1
|
Zhou P, Wang N, Lu S, Xiong J, Zhang Y, Jiang Q, Qian Q, Zhou Q, Liu J, Chen S. Dihydrolipoamide S-acetyltransferase activation alleviates diabetic kidney disease via AMPK-autophagy axis and mitochondrial protection. Transl Res 2024; 274:81-100. [PMID: 39389296 DOI: 10.1016/j.trsl.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Diabetic kidney disease (DKD), a severe complication of diabetes marked by deregulated glucose metabolism, remains enigmatic in its pathogenesis. Herein, we delved into the functional role of Dihydrolipoamide S-acetyltransferase (DLAT), a pivotal E2 component of the pyruvate dehydrogenase complex (PDC), in the context of DKD. Our findings revealed a downregulation of DLAT in the kidneys of diabetic patients, correlating inversely with kidney function. Parallel downregulation was observed in both high-fat diet/streptozotocin (HFD/STZ) and db/db mouse models, as well as in human proximal tubular epithelial cells (HK-2) cultured under hyperglycemic conditions. To further elucidate the role of endogenous DLAT in DKD, we employed genetic ablation of Dlat in mouse models. Dlat haploinsufficient mice exhibited exacerbated renal dysfunction, structural damage, fibrosis, and mitochondrial dysfunction under DKD conditions. Consistent with these findings, modulation of DLAT expression in HK-2 cells highlighted its influence on fibrosis, with overexpression attenuating Fibronectin and Collagen I levels, while downregulation exacerbated fibrosis. Mechanistically, we discovered that DLAT activates mitochondria autophagy through the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby mitigating mitochondrial dysfunction associated with DKD progression. Inhibition of AMPK abrogated the protective effects of DLAT against mitochondrial dysfunction and DKD. Notably, we identified Hyperforin (HPF), a phytochemical, as a potential therapeutic agent. HPF activates DLAT and AMPK, subsequently ameliorating renal dysfunction, injuries, and fibrosis in both in vivo and in vitro models. In summary, our study underscores the pivotal role of DLAT and AMPK in kidney health and highlights the therapeutic potential of HPF in treating DKD.
Collapse
Affiliation(s)
- Peihui Zhou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Ning Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Yao Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Quanxin Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Qiqi Qian
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Qian Zhou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| |
Collapse
|
2
|
Larry M, Rabizadeh S, Mohammadi F, Yadegar A, Jalalpour A, Mirmiranpour H, Farahmand G, Esteghamati A, Nakhjavani M. Relationship between advanced glycation end-products and advanced oxidation protein products in patients with type 2 diabetes with and without albuminuria: A cross-sectional survey. Health Sci Rep 2024; 7:e70057. [PMID: 39355098 PMCID: PMC11439888 DOI: 10.1002/hsr2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Background and Aims Literature suggests that oxidative stress plays a crucial role in the progression of diabetes. Since poor glycemic control enhances the formation of advanced glycation end-products (AGEs) and advanced oxidation protein products (AOPP) in individuals with diabetes, exploring the association between glycation and oxidative states in diabetes could also shed light on potential consequences. This study evaluated the effects of albuminuria on AGEs and AOPP levels and measured their relationship in participants with type 2 diabetes (T2D) with or without albuminuria. Methods A cross-sectional, matched case-control study was designed, including 38 T2D subjects with albuminuria and 38 matched T2D subjects with normoalbuminuria. Patients were matched by their body mass index (BMI), age, and duration of diabetes. The unadjusted and adjusted correlation between AGEs and AOPP in the studied groups were analyzed by multiple logistic regression. Using ggplot2, the ties between these two biochemical factors in cases and controls were plotted. Results This study elucidated a significant association between AGEs and AOPP in participants with normoalbuminuria (r = 0.331, p-value < 0.05), which continued to be significant after controlling for BMI, age, systolic blood pressure (SBP), and diastolic blood pressure (DBP) (r = 0.355, p-value < 0.05). However, there was no significant association between AGEs and AOPP in those with albuminuria in the unadjusted model (r = 0.034, p-value = 0.841) or after controlling for BMI, age, SBP, and DBP (r = 0.076, p-value = 0.685). Conclusion Oxidation and glycation molecular biomarkers were correlated in patients without albuminuria; however, this association was not observed in those with albuminuria.
