1
|
Forouzanmehr B, Hemmati MA, Atkin SL, Jamialahmadi T, Yaribeygi H, Sahebkar A. GLP-1 mimetics and diabetic ketoacidosis: possible interactions and clinical consequences. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:351-362. [PMID: 39172148 DOI: 10.1007/s00210-024-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Diabetic ketoacidosis is a serious diabetes-related consequence that occurs in type 1 diabetes and less commonly in type 2 diabetes and is a major cause of death. It results from the metabolic consequences due to a lack of insulin secretion or impaired insulin activity in diabetes leading to dysregulated pathophysiologic pathways resulting in excessive ketone body formation. While ketone bodies are physiologic molecules, their high levels reduce the physiological pH of the blood and induce ketoacidosis, leading to increasing metabolic dysfunction. Glucagon-like peptide-1 (GLP-1) mimetics are a class of recently developed diabetes therapy that do not lead to hypoglycemic, but some reports have suggested a relationship between GLP-1 mimetics and ketogenesis. To clarify the possible interactions between GLP-1 mimetics and ketogenesis in diabetes, this review was undertaken to collate and interpret the literature.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 PMCID: PMC11682651 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
3
|
Göpel SO, Adingupu D, Wang J, Semenova E, Behrendt M, Jansson-Löfmark R, Ahlström C, Jönsson-Rylander AC, Gopaul VS, Esterline R, Gan LM, Xiao RP. SGLT2 inhibition improves coronary flow velocity reserve and contractility: role of glucagon signaling. Cardiovasc Diabetol 2024; 23:408. [PMID: 39548491 PMCID: PMC11568596 DOI: 10.1186/s12933-024-02491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND SGLT2 inhibitors, a T2DM medication to lower blood glucose, markedly improve cardiovascular outcomes but the underlying mechanism(s) are not fully understood. SGLT2i's produce a unique metabolic pattern by lowering blood glucose without increasing insulin while increasing ketone body and glucagon levels and reducing body weight. We tested if glucagon signaling contributes to SGLT2i induced improvement in CV function. METHODS Cardiac contractility and coronary flow velocity reserve (CFVR) were monitored in ob/ob mice and rhesus monkeys with metabolic syndrome using echocardiography. Metabolic status was characterized by measuring blood ketone levels, glucose tolerance during glucose challenge and Arg and ADMA levels were measured. Baysian models were developed to analyse the data. RESULTS Dapagliflozin improved CFVR and contractility, co-application of a glucagon receptor inhibitor (GcgRi) blunted the effect on CFVR but not contractility. Dapagliflozin increased the Arg/ADMA ratio and ketone levels and co-treatment with GcgRi blunted only the Dapagliflozin induced increase in Arg/ADMA ratio but not ketone levels. CONCLUSIONS Since GcgRi co-treatment only reduced the Arg/ADMA increase we hypothesize that dapagliflozin via a glucagon-signaling dependent pathway improves vascular function through the NO-signaling pathway leading to improved vascular function. Increase in ketone levels might be a contributing factor in SGLT2i induced contractility increase and does not require glucagon signaling.
Collapse
Affiliation(s)
- Sven O Göpel
- Global Patient Safety BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden.
| | - Damilola Adingupu
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jue Wang
- College of Future Technology, Peking University, Beijing, 100871, China
| | - Elizaveta Semenova
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Imperial College London, School of Public Health, Department of Epidemiology and Biostatistics, London, United Kingdom
| | - Margareta Behrendt
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christine Ahlström
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ann-Cathrine Jönsson-Rylander
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - V Sashi Gopaul
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Li-Ming Gan
- Ribocure Pharmaceuticals AB, Gothenburg, Sweden & SuZhou Ribo Life Science Co. Ltd., Gothenburg, Sweden
- Department of Cardiology, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Rui-Ping Xiao
- College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Goldberg D, Buchshtab N, Charni-Natan M, Goldstein I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int 2024; 44:2964-2982. [PMID: 39162082 DOI: 10.1111/liv.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis. METHODS Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses. RESULTS We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding. CONCLUSION This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Selvaraj S, Patel S, Sauer AJ, McGarrah RW, Jones P, Kwee LC, Windsor SL, Ilkayeva O, Muehlbauer MJ, Newgard CB, Borlaug BA, Kitzman DW, Shah SJ, Margulies KB, Husain M, Inzucchi SE, McGuire DK, Lanfear DE, Javaheri A, Umpierrez G, Mentz RJ, Sharma K, Kosiborod MN, Shah SH. Metabolic Effects of the SGLT2 Inhibitor Dapagliflozin in Heart Failure Across the Spectrum of Ejection Fraction. Circ Heart Fail 2024; 17:e011980. [PMID: 39421941 PMCID: PMC11634023 DOI: 10.1161/circheartfailure.124.011980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mechanisms of benefit with SGLT2is (sodium-glucose cotransporter-2 inhibitors) in heart failure (HF) remain incompletely characterized. Dapagliflozin alters ketone and fatty acid metabolism in HF with reduced ejection fraction though similar effects have not been observed in HF with preserved ejection fraction. We explore whether metabolic effects of SGLT2is vary across the left ventricular ejection fraction spectrum and their relationship with cardiometabolic end points in 2 randomized trials of dapagliflozin in HF. METHODS Metabolomic profiling of 61 metabolites was performed in 527 participants from DEFINE-HF (Dapagliflozin Effects on Biomarkers, Symptoms and Functional Status in Patients With HF With Reduced Ejection Fraction) and PRESERVED-HF (Dapagliflozin in PRESERVED Ejection Fraction HF; 12-week, placebo-controlled trials of dapagliflozin in HF with reduced ejection fraction and HF with preserved ejection fraction, respectively). Linear regression was used to assess changes in principal components analysis-defined metabolite factors with treatment from baseline to 12 weeks, as well as the relationship between changes in metabolite clusters and HF-related end points. RESULTS The mean age was 66±11 years, 43% were female, and 33% were self-identified as Black. Two principal components analysis-derived metabolite factors (which were comprised of ketone and short-/medium-chain acylcarnitines) increased with dapagliflozin compared with placebo. Ketosis (defined as 3-hydroxybutyrate >500 μM) was achieved in 4.5% with dapagliflozin versus 1.2% with placebo (P=0.03). There were no appreciable treatment effects on amino acids, including branched-chain amino acids. Increases in several acylcarnitines were consistent across LVEF (Pinteraction>0.10), whereas the ketogenic effect diminished at higher LVEF (Pinteraction=0.01 for 3-hydroxybutyrate). Increases in metabolites reflecting mitochondrial dysfunction (particularly long-chain acylcarnitines) and aromatic amino acids and decreases in branched-chain amino acids were associated with worse HF-related outcomes in the overall cohort, with consistency across treatment and LVEF. CONCLUSIONS SGLT2is demonstrate common (fatty acid) and distinct (ketogenic) metabolic signatures across the LVEF spectrum. Changes in key pathways related to fatty acid and amino acid metabolism are associated with HF-related end points and may serve as therapeutic targets across HF subtypes. REGISTRATION URL: https://www.clinicaltrials.gov; Unique Identifiers: NCT03030235 and NCT02653482.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Shachi Patel
- Saint Luke’s Mid America Heart Institute, Kansas City, MO
| | - Andrew J. Sauer
- Saint Luke’s Mid America Heart Institute, Kansas City, MO
- University of Missouri-Kansas City, MO
| | - Robert W. McGarrah
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Philip Jones
- Saint Luke’s Mid America Heart Institute, Kansas City, MO
| | - Lydia Coulter Kwee
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | | | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Barry A. Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Dalane W. Kitzman
- Department of Internal Medicine, Sections on Cardiovascular Medicine and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine and Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kenneth B. Margulies
- Division of Cardiology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Mansoor Husain
- Ted Rogers Centre for Heart Research, University of Toronto, Canada
| | | | - Darren K. McGuire
- University of Texas Southwestern Medical Center and Parkland Health and Hospital System, Dallas, TX
| | - David E. Lanfear
- Center for Individual and Genomic Medicine Research and Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit MI
| | - Ali Javaheri
- Washington University School of Medicine, St. Louis, MO; John Cochran VA, St. Louis, MO
| | | | - Robert J. Mentz
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Kavita Sharma
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mikhail N. Kosiborod
- Saint Luke’s Mid America Heart Institute, Kansas City, MO
- University of Missouri-Kansas City, MO
| | - Svati H. Shah
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
6
|
Nagayama A, Inokuchi T, Ashida K, Inada C, Homma T, Miyazaki H, Adachi T, Iwata S, Motomura S, Nomura M. Assessing the Metabolic and Physical Effects of Combined DPP4 and SGLT2 Inhibitor Therapy in Patients with Type-2 Diabetes Mellitus: An Observational Prospective Pilot Study. JMA J 2024; 7:387-400. [PMID: 39114607 PMCID: PMC11301034 DOI: 10.31662/jmaj.2023-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction This study aimed to assess the efficacy of combined administration of dipeptidyl peptide-4 (DPP4) and sodium-glucose cotransporter-2 (SGLT2) inhibitors on metabolic disorders and their preferable and complementary effects. Methods The effectiveness of a 24-week intervention on metabolic parameters (including glucose profile), physical functions (grip strength and calf circumference), and health-related quality of life (HR-QOL) was analyzed using the International Physical Activity Questionnaire and Geriatric Depression Scale 5. A total of 39 patients with type-2 diabetes mellitus (T2DM) treated with the combination of DPP4 and SGLT2 inhibitors were included in this multicenter pilot study. Results Combination therapy significantly reduced the HbA1c level (median [interquartile range]) after 24 weeks (pretreatment: 7.7% [7.3-8.2] vs. posttreatment: 7.1% [6.6-7.9], P < 0.001). The grip strength significantly increased after 24 weeks (1.7 ± 2.7 kg, P < 0.001), while the mean calf circumference and body mass index significantly decreased. In particular, administration of the SGLT2 inhibitor significantly increased total physical activity in participants aged ≥65 years (P = 0.003), while psychological QOL did not significantly improve. Conclusions Combination therapy with DPP4 and SGLT2 inhibitors decreased HbA1c levels and improved physical function in patients with T2DM. This study confirmed the effectiveness of combination therapy for metabolic disorders and suggested its beneficial and complementary effects. Therefore, advances in treatment plans to achieve further improvements in glucose profiles using DPP4 and SGLT2 inhibitors are recommended to enhance the QOL of patients with T2DM. Clinical trial number: University Hospital Medical Information Network Center: UMIN000045375.
