1
|
Larrea D, Tamucci KA, Kabra K, Velasco KR, Yun TD, Pera M, Montesinos J, Agrawal RR, Paradas C, Smerdon JW, Lowry ER, Stepanova A, Yoval-Sanchez B, Galkin A, Wichterle H, Area-Gomez E. Altered mitochondria-associated ER membrane (MAM) function shifts mitochondrial metabolism in amyotrophic lateral sclerosis (ALS). Nat Commun 2025; 16:379. [PMID: 39753538 PMCID: PMC11699139 DOI: 10.1038/s41467-024-51578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/12/2024] [Indexed: 01/06/2025] Open
Abstract
Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production. Over time, this deficiency alters mitochondrial electron flow and the active/dormant status of complex I in spinal cord tissues, but not in the brain. These findings suggest mitochondria-associated ER membranes (MAM domains) play a crucial role in regulating cellular glucose metabolism and that MAM dysfunction may underlie the bioenergetic deficits observed in ALS.
Collapse
Affiliation(s)
- Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Kirstin A Tamucci
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Khushbu Kabra
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin R Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marta Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge Montesinos
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmen Paradas
- Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - John W Smerdon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Stepanova
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Belem Yoval-Sanchez
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Alexander Galkin
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
3
|
Jia Z, Li H, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. MAM-mediated mitophagy and endoplasmic reticulum stress: the hidden regulators of ischemic stroke. Front Cell Neurosci 2024; 18:1470144. [PMID: 39640236 PMCID: PMC11617170 DOI: 10.3389/fncel.2024.1470144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke (IS) is the predominant subtype of stroke and a leading contributor to global mortality. The mitochondrial-associated endoplasmic reticulum membrane (MAM) is a specialized region that facilitates communication between the endoplasmic reticulum and mitochondria, and has been extensively investigated in the context of neurodegenerative diseases. Nevertheless, its precise involvement in IS remains elusive. This literature review elucidates the intricate involvement of MAM in mitophagy and endoplasmic reticulum stress during IS. PINK1, FUNDC1, Beclin1, and Mfn2 are highly concentrated in the MAM and play a crucial role in regulating mitochondrial autophagy. GRP78, IRE1, PERK, and Sig-1R participate in the unfolded protein response (UPR) within the MAM, regulating endoplasmic reticulum stress during IS. Hence, the diverse molecules on MAM operate independently and interact with each other, collectively contributing to the pathogenesis of IS as the covert orchestrator.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongtao Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Li X, Li Q, Jiang X, Song S, Zou W, Yang Q, Liu S, Chen S, Wang C. Inhibition of SGLT2 protects podocytes in diabetic kidney disease by rebalancing mitochondria-associated endoplasmic reticulum membranes. Cell Commun Signal 2024; 22:534. [PMID: 39511548 PMCID: PMC11542362 DOI: 10.1186/s12964-024-01914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors have changed the therapeutic landscape for diabetic kidney disease (DKD) patients, but their underlying mechanisms are complicated and not fully understood. Mitochondria-associated endoplasmic reticulum membranes (MAMs), the dynamic contact sites between mitochondria and the endoplasmic reticulum (ER), serve as intracellular platforms important for regulating cellular fate and function. This study explored the roles and mechanisms of SGLT2 inhibitors in regulating MAMs formation in diabetic podocytes. METHODS We assessed MAMs formation in podocytes from DKD patients' renal biopsy samples and induced an increase in MAMs formation in cultured human podocytes by transfecting OMM-ER linker plasmid to investigate the effects of MAMs imbalance on podocyte injury. Empagliflozin-treated diabetic mice and podocyte-specific SGLT2 knockout diabetic mice (diabetic states were induced by streptozotocin and a high-fat diet), empagliflozin-treated podocytes, SGLT2-downregulated podocytes, and SGLT2-overexpressing podocytes were used to investigate the effects and mechanisms of SGLT2 inhibitors on MAMs formation in diabetic podocytes. RESULTS MAMs were increased in podocytes and were associated with renal dysfunction in DKD patients. Increased MAMs aggravated HG-induced podocyte injury. The expression of SGLT2 was increased in diabetic podocytes. In addition, empagliflozin-treatment and podocyte-specific SGLT2 knockout attenuated MAMs formation and podocyte injury in diabetic mice. Empagliflozin treatment and SGLT2 knockdown decreased podocyte MAMs formation by activating the AMP-activated protein kinase (AMPK) pathway, while SGLT2 overexpression had the opposite effect. CONCLUSIONS Inhibition of SGLT2 attenuates MAMs imbalance in diabetic podocytes by activating the AMPK pathway. This study expands our knowledge of the roles of SGLT2 inhibitors in improving DKD podocyte injury and provides new insights into DKD treatment.
Collapse
Affiliation(s)
- Xuehong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qiong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Xinying Jiang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qinglan Yang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shuangqin Chen
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
5
|
Reid MV, Fredickson G, Mashek DG. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024:01515467-990000000-01067. [PMID: 39475114 DOI: 10.1097/hep.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis, the buildup of neutral lipids in lipid droplets (LDs), is commonly referred to as metabolic dysfunction-associated steatotic liver disease when alcohol or viral infections are not involved. Metabolic dysfunction-associated steatotic liver disease encompasses simple steatosis and the more severe metabolic dysfunction-associated steatohepatitis, characterized by inflammation, hepatocyte injury, and fibrosis. Previously viewed as inert markers of disease, LDs are now understood to play active roles in disease etiology and have significant nonpathological and pathological functions in cell signaling and function. These dynamic properties of LDs are tightly regulated by hundreds of proteins that coat the LD surface, controlling lipid metabolism, trafficking, and signaling. The following review highlights various facets of LD biology with the primary goal of discussing key mechanisms through which LDs promote the development of advanced liver diseases, including metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Mari V Reid
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gavin Fredickson
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Yu W, Li Y, Li Y, Hu J, Wu J, Chen X, Huang Y, Shi X. Connexin43 Contributes to Alzheimer's Disease by Promoting the Mitochondria-Associated Membrane-Related Autophagy Inhibition. Mol Neurobiol 2024:10.1007/s12035-024-04536-3. [PMID: 39438345 DOI: 10.1007/s12035-024-04536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
The perturbed structure and function of mitochondria-associated membranes (MAM), instead of the amyloid cascade, have been gradually proposed to play a basic role in the pathogenesis of Alzheimer's disease (AD). Notably, autophagy inhibition is one of the main mechanisms of MAM dysfunction and plays an important role in neuronal injury. However, the upstream molecular mechanism underlying the MAM dysfunctions remains elusive. Here, we defined an unexpected and critical role of connexin43 (Cx43) in regulating the MAM structure. The expression levels of Cx43 and mitofusin-2 (MFN2, the MAM biomarker) increase significantly in 9-month-old APPswe/PS1dE9 double-transgenic AD model mice, and there is an obvious colocalization relationship. Moreover, both AD mice and cells lacking Cx43 exhibit an evident reduction in the MAM contact sites, which subsequently promotes the conversion from microtubule-associated protein 1 light-chain 3B I (LC3B-I) to LC3B-II via inhibition mTOR-dependent pathway and then initiates the generation of autophagosomes. Autophagosome formation ultimately promotes β-amyloid (Aβ) clearance and attenuates Aβ-associated pathological changes in AD, mainly including astrogliosis and neuronal apoptosis. Our findings not only reveal a previously unrecognized effect of Cx43 on MAM upregulation but also highlight the major player of MAM-induced autophagy inhibition in Cx43-facilitated AD pathogenesis, providing a novel insight into the alternative therapeutic strategies for the early treatment of AD.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Yunong Li
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Yao Li
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street Xicheng District, Beijing, 100034, China.
| | - Xin Shi
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China.
| |
Collapse
|
7
|
Xia Q, Li P, Casas-Martinez JC, Miranda-Vizuete A, McDermott E, Dockery P, Goljanek-Whysall K, McDonagh B. Peroxiredoxin 2 regulates DAF-16/FOXO mediated mitochondrial remodelling in response to exercise that is disrupted in ageing. Mol Metab 2024; 88:102003. [PMID: 39117041 PMCID: PMC11388264 DOI: 10.1016/j.molmet.2024.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES A decline in mitochondrial function and increased susceptibility to oxidative stress is a hallmark of ageing. Exercise endogenously generates reactive oxygen species (ROS) in skeletal muscle and promotes mitochondrial remodelling resulting in improved mitochondrial function. It is unclear how exercise induced redox signalling results in alterations in mitochondrial dynamics and morphology. METHODS In this study, a Caenorhabditis elegans model of exercise and ageing was used to determine the mechanistic role of Peroxiredoxin 2 (PRDX-2) in regulating mitochondrial morphology. Mitochondrial morphology was analysed using transgenic reporter strains and transmission electron microscopy, complimented with the analysis of the effects of ageing and exercise on physiological activity. RESULTS The redox state of PRDX-2 was altered with exercise and ageing, hyperoxidised peroxiredoxins were detected in old worms along with basally elevated intracellular ROS. Exercise generated intracellular ROS and rapid mitochondrial remodelling, which was disrupted with age. The exercise intervention promoted mitochondrial ER contact sites (MERCS) assembly and increased DAF-16/FOXO nuclear localisation. The prdx-2 mutant strain had a disrupted mitochondrial network as evidenced by increased mitochondrial fragmentation. In the prdx-2 mutant strain, exercise did not activate DAF-16/FOXO, mitophagy or increase MERCS assembly. The results demonstrate that exercise generated ROS increased DAF-16/FOXO transcription factor nuclear localisation required for activation of mitochondrial fusion events that were blunted with age. CONCLUSIONS The data demonstrate the critical role of PRDX-2 in orchestrating mitochondrial remodelling in response to a physiological stress by regulating redox dependent DAF-16/FOXO nuclear localisation.