Collapse
Affiliation(s)
- Mehrdad Larry
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Fatemeh Mohammadi
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Azadeh Jalalpour
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Hossein Mirmiranpour
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Ghasem Farahmand
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Kim G, Yoo HJ, Yoo MK, Choi JH, Lee KW. Methylglyoxal-derived hydroimidazolone-1/RAGE axis induces renal oxidative stress and renal fibrosis in vitro and in vivo. Toxicology 2024; 507:153887. [PMID: 39019314 DOI: 10.1016/j.tox.2024.153887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Advanced glycation end products (AGEs) are important contributors to the progression of chronic kidney diseases (CKD), including renal fibrosis. Although the relationship between AGEs and renal fibrosis has been well studied, the mechanisms of individual AGE-induced renal injury remain poorly understood. This study investigated the adverse effect of methylglyoxal-derived hydroimidazolone-1 (MG-H1), a methylglyoxal (MG)-derived AGE generated by the glycation of MG and arginine residues, on kidney damage. We aimed to elucidate the molecular mechanisms of MG-H1-mediated renal injury and fibrosis, focusing on the receptor for AGEs (RAGE) signaling and its effects on the Wnt/β-catenin pathway, MAPK pathway, and inflammatory responses. Our results suggest that the MG-H1/RAGE axis plays a significant role in the pathogenesis of CKD and its downstream events involving MAPK kinase-related factors and inflammatory factors. MG-H1 treatment modulated the expression of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and MAPK proteins (ERK1/2, JNK, and p38).
Collapse
Affiliation(s)
- Gyuri Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ki Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hyeong Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Yamaguchi H, Matsumura T, Sugawa H, Niimi N, Sango K, Nagai R. Glucoselysine, a unique advanced glycation end-product of the polyol pathway and its association with vascular complications in type 2 diabetes. J Biol Chem 2024; 300:107479. [PMID: 38879006 PMCID: PMC11283207 DOI: 10.1016/j.jbc.2024.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.
Collapse
Affiliation(s)
- Hiroko Yamaguchi
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Department of Food and Life Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Naoko Niimi
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan; Laboratory of Food and Regulation Biology, Department of Food and Life Science, School of Agriculture, Tokai University, Kumamoto, Japan.
| |
Collapse
|
5
|
Lai SWT, Hernandez-Castillo C, Gonzalez EDJL, Zoukari T, Talley M, Paquin N, Chen Z, Roep BO, Kaddis JS, Natarajan R, Termini J, Shuck SC. Methylglyoxal Adducts Are Prognostic Biomarkers for Diabetic Kidney Disease in Patients With Type 1 Diabetes. Diabetes 2024; 73:611-617. [PMID: 37967313 PMCID: PMC10958582 DOI: 10.2337/db23-0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
More than 30% of patients with type 1 diabetes develop diabetic kidney disease (DKD), which significantly increases mortality risk. The Diabetes Control and Complications Trial (DCCT) and follow-up study, Epidemiology of Diabetes Interventions and Complications (EDIC), established that glycemic control measured by HbA1c predicts DKD risk. However, the continued high incidence of DKD reinforces the urgent need for additional biomarkers to supplement HbA1c. Here, we assessed biomarkers induced by methylglyoxal (MG), a metabolic by-product that forms covalent adducts on DNA, RNA, and proteins, called MG adducts. Urinary MG adducts were measured in samples from patients with type 1 diabetes enrolled in DCCT/EDIC who did (case patients; n = 90) or did not (control patients; n = 117) develop DKD. Univariate and multivariable analyses revealed that measurements of MG adducts independently predict DKD before established DKD biomarkers such as glomerular filtration rate and albumin excretion rate. Elevated levels of MG adducts bestowed the greatest risk of developing DKD in a multivariable model that included HbA1c and other clinical covariates. Our work establishes a novel class of biomarkers to predict DKD risk and suggests that inclusion of MG adducts may be a valuable tool to improve existing predictors of complications like DKD prior to overt disease, and to aid in identifying at-risk individuals and personalized risk management. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Min Talley
- Biostatistics and Mathematical Oncology Core, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Nadia Paquin
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Bart O. Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - John S. Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - John Termini