Collapse
Affiliation(s)
- Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Kenji Ashida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Tomoki Homma
- Homma Clinic of Cardiology and Internal Medicine, Kurume, Japan
| | - Hiroshi Miyazaki
- Miyazaki Clinic of Cardiology and Internal Medicine, Kurume, Japan
| | | | - Shimpei Iwata
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Seiichi Motomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
7
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
8
|
Nakamura Y, Horie I, Kitamura T, Kusunoki Y, Nishida K, Yamamoto A, Hirota Y, Fukui T, Maeda Y, Minami M, Matsui T, Kawakami A, Abiru N. Glucagon secretion and its association with glycaemic control and ketogenesis during sodium-glucose cotransporter 2 inhibition by ipragliflozin in people with type 1 diabetes: Results from the multicentre, open-label, prospective study. Diabetes Obes Metab 2024; 26:1605-1614. [PMID: 38253809 DOI: 10.1111/dom.15458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
AIM Clinical trials showed the efficacy of sodium-glucose cotransporter 2 inhibitors for type 1 diabetes (T1D) by significant reductions in body weight and glycaemic variability, but elevated susceptibility to ketoacidosis via elevated glucagon secretion was a potential concern. The Suglat-AID evaluated glucagon responses and its associations with glycaemic control and ketogenesis before and after T1D treatment with the sodium-glucose cotransporter 2 inhibitor, ipragliflozin. METHODS Adults with T1D (n = 25) took 50-mg open-labelled ipragliflozin daily as adjunctive to insulin. Laboratory/clinical data including continuous glucose monitoring were collected until 12 weeks after the ipragliflozin initiation. The participants underwent a mixed-meal tolerance test (MMTT) twice [before (first MMTT) and 12 weeks after ipragliflozin treatment (second MMTT)] to evaluate responses of glucose, C-peptide, glucagon and β-hydroxybutyrate. RESULTS The area under the curve from fasting (0 min) to 120 min (AUC0-120min) of glucagon in second MMTT were significantly increased by 14% versus first MMTT. The fasting and postprandial β-hydroxybutyrate levels were significantly elevated in second MMTT versus first MMTT. The positive correlation between postprandial glucagon secretion and glucose excursions observed in first MMTT disappeared in second MMTT, but a negative correlation between fasting glucagon and time below range (glucose, <3.9 mmol/L) appeared in second MMTT. The percentage changes in glucagon levels (fasting and AUC0-120min) from baseline to 12 weeks were significantly correlated with those in β-hydroxybutyrate levels. CONCLUSIONS Ipragliflozin treatment for T1D increased postprandial glucagon secretion, which did not exacerbate postprandial hyperglycaemia but might protect against hypoglycaemia, leading to reduced glycaemic variability. The increased glucagon secretion might accelerate ketogenesis when adequate insulin is not supplied.
Collapse
Affiliation(s)
- Yuta Nakamura
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yoshiki Kusunoki
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kenro Nishida
- Division of Diabetes and Endocrinology, Kumamoto Central Hospital, Kumamoto, Japan
| | - Akane Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yasutaka Maeda
- Minami Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Masae Minami
- Minami Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Takanori Matsui
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
9
|
Awchi M, Singh KD, Brenner SB, Burckhardt MA, Hess M, Zeng J, Datta AN, Frey U, Zumsteg U, Szinnai G, Sinues P. Metabolic trajectories of diabetic ketoacidosis onset described by breath analysis. Front Endocrinol (Lausanne) 2024; 15:1360989. [PMID: 38752172 PMCID: PMC11094216 DOI: 10.3389/fendo.2024.1360989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose This feasibility study aimed to investigate the use of exhaled breath analysis to capture and quantify relative changes of metabolites during resolution of acute diabetic ketoacidosis under insulin and rehydration therapy. Methods Breath analysis was conducted on 30 patients of which 5 with DKA. They inflated Nalophan bags, and their metabolic content was subsequently interrogated by secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS). Results SESI-HRMS analysis showed that acetone, pyruvate, and acetoacetate, which are well known to be altered in DKA, were readily detectable in breath of participants with DKA. In addition, a total of 665 mass spectral features were found to significantly correlate with base excess and prompt metabolic trajectories toward an in-control state as they progress toward homeostasis. Conclusion This study provides proof-of-principle for using exhaled breath analysis in a real ICU setting for DKA monitoring. This non-invasive new technology provides new insights and a more comprehensive overview of the effect of insulin and rehydration during DKA treatment.
Collapse
Affiliation(s)
- Mo Awchi
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Kapil Dev Singh
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Sara Bachmann Brenner
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Marie-Anne Burckhardt
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Melanie Hess
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Jiafa Zeng
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Alexandre N. Datta
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Urs Zumsteg
- University Children’s Hospital Basel, Basel, Switzerland
| | - Gabor Szinnai
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Pablo Sinues
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Ruppert PMM, Kersten S. Mechanisms of hepatic fatty acid oxidation and ketogenesis during fasting. Trends Endocrinol Metab 2024; 35:107-124. [PMID: 37940485 DOI: 10.1016/j.tem.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
Fasting is part of many weight management and health-boosting regimens. Fasting causes substantial metabolic adaptations in the liver that include the stimulation of fatty acid oxidation and ketogenesis. The induction of fatty acid oxidation and ketogenesis during fasting is mainly driven by interrelated changes in plasma levels of various hormones and an increase in plasma nonesterified fatty acid (NEFA) levels and is mediated transcriptionally by the peroxisome proliferator-activated receptor (PPAR)α, supported by CREB3L3 (cyclic AMP-responsive element-binding protein 3 like 3). Compared with men, women exhibit higher ketone levels during fasting, likely due to higher NEFA availability, suggesting that the metabolic response to fasting shows sexual dimorphism. Here, we synthesize the current molecular knowledge on the impact of fasting on hepatic fatty acid oxidation and ketogenesis.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 C Odense, Denmark
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Deru LS, Gipson EZ, Hales KE, Bikman BT, Davidson LE, Horne BD, LeCheminant JD, Tucker LA, Bailey BW. The Effects of a High-Carbohydrate versus a High-Fat Shake on Biomarkers of Metabolism and Glycemic Control When Used to Interrupt a 38-h Fast: A Randomized Crossover Study. Nutrients 2024; 16:164. [PMID: 38201992 PMCID: PMC10780935 DOI: 10.3390/nu16010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
This study aimed to determine the impact of various fast-interrupting shakes on markers of glycemic control including glucose, β-hydroxybutyrate (BHB), insulin, glucagon, GLP-1, and GIP. Twenty-seven sedentary adults (twelve female, fifteen male) with overweight or obesity completed this study. One condition consisted of a 38-h water-only fast, and the other two conditions repeated this, but the fasts were interrupted at 24 h by either a high carbohydrate/low fat (HC/LF) shake or an isovolumetric and isocaloric low carbohydrate/high fat (LC/HF) shake. The water-only fast resulted in 135.3% more BHB compared to the HC/LF condition (p < 0.01) and 69.6% more compared to the LC/HF condition (p < 0.01). The LC/HF condition exhibited a 38.8% higher BHB level than the HC/LF condition (p < 0.01). The area under the curve for glucose was 14.2% higher in the HC/LF condition than in the water condition (p < 0.01) and 6.9% higher compared to the LC/HF condition (p < 0.01), with the LC/HF condition yielding 7.8% more glucose than the water condition (p < 0.01). At the 25-h mark, insulin and glucose-dependent insulinotropic polypeptide (GIP) were significantly elevated in the HC/LF condition compared to the LC/HF condition (p < 0.01 and p = 0.02, respectively) and compared to the water condition (p < 0.01). Furthermore, insulin, GLP-1, and GIP were increased in the LC/HF condition compared to the water condition at 25 h (p < 0.01, p = 0.015, and p < 0.01, respectively). By the 38-h time point, no differences were observed among the conditions for any of the analyzed hormones. While a LC/HF shake does not mimic a fast completely, it does preserve some of the metabolic changes including elevated BHB and glucagon, and decreased glucose and insulin compared to a HC/LF shake, implying a potential for improved metabolic health.
