1 diabetes associated autoantibodies in diabetic and non-diabetic Australian terriers and Samoyeds. Canine Med Genet 2020; 7:10. [PMID: 33323126 PMCID: PMC7491469 DOI: 10.1186/s40575-020-00089-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Evidence for an autoimmune etiology in canine diabetes is inconsistent and could vary based on breed. Previous studies demonstrated that small percentages of diabetic dogs possess autoantibodies to antigens known to be important in human type 1 diabetes, but most efforts involved analysis of a wide variety of breeds. The objective of this study was to evaluate the presence of glutamic acid decarboxylase 65 (GAD65), insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8) autoantibodies in diabetic and non-diabetic Australian Terriers and Samoyeds, two breeds with comparatively high prevalence of diabetes, in the United States. Results There was no significant difference in the proportion of samples considered positive for GAD65 or ZnT8 autoantibodies in either breed evaluated, or for IA-2 autoantibodies in Australian Terriers (p > 0.05). The proportion of IA-2 autoantibody positive samples was significantly higher in diabetic versus non-diabetic Samoyeds (p = 0.003), but substantial overlap was present between diabetic and non-diabetic groups. Conclusions The present study does not support GAD65, IA-2, or ZnT8 autoantibodies as markers of autoimmunity in canine diabetes in Samoyeds or Australian Terriers as measured using human antigen sandwich enzyme-linked immunosorbent (ELISA) assays. Future studies using canine specific assays as well as investigation for alternative markers of autoimmunity in these and other canine breeds are warranted.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Florida, 2015 SW Archer Rd, Gainesville, FL, 32608, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, The University of Florida Diabetes Institute, 1275 Center Dr., Gainesville, FL, 32610, USA
| | - Paula S Henthorn
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, The University of Florida Diabetes Institute, 1275 Center Dr., Gainesville, FL, 32610, USA.,Department of Pediatrics, College of Medicine, The University of Florida Diabetes Institute, 1275 Center Dr., Gainesville, FL, 32610, USA
| | - Rebecka S Hess
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Hess R, Henthorn P, Devoto M, Wang F, Feng R. An Exploratory Association Analysis of the Insulin Gene Region With Diabetes Mellitus in Two Dog Breeds. J Hered 2020; 110:793-800. [PMID: 31587057 PMCID: PMC6916661 DOI: 10.1093/jhered/esz059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Samoyeds and Australian Terriers are the 2 dog breeds at highest risk (>10-fold) for diabetes mellitus in the United States. It is unknown if the insulin (INS) gene is involved in the pathophysiology of diabetes in Samoyeds and Australian Terriers. It was hypothesized that the INS gene region provides a common genetic causality for diabetes in Samoyeds and Australian Terriers. We conducted a 2-stage genetic association study involving both breeds. In the discovery stage (Stage 1), Samoyeds with and without diabetes were compared in the frequencies of 447 tagging single-nucleotide polymorphisms (SNPs) within 2.5 megabases (Mb) up- and downstream of the INS gene on the Illumina CanineHD BeadChip. SNPs yielding a P-value < 0.005 were selected for further follow-up. In the validation stage (Stage 2), Australian Terriers with and without diabetes were compared in the SNPs genotyped by the Affymetrix GeneChip Canine Genome 2.0 Array and within 1 Mb up- and downstream of the selected SNPs from Stage 1. Two SNPs that were in high linkage disequilibrium (LD, r2 = 0.7) were selected from Stage 1. In Stage 2, among the 76 SNPs examined, 5 were significantly associated with diabetes after Bonferroni's correction for multiple comparisons. Three of these 5 SNPs were in complete LD (r2 = 1 for all associations) and the 2 remaining SNPs were in moderate LD (r2 = 0.4). In conclusion, an association between the INS gene region and diabetes was suggested in 2 dog breeds of different clades. This region could have importance in diabetes in other breeds or in canine diabetes at large.