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sarah C. Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA
| |
Collapse
|
6
|
Ding L, Hou Y, Liu J, Wang X, Wang Z, Ding W, Zhao K. Circulating Concentrations of advanced Glycation end Products, Carboxymethyl Lysine and Methylglyoxal are Associated With Renal Function in Individuals With Diabetes. J Ren Nutr 2024; 34:154-160. [PMID: 37802233 DOI: 10.1053/j.jrn.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is one of the most severe chronic complications of diabetes and is associated with higher level of advanced glycation end products (AGEs). The aim of this study was to investigate the diagnostic potential of combined detection of multiple serum AGEs in diagnosing DKD. METHODS Serum AGEs, Nε-(carboxymethyl) lysine (CML), Nε-(carboxyethyl) lysine, and methylglyoxal (MGO) levels were measured by enzyme-linked immunosorbent assay in 176 individuals with type 2 diabetes. Participants were classified into normoalbuminuria, microalbuminuria, and macroalbuminuria group according to their urinary albumin to creatinine ratio (UACR). RESULTS Higher serum AGEs levels were found to be positively correlated with U-Alb, UACR, and blood urea nitrogen in the study of 176 individuals with type 2 diabetes. CML and MGO levels were positively correlated with U-Alb, UACR, blood urea nitrogen, Scr, and uric acid, and negatively correlated with estimated glomerular filtration rate (P < .05). Multivariate logistic regression analysis showed that elevated levels of AGEs, CML, and MGO were independent risk factors for the progression of DKD (odds ratio = 1.861, 1.016, 7.607, P < .01). The sensitivity, specificity, and area under receiver operating characteristic curve of combined detection of AGEs, MGO, and CML were higher than those of three individual detections (area under the curve = 0.952, 0.772, 0.868, 0905, respectively, P < .05). CONCLUSION The combined detection of AGEs, CML, and MGO may improve the reliability of early diagnosis of DKD.
Collapse
Affiliation(s)
- Lina Ding
- Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, China
| | - Yanli Hou
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junjun Liu
- Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, China
| | - Zhibin Wang
- Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Ke Zhao
- Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, China; Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
7
|
Khanam A, Alouffi S, Alyahyawi AR, Husain A, Khan S, Alharazi T, Akasha R, Khan H, Shahab U, Ahmad S. Generation of autoantibodies against glycated fibrinogen: Role in diabetic nephropathy and retinopathy. Anal Biochem 2024; 685:115393. [PMID: 37977213 DOI: 10.1016/j.ab.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The process of glycation, characterized by the non-enzymatic reaction between sugars and free amino groups on biomolecules, is a key contributor to the development and progression of both microvascular and macrovascular complications associated with diabetes, particularly due to persistent hyperglycemia. This glycation process gives rise to advanced glycation end products (AGEs), which play a central role in the pathophysiology of diabetes complications, including nephropathy. The d-ribose-mediated glycation of fibrinogen plays a central role in the pathogenesis of diabetes nephropathy (DN) and retinopathy (DR) by the generation and accumulation of advanced glycation end products (AGEs). Glycated fibrinogen with d-ribose (Rb-gly-Fb) induces structural changes that trigger an autoimmune response by generating and exposing neoepitopes on fibrinogen molecules. The present research is designed to investigate the prevalence of autoantibodies against Rb-gly-Fb in individuals with type 2 diabetes mellitus (T2DM), DN & DR. Direct binding ELISA was used to test the binding affinity of autoantibodies from patients' sera against Rb-gly-Fb and competitive ELISA was used to confirm the direct binding findings by checking the bindings of isolated IgG against Rb-gly-Fb and its native conformer. In comparison to healthy subjects, 32% of T2DM, 67% of DN and 57.85% of DR patients' samples demonstrated a strong binding affinity towards Rb-gly-Fb. Both native and Rb-gly-Fb binding by healthy subjects (HS) sera were non-significant (p > 0.05). Furthermore, the early, intermediate, and end products of glycation have been assessed through biochemical and physicochemical analysis. The biochemical markers in the patient groups were also significant (p < 0.05) in comparison to the HS group. This study not only establishes the prevalence of autoantibodies against d-ribose glycated fibrinogen in DN but also highlights the potential of glycated fibrinogen as a biomarker for the detection of DN and/or DR. These insights may open new avenues for research into novel therapeutic strategies and the prevention of diabetes-related nephropathy and retinopathy.