Collapse
Affiliation(s)
- Landon S. Deru
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
- Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Elizabeth Z. Gipson
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| | - Katelynn E. Hales
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin T. Bikman
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Lance E. Davidson
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin D. Horne
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT 84107, USA;
| | - James D. LeCheminant
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA;
| | - Larry A. Tucker
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| | - Bruce W. Bailey
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
12
|
Ferreira B, Heredia A, Serpa J. An integrative view on glucagon function and putative role in the progression of pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC). Mol Cell Endocrinol 2023; 578:112063. [PMID: 37678603 DOI: 10.1016/j.mce.2023.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.
Collapse
Affiliation(s)
- Bárbara Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Adrián Heredia
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028, Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
13
|
Dagdeviren S, Hoang MF, Sarikhani M, Meier V, Benoit JC, Okawa MC, Melnik VY, Ricci-Blair EM, Foot N, Friedline RH, Hu X, Tauer LA, Srinivasan A, Prigozhin MB, Shenoy SK, Kumar S, Kim JK, Lee RT. An insulin-regulated arrestin domain protein controls hepatic glucagon action. J Biol Chem 2023; 299:105045. [PMID: 37451484 PMCID: PMC10413355 DOI: 10.1016/j.jbc.2023.105045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucagon signaling is essential for maintaining normoglycemia in mammals. The arrestin fold superfamily of proteins controls the trafficking, turnover, and signaling of transmembrane receptors as well as other intracellular signaling functions. Further investigation is needed to understand the in vivo functions of the arrestin domain-containing 4 (ARRDC4) protein family member and whether it is involved in mammalian glucose metabolism. Here, we show that mice with a global deletion of the ARRDC4 protein have impaired glucagon responses and gluconeogenesis at a systemic and molecular level. Mice lacking ARRDC4 exhibited lower glucose levels after fasting and could not suppress gluconeogenesis at the refed state. We also show that ARRDC4 coimmunoprecipitates with the glucagon receptor, and ARRDC4 expression is suppressed by insulin. These results define ARRDC4 as a critical regulator of glucagon signaling and glucose homeostasis and reveal a novel intersection of insulin and glucagon pathways in the liver.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Megan F Hoang
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Mohsen Sarikhani
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Vanessa Meier
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jake C Benoit
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Marinna C Okawa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Veronika Y Melnik
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvind Srinivasan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maxim B Prigozhin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
14
|
Hadd MJ, Bienhoff SE, Little SE, Geller S, Ogne‐Stevenson J, Dupree TJ, Scott‐Moncrieff JC. Safety and effectiveness of the sodium-glucose cotransporter inhibitor bexagliflozin in cats newly diagnosed with diabetes mellitus. J Vet Intern Med 2023; 37:915-924. [PMID: 37148170 PMCID: PMC10229323 DOI: 10.1111/jvim.16730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/15/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Bexagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor. A pilot study has shown that bexagliflozin can decrease dependence on exogenous insulin in cats with diabetes mellitus (DM). OBJECTIVE To evaluate the safety and effectiveness of bexagliflozin as a monotherapy for DM in previously untreated cats. ANIMALS Eighty-four client-owned cats. METHODS Historically controlled prospective open-label clinical trial. Cats were dosed PO with 15 mg bexagliflozin once daily for 56 days, with a 124-day extension to evaluate safety and treatment effect durability. The primary endpoint was the proportion of cats experiencing a decrease in hyperglycemia and improvement in clinical signs of hyperglycemia from baseline on day 56. RESULTS Of 84 enrolled cats, 81 were evaluable on day 56, and 68 (84.0%) were treatment successes. Decreases in mean serum glucose, fructosamine, and β-hydroxybutyrate (β-OHB) concentrations were observed, and investigator assessments of cat neurological status, musculature, and hair coat quality improved. Owner evaluations of both cat and owner quality of life were favorable. The fructosamine half-life in diabetic cats was found to be 6.8 days. Commonly observed adverse events included emesis, diarrhea, anorexia, lethargy, and dehydration. Eight cats experienced serious adverse events, 3 of which led to death or euthanasia. The most important adverse event was euglycemic diabetic ketoacidosis, diagnosed in 3 cats and presumed present in a fourth. CONCLUSION AND CLINICAL IMPORTANCE Bexagliflozin decreased hyperglycemia and observed clinical signs in cats newly diagnosed with DM. As a once-daily PO medication, bexagliflozin may simplify management of DM in cats.
Collapse
Affiliation(s)
| | | | | | - Samuel Geller
- Quakertown Veterinary ClinicQuakertownPennsylvaniaUSA
| | | | | | - J. Catharine Scott‐Moncrieff
- Department of Veterinary Clinical SciencesPurdue University College of Veterinary MedicineWest LafayetteIndianaUSA
| |
Collapse
|
15
|
Hui SA, Chiew AL, Depczynski B. What is the utility of blood beta-hydroxybutyrate measurements in emergency department in patients without diabetes: a systematic review. Syst Rev 2023; 12:71. [PMID: 37118837 PMCID: PMC10140707 DOI: 10.1186/s13643-023-02203-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Ketones are synthesised as an alternative fuel source during times of energy restriction. In the absence of a hyperglycemic emergency, ketosis in patients presenting to the emergency department (ED) may indicate reduced carbohydrate intake. In the perioperative setting, excess fasting with ketosis is associated with worse outcomes; however, whether ketosis in patients without diabetes presenting to ED is also associated with worse outcomes is unclear. This systematic review aims to examine the evidence for ketosis in predicting the need for hospital admission in patients without diabetes, presenting to the ED. METHODS A systematic review was performed using PRISMA guidelines. We searched electronic bases (OVID-Medline, OVID-EMBASE, Scopus and PubMed) up to December 2022. Eligible studies included children or adults without diabetes presenting to the ED where a point-of-care capillary beta-hydroxybutyrate (BHB) was measured and compared to outcomes including the need for admission. Outcome measures included need for admission and length of stay. Content analysis was performed systematically; bias and certainty assessed using standard tools. RESULTS The literature search found 17,133 citations, 14,965 papers were subjected to title and abstract screening. The full text of 62 eligible studies were reviewed. Seven articles met the inclusion criteria. Six studies were conducted solely in the paediatric population, and of these, four were limited to children presenting with gastroenteritis symptoms. Median BHB was higher in children requiring hospital admission with an AUC of 0.64-0.65 across two studies. There was a weak correlation between BHB and dehydration score or duration of symptoms. The single study in adults, limited to stroke presentations, observed no relationship between BHB and neurological deficit at presentation. All studies were at risk of bias using the Newcastle-Ottawa Scale and was assessed of "very low" to "low" quality due to their study design in the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Heterogeneity amongst selected studies precluded meta-analysis. CONCLUSION The evidence for any utility of BHB measurement in the ED in absence of diabetes is limited to the paediatric population, specifically children presenting with symptoms of gastroenteritis. Any role in adults remains unexplored.