Collapse
Affiliation(s)
- Qin Xia
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Penglin Li
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - José C Casas-Martinez
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Emma McDermott
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland; Institute of Lifecourse and Medical Sciences, University of Liverpool, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland.
| |
Collapse
|
8
|
Fitts RH, Wang X, Kwok WM, Camara AKS. Cardiomyocyte Adaptation to Exercise: K+ Channels, Contractility and Ischemic Injury. Int J Sports Med 2024; 45:791-803. [PMID: 38648799 DOI: 10.1055/a-2296-7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality, and exercise-training (TRN) is known to reduce risk factors and protect the heart from ischemia and reperfusion injury. Though the cardioprotective effects of exercise are well-documented, underlying mechanisms are not well understood. This review highlights recent findings and focuses on cardiac factors with emphasis on K+ channel control of the action potential duration (APD), β-adrenergic and adenosine regulation of cardiomyocyte function, and mitochondrial Ca2+ regulation. TRN-induced prolongation and shortening of the APD at low and high activation rates, respectively, is discussed in the context of a reduced response of the sarcolemma delayed rectifier potassium channel (IK) and increased content and activation of the sarcolemma KATP channel. A proposed mechanism underlying the latter is presented, including the phosphatidylinositol-3kinase/protein kinase B pathway. TRN induced increases in cardiomyocyte contractility and the response to adrenergic agonists are discussed. The TRN-induced protection from reperfusion injury is highlighted by the increased content and activation of the sarcolemma KATP channel and the increased phosphorylated glycogen synthase kinase-3β, which aid in preventing mitochondrial Ca2+ overload and mitochondria-triggered apoptosis. Finally, a brief section is presented on the increased incidences of atrial fibrillation associated with age and in life-long exercisers.
Collapse
Affiliation(s)
- Robert H Fitts
- Biological Sciences, Marquette University, Milwaukee, United States
| | - Xinrui Wang
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
| | - Wai-Meng Kwok
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
| | - Amadou K S Camara
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
- Physiology, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
9
|
Huo J, Molkentin JD. MCU genetically altered mice suggest how mitochondrial Ca 2+ regulates metabolism. Trends Endocrinol Metab 2024; 35:918-928. [PMID: 38688781 PMCID: PMC11490413 DOI: 10.1016/j.tem.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Skeletal muscle has a major impact on total body metabolism and obesity, and is characterized by dynamic regulation of substrate utilization. While it is accepted that acute increases in mitochondrial matrix Ca2+ increase carbohydrate usage to augment ATP production, recent studies in mice with deleted genes for components of the mitochondrial Ca2+ uniporter (MCU) complex have suggested a more complicated regulatory scenario. Indeed, mice with a deleted Mcu gene in muscle, which lack acute mitochondrial Ca2+ uptake, have greater fatty acid oxidation (FAO) and less adiposity. By contrast, mice deleted for the inhibitory Mcub gene in skeletal muscle, which have greater acute mitochondrial Ca2+ uptake, antithetically display reduced FAO and progressive obesity. In this review we discuss the emerging concept that dynamic fluxing of mitochondrial matrix Ca2+ regulates metabolism.
Collapse
Affiliation(s)
- Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Hasegawa S, Nangaku M, Takenaka Y, Kitayama C, Li Q, Saipidin M, Hong YA, Shang J, Hirabayashi Y, Kubota N, Kadowaki T, Inagi R. Organelle communication maintains mitochondrial and endosomal homeostasis during podocyte lipotoxicity. JCI Insight 2024; 9:e182534. [PMID: 39115943 PMCID: PMC11457848 DOI: 10.1172/jci.insight.182534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Organelle stress exacerbates podocyte injury, contributing to perturbed lipid metabolism. Simultaneous organelle stresses can occur in the kidney in the diseased state; therefore, a thorough analysis of organelle communication is crucial for understanding the progression of kidney diseases. Although organelles closely interact with one another at membrane contact sites, limited studies have explored their involvement in kidney homeostasis. The endoplasmic reticulum (ER) protein, PDZ domain-containing 8 (PDZD8), is implicated in multiple-organelle-tethering processes and cellular lipid homeostasis. In this study, we aimed to elucidate the role of organelle communication in podocyte injury using podocyte-specific Pdzd8-knockout mice. Our findings demonstrated that Pdzd8 deletion exacerbated podocyte injury in an accelerated obesity-related kidney disease model. Proteomic analysis of isolated glomeruli revealed that Pdzd8 deletion exacerbated mitochondrial and endosomal dysfunction during podocyte lipotoxicity. Additionally, electron microscopy revealed the accumulation of abnormal, fatty endosomes in Pdzd8-deficient podocytes during obesity-related kidney diseases. Lipidomic analysis indicated that glucosylceramide accumulated in Pdzd8-deficient podocytes, owing to accelerated production and decelerated degradation. Thus, the organelle-tethering factor, PDZD8, plays a crucial role in maintaining mitochondrial and endosomal homeostasis during podocyte lipotoxicity. Collectively, our findings highlight the importance of organelle communication at the 3-way junction among the ER, mitochondria, and endosomes in preserving podocyte homeostasis.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuto Takenaka
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chigusa Kitayama
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qi Li
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Madina Saipidin
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Ah Hong
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jin Shang
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
- Department of Diabetes and Metabolic Diseases, and
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, and
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology and
| |
Collapse
|
11
|
Shi Z, Han Z, Chen J, Zhou JC. Endoplasmic reticulum-resident selenoproteins and their roles in glucose and lipid metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167246. [PMID: 38763408 DOI: 10.1016/j.bbadis.2024.167246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Glucose and lipid metabolic disorders (GLMDs), such as diabetes, dyslipidemia, metabolic syndrome, nonalcoholic fatty liver disease, and obesity, are significant public health issues that negatively impact human health. The endoplasmic reticulum (ER) plays a crucial role at the cellular level for lipid and sterol biosynthesis, intracellular calcium storage, and protein post-translational modifications. Imbalance and dysfunction of the ER can affect glucose and lipid metabolism. As an essential trace element, selenium contributes to various human physiological functions mainly through 25 types of selenoproteins (SELENOs). At least 10 SELENOs, with experimental and/or computational evidence, are predominantly found on the ER membrane or within its lumen. Two iodothyronine deiodinases (DIOs), DIO1 and DIO2, regulate the thyroid hormone deiodination in the thyroid and some external thyroid tissues, influencing glucose and lipid metabolism. Most of the other eight members maintain redox homeostasis in the ER. Especially, SELENOF, SELENOM, and SELENOS are involved in unfolded protein responses; SELENOI catalyzes phosphatidylethanolamine synthesis; SELENOK, SELENON, and SELENOT participate in calcium homeostasis regulation; and the biological significance of thioredoxin reductase 3 in the ER remains unexplored despite its established function in the thioredoxin system. This review examines recent research advances regarding ER SELENOs in GLMDs and aims to provide insights on ER-related pathology through SELENOs regulation.
Collapse
Affiliation(s)
- Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyu Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jingyi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China.
| |
Collapse
|
12
|
Zito E, Lescure A, Borgese N. Chemical chaperones in metabolic fitness beyond protein folding. Trends Endocrinol Metab 2024; 35:572-575. [PMID: 38664151 DOI: 10.1016/j.tem.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 07/11/2024]
Abstract
Chemical chaperones are small molecules that improve protein folding, alleviating aberrant pathological phenotypes due to protein misfolding. Recent reports suggest that, in parallel with their role in relieving endoplasmic reticulum (ER) stress, chemical chaperones rescue mitochondrial function and insulin signaling. These effects may underlie their pharmacological action on metabolically demanding tissues.