Collapse
Affiliation(s)
- Afreen Khanam
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, 226026, India; Department of Biotechnology & Life Sciences, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, 202146, India
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Amjad R Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha'il, 2440, Saudi Arabia; Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Arbab Husain
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, 226026, India; Department of Biotechnology & Life Sciences, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, 202146, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, 226003, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia.
| |
Collapse
|
8
|
Pal R, Bhadada SK. AGEs accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review. Bone 2023; 176:116884. [PMID: 37598920 DOI: 10.1016/j.bone.2023.116884] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Multiple pathogenetic mechanisms are involved in the genesis of various microvascular and macrovascular complications of diabetes mellitus. Of all these, advanced glycation end products (AGEs) have been strongly implicated. OBJECTIVES The present narrative review aims to summarize the available literature on the genesis of AGEs and their potential role in the causation of both micro- and macrovascular complications of diabetes mellitus. RESULTS Uncontrolled hyperglycemia triggers the formation of AGEs through non-enzymatic glycation reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs accumulate in bloodstream and bodily tissues under chronic hyperglycemia. AGEs create irreversible cross-linkages of various intra- and extracellular molecules and activate the receptor for advanced glycation end products (RAGE), which stimulates downstream signaling pathways that generate reactive oxygen species (ROS) and contribute to oxidative stress. Additionally, intracellular glycation of mitochondrial respiratory chain proteins by AGEs contributes to the further generation of ROS, which, in turn, sets a vicious cycle that further promotes the production of endogenous AGEs. Through these pathways, AGEs play a principal role in the pathogenesis of various diabetic complications, including diabetic retinopathy, nephropathy, neuropathy, bone disease, atherosclerosis and non-alcoholic fatty liver disease. Multiple clinical studies and meta-analyses have revealed a positive association between tissue or circulating levels of AGEs and development of various diabetic complications. Besides, exogenous AGEs, primarily those derived from diets, promote insulin resistance, obesity, and metabolic syndrome. CONCLUSIONS AGEs, triggered by chronic hyperglycemia, play a pivotal role in the pathogenesis of various complications of diabetes mellitus.
Collapse
Affiliation(s)
- Rimesh Pal
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
9
|
Albrecht M, Sticht C, Wagner T, Hettler SA, De La Torre C, Qiu J, Gretz N, Albrecht T, Yard B, Sleeman JP, Garvalov BK. The crosstalk between glomerular endothelial cells and podocytes controls their responses to metabolic stimuli in diabetic nephropathy. Sci Rep 2023; 13:17985. [PMID: 37863933 PMCID: PMC10589299 DOI: 10.1038/s41598-023-45139-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
In diabetic nephropathy (DN), glomerular endothelial cells (GECs) and podocytes undergo pathological alterations, which are influenced by metabolic changes characteristic of diabetes, including hyperglycaemia (HG) and elevated methylglyoxal (MGO) levels. However, it remains insufficiently understood what effects these metabolic factors have on GEC and podocytes and to what extent the interactions between the two cell types can modulate these effects. To address these questions, we established a co-culture system in which GECs and podocytes were grown together in close proximity, and assessed transcriptional changes in each cell type after exposure to HG and MGO. We found that HG and MGO had distinct effects on gene expression and that the effect of each treatment was markedly different between GECs and podocytes. HG treatment led to upregulation of "immediate early response" genes, particularly those of the EGR family, as well as genes involved in inflammatory responses (in GECs) or DNA replication/cell cycle (in podocytes). Interestingly, both HG and MGO led to downregulation of genes related to extracellular matrix organisation in podocytes. Crucially, the transcriptional responses of GECs and podocytes were dependent on their interaction with each other, as many of the prominently regulated genes in co-culture of the two cell types were not significantly changed when monocultures of the cells were exposed to the same stimuli. Finally, the changes in the expression of selected genes were validated in BTBR ob/ob mice, an established model of DN. This work highlights the molecular alterations in GECs and podocytes in response to the key diabetic metabolic triggers HG and MGO, as well as the central role of GEC-podocyte crosstalk in governing these responses.