Collapse
Affiliation(s)
- Su An Hui
- National University of Singapore, Singapore, Singapore.
| | - Angela Lin Chiew
- Clinical Toxicology & Emergency Medicine Prince of Wales Hospital, Sydney, Australia
- Conjoint Associate Professor Prince of Wales Hospital Clinical School, UNSW Medicine, Sydney, Australia
| | | |
Collapse
|
16
|
Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023; 118:3556-3575. [PMID: 36504368 DOI: 10.1093/cvr/cvac166] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
17
|
Voorrips SN, Boorsma EM, Beusekamp JC, DE-Boer RA, Connelly MA, Dullaart RPF, VAN-DER-Meer P, VAN-Veldhuisen DJ, Voors AA, Damman K, Westenbrink BD. Longitudinal Changes in Circulating Ketone Body Levels in Patients With Acute Heart Failure: A Post Hoc Analysis of the EMPA-Response-AHF Trial. J Card Fail 2023; 29:33-41. [PMID: 36244653 DOI: 10.1016/j.cardfail.2022.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ketone bodies are endogenous fuels produced by the liver under conditions of metabolic or neurohormonal stress. Circulating ketone bodies are increased in patients with chronic heart failure (HF), yet little is known about the effect of acute HF on ketosis. We tested the hypothesis that ketogenesis is increased in patients with acute decompensated HF. METHODS AND RESULTS This was a post hoc analysis of 79 patients with acute HF included in the EMPA-RESPONSE-AHF trial, which compared sodium-dependent glucose-cotransporter protein 2 inhibitor treatment with empagliflozin for 30 days with placebo in patients with acute HF [NCT03200860]. Plasma concentrations of ketone bodies acetone, β-hydroxybutyrate, and acetoacetate were measured at baseline and 5 different timepoints. Changes in ketone bodies over time were monitored using repeated measures analysis of variance. In the total cohort, median total ketone body concentration was 251 µmol/L (interquartile range, 178-377 µmol/L) at baseline, which gradually decreased to 202 µmol/L (interquartile range, 156-240 µmol/L) at day 30 (P = .041). Acetone decreased from 60 µmol/L (interquartile range, 34-94 µmol/L) at baseline to 30 µmol/L (interquartile range, 21-42 µmol/L) ( P < .001), whereas β-hydroxybutyrate and acetoacetate remained stable over time. Higher acetone concentrations were correlated with higher N-terminal pro brain natriuretic peptide levels (r = 0.234; P = .039). Circulating ketone bodies did not differ between patients treated with empagliflozin or placebo throughout the study period. A higher acetone concentration at baseline was univariately associated with a greater risk of the composite end point, including in-hospital worsening HF, HF rehospitalizations, and all-cause mortality after 30 days. However, after adjustment for age and sex, acetone did not remain an independent predictor for the combined end point. CONCLUSIONS Circulating ketone body concentrations, and acetone in particular, were significantly higher during an episode of acute decompensated HF compared with after stabilization. Treatment with empagliflozin did not affect ketone body concentrations in patients with acute HF.
Collapse
Affiliation(s)
- S N Voorrips
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - E M Boorsma
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - J C Beusekamp
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - R A DE-Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands; Department of Cardiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - M A Connelly
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, North Carolina; and the
| | - R P F Dullaart
- Department of Internal Medicine, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - P VAN-DER-Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - D J VAN-Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - A A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - K Damman
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - B D Westenbrink
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
18
|
Galsgaard KD, Elmelund E, Johansen CD, Bomholt AB, Kizilkaya HS, Ceutz F, Hunt JE, Kissow H, Winther-Sørensen M, Sørensen CM, Kruse T, Lau JF, Rosenkilde MM, Ørskov C, Christoffersen C, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor antagonism impairs and glucagon receptor agonism enhances triglycerides metabolism in mice. Mol Metab 2022; 66:101639. [PMID: 36400402 PMCID: PMC9706156 DOI: 10.1016/j.molmet.2022.101639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice. METHODS Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr-/-) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs. RESULTS Plasma triglyceride concentrations increased 2-fold in Gcgr-/- mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol. CONCLUSIONS Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün S. Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Ceutz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark,Corresponding author. Department of Biomedical Sciences and Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, and Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark.
| |
Collapse
|
19
|
Capozzi ME, D'Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab 2022; 34:1654-1674. [PMID: 36323234 PMCID: PMC9641554 DOI: 10.1016/j.cmet.2022.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
20
|
Jimenez-Gonzalez M, Li R, Pomeranz LE, Alvarsson A, Marongiu R, Hampton RF, Kaplitt MG, Vasavada RC, Schwartz GJ, Stanley SA. Mapping and targeted viral activation of pancreatic nerves in mice reveal their roles in the regulation of glucose metabolism. Nat Biomed Eng 2022; 6:1298-1316. [PMID: 35835995 PMCID: PMC9669304 DOI: 10.1038/s41551-022-00909-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
A lack of comprehensive mapping of ganglionic inputs into the pancreas and of technology for the modulation of the activity of specific pancreatic nerves has hindered the study of how they regulate metabolic processes. Here we show that the pancreas-innervating neurons in sympathetic, parasympathetic and sensory ganglia can be mapped in detail by using tissue clearing and retrograde tracing (the tracing of neural connections from the synapse to the cell body), and that genetic payloads can be delivered via intrapancreatic injection to target sites in efferent pancreatic nerves in live mice through optimized adeno-associated viruses and neural-tissue-specific promoters. We also show that, in male mice, the targeted activation of parasympathetic cholinergic intrapancreatic ganglia and neurons doubled plasma-insulin levels and improved glucose tolerance, and that tolerance was impaired by stimulating pancreas-projecting sympathetic neurons. The ability to map the peripheral ganglia innervating the pancreas and to deliver transgenes to specific pancreas-projecting neurons will facilitate the examination of ganglionic inputs and the study of the roles of pancreatic efferent innervation in glucose metabolism.
Collapse
Affiliation(s)
- M Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - A Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R C Vasavada
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - G J Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Li J, Zhou L, Gong H. New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure. Front Cardiovasc Med 2022; 9:903902. [PMID: 36186974 PMCID: PMC9520058 DOI: 10.3389/fcvm.2022.903902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are newly emerging insulin-independent anti-hyperglycemic agents that work independently of β-cells. Quite a few large-scale clinical trials have proven the cardiovascular protective function of SGLT2is in both diabetic and non-diabetic patients. By searching all relevant terms related to our topics over the previous 3 years, including all the names of agents and their brands in PubMed, here we review the mechanisms underlying the improvement of heart failure. We also discuss the interaction of various mechanisms proposed by diverse works of literature, including corresponding and opposing viewpoints to support each subtopic. The regulation of diuresis, sodium excretion, weight loss, better blood pressure control, stimulation of hematocrit and erythropoietin, metabolism remodeling, protection from structural dysregulation, and other potential mechanisms of SGLT2i contributing to heart failure improvement have all been discussed in this manuscript. Although some remain debatable or even contradictory, those newly emerging agents hold great promise for the future in cardiology-related therapies, and more research needs to be conducted to confirm their functionality, particularly in metabolism, Na+-H+ exchange protein, and myeloid angiogenic cells.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Hui Gong
| |
Collapse
|
22
|
Herring RA, Shojaee-Moradie F, Stevenage M, Parsons I, Jackson N, Mendis J, Middleton B, Umpleby AM, Fielding BA, Davies M, Russell-Jones DL. The SGLT2 Inhibitor Dapagliflozin Increases the Oxidation of Ingested Fatty Acids to Ketones in Type 2 Diabetes. Diabetes Care 2022; 45:1408-1415. [PMID: 35312749 DOI: 10.2337/dc21-2043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/22/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the mechanism for increased ketogenesis following treatment with the SGLT2 inhibitor dapagliflozin in people with type 2 diabetes. RESEARCH DESIGN AND METHODS The design was a double-blind, placebo-controlled, crossover study with a 4-week washout period. Participants received dapagliflozin or placebo in random order for 4 weeks. After each treatment, they ingested 30 mL of olive oil containing [U-13C]palmitate to measure ketogenesis, with blood sampling for 480 min. Stable isotopes of glucose and glycerol were infused to measure glucose flux and lipolysis, respectively, at 450-480 min. RESULTS Glucose excretion rate was higher and peripheral glucose uptake lower with dapagliflozin than placebo. Plasma β-hydroxybutyrate (BOHB) concentrations and [13C2]BOHB concentrations were higher and glucose concentrations lower with dapagliflozin than placebo. Nonesterified fatty acids (NEFAs) were higher with dapagliflozin at 300 and 420 min, but lipolysis at 450-480 min was not different. Triacylglycerol at all time points and endogenous glucose production rate at 450-480 min were not different between treatments. CONCLUSIONS The increase in ketone enrichment from the ingested palmitic acid tracer suggests that meal-derived fatty acids contribute to the increase in ketones during treatment with dapagliflozin. The increase in BOHB concentration with dapagliflozin occurred with only minimal changes in plasma NEFA concentration and no change in lipolysis. This finding suggests a metabolic switch to increase ketogenesis within the liver.