Collapse
Affiliation(s)
- Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Alain Lescure
- University of Strasbourg, CNRS, Architecture and Reactivity of RNA, Strasbourg, France
| | - Nica Borgese
- Consiglio Nazionale delle Ricerche Neuroscience Institute, 20854 Vedano al Lambro, Italy
| |
Collapse
|
13
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
14
|
Li Y, Tian X, Yu Q, Bao T, Dai C, Jiang L, Niu K, Yang J, Wang S, Wu X. Alleviation of hepatic insulin resistance and steatosis with NMN via improving endoplasmic reticulum-Mitochondria miscommunication in the liver of HFD mice. Biomed Pharmacother 2024; 175:116682. [PMID: 38703507 DOI: 10.1016/j.biopha.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
The interaction between endoplasmic reticulum (ER) and mitochondria has been shown to play a key role in hepatic steatosis during chronic obesity. β-nicotinamide mononucleotide (NMN) has been reported to regulate obesity, however, its molecular mechanism at the subcellular level remains unclear. Here, NMN improved liver steatosis and insulin resistance in chronic high-fat diet (HFD) mice. RNA-seq showed that compared with the liver of HFD mice, NMN intervention enhanced fat digestion and absorption and stimulated the cholesterol metabolism signaling pathways, while impaired insulin resistance and the fatty acid biosynthesis signaling pathways. Mechanistically, NMN ameliorated mitochondrial dysfunction and ER oxidative stress in the liver of HFD mice by increasing hepatic nicotinamide adenine dinucleotide (NAD+) (P < 0.01) levels. This effect increased the contact sites (mitochondria-associated membranes [MAMs]) between ER and mitochondria, thereby promoting intracellular ATP (P < 0.05) production and mitigating lipid metabolic disturbances in the liver of HFD mice. Taken together, this study provided a theoretical basis for restoring metabolic dynamic equilibrium in the liver of HFD mice by increasing MAMs via the nutritional strategy of NMN supplementation.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Qian Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chao Dai
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Liang Jiang
- ERA Biotechnology (Shenzhen) Co., Ltd, Shenzhen 518115, China
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Jianying Yang
- The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
| |
Collapse
|
15
|
Li Y, Lou N, Liu X, Zhuang X, Chen S. Exploring new mechanisms of Imeglimin in diabetes treatment: Amelioration of mitochondrial dysfunction. Biomed Pharmacother 2024; 175:116755. [PMID: 38772155 DOI: 10.1016/j.biopha.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
With the increasing prevalence of type 2 diabetes mellitus (T2DM), it has become critical to identify effective treatment strategies. In recent years, the novel oral hypoglycaemic drug Imeglimin has attracted much attention in the field of diabetes treatment. The mechanisms of its therapeutic action are complex and are not yet fully understood by current research. Current evidence suggests that pancreatic β-cells, liver, and skeletal muscle are the main organs in which Imeglimin lowers blood glucose levels and that it acts mainly by targeting mitochondrial function, thereby inhibiting hepatic gluconeogenesis, enhancing insulin sensitivity, promoting pancreatic β-cell function, and regulating energy metabolism. There is growing evidence that the drug also has a potentially volatile role in the treatment of diabetic complications, including metabolic cardiomyopathy, diabetic vasculopathy, and diabetic neuroinflammation. According to available clinical studies, its efficacy and safety profile are more evident than other hypoglycaemic agents, and it has synergistic effects when combined with other antidiabetic drugs, and also has potential in the treatment of T2DM-related complications. This review aims to shed light on the latest research progress in the treatment of T2DM with Imeglimin, thereby providing clinicians and researchers with the latest insights into Imeglimin as a viable option for the treatment of T2DM.
Collapse
Affiliation(s)
- Yilin Li
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nenngjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
16
|
Kulkarni PG, Mohire VM, Waghmare PP, Banerjee T. Interplay of mitochondria-associated membrane proteins and autophagy: Implications in neurodegeneration. Mitochondrion 2024; 76:101874. [PMID: 38514017 DOI: 10.1016/j.mito.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Since the discovery of membrane contact sites between ER and mitochondria called mitochondria-associated membranes (MAMs), several pieces of evidence identified their role in the regulation of different cellular processes such as Ca2+ signalling, mitochondrial transport, and dynamics, ER stress, inflammation, glucose homeostasis, and autophagy. The integrity of these membranes was found to be essential for the maintenance of these cellular functions. Accumulating pieces of evidence suggest that MAMs serve as a platform for autophagosome formation. However, the alteration within MAMs structure is associated with the progression of neurodegenerative diseases. Dysregulated autophagy is a hallmark of neurodegeneration. Here, in this review, we highlight the present knowledge on MAMs, their structural composition, and their roles in different cellular functions. We also discuss the association of MAMs proteins with impaired autophagy and their involvement in the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007 India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
17
|
Parry HA, Willingham TB, Giordano KA, Kim Y, Qazi S, Knutson JR, Combs CA, Glancy B. Impact of capillary and sarcolemmal proximity on mitochondrial structure and energetic function in skeletal muscle. J Physiol 2024; 602:1967-1986. [PMID: 38564214 PMCID: PMC11068488 DOI: 10.1113/jp286246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.
Collapse
Affiliation(s)
- Hailey A. Parry
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - T. Bradley Willingham
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- Shephard Center’s Virginia C. Crawford Research Institute, Atlanta, GA, USA
| | | | - Yuho Kim
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- University of Massachusetts, Lowell, MA,USA
| | - Shureed Qazi
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay R. Knutson
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Combs
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Chen H, Zhang H, Li AM, Liu YT, Liu Y, Zhang W, Yang C, Song N, Zhan M, Yang S. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats. Redox Biol 2024; 70:103062. [PMID: 38320454 PMCID: PMC10850784 DOI: 10.1016/j.redox.2024.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE To investigate the regulatory effect and mechanism of Vitamin D receptor (VDR) on mitochondrial function in renal tubular epithelial cell under diabetic status. METHODS The diabetic rats induced by streptozotocin (STZ) and HK-2 cells under high glocose(HG)/transforming growth factor beta (TGF-β) stimulation were used in this study. Calcitriol was administered for 24 weeks. Renal tubulointerstitial injury and some parameters of mitochondrial function including mitophagy, mitochondrial fission, mitochondrial ROS, mitochondrial membrane potential (MMP), mitochondrial ATP, Complex V activity and mitochondria-associated ER membranes (MAMs) integrity were examined. Additionally, paricalcitol, 3-MA (an autophagy inhibitor), VDR over-expression plasmid, VDR siRNA and Mfn2 siRNA were applied in vitro. RESULTS The expression of VDR, Pink1, Parkin, Fundc1, LC3II, Atg5, Mfn2, Mfn1 in renal tubular cell of diabetic rats were decreased significantly. Calcitriol treatment reduced the levels of urinary albumin, serum creatinine and attenuated renal tubulointerstitial fibrosis in STZ induced diabetic rats. In addition, VDR agonist relieved mitophagy dysfunction, MAMs integrity, and inhibited mitochondrial fission, mitochondrial ROS. Co-immunoprecipitation analysis demonstrated that VDR interacted directly with Mfn2. Mitochondrial function including mitophagy, mitochondrial membrane potential (MMP), mitochondrial Ca2+, mitochondrial ATP and Complex V activity were decreased dramatically in HK-2 cells under HG/TGF-β ambience. In vitro pretreatment of HK-2 cells with autophagy inhibitor 3-MA, VDR siRNA or Mfn2 siRNA negated the activating effects of paricalcitol on mitochondrial function. Pricalcitol and VDR over-expression plasmid activated Mfn2 and then partially restored the MAMs integrity. Additionally, VDR restored mitophagy was partially associated with MAMs integrity through Fundc1. CONCLUSION Activated VDR could contribute to restore mitophagy through Mfn2-MAMs-Fundc1 pathway in renal tubular cell. VDR could recover mitochondrial ATP, complex V activity and MAMs integrity, inhibit mitochondrial fission and mitochondrial ROS. It indicating that VDR agonists ameliorate renal tubulointerstitial fibrosis in diabetic rats partially via regulation of mitochondrial function.
Collapse
Affiliation(s)
- Hong Chen
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ai-Mei Li
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yu-Ting Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Cheng Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Na Song
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ming Zhan
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, China.
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| |
Collapse
|
19
|
Li X, Yang JY, Hu WZ, Ruan Y, Chen HY, Zhang Q, Zhang Z, Ding ZS. Mitochondria-associated membranes contribution to exercise-mediated alleviation of hepatic insulin resistance: Contrasting high-intensity interval training with moderate-intensity continuous training in a high-fat diet mouse model. J Diabetes 2024; 16:e13540. [PMID: 38599845 PMCID: PMC11006604 DOI: 10.1111/1753-0407.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE Mitochondria-associated membranes (MAMs) serve pivotal functions in hepatic insulin resistance (IR). Our aim was to explore the potential role of MAMs in mitigating hepatic IR through exercise and to compare the effects of different intensities of exercise on hepatic MAMs formation in high-fat diet (HFD) mice. METHODS Male C57BL/6J mice were fed an HFD and randomly assigned to undergo supervised high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). IR was evaluated using the serum triglyceride/high-density lipoprotein cholesterol ratio (TG/HDL-C), glucose tolerance test (GTT), and insulin tolerance test (ITT). Hepatic steatosis was observed using hematoxylin-eosin (H&E) and oil red O staining. The phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase 3 beta (PI3K-AKT-GSK3β) signaling pathway was assessed to determine hepatic IR. MAMs were evaluated through immunofluorescence (colocalization of voltage-dependent anion-selective channel 1 [VDAC1] and inositol 1,4,5-triphosphate receptor [IP3R]). RESULTS After 8 weeks on an HFD, there was notable inhibition of the hepatic PI3K/Akt/GSK3β signaling pathway, accompanied by a marked reduction in hepatic IP3R-VDAC1 colocalization levels. Both 8-week HIIT and MICT significantly enhanced the hepatic PI3K/Akt/GSK3β signaling and colocalization levels of IP3R-VDAC1 in HFD mice, with MICT exhibiting a stronger effect on hepatic MAMs formation. Furthermore, the colocalization of hepatic IP3R-VDAC1 positively correlated with the expression levels of phosphorylation of protein kinase B (p-AKT) and phosphorylation of glycogen synthase kinase 3 beta (p-GSK3β), while displaying a negative correlation with serum triglyceride/high-density lipoprotein cholesterol levels. CONCLUSION The reduction in hepatic MAMs formation induced by HFD correlates with the development of hepatic IR. Both HIIT and MICT effectively bolster hepatic MAMs formation in HFD mice, with MICT demonstrating superior efficacy. Thus, MAMs might wield a pivotal role in exercise-induced alleviation of hepatic IR.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Jun Yang Yang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Wen Zhi Hu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - YuXin Ruan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Hong Ying Chen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Zhe Shu Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| |
Collapse
|
20
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Nandwani A, Rathore S, Datta M. LncRNA H19 inhibition impairs endoplasmic reticulum-mitochondria contact in hepatic cells and augments gluconeogenesis by increasing VDAC1 levels. Redox Biol 2024; 69:102989. [PMID: 38100882 PMCID: PMC10761920 DOI: 10.1016/j.redox.2023.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Inspite of exerting independent cellular functions, the endoplasmic-reticulum (ER) and the mitochondria also physically connect at specific sites termed mitochondria-associated ER membranes (MAMs) and these sites consist of several tethering proteins that play varied roles in diverse cellular processes. However, the regulation of these tethering proteins within the cell is relatively less studied. Here, we show that several MAM proteins are significantly altered in the liver during diabetes and among these, the lncRNA, H19 regulates the levels of VDAC1. Inhibition of H19 expression using H19 specific siRNA altered VDAC1, mitochondrial Ca2+ and oxygen consumption rate, ATP and ROS levels and enhanced ER and mitochondria coupling in Hepa 1-6 cells. While H19 inhibition did not impact lipid accumulation, levels of gluconeogenic genes were significantly increased. JNK-phosphorylation and IRS1-Ser307-phosphorylation were increased by H19 inhibition and this was associated with abrogation of insulin-stimulated AKT (Ser-473) phosphorylation and glucose uptake in Hepa 1-6 cells. While inhibition of VDAC1 expression using siRNAs and with metformin significantly rescued the effects of H19 inhibition, VDAC1 overexpression alone exerted effects similar to H19 inhibition, suggesting that VDAC1 increase mediates the adverse effects of H19. In-vivo H19 inhibition using specific siRNAs increased hepatic VDAC1, pJNK and pIRS1 (Ser307) levels and decreased AKT (Ser-473) phosphorylation in mice. These suggest an important role of the H19-VDAC1 axis in ER-mitochondria coupling and regulation of gluconeogenesis in the liver during diabetes.