Collapse
Affiliation(s)
- Michael Albrecht
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tabea Wagner
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Steffen A Hettler
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Carolina De La Torre
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jiedong Qiu
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Benito Yard
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology Campus North, Building 319, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
10
|
Miranda ER, Mey JT, Blackburn BK, Chaves AB, Fuller KNZ, Perkins RK, Ludlow AT, Haus JM. Soluble RAGE and skeletal muscle tissue RAGE expression profiles in lean and obese young adults across differential aerobic exercise intensities. J Appl Physiol (1985) 2023; 135:849-862. [PMID: 37675469 PMCID: PMC10642519 DOI: 10.1152/japplphysiol.00748.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation. Circulating soluble isoforms of RAGE (sRAGE) formed either by proteolytic cleavage (cRAGE) or alternative splicing (esRAGE) act as decoys for RAGE ligands, thereby counteracting RAGE-mediated inflammation. We aimed to determine if RAGE expression or alternative splicing of RAGE is altered by obesity in muscle, and whether acute aerobic exercise (AE) modifies RAGE and sRAGE. Young (20-34 yr) participants without [n = 17; body mass index (BMI): 22.6 ± 2.6 kg/m2] and with obesity (n = 7; BMI: 32.8 ± 2.9 kg/m2) performed acute aerobic exercise (AE) at 40%, 65%, or 80% of maximal aerobic capacity (V̇o2max; mL/kg/min) on separate visits. Blood was taken before and 30 min after each AE bout. Muscle biopsy samples were taken before, 30 min, and 3 h after the 80% V̇o2max AE bout. Individuals with obesity had higher total RAGE and esRAGE mRNA and RAGE protein (P < 0.0001). In addition, RAGE and esRAGE transcripts correlated to transcripts of the NF-κB subunit P65 (P < 0.05). There was no effect of AE on total RAGE or esRAGE transcripts, or RAGE protein (P > 0.05), and AE tended to decrease circulating sRAGE in particular at lower intensities of exercise. RAGE expression is exacerbated in skeletal muscle with obesity, which may contribute to muscle inflammation via NF-κB. Future work should investigate the consequences of increased skeletal muscle RAGE on the development of obesity-related metabolic dysfunction and potential mitigating strategies.NEW & NOTEWORTHY This study is the first to investigate the effects of aerobic exercise intensity on circulating sRAGE isoforms, muscle RAGE protein, and muscle RAGE splicing. sRAGE isoforms tended to diminish with exercise, although this effect was attenuated with increasing exercise intensity. Muscle RAGE protein and gene expression were unaffected by exercise. However, individuals with obesity displayed nearly twofold higher muscle RAGE protein and gene expression, which positively correlated with expression of the P65 subunit of NF-κB.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jacob T Mey
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Brian K Blackburn
- Applied Health Sciences and Kinesiology, Humboldt State University, Arcata, California, United States
| | - Alec B Chaves
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Kelly N Z Fuller
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan K Perkins
- Department of Kinesiology, California State University Chico, Chico, California, United States
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
11
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
12
|
Kant S, Liu L, Vazquez-Torres A. The methylglyoxal pathway is a sink for glutathione in Salmonella experiencing oxidative stress. PLoS Pathog 2023; 19:e1011441. [PMID: 37267419 DOI: 10.1371/journal.ppat.1011441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Salmonella suffer the cytotoxicity of reactive oxygen species generated by the phagocyte NADPH oxidase in the innate host response. Periplasmic superoxide dismutases, catalases and hydroperoxidases detoxify superoxide and hydrogen peroxide (H2O2) synthesized in the respiratory burst of phagocytic cells. Glutathione also helps Salmonella combat the phagocyte NADPH oxidase; however, the molecular mechanisms by which this low-molecular-weight thiol promotes resistance of Salmonella to oxidative stress are currently unknown. We report herein that Salmonella undergoing oxidative stress transcriptionally and functionally activate the methylglyoxal pathway that branches off from glycolysis. Activation of the methylglyoxal pathway consumes a substantial proportion of the glutathione reducing power in Salmonella following exposure to H2O2. The methylglyoxal pathway enables Salmonella to balance glucose utilization with aerobic respiratory outputs. Salmonella take advantage of the metabolic flexibility associated with the glutathione-consuming methylglyoxal pathway to resist reactive oxygen species generated by the enzymatic activity of the phagocyte NADPH oxidase in macrophages and mice. Taken together, glutathione fosters oxidative stress resistance in Salmonella against the antimicrobial actions of the phagocyte NADPH oxidase by promoting the methylglyoxal pathway, an offshoot metabolic adaptation of glycolysis.