Collapse
Affiliation(s)
- Rebecka Hess
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paula Henthorn
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marcella Devoto
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Translational and Precision Medicine, University of Rome Sapienza, Rome, Italy
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Rui Feng
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
25
|
Abstract
Immortalized beta cells are an abundant source of insulin-producing cells. Although MIN-6 cells have similar characteristics as normal islets in vitro, the in vivo use of MIN-6 cells has not been fully described. This study characterizes in vivo mouse models of MIN-6 transplantation and rejection. Subcutaneous (sc) transplantation of MIN-6 cells in either Matrigel or HyStem-C hydrogels reduced blood sugars in nude mice and thus are good matrices for MIN-6 cells in vivo. NOD mice are good transplant recipients since they best rejected MIN-6 cells. MLR responses from BalbC, Black Webster, Swiss Black, C3H, and NOD mice correlated with mean blood glucose response suggesting the importance of allogeneic differences in the rejection of cells. Three days of cyclosporine administration caused no inhibition of MIN-6 cell rejection and 6 days resulted in a transient decrease in blood glucose, while daily administration inhibited rejection long term. Kinetic glucose tolerance (GTT) studies in nude mice demonstrated transplanted MIN-6 cells are close but not as effective as normal islets in controlling blood glucose and blood glucose set point for insulin release in MIN-6 cells decreases to hypoglycemic levels over time. To avoid hypoglycemia, the effect of MIN-6 cell irradiation was assessed. However, irradiation only delayed the development of hypoglycemia, not altering the final glucose set point for insulin release. In conclusion, we have characterized a mouse model for beta-cell transplantation using subcutaneous MIN-6 cells that can be used as a tool to study approaches to mitigate immune rejection.
Collapse
Affiliation(s)
- Douglas O. Sobel
- Department of Pediatrics, Georgetown University, Washington, DC, USA
- CONTACT Douglas O. Sobel Department of Pediatrics, Ge orgetown University, Washington, DC, USA
| | | | - Larry Mitnaul
- Department of Pediatrics, Georgetown University, Washington, DC, USA
| |
Collapse
|
26
|
Lester M, O'Kell AL. Exploratory analysis of anti-insulin antibodies in diabetic dogs receiving recombinant human insulin. J Small Anim Pract 2020; 61:236-240. [PMID: 32012274 DOI: 10.1111/jsap.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To quantify anti-insulin antibodies in diabetic dogs treated with recombinant human insulin and to determine if insulin dosage or duration of treatment differed between anti-insulin antibody-positive and -negative diabetic dogs. MATERIALS AND METHODS Descriptive preliminary study using serum from 24 client-owned diabetic dogs treated for a minimum of 2 weeks with recombinant human insulin, and 24 client-owned healthy control dogs without diabetes. Sera were analysed by radioimmunoassay for anti-insulin antibodies. The proportion of antibody positive dogs was compared between groups by Fisher's exact test. RESULTS Four diabetic (16.6%) and no control dogs were anti-insulin antibody positive. CLINICAL SIGNIFICANCE These results indicate that treatment with recombinant human insulin may induce anti-insulin antibodies in dogs, although this finding needs to be re-investigated in a larger study to investigate the impact of anti-insulin antibodies on glycaemic control.
Collapse
Affiliation(s)
- M Lester
- Small Animal Hospital, College of Veterinary Medicine, University of Florida, Gainesville, Florida, 32608, USA
| | - A L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, 32608, USA
| |
Collapse
|
27
|
Gooch A, Zhang P, Hu Z, Loy Son N, Avila N, Fischer J, Roberts G, Sellon R, Westenfelder C. Interim report on the effective intraperitoneal therapy of insulin-dependent diabetes mellitus in pet dogs using "Neo-Islets," aggregates of adipose stem and pancreatic islet cells (INAD 012-776). PLoS One 2019; 14:e0218688. [PMID: 31536503 PMCID: PMC6752848 DOI: 10.1371/journal.pone.0218688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