Collapse
Affiliation(s)
- Roselle A Herring
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford, U.K.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Fariba Shojaee-Moradie
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford, U.K
| | - Mary Stevenage
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford, U.K
| | - Iain Parsons
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford, U.K
| | - Nicola Jackson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Jeewaka Mendis
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Benita Middleton
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - A Margot Umpleby
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Barbara A Fielding
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Melanie Davies
- Diabetes Research Centre, University of Leicester, Leicester, U.K.,National Institute for Health Research Leicester Biomedical Research Centre, Leicester, U.K
| | - David L Russell-Jones
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford, U.K.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| |
Collapse
|
23
|
Morriseau TS, Doucette CA, Dolinsky VW. More than meets the islet: aligning nutrient and paracrine inputs with hormone secretion in health and disease. Am J Physiol Endocrinol Metab 2022; 322:E446-E463. [PMID: 35373587 DOI: 10.1152/ajpendo.00411.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic islet is responsive to an array of endocrine, paracrine, and nutritional inputs that adjust hormone secretion to ensure accurate control of glucose homeostasis. Although the mechanisms governing glucose-coupled insulin secretion have received the most attention, there is emerging evidence for a multitude of physiological signaling pathways and paracrine networks that collectively regulate insulin, glucagon, and somatostatin release. Moreover, the modulation of these pathways in conditions of glucotoxicity or lipotoxicity are areas of both growing interest and controversy. In this review, the contributions of external, intrinsic, and paracrine factors in pancreatic β-, α-, and δ-cell secretion across the full spectrum of physiological (i.e., fasting and fed) and pathophysiological (gluco- and lipotoxicity; diabetes) environments will be critically discussed.
Collapse
Affiliation(s)
- Taylor S Morriseau
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Asif S, Kim RY, Fatica T, Sim J, Zhao X, Oh Y, Denoncourt A, Cheung A, Downey M, Mulvihill EE, Kim KH. Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Mol Metab 2022; 61:101494. [PMID: 35421611 PMCID: PMC9039870 DOI: 10.1016/j.molmet.2022.101494] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Aberrant ketogenesis is correlated with the degree of steatosis in NAFLD patients, and an inborn error of ketogenesis (mitochondrial HMG-CoA synthase deficiency) is commonly associated with the development of the fatty liver. Here we aimed to determine the impact of Hmgcs2-mediated ketogenesis and its modulations on the development and treatment of fatty liver disease. METHODS Loss- and gain-of-ketogenic function through in vivo and in vitro models, achieved by Hmgcs2 knockout and overexpression, respectively, were examined to investigate the role of ketogenesis in the hepatic lipid accumulation during neonatal development and the diet-induced NAFLD mouse model. RESULTS Ketogenic function was decreased in NAFLD mice with a reduction in Hmgcs2 expression. Mice lacking Hmgcs2 developed spontaneous fatty liver phenotype during postnatal development, which was rescued by a shift to a low-fat dietary composition via early weaning. Hmgcs2 heterozygous mice, which exhibited reduced ketogenic activity, were more susceptible to diet-induced NAFLD development, whereas HMGCS2 overexpression in NAFLD mice improved hepatosteatosis and glucose homeostasis. CONCLUSIONS Our study adds new knowledge to the field of ketone body metabolism and shows that Hmgcs2-mediated ketogenesis modulates hepatic lipid regulation under a fat-enriched nutritional environment. The regulation of hepatic ketogenesis may be a viable therapeutic strategy in the prevention and treatment of hepatosteatosis.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ri Youn Kim
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Thet Fatica
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Jordan Sim
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8M5, Canada
| | - Xiaoling Zhao
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, K1H 8M5, Canada
| | - Angela Cheung
- Gastroenterology and Hepatology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8M5, Canada; The Ottawa Hospital Research Institute, Chronic Disease Program, Ottawa, ON, K1Y 4E9, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, K1H 8M5, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
25
|
Luo X, Ji R, Lu W, Zhu H, Li L, Hu J. Dapagliflozin-Associated Euglycemic Diabetic Ketoacidosis in a Patient Who Underwent Surgery for Pancreatic Carcinoma: A Case Report. Front Surg 2022; 9:769041. [PMID: 35284482 PMCID: PMC8906517 DOI: 10.3389/fsurg.2022.769041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic ketoacidosis (DKA), an acute and life-threatening complication of diabetes, is a metabolic disorder caused by insulin deficiency and an increase in counter-regulatory hormones. Several cases of DKA without marked hyperglycemia have been reported and are defined as euglycemic DKA (eu-DKA). The use of sodium-glucose cotransporter 2 inhibitors (SGLT2is) is associated with the occurrence of eu-DKA, of which, dapagliflozin is one of the agents. In this study, we report a case of dapagliflozin-associated eu-DKA following surgery for pancreatic carcinoma. A 57-year-old woman presented with acute abdominal pain after surgery for pancreatic carcinoma. Emergency exploratory laparotomy was performed because of suspicion of gastrointestinal perforation based on a CT scan. The surgeons observed that the stomach was significantly dilated but not perforated. Meanwhile, the patient developed shock and severe acidosis. A further examination confirmed the diagnosis of dapagliflozin-associated eu-DKA. We reviewed the precipitating factors and mechanisms of SGLT2i-associated eu-DKA and discussed the treatment and prevention of this condition. Clinicians need to be alert of the occurrence of SGLT2i-associated eu-DKA in patients treated with this drug in the perioperative period.
Collapse
|
26
|
The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation and increases ketosis. J Lipid Res 2022; 63:100176. [PMID: 35120993 PMCID: PMC8953658 DOI: 10.1016/j.jlr.2022.100176] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to increase ketone bodies in patients with type 2 diabetes; however, the underlying mechanisms have not been fully elucidated. Here we examined the effect of the SGLT2 inhibitor dapagliflozin (1 mg/kg/day, formulated in a water, PEG400, ethanol, propylene glycol solution, 4 weeks) on lipid metabolism in obese Zucker rats. Fasting FFA metabolism was assessed in the anesthetized state using a [9,10-3H(N)]-palmitic acid tracer by estimating rates of plasma FFA appearance (Ra), whole-body FFA oxidation (Rox), and nonoxidative disposal (Rst). In the liver, clearance (Kβ-ox) and flux (Rβ-ox) of FFA into β-oxidation were estimated using [9,10-3H]-(R)-bromopalmitate/[U-14C]palmitate tracers. As expected, dapagliflozin induced glycosuria and a robust antidiabetic effect; treatment reduced fasting plasma glucose and insulin, lowered glycated hemoglobin, and increased pancreatic insulin content compared with vehicle controls. Dapagliflozin also increased plasma FFA, Ra, Rox, and Rst with enhanced channeling toward oxidation versus storage. In the liver, there was also enhanced channeling of FFA to β-oxidation, with increased Kβ-ox, Rβ-ox and tissue acetyl-CoA, compared with controls. Finally, dapagliflozin increased hepatic HMG-CoA and plasma β-hydroxybutyrate, consistent with a specific enhancement of ketogenesis. Since ketogenesis has not been directly measured, we cannot exclude an additional contribution of impaired ketone body clearance to the ketosis. In conclusion, this study provides evidence that the dapagliflozin-induced increase in plasma ketone bodies is driven by the combined action of FFA mobilization from adipose tissue and diversion of hepatic FFA toward β-oxidation.
Collapse
|
27
|
Pan A, Sun XM, Huang FQ, Liu JF, Cai YY, Wu X, Alolga RN, Li P, Liu BL, Liu Q, Qi LW. The mitochondrial β-oxidation enzyme HADHA restrains hepatic glucagon response by promoting β-hydroxybutyrate production. Nat Commun 2022; 13:386. [PMID: 35046401 PMCID: PMC8770464 DOI: 10.1038/s41467-022-28044-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022] Open
Abstract
Disordered hepatic glucagon response contributes to hyperglycemia in diabetes. The regulators involved in glucagon response are less understood. This work aims to investigate the roles of mitochondrial β-oxidation enzyme HADHA and its downstream ketone bodies in hepatic glucagon response. Here we show that glucagon challenge impairs expression of HADHA. Liver-specific HADHA overexpression reversed hepatic gluconeogenesis in mice, while HADHA knockdown augmented glucagon response. Stable isotope tracing shows that HADHA promotes ketone body production via β-oxidation. The ketone body β-hydroxybutyrate (BHB) but not acetoacetate suppresses gluconeogenesis by selectively inhibiting HDAC7 activity via interaction with Glu543 site to facilitate FOXO1 nuclear exclusion. In HFD-fed mice, HADHA overexpression improved metabolic disorders, and these effects are abrogated by knockdown of BHB-producing enzyme. In conclusion, BHB is responsible for the inhibitory effect of HADHA on hepatic glucagon response, suggesting that HADHA activation or BHB elevation by pharmacological intervention hold promise in treating diabetes.