Collapse
Affiliation(s)
- Sashi Kant
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Lin Liu
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Andres Vazquez-Torres
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
- Veterans Affairs, Eastern Colorado Health Care System, Aurora, Colorado, United States of America
| |
Collapse
|
13
|
Shin A, Connolly S, Kabytaev K. Protein glycation in diabetes mellitus. Adv Clin Chem 2023; 113:101-156. [PMID: 36858645 DOI: 10.1016/bs.acc.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
14
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
15
|
Wei L, Han Y, Tu C. Molecular Pathways of Diabetic Kidney Disease Inferred from Proteomics. Diabetes Metab Syndr Obes 2023; 16:117-128. [PMID: 36760602 PMCID: PMC9842482 DOI: 10.2147/dmso.s392888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023] Open
Abstract
Diabetic kidney disease (DKD) affects an estimated 20-40% of type 2 diabetes patients and is among the most prevalent microvascular complications in this patient population, contributing to high morbidity and mortality rates. Currently, changes in albuminuria status are thought to be a primary indicator of the onset or progression of DKD, yet progressive nephropathy and renal impairment can occur in certain diabetic individuals who exhibit normal urinary albumin levels, emphasizing the lack of sensitivity and specificity associated with the use of albuminuria as a biomarker for detecting diabetic kidney disease and predicting DKD risk. According to the study, a non-invasive method for early detection or prediction of DKD may involve combining proteomic analytical techniques such second generation sequencing, mass spectrometry, two-dimensional gel electrophoresis, and other advanced system biology algorithms. Another category of proteins of relevance may now be provided by renal tissue biomarkers. The establishment of reliable proteomic biomarkers of DKD represents a novel approach to improving the diagnosis, prognostic evaluation, and treatment of affected patients. In the present review, a series of protein biomarkers that have been characterized to date are discussed, offering a theoretical foundation for future efforts to aid patients suffering from this debilitating microvascular complication.
Collapse
Affiliation(s)
- Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People’s Republic of China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
- Correspondence: Chao Tu, Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213000, People’s Republic of China, Email
| |
Collapse
|
16
|
Yan Y, Hemmler D, Schmitt-Kopplin P. HILIC-MS for Untargeted Profiling of the Free Glycation Product Diversity. Metabolites 2022; 12:metabo12121179. [PMID: 36557217 PMCID: PMC9783660 DOI: 10.3390/metabo12121179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing glycation products already exist, only a few common advanced glycation end products (AGEs) are usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glycation products are still lacking. The aim of this study was to establish a method for simultaneously characterizing a wide range of free glycation products using the untargeted metabolomics approach. In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation products were chosen for systematic method optimization, rather than using a limited number of standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns (zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds. The zwitterionic columns showed better performance than the other two types of columns in terms of the detected feature numbers and detected free glycation products. Two zwitterionic columns were selected for further mobile phase optimization. For both columns, the neutral mobile phase provided better peak separation, whereas the acidic condition provided a higher quality of chromatographic peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to discover glycation products in terms of providing good peak shapes and maintaining comparable compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation product features despite interference from the complex endogenous metabolites from biological matrices, which showed great application potential for glycation research and can help discover new biologically important glycation products.