We previously reported that allogeneic, intraperitoneally administered “Neo-Islets,” composed of cultured pancreatic islet cells co-aggregated with high numbers of immunoprotective and cytoprotective Adipose-derived Stem Cells, reestablished, through omental engraftment, redifferentiation and splenic and omental up-regulation of regulatory T-cells, normoglycemia in autoimmune Type-1 Diabetic Non-Obese Diabetic (NOD) mice without the use of immunosuppressive agents or encapsulation devices. Based on these observations, we are currently testing this Neo-Islet technology in an FDA guided pilot study (INAD 012–776) in insulin-dependent, spontaneously diabetic pet dogs by ultrasound-guided, intraperitoneal administration of 2x10e5 Neo-Islets/kilogram body weight to metabolically controlled (blood glucose, triglycerides, thyroid and adrenal functions) and sedated animals. We report here interim observations on the first 4 canine Neo-Islet-treated, insulin-dependent pet dogs that are now in the early to intermediate-term follow-up phase of the planned 3 year study (> 6 months post treatment). Current results from this translational study indicate that in dogs, Neo-Islets appear to engraft, redifferentiate and physiologically produce insulin, and are rejected by neither auto- nor allo-immune responses, as evidenced by (a) an absent IgG response to the allogeneic cells contained in the administered Neo-Islets, and (b) progressively improved glycemic control that achieves up to a 50% reduction in daily insulin needs paralleled by a statistically significant decrease in serum glucose concentrations. This is accomplished without the use of anti-rejection drugs or encapsulation devices. No adverse or serious adverse events related to the Neo-Islet administration have been observed to date. We conclude that this minimally invasive therapy has significant translational relevance to veterinary and clinical Type 1 diabetes mellitus by achieving complete and at this point partial glycemic control in two species, i.e., diabetic mice and dogs, respectively.
Collapse
Affiliation(s)
- Anna Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Ping Zhang
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Zhuma Hu
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Natasha Loy Son
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Nicole Avila
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Julie Fischer
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Gregory Roberts
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Rance Sellon
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Christof Westenfelder
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hamad ARA, Sadasivam M, Rabb H. Hybrid lipids, peptides, and lymphocytes: new era in type 1 diabetes research. J Clin Invest 2019; 12:9. [PMID: 31380812 DOI: 10.1172/jci130313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing β cells in islets of Langerhans. Many genetic and immunological insights into autoimmune disease pathogenesis were initially uncovered in the context of T1D and facilitated by preclinical studies using the nonobese diabetic (NOD) mouse model. Recently, the study of T1D has led to the discovery of fatty acid esters of hydroxyl fatty acids (FAHFAs), which are naturally occurring hybrid peptides that modulate inflammation and diabetes pathogenesis, and a hybrid lymphocyte that expresses both B and T cell receptors. Palmitic acid esters of hydroxy stearic acids (PAHSAs) are the most extensively studied FAHFA. In this issue of the JCI, Syed et al. have shown that PAHSAs both attenuate autoimmune responses and promote β cell survival in NOD mice. Given the lack of effective T1D therapies and the paucity of known side effects of PAHSAs, this lipid may have therapeutic potential for individuals at risk for or newly diagnosed with T1D.
Collapse
Affiliation(s)
| | | | - Hamid Rabb
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Hajdú RI, Laurik LK, Szabó K, Dékány B, Almási Z, Énzsöly A, Szabó A, Radovits T, Mátyás C, Oláh A, Szél Á, Somfai GM, Dávid C, Lukáts Á. Detailed Evaluation of Possible Ganglion Cell Loss in the Retina of Zucker Diabetic Fatty (ZDF) Rats. Sci Rep 2019; 9:10463. [PMID: 31320684 PMCID: PMC6639371 DOI: 10.1038/s41598-019-46879-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/21/2019] [Indexed: 01/06/2023] Open
Abstract
A thinning of the inner retina is one of the earliest potential markers of neuroretinal damage in diabetic subjects. The histological background is uncertain; retinal ganglion cell (RGC) loss and changes in the structure or thickness of the inner plexiform layer (IPL) have been suspected. Studies conducted on animal models on RGC pathology gave contradictory results. Hereby we present RGC numbers, distribution patterns and IPL thickness from Zucker Diabetic Fatty (ZDF) rats. After labelling RGCs on retinal whole mounts, isodensity maps were constructed, RGC numbers and distribution patterns analysed using a custom-built algorithm, enabling point-by-point comparison. There was no change in staining characteristics of the antibodies and no significant difference in average RGC densities was found compared to controls. The distribution patterns were also comparable and no significant difference was found in IPL thickness and stratification or in the number of apoptotic cells in the ganglion cell layer (GCL). Our results provide a detailed evaluation of the inner retina and exclude major RGC loss in ZDF rats and suggest that other factors could serve as a potential explanation for inner retinal thinning in clinical studies. Our custom-built method could be adopted for the assessment of other animal or human retinas.