Collapse
Affiliation(s)
- An Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Meng Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng-Qing Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-Feng Liu
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan-Yuan Cai
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Raphael N Alolga
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
28
|
Qian J, Fang Y, Yuan N, Gao X, Lv Y, Zhao C, Zhang S, Li Q, Li L, Xu L, Wei W, Wang J. Innate immune remodeling by short-term intensive fasting. Aging Cell 2021; 20:e13507. [PMID: 34705313 PMCID: PMC8590100 DOI: 10.1111/acel.13507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have shown that long-term light or moderate fasting such as intermittent fasting can improve health and prolong lifespan. However, in humans short-term intensive fasting, a complete water-only fasting has little been studied. Here, we used multi-omics tools to evaluate the impact of short-term intensive fasting on immune function by comparison of the CD45+ leukocytes from the fasting subjects before and after 72-h fasting. Transcriptomic and proteomic profiling of CD45+ leukocytes revealed extensive expression changes, marked by higher gene upregulation than downregulation after fasting. Functional enrichment of differentially expressed genes and proteins exposed several pathways critical to metabolic and immune cell functions. Specifically, short-term intensive fasting enhanced autophagy levels through upregulation of key members involved in the upstream signals and within the autophagy machinery, whereas apoptosis was reduced by down-turning of apoptotic gene expression, thereby increasing the leukocyte viability. When focusing on specific leukocyte populations, peripheral neutrophils are noticeably increased by short-term intensive fasting. Finally, proteomic analysis of leukocytes showed that short-term intensive fasting not only increased neutrophil degranulation, but also increased cytokine secretion. Our results suggest that short-term intensive fasting boost immune function, in particular innate immune function, at least in part by remodeling leukocytes expression profile.
Collapse
Affiliation(s)
- Jiawei Qian
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
| | - Yixuan Fang
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
- Suzhou Ninth Hospital affiliated to Soochow UniversitySuzhouChina
| | - Na Yuan
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
- Suzhou Ninth Hospital affiliated to Soochow UniversitySuzhouChina
| | - Xueqin Gao
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Yaqi Lv
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
| | - Chen Zhao
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
| | - Suping Zhang
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
- Suzhou Ninth Hospital affiliated to Soochow UniversitySuzhouChina
| | - Quan Li
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Lei Li
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
| | - Li Xu
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
| | - Wen Wei
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
| | - Jianrong Wang
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical InstituteNational Clinical Research Center for Hematologic DiseasesCollaborative Innovation Center of HematologyJiangsu Institute of HematologyInstitute of Blood and Marrow TransplantationThe First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- Soyo CenterSoochow UniversitySuzhouChina
- Suzhou Ninth Hospital affiliated to Soochow UniversitySuzhouChina
| |
Collapse
|
29
|
Matharu K, Chana K, Ferro CJ, Jones AM. Polypharmacology of clinical sodium glucose co-transport protein 2 inhibitors and relationship to suspected adverse drug reactions. Pharmacol Res Perspect 2021; 9:e00867. [PMID: 34586753 PMCID: PMC8480305 DOI: 10.1002/prp2.867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Sodium glucose co-transporter 2 inhibitors (SGLT2i) are a promising second-line treatment strategy for type 2 diabetes mellitus (T2DM) with a developing landscape of both beneficial cardio- and nephroprotective properties and emerging adverse drug reactions (ADRs) including diabetic ketoacidosis (DKA), genetic mycotic infections, and amputations among others. A national register study (MHRA Yellow Card, UK) was used to quantify the SGLT2i's suspected ADRs relative to their Rx rate (OpenPrescribing, UK). The polypharmacology profiles of SGLT2i were data-mined (ChEMBL) for the first time. The ADR reports (n = 3629) and prescribing numbers (Rx n = 5,813,325) for each SGLT2i in the United Kingdom (from launch date to the beginning December 2019) were determined. Empagliflozin possesses the most selective SGLT2/SGLT1 inhibition profile at ~2500-fold, ~10-fold more selective than cangliflozin (~260-fold). Canagliflozin was found to also inhibit CYP at clinically achievable concentrations. We find that for overall ADR rates, empagliflozin versus dapagliflozin and empagliflozin versus canagliflozin are statistically significant (χ2 , p < .05), while dapagliflozin versus canagliflozin is not. In terms of overall ADRs, there is a greater relative rate for canagliflozin > dapagliflozin > empagliflozin. For fatalities, there is a greater relative rate for dapagliflozin > canagliflozin > empagliflozin. An organ classification that resulted in a statistically significant difference between SGLT2i was suspected infection/infestation ADRs between empagliflozin and dapagliflozin. Our findings at this stage of SGLT2i usage in the United Kingdom suggest that empagliflozin, the most selective SGLT2i, had the lowest suspected ADR incident rate (relative to prescribing) and in all reported classes of ADRs identified including infections, amputations, and DKA.
Collapse
Affiliation(s)
- Karan Matharu
- School of PharmacyInstitute of Clinical SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Kiran Chana
- School of PharmacyInstitute of Clinical SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Charles J. Ferro
- Birmingham Cardio‐Renal GroupInstitute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Alan M. Jones
- School of PharmacyInstitute of Clinical SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
30
|
Yurista SR, Nguyen CT, Rosenzweig A, de Boer RA, Westenbrink BD. Ketone bodies for the failing heart: fuels that can fix the engine? Trends Endocrinol Metab 2021; 32:814-826. [PMID: 34456121 DOI: 10.1016/j.tem.2021.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
Accumulating evidence suggests that the failing heart reverts energy metabolism toward increased utilization of ketone bodies. Despite many discrepancies in the literature, evidence from both bench and clinical research demonstrates beneficial effects of ketone bodies in heart failure. Ketone bodies are readily oxidized by cardiomyocytes and can provide ancillary fuel for the energy-starved failing heart. In addition, ketone bodies may help to restore cardiac function by mitigating inflammation, oxidative stress, and cardiac remodeling. In this review, we hypothesize that a therapeutic approach intended to restore cardiac metabolism through ketone bodies could both refuel and 'repair' the failing heart.
Collapse
Affiliation(s)
- Salva R Yurista
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
31
|
Deru LS, Bikman BT, Davidson LE, Tucker LA, Fellingham G, Bartholomew CL, Yuan HL, Bailey BW. The Effects of Exercise on β-Hydroxybutyrate Concentrations over a 36-h Fast: A Randomized Crossover Study. Med Sci Sports Exerc 2021; 53:1987-1998. [PMID: 33731648 DOI: 10.1249/mss.0000000000002655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study assessed β-hydroxybutyrate (BHB) concentration during a short-term fast and the degree to which an initial bout of exercise influences the rate of ketogenesis. METHODS Twenty subjects (11 male, 9 female) completed two 36-h fasts, with one protocol requiring the subject to complete a treadmill exercise session at the beginning of the fast. BHB levels were assessed via portable meter every 2 h, along with mood and hunger ratings. Venipuncture was performed every 12 h. RESULTS The mean (SD) areas under the curve for BHB concentration were 19.19 (2.59) mmol·L-1 (nonexercised) and 27.49 (2.59) mmol·L-1 (exercised), yielding a difference of 8.30 mmol·L-1 between conditions (95% posterior probability interval (PPI), 1.94 to 14.82 mmol·L-1; posterior probability (PP) = 0.99). The mean (SD) times to BHB concentration of 0.5 mmol·L-1 were 21.07 (2.95) h (nonexercised) and 17.5 (1.69) h (exercised), a 3.57-h difference (95% PPI, -2.11 to 10.87 h; PP = 0.89). The differences in area under the curve between conditions were 5.07 μU·mL-1 (95% PPI, -21.64 to 36.18 μU·mL-1; PP = 0.67) for insulin, 97.13 pg·mL-1 (95% PPI, 34.08 to 354.21 pg·mL-1; PP = 0.98) for glucagon, and 20.83 (95% PPI, 4.70 to 24.22; PP = 0.99) for the insulin/glucagon ratio. CONCLUSIONS Completing aerobic exercise at the beginning of a fast accelerates the production of BHB throughout the fast without altering subjective feelings of hunger, thirst, stomach discomfort, or mood. Insulin and the insulin/glucagon ratio experience a marked reduction within the first 12 h of fasting and was not altered with exercise. Thus, exercising at the beginning of a fast may improve the metabolic outcomes of fasting.