Collapse
Affiliation(s)
- Yingfei Yan
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| |
Collapse
|
17
|
Martínez-Solís J, Calzada F, Barbosa E, Gutiérrez-Meza JM. Antidiabetic and Toxicological Effects of the Tea Infusion of Summer Collection from Annona cherimola Miller Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233224. [PMID: 36501263 PMCID: PMC9740447 DOI: 10.3390/plants11233224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Annona cherimola Miller (Ac) is a plant used in Mexican traditional medicine for the treatment of diabetes. In this work, the tea infusion extracts obtained from 1.5 g of leaf powder from Ac collected in May (AcMa), June (AcJun), July (AcJul), and August (AcAu) were evaluated on streptozocin-induced diabetic (STID) mice and for subchronic toxicity in STID and non-diabetic (ND) mice. In addition, extracts were subjected to high-performance liquid chromatography with diode array detection (HPLC-DAD). Results showed that the tea infusion extract of the sample collected in August (AcAu) exhibited the most significant antihyperglycemic activity during all acute assays. The analysis of the extracts (AcMa, AcJu, AcJul, and AcAu) by HPLC-DAD revealed that flavonoid glycosides, rutin, narcissin, and nicotiflorin were the major components. In addition, the sample AcAu contained the best concentration of flavonoids. In the case of subchronic oral toxicity, the AcAu sample did not cause mortality in STID mice, and histopathological analysis revealed significant improvement in the changes associated with diabetes in the liver and kidneys. These findings suggest that the Ac leaves collected in August may be a source of flavonoids such as rutin, with antidiabetic potential. In addition, these findings support the use of Ac to treat diabetes in traditional medicine.
Collapse
Affiliation(s)
- Jesús Martínez-Solís
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06720, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06720, Mexico
| | - Elizabeth Barbosa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
| | - Juan Manuel Gutiérrez-Meza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
| |
Collapse
|
18
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
19
|
Takenokuchi M, Matsumoto K, Nitta Y, Takasugi R, Inoue Y, Iwai M, Kadoyama K, Yoshida K, Takano-Ohmuro H, Taniguchi T. In Vitro and In Vivo Antiglycation Effects of Connarus ruber Extract. PLANTA MEDICA 2022; 88:1026-1035. [PMID: 34861700 DOI: 10.1055/a-1690-3528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accumulation of advanced glycation end products (AGEs) of the Maillard reaction has been implicated in the pathogenesis of diabetes and its complications. Connarus ruber has been used as a folk remedy for several diseases, including diabetes; however, its underlying mechanism has not yet been investigated. This study investigated the effects of C. ruber extract against glycation on collagen-linked AGEs in vitro and streptozotocin-induced diabetic rats (STZ-DM rats) in vivo. The antiglycation activities of C. ruber extract and aminoguanidine (AG) were examined using a collagen glycation assay kit. Nonfluorescent AGE, Nε-carboxymethyl lysine (CML), Nω-carboxymethyl arginine, and Nε-carboxyethyl lysine levels were measured via electrospray ionization-liquid chromatography-tandem mass spectrometry. The effect of the extract on the cytotoxicity of methylglyoxal (MG), a precursor of AGEs, was examined in HL60 cells. STZ-DM rats were treated with the extract for 4 wk, and the effect was assessed using biochemical markers in the serum and CML-positive cells in renal tissues. C. ruber extract dose-dependently inhibited the glycation of collagen and formation of nonfluorescent AGEs, which was comparable to AG, and it significantly attenuated MG-induced cytotoxicity in HL60 cells. Furthermore, the glycated albumin levels in STZ-DM rats decreased, the increase in serum lipid levels was reversed, and immunohistochemistry demonstrated that CML deposition in the glomerulus of STZ-DM rats significantly decreased. Although further studies are needed, C. ruber could be a potential therapeutic for preventing and progressing many pathological conditions, including diabetes.