Collapse
Affiliation(s)
- Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lenke K Laurik
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Almási
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Ágoston Szél
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor M Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Retinology Unit, Pallas Kliniken, Olten, Switzerland
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
30
|
Sales-Campos H, Soares SC, Oliveira CJF. An introduction of the role of probiotics in human infections and autoimmune diseases. Crit Rev Microbiol 2019; 45:413-432. [PMID: 31157574 DOI: 10.1080/1040841x.2019.1621261] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last decades, studies exploring the role of microorganisms inhabiting human body in different scenarios have demonstrated the great potential of modulating them to treat and prevent diseases. Among the most outstanding applications, probiotics have been used for over a century to treat infections and inflammation. Despite the beneficial role of other probiotics, Lactobacillus and Bifidobacterium species are the most frequently used, and have been effective as a therapeutic option in the treatment/prevention of dental caries, periodontal diseases, urogenital infections, and gastrointestinal infections. Additionally, as gastrointestinal tract harbors a great diversity of microbial species that directly or indirectly modulate host metabolism and immune response, the influence of intestinal microbiota, one of the targets of therapies using probiotics, on the biology of immune cells can be explored to treat inflammatory disorders or immune-mediated diseases. Thus, it is not surprising that probiotics have presented promising results in modulating human inflammatory diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease, among others. Hence, the purpose of this review is to discuss the potential of therapeutic approaches using probiotics to constrain infection and development of inflammation on human subjects.
Collapse
Affiliation(s)
- Helioswilton Sales-Campos
- Laboratory of Immunology and Bioinformatics, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro , Uberaba , Minas Gerais , Brazil.,Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiás , Goiânia , Brazil
| | - Siomar Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro , Uberaba , Minas Gerais , Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro , Uberaba , Minas Gerais , Brazil
| |
Collapse
|
31
|
O'Kell AL, Garrett TJ, Wasserfall C, Atkinson MA. Untargeted metabolomic analysis in non-fasted diabetic dogs by UHPLC-HRMS. Metabolomics 2019; 15:15. [PMID: 30830416 PMCID: PMC6461041 DOI: 10.1007/s11306-019-1477-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION We recently identified variances in serum metabolomic profiles between fasted diabetic and healthy dogs, some having similarities to those identified in human type 1 diabetes. OBJECTIVES Compare untargeted metabolomic profiles in the non-fasted state. METHODS Serum from non-fasted diabetic (n = 6) and healthy control (n = 6) dogs were analyzed by liquid chromatography-high resolution mass spectrometry. RESULTS Clear clustering of metabolites between groups were observed, with multiple perturbations identified that were similar to those previously observed in fasted diabetic dogs. CONCLUSION These findings further support the development of targeted assays capable of detecting metabolites that may be useful as biomarkers of canine diabetes.
Collapse
Affiliation(s)
- A L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Florida, Box 100116, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA.
| | - T J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - C Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida Diabetes Institute, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - M A Atkinson
- Departments of Pathology, Immunology and Laboratory Medicine, and Pediatrics, The University of Florida Diabetes Institute, 1275 Center Drive, Gainesville, FL, 32610, USA
| |
Collapse
|
32
|
Rivera-Velez SM, Hwang J, Navas J, Villarino NF. Identification of differences in the formation of plasma glycated proteins between dogs and humans under diabetes-like glucose concentration conditions. Int J Biol Macromol 2018; 123:1197-1203. [PMID: 30465839 DOI: 10.1016/j.ijbiomac.2018.11.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Dogs have been proposed as a translational model and used for studying aging, diabetes, and diabetes-related complications in humans. However, no studies have ever compared the glycation of plasma proteins between dogs and humans under similar experimental conditions. Thus, the aim of this study was to fill this gap by comparing the plasma protein glycation patterns of dogs and humans in an ex-vivo system. Canine and human plasma samples were incubated with glucose at concentrations comparable to those observed in diabetic patients. The final glucose plasma concentration resulted in similar glucose:albumin ratios in both species. Glycated proteins were evaluated by measuring the content of fructosamine, protein carbonyls, and the formation of advanced glycation end-products (AGEs). The concentrations of fructosamine and protein carbonyls in canine and human plasma increased in a glucose concentration-dependent manner (P < 0.0001). Of note, the relative increment of fructosamine and protein carbonyl content and AGE formation was always higher in human than in dog plasma. Our results reveal that the plasma glycation processes in dogs and humans are not similar. These novel findings could contribute to improve our understating about canine and human diabetes as well as other condition associated in the glycation of proteins.