Collapse
Affiliation(s)
- Landon S Deru
- Department of Exercise Science, Brigham Young University, Provo, UT
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT
| | - Lance E Davidson
- Department of Exercise Science, Brigham Young University, Provo, UT
| | - Larry A Tucker
- Department of Exercise Science, Brigham Young University, Provo, UT
| | | | | | - Holly L Yuan
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT
| | - Bruce W Bailey
- Department of Exercise Science, Brigham Young University, Provo, UT
| |
Collapse
|
32
|
Chen H, Birnbaum Y, Ye R, Yang HC, Bajaj M, Ye Y. SGLT2 Inhibition by Dapagliflozin Attenuates Diabetic Ketoacidosis in Mice with Type-1 Diabetes. Cardiovasc Drugs Ther 2021; 36:1091-1108. [PMID: 34448973 DOI: 10.1007/s10557-021-07243-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND SGLT2 inhibitors increase plasma ketone concentrations. It has been suggested that insulinopenia, along with an increase in the counter-regulatory hormones epinephrine, corticosterone, glucagon and growth hormone, can induce ketoacidosis, especially in type-1 diabetes (T1DM). Dehydration precipitates SGLT2 inhibitor-induced ketoacidosis in type-2 diabetes. We studied the effects of dapagliflozin and water deprivation on the development of ketoacidosis and the associated signaling pathways in T1DM mice. METHODS C57BL/6 mice were fed a high-fat diet. After 7 days, some mice received intraperitoneal injection of streptozocin + alloxan (STZ/ALX). The treatment groups were control + water at lib; control + dapagloflozin + water at lib; control + dapagloflozin + water deprivation; STZ/ALX + water at lib; STZ/ALX + water deprivation; STZ/ALX + dapagloflozin + water at lib; STZ/ALX + dapagloflozin + water deprivation. Dapagliflozin was given for 7 days. In the morning of day 18, food was removed, and water was removed in the water deprivation groups. ELISA, rt-PCR, and immunoblotting were used to assess blood, heart, liver, white and brown adipose tissues. RESULTS The T1DM mice had ketoacidosis even without water deprivation. Water deprivation increased plasma levels of β-hydroxybutyrate, acetoacetate, corticosterone, and epinephrine and reduced the levels of adiponectin in T1DM mice. Interleukin (IL) 1β, IL-6, IL-8, and TNFα were also increased in the T1DM mice with water deprivation. Dapagliflozin attenuated the changes in the T1DM mice without and with water deprivation. Likewise, water deprivation increased the activation of the inflammasome in the heart, liver, and white fat of the T1DM mice and dapagliflozin attenuated these changes. Dapagliflozin reduced the mRNA levels of glucagon receptors in the liver and the increase in GPR109a in white and brown fat. In the liver, dapagliflozin increased AMPK phosphorylation, and attenuated the phosphorylation of TBK1 and the activation of NFκB. CONCLUSIONS Dapagliflozin reduced ketone body levels and attenuated the activation of NFκB and the activation of the inflammasome in T1DM mice with ketoacidosis.
Collapse
Affiliation(s)
- Huan Chen
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA.,Department of Acupuncture, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yochai Birnbaum
- The Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Regina Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA
| | - Hsiu-Chiung Yang
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Göteborg, Sweden
| | - Mandeep Bajaj
- Section of Endocrinology, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA.
| |
Collapse
|
33
|
Fukui T, Ohara M, Yamagishi SI. Glucagon in type 1 diabetes patients receiving SGLT2 inhibitors: A Friend or Foe? Diabetes Metab Res Rev 2021; 37:e3415. [PMID: 33049104 DOI: 10.1002/dmrr.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Tomoyasu Fukui
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Makoto Ohara
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Minami T, Kameda A, Terauchi Y. An evaluation of canagliflozin for the treatment of type 2 diabetes: an update. Expert Opin Pharmacother 2021; 22:2087-2094. [PMID: 34114925 DOI: 10.1080/14656566.2021.1939675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IntroductionSodium-glucose cotransporter-2 inhibitors (SGLT2is) are proven to ameliorate kidney and heart failure in patients with type 2 diabetes (T2D), in addition to improving glycemic controls. Canagliflozin is a SGLT2i and has proved beneficial for kidney and heart diseases in addition to decreasing the incidence of the composite outcomes of cardiovascular diseases and stroke.Areas coveredThis paper reviews the development of canagliflozin and its effects on renal dysfunction, heart failure, and vascular diseases.Expert opinionCanagliflozin contributes to the inhibition of renal function, decline progression and, therefore, is effective for T2D patients with chronic kidney dysfunction and albuminuria. The Canagliflozin Cardiovascular Assessment Study (CANVAS) revealed that patients showed increased incidence of amputation via unknown mechanisms, which has not been observed in other studies that used real-world data. Moreover, canagliflozin has been proven effective for anemia-associated outcomes of chronic kidney failure. Meta-analyses have revealed that canagliflozin contributed to lower diastolic blood pressure when compared with other SGLT2is. A subanalysis of CANVAS data proved that canagliflozin reduced the risk of hemorrhagic stroke. Canagliflozin should be used for T2D patients with chronic kidney failure and/or albuminuria and those with vascular diseases, with monitoring for ulcers and/or the pulse on the lower limb.
Collapse
Affiliation(s)
- Taichi Minami
- Department of Diabetes and Endocrinology, Saiseikai Yokohamashi Nanbu Hospital, Konan-ku, Yokohama, Japan.,Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Akiko Kameda
- Department of Diabetes and Endocrinology, Saiseikai Yokohamashi Nanbu Hospital, Konan-ku, Yokohama, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
35
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
36
|
Fang Y, Gu Y, Zhao C, Lv Y, Qian J, Zhu L, Yuan N, Zhang S, Wang L, Li M, Zhang Q, Xu L, Wei W, Li L, Ji L, Gao X, Zhang J, Shen Y, Chen Z, Wang G, Dai K, Wang J. Impact of supervised beego, a traditional Chinese water-only fasting, on thrombosis and haemostasis. BMJ Nutr Prev Health 2021; 4:4-17. [PMID: 34308107 PMCID: PMC8258074 DOI: 10.1136/bmjnph-2020-000183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Beego is a traditional Chinese complete water-only fasting practice initially developed for spiritual purposes, later extending to physical fitness purposes. Beego notably includes a psychological induction component that includes meditation and abdominal breathing, light body exercise and ends with a specific gradual refeeding program before returning to a normal diet. Beego has regained its popularity in recent decades in China as a strategy for helping people in subhealthy conditions or with metabolic syndrome, but we are unaware of any studies examining the biological effects of this practice. To address this, we here performed a longitudinal study of beego comprising fasting (7 and 14 day cohorts) and a 7-day programmed refeeding phase. In addition to detecting improvements in cardiovascular physiology and selective reduction of blood pressure in hypertensive subjects, we observed that beego decreased blood triacylglycerol (TG) selectively in TG-high subjects and increased cholesterol in all subjects during fasting; however, the cholesterol levels were normalised after completion of the refeeding program. Strikingly, beego reduced platelet formation, activation, aggregation and degranulation, resulting in an alleviated thrombosis risk, yet maintained haemostasis by sustaining levels of coagulation factors and other haemostatic proteins. Mechanistically, we speculate that downregulation of G6B and MYL9 may influence the observed beego-mediated reduction in platelets. Fundamentally, our study supports that supervised beego reduces thrombosis risk without compromising haemostasis capacity. Moreover, our results support that beego under medical supervision can be implemented as non-invasive intervention for reducing thrombosis risk, and suggest several lines of intriguing inquiry for future studies about this fasting practice (http://www.chictr.org.cn/index.aspx, number, ChiCTR1900027451).