Collapse
Affiliation(s)
- Arun Nandwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Rathore
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Neikirk K, Lopez EG, Marshall AG, Alghanem A, Krystofiak E, Kula B, Smith N, Shao J, Katti P, Hinton A. Call to action to properly utilize electron microscopy to measure organelles to monitor disease. Eur J Cell Biol 2023; 102:151365. [PMID: 37864884 DOI: 10.1016/j.ejcb.2023.151365] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023] Open
Abstract
This review provides an overview of the current methods for quantifying mitochondrial ultrastructure, including cristae morphology, mitochondrial contact sites, and recycling machinery and a guide to utilizing electron microscopy to effectively measure these organelles. Quantitative analysis of mitochondrial ultrastructure is essential for understanding mitochondrial biology and developing therapeutic strategies for mitochondrial-related diseases. Techniques such as transmission electron microscopy (TEM) and serial block face-scanning electron microscopy, as well as how they can be combined with other techniques including confocal microscopy, super-resolution microscopy, and correlative light and electron microscopy are discussed. Beyond their limitations and challenges, we also offer specific magnifications that may be best suited for TEM analysis of mitochondrial, endoplasmic reticulum, and recycling machinery. Finally, perspectives on future quantification methods are offered.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Edgar-Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ahmad Alghanem
- King Abdullah International Medical Research Center (KAIMRC), Ali Al Arini, Ar Rimayah, Riyadh 11481, Saudi Arabia
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester 14642, USA
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester 14642, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
23
|
Su H, Guo H, Qiu X, Lin TY, Qin C, Celio G, Yong P, Senders M, Han X, Bernlohr DA, Chen X. Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice. Nat Commun 2023; 14:6729. [PMID: 37872178 PMCID: PMC10593768 DOI: 10.1038/s41467-023-42473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Hong Guo
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Xiaoxue Qiu
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Te-Yueh Lin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Gail Celio
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Mark Senders
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
24
|
Hinton A, Katti P, Christensen TA, Mungai M, Shao J, Zhang L, Trushin S, Alghanem A, Jaspersen A, Geroux RE, Neikirk K, Biete M, Lopez EG, Shao B, Vue Z, Vang L, Beasley HK, Marshall AG, Stephens D, Damo S, Ponce J, Bleck CKE, Hicsasmaz I, Murray SA, Edmonds RAC, Dajles A, Koo YD, Bacevac S, Salisbury JL, Pereira RO, Glancy B, Trushina E, Abel ED. A Comprehensive Approach to Sample Preparation for Electron Microscopy and the Assessment of Mitochondrial Morphology in Tissue and Cultured Cells. Adv Biol (Weinh) 2023; 7:e2200202. [PMID: 37140138 PMCID: PMC10615857 DOI: 10.1002/adbi.202200202] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/24/2023] [Indexed: 05/05/2023]
Abstract
Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Liang Zhang
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ahmad Alghanem
- Department of Internal Medicine, Division of Cardiology, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, 63130, USA
- Eastern Region, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Al Hasa, Saudi Arabia
| | - Adam Jaspersen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kit Neikirk
- College of Natural and Health Sciences, University of Hawaii at Hilo, 200 West Kawili St, Hilo, HI, 96720, USA
| | - Michelle Biete
- College of Natural and Health Sciences, University of Hawaii at Hilo, 200 West Kawili St, Hilo, HI, 96720, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Steven Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Jessica Ponce
- School of Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Innes Hicsasmaz
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Ranthony A C Edmonds
- Department of Mathematics, Ohio State University, 281 W Lane Ave, Columbus, OH, 43210, USA
| | - Andres Dajles
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Serif Bacevac
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Jeffrey L Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Renata O Pereira
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - E Dale Abel
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
- Department of Medicine, UCLA, 757 Westwood Plaza, Suite 7236, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
25
|
Kulkarni PG, Balasubramanian N, Manjrekar R, Banerjee T, Sakharkar A. DNA Methylation-Mediated Mfn2 Gene Regulation in the Brain: A Role in Brain Trauma-Induced Mitochondrial Dysfunction and Memory Deficits. Cell Mol Neurobiol 2023; 43:3479-3495. [PMID: 37193907 DOI: 10.1007/s10571-023-01358-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023]
Abstract
Repeated mild traumatic brain injuries (rMTBI) affect mitochondrial homeostasis in the brain. However, mechanisms of long-lasting neurobehavioral effects of rMTBI are largely unknown. Mitofusin 2 (Mfn2) is a critical component of tethering complexes in mitochondria-associated membranes (MAMs) and thereby plays a pivotal role in mitochondrial functions. Herein, we investigated the implications of DNA methylation in the Mfn2 gene regulation, and its consequences on mitochondrial dysfunction in the hippocampus after rMTBI. rMTBI dramatically reduced the mitochondrial mass, which was concomitant with decrease in Mfn2 mRNA and protein levels. DNA hypermethylation at the Mfn2 gene promoter was observed post 30 days of rMTBI. The treatment of 5-Azacytidine, a pan DNA methyltransferase inhibitor, normalized DNA methylation levels at Mfn2 promoter, which further resulted into restoration of Mfn2 function. The normalization of Mfn2 function was well correlated with recovery in memory deficits in rMTBI-exposed rats. Since, glutamate excitotoxicity serves as a primary insult after TBI, we employed in vitro model of glutamate excitotoxicity in human neuronal cell line SH-SY5Y to investigate the causal epigenetic mechanisms of Mfn2 gene regulation. The glutamate excitotoxicity reduced Mfn2 levels via DNA hypermethylation at Mfn2 promoter. Loss of Mfn2 caused significant surge in cellular and mitochondrial ROS levels with lowered mitochondrial membrane potential in cultured SH-SY5Y cells. Like rMTBI, these consequences of glutamate excitotoxicity were also prevented by 5-AzaC pre-treatment. Therefore, DNA methylation serves as a vital epigenetic mechanism involved in Mfn2 expression in the brain; and this Mfn2 gene regulation may play a pivotal role in rMTBI-induced persistent cognitive deficits. Closed head weight drop injury method was employed to induce repeated mild traumatic brain (rMTBI) in jury in adult, male Wistar rats. rMTBI causes hyper DNA methylation at the Mfn2 promoter and lowers the Mfn2 expression triggering mitochondrial dysfunction. However, the treatment of 5-azacytidine normalizes DNA methylation at the Mfn2 promoter and restores mitochondrial function.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | | | - Ritika Manjrekar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Tanushree Banerjee
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
- Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411 033, India.