Collapse
Affiliation(s)
- S M Rivera-Velez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
| | - Julianne Hwang
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
| | - Jinna Navas
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
| | - Nicolas Francisco Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States.
| |
Collapse
|
33
|
Bērziņš U, Matise-VanHoutana I, Pētersone I, Dūrītis I, Ņikuļšins S, Bogdanova-Jātniece A, Kālis M, Svirskis Š, Skrastiņa D, Ezerta A, Kozlovska T. Characterisation and In Vivo Safety of Canine Adipose-Derived Stem Cells. PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. SECTION B. NATURAL, EXACT, AND APPLIED SCIENCES. 2018; 72:160-171. [DOI: 10.2478/prolas-2018-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The study characterises canine adipose-derived stem cells (cASCs) in comparison to human ASCs (hASCs) and tests their safety in a canine model after intravenous administration. cASCs from two dogs were cultured under hypoxic conditions in a medium supplemented with autologous serum. They were plastic adherent, spindle-shaped cells that expressed CD73, CD90, and CD44 but lacked CD45, CD14, HLA-DR, and CD34. cASCs differentiated toward adipogenic, osteogenic, and chondrogenic lineages, although adipogenic differentiation capacity was low. Blast transformation reaction demonstrated that these cells significantly suppress T-cell proliferation, and this ability is dose-dependent. Intravenous administration of a cell freezing medium, therapeutic dose of cASCs (2 × 106 live cells/kg), and five times higher dose of cASCs showed no significant side effects in two dogs. Microscopic tissue lesions were limited to only mild, non-specific changes. There were no signs of malignancy. The results of the study indicate that cASCs are similar to hASCs and are safe for therapeutic applications in a canine model. The proposed methodology for ASC preparation on a non-routine basis, which includes individually optimised cell culture conditions and offers risk-adapted treatment, could be used for future personalised off-the-shelf therapies, for example, in myocardial infarction or stroke.
Collapse
Affiliation(s)
- Uldis Bērziņš
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
- Stem Cells Technologies Ltd. , Rīga , Latvia
| | - Ilze Matise-VanHoutana
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Ilze Pētersone
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Ilmārs Dūrītis
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Sergejs Ņikuļšins
- Children’s Clinical University Hospital , 45 Vienības gatve, Rīga , LV-1004 , Latvia
| | | | - Mārtiņš Kālis
- Augusts Kirhenšteins Institute of Microbiology and Virology , Rīga Stradiņš University , 5 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Šimons Svirskis
- Augusts Kirhenšteins Institute of Microbiology and Virology , Rīga Stradiņš University , 5 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Dace Skrastiņa
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Agnese Ezerta
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Tatjana Kozlovska
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| |
Collapse
|
34
|
Bertin FR, Ruffin-Taylor D, Stewart AJ. Insulin dysregulation in horses with systemic inflammatory response syndrome. J Vet Intern Med 2018; 32:1420-1427. [PMID: 29749643 PMCID: PMC6060318 DOI: 10.1111/jvim.15138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/01/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Systemic inflammation is a cause of insulin dysregulation in many species, but the insulin and glucose dynamics in adult horses diagnosed with systemic inflammatory response syndrome (SIRS) are poorly documented. HYPOTHESIS/OBJECTIVES In SIRS in horses, insulin and glucose dynamics will be altered and associated with survival. ANIMALS Adult horses diagnosed with SIRS admitted to a referral hospital. METHODS Prospective study enrolling horses diagnosed with SIRS in which serum insulin and glucose concentrations were measured. Horses were grouped by outcome (survival, hyperinsulinemia, and hyperglycemia) and compared with P < .05 considered significant. RESULTS Fifty-eight horses were included in the study and 36 (62%) survived. At admission, 21 horses (36%) were hyperinsulinemic and 44 horses (88%) were hyperglycemic, with survivors having significantly higher serum insulin and a significantly lower serum glucose concentration. Horses diagnosed with hyperinsulinemia at any time during hospitalization were 4 times more likely to survive whereas horses that were hyperglycemic at any time during hospitalization were 5 times less likely to survive. Serum glucose concentration and presence of hyperglycemia both were associated with severity of disease. Insulin/glucose ratio, reflecting insulin secretion, was significantly higher in survivors whereas glucose/insulin ratio, reflecting peripheral tissue insulin resistance, was significantly lower in nonsurvivors. Only in survivors was there a significant correlation between serum insulin and glucose concentrations. CONCLUSIONS AND CLINICAL IMPORTANCE Hyperinsulinemia and hyperglycemia are common features of SIRS in horses, but those presenting with relative hypoinsulinemia and corresponding hyperglycemia suggestive of endocrine pancreatic dysfunction have a worse prognosis.