Collapse
Affiliation(s)
- Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Yue Gu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Chen Zhao
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Yaqi Lv
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Jiawei Qian
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Lingjiang Zhu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Li Wang
- Soyo Center, Soochow University, Suzhou, China
- Department of Community Nursing, Soochow University, Suzhou, China
| | - Mengli Li
- Soyo Center, Soochow University, Suzhou, China
- Department of Community Nursing, Soochow University, Suzhou, China
| | - Qing Zhang
- Soyo Center, Soochow University, Suzhou, China
- Department of Kinesiology, Soochow University, Suzhou, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Lei Li
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Li Ji
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Xueqin Gao
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Jingyi Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
- Department of Pharmacology, Soochow University, Suzhou, China
| | - Yueping Shen
- Soyo Center, Soochow University, Suzhou, China
- Department of Epidemiology and Biostatistics, Soochow University, Suzhou, China
| | - Zixing Chen
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
| | - Guanghui Wang
- Department of Pharmacology, Soochow University, Suzhou, China
| | - Kesheng Dai
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Soyo Center, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Hædersdal S, Lund A, Nielsen-Hannerup E, Maagensen H, van Hall G, Holst JJ, Knop FK, Vilsbøll T. The Role of Glucagon in the Acute Therapeutic Effects of SGLT2 Inhibition. Diabetes 2020; 69:2619-2629. [PMID: 33004472 PMCID: PMC7679772 DOI: 10.2337/db20-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) effectively lower plasma glucose (PG) concentration in patients with type 2 diabetes, but studies have suggested that circulating glucagon concentrations and endogenous glucose production (EGP) are increased by SGLT2i, possibly compromising their glucose-lowering ability. To tease out whether and how glucagon may influence the glucose-lowering effect of SGLT2 inhibition, we subjected 12 patients with type 2 diabetes to a randomized, placebo-controlled, double-blinded, crossover, double-dummy study comprising, on 4 separate days, a liquid mixed-meal test preceded by single-dose administration of either 1) placebo, 2) the SGLT2i empagliflozin (25 mg), 3) the glucagon receptor antagonist LY2409021 (300 mg), or 4) the combination empagliflozin + LY2409021. Empagliflozin and LY2409021 individually lowered fasting PG compared with placebo, and the combination further decreased fasting PG. Previous findings of increased glucagon concentrations and EGP during acute administration of SGLT2i were not replicated in this study. Empagliflozin reduced postprandial PG through increased urinary glucose excretion. LY2409021 reduced EGP significantly but gave rise to a paradoxical increase in postprandial PG excursion, which was annulled by empagliflozin during their combination (empagliflozin + LY2409021). In conclusion, our findings do not support that an SGLT2i-induced glucagonotropic effect is of importance for the glucose-lowering property of SGLT2 inhibition.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | - Henrik Maagensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
El K, Capozzi ME, Campbell JE. Repositioning the Alpha Cell in Postprandial Metabolism. Endocrinology 2020; 161:5910252. [PMID: 32964214 PMCID: PMC7899437 DOI: 10.1210/endocr/bqaa169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Glucose homeostasis is maintained in large part due to the actions of the pancreatic islet hormones insulin and glucagon, secreted from β- and α-cells, respectively. The historical narrative positions these hormones in opposition, with insulin primarily responsible for glucose-lowering and glucagon-driving elevations in glucose. Recent progress in this area has revealed a more complex relationship between insulin and glucagon, highlighted by data demonstrating that α-cell input is essential for β-cell function and glucose homeostasis. Moreover, the common perception that glucagon levels decrease following a nutrient challenge is largely shaped by the inhibitory effects of glucose administration alone on the α-cell. Largely overlooked is that a mixed nutrient challenge, which is more representative of typical human feeding, actually stimulates glucagon secretion. Thus, postprandial metabolism is associated with elevations, not decreases, in α-cell activity. This review discusses the recent advances in our understanding of how α-cells regulate metabolism, with a particular focus on the postprandial state. We highlight α- to β-cell communication, a term that describes how α-cell input into β-cells is a critical axis that regulates insulin secretion and glucose homeostasis. Finally, we discuss the open questions that have the potential to advance this field and continue to evolve our understanding of the role that α-cells play in postprandial metabolism.
Collapse
Affiliation(s)
- Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Department of Medicine, Division of Endocrinology, Duke University, Durham, North Carolina
- Correspondence: Jonathan E. Campbell, 300 N Duke Street, Durham, North Carolina 27701. E-mail:
| |
Collapse
|
39
|
Chae H, Augustin R, Gatineau E, Mayoux E, Bensellam M, Antoine N, Khattab F, Lai BK, Brusa D, Stierstorfer B, Klein H, Singh B, Ruiz L, Pieper M, Mark M, Herrera PL, Gribble FM, Reimann F, Wojtusciszyn A, Broca C, Rita N, Piemonti L, Gilon P. SGLT2 is not expressed in pancreatic α- and β-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans. Mol Metab 2020; 42:101071. [PMID: 32896668 PMCID: PMC7554656 DOI: 10.1016/j.molmet.2020.101071] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i), or gliflozins, are anti-diabetic drugs that lower glycemia by promoting glucosuria, but they also stimulate endogenous glucose and ketone body production. The likely causes of these metabolic responses are increased blood glucagon levels, and decreased blood insulin levels, but the mechanisms involved are hotly debated. This study verified whether or not SGLT2i affect glucagon and insulin secretion by a direct action on islet cells in three species, using multiple approaches. Methods We tested the in vivo effects of two selective SGLT2i (dapagliflozin, empagliflozin) and a SGLT1/2i (sotagliflozin) on various biological parameters (glucosuria, glycemia, glucagonemia, insulinemia) in mice. mRNA expression of SGLT2 and other glucose transporters was assessed in rat, mouse, and human FACS-purified α- and β-cells, and by analysis of two human islet cell transcriptomic datasets. Immunodetection of SGLT2 in pancreatic tissues was performed with a validated antibody. The effects of dapagliflozin, empagliflozin, and sotagliflozin on glucagon and insulin secretion were assessed using isolated rat, mouse and human islets and the in situ perfused mouse pancreas. Finally, we tested the long-term effect of SGLT2i on glucagon gene expression. Results SGLT2 inhibition in mice increased the plasma glucagon/insulin ratio in the fasted state, an effect correlated with a decline in glycemia. Gene expression analyses and immunodetections showed no SGLT2 mRNA or protein expression in rodent and human islet cells, but moderate SGLT1 mRNA expression in human α-cells. However, functional experiments on rat, mouse, and human (29 donors) islets and the in situ perfused mouse pancreas did not identify any direct effect of dapagliflozin, empagliflozin or sotagliflozin on glucagon and insulin secretion. SGLT2i did not affect glucagon gene expression in rat and human islets. Conclusions The data indicate that the SGLT2i-induced increase of the plasma glucagon/insulin ratio in vivo does not result from a direct action of the gliflozins on islet cells. Gliflozins (SGLT2 and SGLT1/2 inhibitors) increase plasma glucagon/insulin ratio. SGLT2 is not expressed in rodent and human pancreatic α- and β-cells. SGLT1 is however expressed in human α-cells. SGLT2 and SGLT1/2 inhibitors do not directly affect glucagon and insulin secretion.
Collapse
Affiliation(s)
- Heeyoung Chae
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Robert Augustin
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Eva Gatineau
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Eric Mayoux
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Mohammed Bensellam
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Nancy Antoine
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Firas Khattab
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Bao-Khanh Lai
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Holger Klein
- Global Computational Biology and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bilal Singh
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Lucie Ruiz
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Michael Pieper
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Michael Mark
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Anne Wojtusciszyn
- Laboratory of Cellular Therapy for Diabetes, University Hospital of Montpellier, Montpellier, France; Department of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Christophe Broca
- Laboratory of Cellular Therapy for Diabetes, University Hospital of Montpellier, Montpellier, France
| | - Nano Rita
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes, and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Diabetic ketoacidosis is a life-threatening complication of diabetes characterized by hyperglycemia, acidosis, and ketosis. Ketoacidosis may occur with blood glucose level < 200 mg/dl (improperly defined as euglycemic ketoacidosis, euKA) and also in people without diabetes. The absence of marked hyperglycemia can delay diagnosis and treatment, resulting in potential serious adverse outcomes. RECENT FINDINGS Recently, with the wide clinical use of sodium glucose co-transporter 2 inhibitors (SGLT2i), euKA has come back into the spotlight. Use of SGLT2i use can predispose to the development of ketoacidosis with relatively low or normal levels of blood glucose. This condition, however, can occur, in the absence of diabetes, in settings such as pregnancy, restriction on caloric intake, glycogen storage diseases or defective gluconeogenesis (alcohol abuse or chronic liver disease), and cocaine abuse. euKA is a challenging diagnosis for most physicians who may be misled by the presence of normal glycemia or mild hyperglycemia. In this article, we review pathophysiology, etiologies, clinical presentation and the management of euKA.
Collapse
Affiliation(s)
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
41
|
Heyman SN, Bursztyn M, Szalat A, Muszkat M, Abassi Z. Fasting-Induced Natriuresis and SGLT: A New Hypothesis for an Old Enigma. Front Endocrinol (Lausanne) 2020; 11:217. [PMID: 32457696 PMCID: PMC7221140 DOI: 10.3389/fendo.2020.00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
For years, physicians and scientists were enthralled by the enigmatic phenomenon of fasting-associated diuresis and natriuresis and their reversal by feeding. This abrupt response is most prominent in obese and hypertensive individuals, and if repeated once and again may lead to the attenuation of blood pressure and improve insulin sensitivity. The mechanisms involved in early natriuresis and diuresis remain speculative as the renin-angiotensin-aldosterone axis and natriuretic peptides are initially suppressed. Based on gained insight using sodium-glucose transporter 2 (SGLT-2) inhibitors, herein, we propose a role for enhanced post-prandial proximal tubular sodium uptake, mediated by increased glucose-sodium co-transport, as daily filtered glucose increases, and reduced sodium uptake when glucose reabsorption diminishes. This phenomenon might be more pronounced in diabetics due to prolonged post-prandial hyperglycemia and intense SGLT-driven transport. Our hypothesis may also provide a physiologic basis for fasting-related reduced blood pressure in hypertension. This theory deserves challenging by experimental and clinical studies.
Collapse
Affiliation(s)
- Samuel N. Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
- *Correspondence: Samuel N. Heyman
| | - Michael Bursztyn
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| | - Auryan Szalat
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| | - Mordechai Muszkat
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics, Ruth and Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
- Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
- Zaid Abassi
| |
Collapse
|