| | - Amul Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
26
|
Tessier N, Ducrozet M, Dia M, Badawi S, Chouabe C, Crola Da Silva C, Ovize M, Bidaux G, Van Coppenolle F, Ducreux S. TRPV1 Channels Are New Players in the Reticulum-Mitochondria Ca 2+ Coupling in a Rat Cardiomyoblast Cell Line. Cells 2023; 12:2322. [PMID: 37759544 PMCID: PMC10529771 DOI: 10.3390/cells12182322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The Ca2+ release in microdomains formed by intercompartmental contacts, such as mitochondria-associated endoplasmic reticulum membranes (MAMs), encodes a signal that contributes to Ca2+ homeostasis and cell fate control. However, the composition and function of MAMs remain to be fully defined. Here, we focused on the transient receptor potential vanilloid 1 (TRPV1), a Ca2+-permeable ion channel and a polymodal nociceptor. We found TRPV1 channels in the reticular membrane, including some at MAMs, in a rat cardiomyoblast cell line (SV40-transformed H9c2) by Western blotting, immunostaining, cell fractionation, and proximity ligation assay. We used chemical and genetic probes to perform Ca2+ imaging in four cellular compartments: the endoplasmic reticulum (ER), cytoplasm, mitochondrial matrix, and mitochondrial surface. Our results showed that the ER Ca2+ released through TRPV1 channels is detected at the mitochondrial outer membrane and transferred to the mitochondria. Finally, we observed that prolonged TRPV1 modulation for 30 min alters the intracellular Ca2+ equilibrium and influences the MAM structure or the hypoxia/reoxygenation-induced cell death. Thus, our study provides the first evidence that TRPV1 channels contribute to MAM Ca2+ exchanges.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Mallory Ducrozet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Maya Dia
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Sally Badawi
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Christophe Chouabe
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Hôpital Louis Pradel, Services d’Explorations Fonctionnelles Cardiovasculaires et CIC de Lyon, 69394 Lyon, France
| | - Gabriel Bidaux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Fabien Van Coppenolle
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| | - Sylvie Ducreux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (N.T.); (M.D.); (M.D.); (S.B.); (C.C.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
| |
Collapse
|
27
|
Koval OM, Nguyen EK, Mittauer DJ, Ait-Aissa K, Chinchankar WC, Grumbach IM. Regulation of Smooth Muscle Cell Proliferation by Mitochondrial Ca2+ in Type 2 Diabetes. Int J Mol Sci 2023; 24:12897. [PMID: 37629079 PMCID: PMC10454141 DOI: 10.3390/ijms241612897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of atherosclerotic vascular disease due to excessive vascular smooth muscle cell (VSMC) proliferation. Here, we investigated the role of mitochondrial dysfunction and Ca2+ levels in VSMC proliferation in T2D. VSMCs were isolated from normoglycemic and T2D-like mice induced by diet. The effects of mitochondrial Ca2+ uptake were studied using mice with selectively inhibited mitochondrial Ca2+/calmodulin-dependent kinase II (mtCaMKII) in VSMCs. Mitochondrial transition pore (mPTP) was blocked using ER-000444793. VSMCs from T2D compared to normoglycemic mice exhibited increased proliferation and baseline cytosolic Ca2+ levels ([Ca2+]cyto). T2D cells displayed lower endoplasmic reticulum Ca2+ levels, reduced mitochondrial Ca2+ entry, and increased Ca2+ leakage through the mPTP. Mitochondrial and cytosolic Ca2+ transients were diminished in T2D cells upon platelet-derived growth factor (PDGF) administration. Inhibiting mitochondrial Ca2+ uptake or the mPTP reduced VSMC proliferation in T2D, but had contrasting effects on [Ca2+]cyto. In T2D VSMCs, enhanced activation of Erk1/2 and its upstream regulators was observed, driven by elevated [Ca2+]cyto. Inhibiting mtCaMKII worsened the Ca2+ imbalance by blocking mitochondrial Ca2+ entry, leading to further increases in [Ca2+]cyto and Erk1/2 hyperactivation. Under these conditions, PDGF had no effect on VSMC proliferation. Inhibiting Ca2+-dependent signaling in the cytosol reduced excessive Erk1/2 activation and VSMC proliferation. Our findings suggest that altered Ca2+ handling drives enhanced VSMC proliferation in T2D, with mitochondrial dysfunction contributing to this process.
Collapse
Affiliation(s)
- Olha M. Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Emily K. Nguyen
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Dylan J. Mittauer
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Karima Ait-Aissa
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - William C. Chinchankar
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Veterans Affairs Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
28
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
29
|
Castro-Sepulveda M, Fernández-Verdejo R, Zbinden-Foncea H, Rieusset J. Mitochondria-SR interaction and mitochondrial fusion/fission in the regulation of skeletal muscle metabolism. Metabolism 2023; 144:155578. [PMID: 37164310 DOI: 10.1016/j.metabol.2023.155578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/20/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Mitochondria-endoplasmic/sarcoplasmic reticulum (ER/SR) interaction and mitochondrial fusion/fission are critical processes that influence substrate oxidation. This narrative review summarizes the evidence on the effects of substrate availability on mitochondrial-SR interaction and mitochondria fusion/fission dynamics to modulate substrate oxidation in human skeletal muscle. Evidence shows that an increase in mitochondria-SR interaction and mitochondrial fusion are associated with elevated fatty acid oxidation. In contrast, a decrease in mitochondria-SR interaction and an increase in mitochondrial fission are associated with an elevated glycolytic activity. Based on the evidence reviewed, we postulate two hypotheses for the link between mitochondrial dynamics and insulin resistance in human skeletal muscle. First, glucose and fatty acid availability modifies mitochondria-SR interaction and mitochondrial fusion/fission to help the cell to adapt substrate oxidation appropriately. Individuals with an impaired response to these substrate challenges will accumulate lipid species and develop insulin resistance in skeletal muscle. Second, a chronically elevated substrate availability (e.g. overfeeding) increases mitochondrial production of reactive oxygen species and induced mitochondrial fission. This decreases fatty acid oxidation, thus leading to the accumulation of lipid species and insulin resistance in skeletal muscle. Altogether, we propose mitochondrial dynamics as a potential target for disturbances associated with low fatty acid oxidation.
Collapse
Affiliation(s)
- Mauricio Castro-Sepulveda
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.
| | - Rodrigo Fernández-Verdejo
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Hermann Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile; Centro de Salud Deportiva, Clinica Santa Maria, Santiago, Chile
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
30
|
Li X, Yang Q, Liu S, Song S, Wang C. Mitochondria-associated endoplasmic reticulum membranes promote mitochondrial fission through AKAP1-Drp1 pathway in podocytes under high glucose conditions. Exp Cell Res 2023; 424:113512. [PMID: 36775185 DOI: 10.1016/j.yexcr.2023.113512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Excessive mitochondrial fission in podocytes is a critical feature of diabetic nephropathy (DN). Mitochondria-associated endoplasmic reticulum membranes (MAMs) are contact sites between the endoplasmic reticulum (ER) and mitochondria, which are suggested to be related to mitochondrial function. However, the role of MAMs in mitochondrial dynamics disorder in podocytes remains unknown. Here, we firstly reported a novel mechanism of MAMs' effects on mitochondrial dynamics in podocytes under diabetic conditions. Increased MAMs were found in diabetic podocytes in vivo and in vitro, which were positively correlated with excessive mitochondrial fission. What's more, we also found that A-kinase anchoring protein 1 (AKAP1) was located in MAMs, and its translocation to MAMs was increased in podocytes cultured with high glucose (HG). In addition, AKAP1 knockdown significantly reduced mitochondrial fission and attenuated high glucose induced-podocyte injury through regulating phosphorylation of dynamin-related protein 1 (Drp1) and its subsequent mitochondrial translocation. On the contrary, AKAP1 overexpression in these podocytes showed the opposite effect. Finally, pharmacological inhibition of Drp1 alleviated excessive mitochondrial fission and podocyte damage in AKAP1 overexpressed podocytes. Our data suggest that MAMs were increased in podocytes under diabetic conditions, leading to excessive mitochondrial fission and podocyte damage through AKAP1-Drp1 signaling.
Collapse
Affiliation(s)
- Xuehong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qinglan Yang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
31
|
Hogan KA, Zeidler JD, Beasley HK, Alsaadi AI, Alshaheeb AA, Chang YC, Tian H, Hinton AO, McReynolds MR. Using mass spectrometry imaging to visualize age-related subcellular disruption. Front Mol Biosci 2023; 10:906606. [PMID: 36968274 PMCID: PMC10032471 DOI: 10.3389/fmolb.2023.906606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
Metabolic homeostasis balances the production and consumption of energetic molecules to maintain active, healthy cells. Cellular stress, which disrupts metabolism and leads to the loss of cellular homeostasis, is important in age-related diseases. We focus here on the role of organelle dysfunction in age-related diseases, including the roles of energy deficiencies, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, changes in metabolic flux in aging (e.g., Ca2+ and nicotinamide adenine dinucleotide), and alterations in the endoplasmic reticulum-mitochondria contact sites that regulate the trafficking of metabolites. Tools for single-cell resolution of metabolite pools and metabolic flux in animal models of aging and age-related diseases are urgently needed. High-resolution mass spectrometry imaging (MSI) provides a revolutionary approach for capturing the metabolic states of individual cells and cellular interactions without the dissociation of tissues. mass spectrometry imaging can be a powerful tool to elucidate the role of stress-induced cellular dysfunction in aging.