Collapse
Affiliation(s)
- François-René Bertin
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Debra Ruffin-Taylor
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Allison Jean Stewart
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.,Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
35
|
Sommer BC, Dhawan D, Ratliff TL, Knapp DW. Naturally-Occurring Canine Invasive Urothelial Carcinoma: A Model for Emerging Therapies. Bladder Cancer 2018; 4:149-159. [PMID: 29732386 PMCID: PMC5929349 DOI: 10.3233/blc-170145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of targeted therapies and the resurgence of immunotherapy offer enormous potential to dramatically improve the outlook for patients with invasive urothelial carcinoma (InvUC). Optimization of these therapies, however, is crucial as only a minority of patients achieve dramatic remission, and toxicities are common. With the complexities of the therapies, and the growing list of possible drug combinations to test, highly relevant animal models are needed to assess and select the most promising approaches to carry forward into human trials. The animal model(s) should possess key features that dictate success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). While it may not be possible to create these collective features in experimental models, these features are present in naturally-occurring InvUC in pet dogs. Naturally occurring canine InvUC closely mimics muscle-invasive bladder cancer in humans in regards to cellular and molecular features, molecular subtypes, biological behavior (sites and frequency of metastasis), and response to therapy. Clinical treatment trials in pet dogs with InvUC are considered a win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. This review will provide an overview of canine InvUC, the similarities to the human condition, and the potential for dogs with InvUC to serve as a model to predict the outcomes of targeted therapy and immunotherapy in humans.
Collapse
Affiliation(s)
- Breann C Sommer
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
36
|
Huehnchen P, Boehmerle W, Endres M. Fingolimod therapy is not effective in a mouse model of spontaneous autoimmune peripheral polyneuropathy. Sci Rep 2018; 8:5648. [PMID: 29618748 PMCID: PMC5884804 DOI: 10.1038/s41598-018-23949-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune disorder, which causes progressive sensory and motor deficits and often results in severe disability. Knockout of the co-stimulatory protein CD86 in mice of the non-obese diabetic background (NoD.129S4-Cd86tm1Shr/JbsJ) results in the development of a spontaneous autoimmune peripheral polyneuropathy (SAPP). We used this previously described transgenic model to study the effects of the sphingosine-1-phosphate receptor agonist fingolimod on SAPP symptoms, functional and electrophysiological characteristics. Compared to two control strains, knockout of CD86 in NOD mice (CD86−/− NOD) resulted in progressive paralysis with distinct locomotor deficits due to a severe sensory-motor axonal-demyelinating polyneuropathy as assessed by electrophysiological measurements. We started fingolimod treatment when CD86−/− NOD mice showed signs of unilateral hind limb weakness and continued at a dose of 1 mg/kg/day for eight weeks. We did not observe any beneficial effects of fingolimod regarding disease progression. In addition, fingolimod did not influence the functional outcome of CD86−/− NOD mice compared to vehicle treatment nor any of the electrophysiological characteristics. In summary, we show that fingolimod treatment has no beneficial effects in autoimmune polyneuropathy, which is in line with recent clinical data obtained in CIDP patients.
Collapse
Affiliation(s)
- Petra Huehnchen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany. .,Berlin Institute of Health, 10178, Berlin, Germany.
| | - Wolfgang Boehmerle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany.,Berlin Institute of Health, 10178, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
37
|
Niaz K, Maqbool F, Khan F, Hassan FI, Momtaz S, Abdollahi M. Comparative occurrence of diabetes in canine, feline, and few wild animals and their association with pancreatic diseases and ketoacidosis with therapeutic approach. Vet World 2018; 11:410-422. [PMID: 29805204 PMCID: PMC5960778 DOI: 10.14202/vetworld.2018.410-422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder in which blood glucose level raises that can result in severe complications. However, the incidence increased mostly by obesity, pregnancy, persistent corpus luteum, and diestrus phase in humans and animals. This review has focused on addressing the possible understanding and pathogenesis of spontaneous DM in canine, feline, and few wild animals. Furthermore, pancreatic associated disorders, diabetic ketoacidosis, hormonal and drug interaction with diabetes, and herbal remedies associated with DM are elucidated. Bibliographic search for the present review was done using PubMed, Scopus, and Google Scholar for articles on concurrent DM in small and wild animals. Persistent corpus luteal and pseudopregnancy in female dogs generate gestational DM (GDM). GDM can also be caused by extensive use of drugs/hormones such as glucocorticosteroids. Although many similarities are present between diabetic cats and diabetic humans which present islet amyloidosis, there was a progressive loss of β- and α-cells and the normal number of δ-cells. The most prominent similarity is the occurrence of islet amyloidosis in all cases of diabetic cat and over 90% of human non-insulin dependent DM Type-2. Acute pancreatic necrosis (APN) occurs due to predisposing factors such as insulin antagonism, insulin resistance, alteration in glucose tolerance, obesity, hyperadrenocorticism, and persistent usage of glucocorticoids, as these play a vital role in the progression of APN. To manage such conditions, it is important to deal with the etiological agent, risk factors, diagnosis of diabetes, and hormonal and drug interaction along with its termination with suitable therapy (herbal) protocols. It should be noted that the protocols used for the diagnosis and treatment of human DM are not appropriate for animals. Further investigations regarding diabetic conditions of pets and wild animals are required, which will benefit the health status of all animals health worldwide.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Maqbool
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatima Ismail Hassan
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
O'Kell AL, Garrett TJ, Wasserfall C, Atkinson MA. Untargeted metabolomic analysis in naturally occurring canine diabetes mellitus identifies similarities to human Type 1 Diabetes. Sci Rep 2017; 7:9467. [PMID: 28842637 PMCID: PMC5573354 DOI: 10.1038/s41598-017-09908-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022] Open
Abstract
While predominant as a disease entity, knowledge voids exist regarding the pathogenesis of canine diabetes. To test the hypothesis that diabetic dogs have similar metabolomic perturbations to humans with type 1 diabetes (T1D), we analyzed serum metabolomic profiles of breed- and body weight-matched, diabetic (n = 6) and healthy (n = 6) dogs by liquid chromatography-mass spectrometry (LC-MS) profiling. We report distinct clustering of diabetic and control groups based on heat map analysis of known and unknown metabolites. Random forest classification identified 5/6 dogs per group correctly with overall out of bag error rate = 16.7%. Diabetic dogs demonstrated significant upregulation of glycolysis/gluconeogenesis intermediates (e.g., glucose/fructose, C6H12O6, keto-hexose, deoxy-hexose, (P < 0.01)), with significant downregulation of tryptophan metabolism metabolites (e.g., picolinic acid, indoxyl sulfate, anthranilate, (P < 0.01)). Multiple amino acids (AA), AA metabolites, and bile acids were also significantly lower in diabetic versus healthy dogs (P < 0.05) with the exception of the branched chain AA valine, which was elevated in diabetic animals (P < 0.05). Metabolomic profiles in diabetic versus healthy dogs shared similarities with those reported in human T1D (e.g., alterations in glycolysis/gluconeogensis metabolites, bile acids, and elevated branched chain AA). Further studies are warranted to evaluate the utility of canine diabetes to provide novel mechanistic insights to the human disorder.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Florida, Gainesville, Florida, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, Florida, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, Florida, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, Florida, USA.
| |
Collapse
|