Collapse
Affiliation(s)
- Kelly A. Hogan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Julianna D. Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Abrar I. Alsaadi
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Abdulkareem A. Alshaheeb
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Yi-Chin Chang
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Hua Tian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| |
Collapse
|
32
|
Kulkarni PG, Mohire VM, Bhaisa PK, Joshi MM, Puranik CM, Waghmare PP, Banerjee T. Mitofusin-2: Functional switch between mitochondrial function and neurodegeneration. Mitochondrion 2023; 69:116-129. [PMID: 36764501 DOI: 10.1016/j.mito.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/07/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Mitochondria are highly dynamic organelles known to play role in the regulation of several cellular biological processes. However, their dynamics such as number, shape, and biological functions are regulated by mitochondrial fusion and fission process. The balance between the fusion and fission process is most important for the maintenance of mitochondrial structure as well as cellular functions. The alterations within mitochondrial dynamic processes were found to be associated with the progression of neurodegenerative diseases. In recent years, mitofusin-2 (Mfn2), a GTPase has emerged as a multifunctional protein which not only is found to regulate the mitochondrial fusion-fission process but also known to regulate several cellular functions such as mitochondrial metabolism, cellular biogenesis, signalling, and apoptosis via maintaining the ER-mitochondria contact sites. In this review, we summarize the current knowledge of the structural and functional properties of the Mfn2, its transcriptional regulation and their roles in several cellular functions with a focus on current advances in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pooja K Bhaisa
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Mrudula M Joshi
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Chitranshi M Puranik
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
33
|
Koval OM, Nguyen EK, Mittauer DJ, Ait-Aissa K, Chinchankar W, Qian L, Madesh M, Dai DF, Grumbach IM. The mitochondrial regulation of smooth muscle cell proliferation in type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528765. [PMID: 36824758 PMCID: PMC9948984 DOI: 10.1101/2023.02.15.528765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background Type 2 diabetes (T2D) is associated with a strongly increased risk for restenosis after angioplasty driven by proliferation of vascular smooth muscle cells (VSMCs). Here, we sought to determine whether and how mitochondrial dysfunction in T2D drives VSMC proliferation with a focus on ROS and intracellular [Ca 2+ ] that both drive cell proliferation, occur in T2D and are regulated by mitochondrial activity. Methods Using a diet-induced mouse model of T2D, the inhibition of the mitochondrial Ca 2+ /calmodulin-dependent kinase II (mtCaMKII), a regulator of Ca 2+ entry via the mitochondrial Ca 2+ uniporter selectively in VSMCs, we performed in vivo phenotyping after mechanical injury and established the mechanisms of excessive proliferation in cultured VSMCs. Results In T2D, the inhibition of mtCaMKII reduced both neointima formation after mechanical injury and the proliferation of cultured VSMCs. VSMCs from T2D mice displayed accelerated proliferation, reduced mitochondrial Ca 2+ entry and membrane potential with elevated baseline [Ca 2+ ] cyto compared to cells from normoglycemic mice. Accelerated proliferation after PDGF treatment was driven by activation of Erk1/2 and its upstream regulators. Hyperactivation of Erk1/2 was Ca 2+ -dependent rather than mitochondrial ROS-driven Ca 2+ -dependent and included the activation of CaMKII in the cytosol. The inhibition of mtCaMKII exaggerated the Ca 2+ imbalance by lowering mitochondrial Ca 2+ entry and increasing baseline [Ca 2+ ] cyto , further enhancing baseline Erk1/2 activation. With inhibition of mtCaMKII, PDGF treatment had no additional effect on cell proliferation. Inhibition of activated CaMKII in the cytosol decreased excessive Erk1/2 activation and reduced VSMC proliferation. Conclusions Collectively, our results provide evidence for the molecular mechanisms of enhanced VSMC proliferation after mechanical injury by mitochondrial Ca 2+ entry in T2D.
Collapse
Affiliation(s)
- Olha M. Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Emily K. Nguyen
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Dylan J. Mittauer
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Karima Ait-Aissa
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - William Chinchankar
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Lan Qian
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Muniswamy Madesh
- Center for Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Dao-Fu Dai
- Division of Pathology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City IA 52242, USA
- Veterans Affairs Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
34
|
Salin Raj P, Nair A, Preetha Rani MR, Rajankutty K, Ranjith S, Raghu KG. Ferulic acid attenuates high glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1 pathway activating proapoptotic proteins and ameliorates cardiomyopathy in diabetic rats. Int J Cardiol 2023; 372:101-109. [PMID: 36481261 DOI: 10.1016/j.ijcard.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes with no known biomarkers for early detection. Mitochondria-associated endoplasmic reticulum membranes (MAM) are less studied subcellular targets but an emerging area for exploration in metabolic disorders including DCM. We herein studied the role of MAMs and downstream mitochondrial functions in DCM. We also explored the efficacy of ferulic acid (FeA) against DCM via modulation of MAM and its associated signaling pathway. METHODS The H9c2 cardiomyoblast cells were incubated with high concentration (33 mM) of d-glucose for 48 h to create a high glucose ambience in vitro. The expression of various critical proteins of MAM, mitochondrial function, oxidative phosphorylation (OxPhos) and the genesis of apoptosis were examined. The rats fed with high fat/high fructose/streptozotocin (single dose, i.p.) were used as a diabetic model and analyzed the insulin resistance and markers of cardiac hypertrophy and apoptosis. RESULTS High glucose conditions caused the upregulation of MAM formation via PACS2, IP3R2, FUNDC1, and VDAC1 and decreased mitochondrial biogenesis, fusion and OxPhos. The upregulation of mitochondria-driven SMAC-HTRA2-ARTS-XIAP apoptosis and other cell death pathways indicate their critical roles in the genesis of DCM at the molecular level. The diabetic rats also showed cardiomyopathy with increased heart mass index, TNNI3K, troponin, etc. FeA effectively prevented the high glucose-induced MAM alterations and associated cellular anomalies both in vitro and in vivo. CONCLUSION High glucose-induced MAM distortion and subsequent mitochondrial dysfunctions act as the stem of cardiomyopathy. MAM could be explored as a potential target to treat diabetic cardiomyopathy. Also, the FeA could be an attractive nutraceutical agent for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- P Salin Raj
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Anupama Nair
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - M R Preetha Rani
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - K Rajankutty
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - S Ranjith
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
35
|
Arruda AP, Parlakgül G. Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041261. [PMID: 35940911 PMCID: PMC9899651 DOI: 10.1101/cshperspect.a041261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in the regulation of lipid and glucose metabolism, proteostasis, Ca2+ signaling, and detoxification. The structural organization of the ER is very dynamic and complex, with distinct subdomains such as the nuclear envelope and the peripheral ER organized into ER sheets and tubules. ER also forms physical contact sites with all other cellular organelles and with the plasma membrane. Both form and function of the ER are highly adaptive, with a potent capacity to respond to transient changes in environmental cues such as nutritional fluctuations. However, under obesity-induced chronic stress, the ER fails to adapt, leading to ER dysfunction and the development of metabolic pathologies such as insulin resistance and fatty liver disease. Here, we discuss how the remodeling of ER structure and contact sites with other organelles results in diversification of metabolic function and how perturbations to this structural flexibility by chronic overnutrition contribute to ER dysfunction and metabolic pathologies in obesity.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA.,Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Gineste C, Youhanna S, Vorrink SU, Henriksson S, Hernández A, Cheng AJ, Chaillou T, Buttgereit A, Schneidereit D, Friedrich O, Hultenby K, Bruton JD, Ivarsson N, Sandblad L, Lauschke VM, Westerblad H. Enzymatically dissociated muscle fibers display rapid dedifferentiation and impaired mitochondrial calcium control. iScience 2022; 25:105654. [PMID: 36479146 PMCID: PMC9720020 DOI: 10.1016/j.isci.2022.105654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cells rapidly lose their physiological phenotype upon disruption of their extracellular matrix (ECM)-intracellular cytoskeleton interactions. By comparing adult mouse skeletal muscle fibers, isolated either by mechanical dissection or by collagenase-induced ECM digestion, we investigated acute effects of ECM disruption on cellular and mitochondrial morphology, transcriptomic signatures, and Ca2+ handling. RNA-sequencing showed striking differences in gene expression patterns between the two isolation methods with enzymatically dissociated fibers resembling myopathic phenotypes. Mitochondrial appearance was grossly similar in the two groups, but 3D electron microscopy revealed shorter and less branched mitochondria following enzymatic dissociation. Repeated contractions resulted in a prolonged mitochondrial Ca2+ accumulation in enzymatically dissociated fibers, which was partially prevented by cyclophilin inhibitors. Of importance, muscle fibers of mice with severe mitochondrial myopathy show pathognomonic mitochondrial Ca2+ accumulation during repeated contractions and this accumulation was concealed with enzymatic dissociation, making this an ambiguous method in studies of native intracellular Ca2+ fluxes.
Collapse
Affiliation(s)
- Charlotte Gineste
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sabine U. Vorrink
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sara Henriksson
- Umeå Core Facility for Electron Microscopy, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Andrés Hernández
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Arthur J. Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Thomas Chaillou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andreas Buttgereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Joseph D. Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Linda Sandblad
- Umeå Core Facility for Electron Microscopy, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
37
|
Xu H, Zhou W, Zhan L, Bi T, Lu X. Liver mitochondria-associated endoplasmic reticulum membrane proteomics for studying the effects of ZiBuPiYin recipe on Zucker diabetic fatty rats after chronic psychological stress. Front Cell Dev Biol 2022; 10:995732. [PMID: 36407109 PMCID: PMC9669571 DOI: 10.3389/fcell.2022.995732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease with multiple etiologies, involving both genetic and environmental factors. With changes associated with modern life, increasing attention has been paid to chronic psychological stressors such as work stress. Chronic psychological stress can induce or aggravate diabetes mellitus, and conversely, with the deterioration of T2DM, patients often experience different degrees of depression, anxiety, and other negative emotions. In order to clarify the role of ZiBuPiYin recipe (ZBPYR) in regulating the liver mitochondria-associated endoplasmic reticulum membrane proteome to improve T2DM with chronic psychological stress, differentially expressed proteins (DEPs) were identified among Zucker lean littermates (control group), chronic psychological stress T2DM rats (model group), and ZBPYR administration rats (ZBPYR group) through iTRAQ with LC-MS/MS. Using Mfuzz soft clustering analysis, DEPs were divided into six different clusters. Clusters 1–6 contained 5, 68, 44, 57, 28, and 32 DEPs, respectively. Given that ZBPYR can alleviate T2DM symptoms and affect exploratory behavior during T2DM with chronic psychological stress, we focused on the clusters with opposite expression trends between model:control and ZBPYR:model groups. We screened out the DEPs in clusters 1, 3, and 4, which may be good candidates for the prevention and treatment of T2DM with chronic psychological stress, and further conducted bioinformatics analyses. DEPs were mainly involved in the insulin signaling pathway, oxidative phosphorylation, tricarboxylic acid cycle, amino acid metabolism, lysosome-related processes, and lipid metabolism. This may indicate the pathogenic basis of T2DM with chronic psychological stress and the potential therapeutic mechanism of ZBPYR. In addition, two key proteins, lysosome-associated protein (Lamp2) and tricarboxylic acid cycle-related protein (Suclg1), may represent novel biomarkers for T2DM with chronic psychological stress and drug targets of ZBPYR. Western blot analyses also showed similar expression patterns of these two proteins in liver MAMs of the model and ZBPYR groups.
Collapse
Affiliation(s)
- Huiying Xu
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Libin Zhan, ; Xiaoguang Lu,
| | - Tingting Bi
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
- *Correspondence: Libin Zhan, ; Xiaoguang Lu,
| |
Collapse
|
38
|
Im S, Kang S, Kim JH, Oh SJ, Pak YK. Low-Dose Dioxin Reduced Glucose Uptake in C2C12 Myocytes: The Role of Mitochondrial Oxidative Stress and Insulin-Dependent Calcium Mobilization. Antioxidants (Basel) 2022; 11:2109. [PMID: 36358481 PMCID: PMC9686767 DOI: 10.3390/antiox11112109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 01/14/2024] Open
Abstract
Chronic exposure to some environmental polluting chemicals (EPCs) is strongly associated with metabolic syndrome, and insulin resistance is a major biochemical abnormality in the skeletal muscle in patients with metabolic syndrome. However, the causal relationship is inconsistent and little is known about how EPCs affect the insulin signaling cascade in skeletal muscle. Here, we investigated whether exposure to 100 pM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) as a low dose of dioxin induces insulin resistance in C2C12 myocytes. The treatment with TCDD inhibited the insulin-stimulated glucose uptake and translocation of glucose transporter 4 (GLUT4). The low-dose TCDD reduced the expression of insulin receptor β (IRβ) and insulin receptor substrate (IRS)-1 without affecting the phosphorylation of Akt. The TCDD impaired mitochondrial activities, leading to reactive oxygen species (ROS) production and the blockage of insulin-induced Ca2+ release. All TCDD-mediated effects related to insulin resistance were still observed in aryl hydrocarbon receptor (AhR)-deficient myocytes and prevented by MitoTEMPO, a mitochondria-targeting ROS scavenger. These results suggest that low-dose TCDD stress may induce muscle insulin resistance AhR-independently and that mitochondrial oxidative stress is a novel therapeutic target for dioxin-induced insulin resistance.
Collapse
Affiliation(s)
- Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji Hwan Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Youngmi Kim Pak
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, School of Medicine, Biomedical Science Institute CRI, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
39
|
Nieblas B, Pérez-Treviño P, García N. Role of mitochondria-associated endoplasmic reticulum membranes in insulin sensitivity, energy metabolism, and contraction of skeletal muscle. Front Mol Biosci 2022; 9:959844. [PMID: 36275635 PMCID: PMC9585326 DOI: 10.3389/fmolb.2022.959844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle has a critical role in the regulation of the energy balance of the organism, particularly as the principal tissue responsible for insulin-stimulated glucose disposal and as the major site of peripheral insulin resistance (IR), which has been related to accumulation of lipid intermediates, reduced oxidative capacity of mitochondria and endoplasmic reticulum (ER) stress. These organelles form contact sites, known as mitochondria-associated ER membranes (MAMs). This interconnection seems to be involved in various cellular processes, including Ca2+ transport and energy metabolism; therefore, MAMs could play an important role in maintaining cellular homeostasis. Evidence suggests that alterations in MAMs may contribute to IR. However, the evidence does not refer to a specific subcellular location, which is of interest due to the fact that skeletal muscle is constituted by oxidative and glycolytic fibers as well as different mitochondrial populations that appear to respond differently to stimuli and pathological conditions. In this review, we show the available evidence of possible differential responses in the formation of MAMs in skeletal muscle as well as its role in insulin signaling and the beneficial effect it could have in the regulation of energetic metabolism and muscular contraction.
Collapse
Affiliation(s)
- Bianca Nieblas
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Perla Pérez-Treviño
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Noemí García
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- *Correspondence: Noemí García,
| |
Collapse
|
40
|
Field JT, Gordon JW. BNIP3 and Nix: Atypical regulators of cell fate. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119325. [PMID: 35863652 DOI: 10.1016/j.bbamcr.2022.119325] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
Since their discovery nearly 25 years ago, the BCL-2 family members BNIP3 and BNIP3L (aka Nix) have been labelled 'atypical'. Originally, this was because BNIP3 and Nix have divergent BH3 domains compared to other BCL-2 proteins. In addition, this atypical BH3 domain is dispensable for inducing cell death, which is also unusual for a 'death gene'. Instead, BNIP3 and Nix utilize a transmembrane domain, which allows for dimerization and insertion into and through organelle membranes to elicit cell death. Much has been learned regarding the biological function of these two atypical death genes, including their role in metabolic stress, where BNIP3 is responsive to hypoxia, while Nix responds variably to hypoxia and is also down-stream of PKC signaling and lipotoxic stress. Interestingly, both BNIP3 and Nix respond to signals related to cell atrophy. In addition, our current view of regulated cell death has expanded to include forms of necrosis such as necroptosis, pyroptosis, ferroptosis, and permeability transition-mediated cell death where BNIP3 and Nix have been shown to play context- and cell-type specific roles. Perhaps the most intriguing discoveries in recent years are the results demonstrating roles for BNIP3 and Nix outside of the purview of death genes, such as regulation of proliferation, differentiation/maturation, mitochondrial dynamics, macro- and selective-autophagy. We provide a historical and unbiased overview of these 'death genes', including new information related to alternative splicing and post-translational modification. In addition, we propose to redefine these two atypical members of the BCL-2 family as versatile regulators of cell fate.
Collapse
Affiliation(s)
- Jared T Field
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
41
|
Yamamoto H, Eshima H, Kakehi S, Kawamori R, Watada H, Tamura Y. Impaired fatigue resistance, sarcoplasmic reticulum function, and mitochondrial activity in soleus muscle of db/db mice. Physiol Rep 2022; 10:e15478. [PMID: 36117307 PMCID: PMC9483406 DOI: 10.14814/phy2.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by reduced exercise tolerance due to increased fatigability in skeletal muscle. In this study, we investigated muscle fatigue resistance of soleus (SOL) muscle in obese type 2 diabetic model mice (db/db). No differences in muscle volume, absolute force, or specific force in SOL muscle were observed between db/db mice and control mice (db/+), while fatigue resistance evaluated by repeated tetanic contractions was significantly lower in db/db mice (30th tetani, db/+: 63.7 ± 4.7%, db/db: 51.3 ± 4.8%). The protein abundance related to Ca2+ release from the sarcoplasmic reticulum (SR) in SOL muscle was not different between db/db mice and db/+ mice, while SR Ca2+ -ATPase (Ca2+ reuptake to SR) protein was decreased in db/db mice compared to db/+ mice (db/+: 1.00 ± 0.17, db/db: 0.60 ± 0.04, relative units). In addition, mitochondrial oxidative enzyme activity (succinate dehydrogenase) was decreased in the SOL muscle of db/db mice (p < 0.05). These data suggest that fatigue resistance in slow-twitch dominant muscle is impaired in mice with T2DM. Decreased mitochondrial oxidative enzyme activity and impairment of Ca2+ uptake to SR, or both might be involved in the mechanisms.
Collapse
Affiliation(s)
- Hiro Yamamoto
- Department of International TourismNagasaki International UniversityNagasakiJapan
| | - Hiroaki Eshima
- Department of International TourismNagasaki International UniversityNagasakiJapan
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Saori Kakehi
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Ryuzo Kawamori
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Hirotaka Watada
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
- Center for Therapeutic Innovations in DiabetesJuntendo University Graduate School of MedicineTokyoJapan
- Center for Identification of Diabetic Therapeutic TargetsJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshifumi Tamura
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
42
|
Rueter J, Rimbach G, Huebbe P. Functional diversity of apolipoprotein E: from subcellular localization to mitochondrial function. Cell Mol Life Sci 2022; 79:499. [PMID: 36018414 PMCID: PMC9418098 DOI: 10.1007/s00018-022-04516-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
Human apolipoprotein E (APOE), originally known for its role in lipid metabolism, is polymorphic with three major allele forms, namely, APOEε2, APOEε3, and APOEε4, leading to three different human APOE isoforms. The ε4 allele is a genetic risk factor for Alzheimer's disease (AD); therefore, the vast majority of APOE research focuses on its role in AD pathology. However, there is increasing evidence for other functions of APOE through the involvement in other biological processes such as transcriptional regulation, mitochondrial metabolism, immune response, and responsiveness to dietary factors. Therefore, the aim of this review is to provide an overview of the potential novel functions of APOE and their characterization. The detection of APOE in various cell organelles points to previously unrecognized roles in mitochondria and others, although it is actually considered a secretory protein. Furthermore, numerous interactions of APOE with other proteins have been detected, providing indications for new metabolic pathways involving APOE. The present review summarizes the current evidence on APOE beyond its original role in lipid metabolism, to change the perspective and encourage novel approaches to future research on APOE and its isoform-dependent role in the cellular metabolism.
Collapse
Affiliation(s)
- Johanna Rueter
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Gerald Rimbach
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.
| | - Patricia Huebbe
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| |
Collapse
|
43
|
Mitochondria-Associated Endoplasmic Reticulum Membranes: Inextricably Linked with Autophagy Process. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7086807. [PMID: 36052160 PMCID: PMC9427242 DOI: 10.1155/2022/7086807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023]
Abstract
Mitochondria-associated membranes (MAMs), physical connection sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM), are involved in numerous cellular processes, such as calcium ion transport, lipid metabolism, autophagy, ER stress, mitochondria morphology, and apoptosis. Autophagy is a highly conserved intracellular process in which cellular contents are delivered by double-membrane vesicles, called autophagosomes, to the lysosomes for destruction and recycling. Autophagy, typically triggered by stress, eliminates damaged or redundant protein molecules and organelles to maintain regular cellular activity. Dysfunction of MAMs or autophagy is intimately associated with various diseases, including aging, cardiovascular, infections, cancer, multiple toxic agents, and some genetic disorders. Increasing evidence has shown that MAMs play a significant role in autophagy development and maturation. In our study, we concentrated on two opposing functions of MAMs in autophagy: facilitating the formation of autophagosomes and inhibiting autophagy. We recognized the link between MAMs and autophagy in the occurrence and progression of the diseases and therefore collated and summarized the existing intrinsic molecular mechanisms. Furthermore, we draw attention to several crucial data and open issues in the area that may be helpful for further study.
Collapse
|
44
|
Morgado-Cáceres P, Liabeuf G, Calle X, Briones L, Riquelme JA, Bravo-Sagua R, Parra V. The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells. Front Cell Dev Biol 2022; 10:946678. [PMID: 36060801 PMCID: PMC9437272 DOI: 10.3389/fcell.2022.946678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 01/10/2023] Open
Abstract
The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.
Collapse
Affiliation(s)
- Pablo Morgado-Cáceres
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Gianella Liabeuf
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Facultad de Salud y Ciencias Sociales, Escuela de Nutrición y Dietética, Universidad de las Américas, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Lautaro Briones
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Nutrición y Salud Pública, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - Jaime A. Riquelme
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Red de Investigación en Envejecimiento Saludable, Consorcio de Universidades del Estado de Chile, Santiago, Chile
- *Correspondence: Roberto Bravo-Sagua, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Roberto Bravo-Sagua, ; Valentina Parra,
| |
Collapse
|
45
|
Petrick HL, Brownell S, Vachon B, Brunetta HS, Handy RM, van Loon LJC, Murrant CL, Holloway GP. Dietary nitrate increases submaximal SERCA activity and ADP transfer to mitochondria in slow-twitch muscle of female mice. Am J Physiol Endocrinol Metab 2022; 323:E171-E184. [PMID: 35732003 DOI: 10.1152/ajpendo.00371.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rapid oscillations in cytosolic calcium (Ca2+) coordinate muscle contraction, relaxation, and physical movement. Intriguingly, dietary nitrate decreases ATP cost of contraction, increases force production, and increases cytosolic Ca2+, which would seemingly necessitate a greater demand for sarcoplasmic reticulum Ca2+ ATPase (SERCA) to sequester Ca2+ within the sarcoplasmic reticulum (SR) during relaxation. As SERCA is highly regulated, we aimed to determine the effect of 7-day nitrate supplementation (1 mM via drinking water) on SERCA enzymatic properties and the functional interaction between SERCA and mitochondrial oxidative phosphorylation. In soleus, we report that dietary nitrate increased force production across all stimulation frequencies tested, and throughout a 25 min fatigue protocol. Mice supplemented with nitrate also displayed an ∼25% increase in submaximal SERCA activity and SERCA efficiency (P = 0.053) in the soleus. To examine a possible link between ATP consumption and production, we established a methodology coupling SERCA and mitochondria in permeabilized muscle fibers. The premise of this experiment is that the addition of Ca2+ in the presence of ATP generates ADP from SERCA to support mitochondrial respiration. Similar to submaximal SERCA activity, mitochondrial respiration supported by SERCA-derived ADP was increased by ∼20% following nitrate in red gastrocnemius. This effect was fully attenuated by the SERCA inhibitor cyclopiazonic acid and was not attributed to differences in mitochondrial oxidative capacity, ADP sensitivity, protein content, or reactive oxygen species emission. Overall, these findings suggest that improvements in submaximal SERCA kinetics may contribute to the effects of nitrate on force production during fatigue.NEW & NOTEWORTHY We show that nitrate supplementation increased force production during fatigue and increased submaximal SERCA activity. This was also evident regarding the high-energy phosphate transfer from SERCA to mitochondria, as nitrate increased mitochondrial respiration supported by SERCA-derived ADP. Surprisingly, these observations were only apparent in muscle primarily expressing type I (soleus) but not type II fibers (EDL). These findings suggest that alterations in SERCA properties are a possible mechanism in which nitrate increases force during fatiguing contractions.
Collapse
Affiliation(s)
- Heather L Petrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Stuart Brownell
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bayley Vachon
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Henver S Brunetta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Physiological Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Rachel M Handy
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
46
|
Dogan SA, Giacchin G, Zito E, Viscomi C. Redox Signaling and Stress in Inherited Myopathies. Antioxid Redox Signal 2022; 37:301-323. [PMID: 35081731 DOI: 10.1089/ars.2021.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are highly reactive compounds that behave like a double-edged sword; they damage cellular structures and act as second messengers in signal transduction. Mitochondria and endoplasmic reticulum (ER) are interconnected organelles with a central role in ROS production, detoxification, and oxidative stress response. Skeletal muscle is the most abundant tissue in mammals and one of the most metabolically active ones and thus relies mainly on oxidative phosphorylation (OxPhos) to synthesize adenosine triphosphate. The impairment of OxPhos leads to myopathy and increased ROS production, thus affecting both redox poise and signaling. In addition, ROS enter the ER and trigger ER stress and its maladaptive response, which also lead to a myopathic phenotype with mitochondrial involvement. Here, we review the role of ROS signaling in myopathies due to either mitochondrial or ER dysfunction. Recent Advances: Relevant advances have been evolving over the last 10 years on the intricate ROS-dependent pathways that act as modifiers of the disease course in several myopathies. To this end, pathways related to mitochondrial biogenesis, satellite cell differentiation, and ER stress have been studied extensively in myopathies. Critical Issues: The analysis of the chemistry and the exact quantitation, as well as the localization of ROS, are still challenging due to the intrinsic labile nature of ROS and the technical limitations of their sensors. Future Directions: The mechanistic studies of the pathogenesis of mitochondrial and ER-related myopathies offer a unique possibility to discover novel ROS-dependent pathways. Antioxid. Redox Signal. 37, 301-323.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Giacomo Giacchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link between Dysmetabolism and Neurodegeneration. BIOLOGY 2022; 11:biology11060943. [PMID: 35741464 PMCID: PMC9220302 DOI: 10.3390/biology11060943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Insulin was discovered and isolated from the beta cells of pancreatic islets of dogs and is associated with the regulation of peripheral glucose homeostasis. Insulin produced in the brain is related to synaptic plasticity and memory. Defective insulin signaling plays a role in brain dysfunction, such as neurodegenerative disease. Growing evidence suggests a link between metabolic disorders, such as diabetes and obesity, and neurodegenerative diseases, especially Alzheimer's disease (AD). This association is due to a common state of insulin resistance (IR) and mitochondrial dysfunction. This review takes a journey into the past to summarize what was known about the physiological and pathological role of insulin in peripheral tissues and the brain. Then, it will land in the present to analyze the insulin role on mitochondrial health and the effects on insulin resistance and neurodegenerative diseases that are IR-dependent. Specifically, we will focus our attention on the quality control of mitochondria (MQC), such as mitochondrial dynamics, mitochondrial biogenesis, and selective autophagy (mitophagy), in healthy and altered cases. Finally, this review will be projected toward the future by examining the most promising treatments that target the mitochondria to cure neurodegenerative diseases associated with metabolic disorders.
Collapse
|
48
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
49
|
Sukhorukov VS, Voronkova AS, Baranich TI, Gofman AA, Brydun AV, Knyazeva LA, Glinkina VV. Molecular Mechanisms of Interactions between Mitochondria and the Endoplasmic Reticulum: A New Look at How Important Cell Functions are Supported. Mol Biol 2022. [DOI: 10.1134/s0026893322010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Crouzier L, Danese A, Yasui Y, Richard EM, Liévens JC, Patergnani S, Couly S, Diez C, Denus M, Cubedo N, Rossel M, Thiry M, Su TP, Pinton P, Maurice T, Delprat B. Activation of the sigma-1 receptor chaperone alleviates symptoms of Wolfram syndrome in preclinical models. Sci Transl Med 2022; 14:eabh3763. [PMID: 35138910 PMCID: PMC9516885 DOI: 10.1126/scitranslmed.abh3763] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Wolfram syndrome is a rare autosomal recessive disease affecting many organs with life-threatening consequences; currently, no treatment is available. The disease is caused by mutations in the WSF1 gene, coding for the protein wolframin, an endoplasmic reticulum (ER) transmembrane protein involved in contacts between ER and mitochondria termed as mitochondria-associated ER membranes (MAMs). Inherited mutations usually reduce the protein's stability, altering its homeostasis and ultimately reducing ER to mitochondria calcium ion transfer, leading to mitochondrial dysfunction and cell death. In this study, we found that activation of the sigma-1 receptor (S1R), an ER-resident protein involved in calcium ion transfer, could counteract the functional alterations of MAMs due to wolframin deficiency. The S1R agonist PRE-084 restored calcium ion transfer and mitochondrial respiration in vitro, corrected the associated increased autophagy and mitophagy, and was able to alleviate the behavioral symptoms observed in zebrafish and mouse models of the disease. Our findings provide a potential therapeutic strategy for treating Wolfram syndrome by efficiently boosting MAM function using the ligand-operated S1R chaperone. Moreover, such strategy might also be relevant for other degenerative and mitochondrial diseases involving MAM dysfunction.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | - Simone Patergnani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simon Couly
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Camille Diez
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Morgane Denus
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Nicolas Cubedo
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, GIGA-Neurosciences, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege 1, Belgium
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | |
Collapse
|