Collapse
Affiliation(s)
- Mariko Takenokuchi
- Faculty of Pharmacological Sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Kinuyo Matsumoto
- Faculty of Health and Welfare, Kobe Women's University, Kobe, Hyogo, Japan
| | - Yuko Nitta
- Faculty of Health and Welfare, Kobe Women's University, Kobe, Hyogo, Japan
| | | | - Yukari Inoue
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Michi Iwai
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keiichi Kadoyama
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | | | | | - Taizo Taniguchi
- Research Institute for Human Health Science, Konan University, Kobe, Hyogo, Japan
- Pharmacrea Kobe Co. Ltd., Kobe, Hyogo, Japan
| |
Collapse
|
20
|
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, Zewde EA, Agegnehu Teshome A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 2022; 9:1002710. [PMID: 36188225 PMCID: PMC9521189 DOI: 10.3389/fmolb.2022.1002710] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a common metabolic illness characterized by hyperglycemia and is linked to long-term vascular problems that can impair the kidney, eyes, nerves, and blood vessels. By increasing protein glycation and gradually accumulating advanced glycation end products in the tissues, hyperglycemia plays a significant role in the pathogenesis of diabetic complications. Advanced glycation end products are heterogeneous molecules generated from non-enzymatic interactions of sugars with proteins, lipids, or nucleic acids via the glycation process. Protein glycation and the buildup of advanced glycation end products are important in the etiology of diabetes sequelae such as retinopathy, nephropathy, neuropathy, and atherosclerosis. Their contribution to diabetes complications occurs via a receptor-mediated signaling cascade or direct extracellular matrix destruction. According to recent research, the interaction of advanced glycation end products with their transmembrane receptor results in intracellular signaling, gene expression, the release of pro-inflammatory molecules, and the production of free radicals, all of which contribute to the pathology of diabetes complications. The primary aim of this paper was to discuss the chemical reactions and formation of advanced glycation end products, the interaction of advanced glycation end products with their receptor and downstream signaling cascade, and molecular mechanisms triggered by advanced glycation end products in the pathogenesis of both micro and macrovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Misganaw Asmamaw Mengstie,
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
21
|
Does a Gluten-Free Diet Affect BMI and Glycosylated Hemoglobin in Children and Adolescents with Type 1 Diabetes and Asymptomatic Celiac Disease? A Meta-Analysis and Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9081247. [PMID: 36010137 PMCID: PMC9406674 DOI: 10.3390/children9081247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Background: Children diagnosed with type 1 diabetes mellitus (T1DM) are more prone to having celiac disease (CD) than the normal population. Moreover, patients with this dual diagnosis who are also on a diabetic and gluten-free diet (GFD) risk faltering growth and uncontrolled blood glucose levels. This review aims to assess the efficacy and effectiveness of managing patients with T1DM screened for CD with GFD to prevent complications associated with these chronic pathologies in childhood and adulthood. Materials and Methods: We abided by the PRISMA guidelines in this meta-analysis and used multiple databases and search engines. We included case−control studies. The primary outcomes were changes in the standard deviation score, body mass index (SDS BMI), and glycosylated hemoglobin (HA1C) after being on a GFD for at least twelve months. Results: The pooled data from the six studies included showed that there was neither a statistically significant difference in the mean SDS BMI (−0.28 (95% CI −0.75, 0.42)) (p = 0.24) nor in the mean of HA1C (mean −0.07 (95% CI −0.44, 0.30)) (p = 0.36) for the same group. HDL cholesterol improved significantly in patients on a strict GFD (p < 0.01). Conclusions: In children with T1DM and asymptomatic CD, being on a GFD had no significant effect on BMI or HA1C. However, it can have a protective effect on the other complications found in both chronic pathologies.
Collapse
|
22
|
Lamprea-Montealegre JA, Arnold AM, McCLelland RL, Mukamal KJ, Djousse L, Biggs ML, Siscovick DS, Tracy RP, Beisswenger PJ, Psaty BM, Ix JH, Kizer JR. Plasma Levels of Advanced Glycation Endproducts and Risk of Cardiovascular Events: Findings From 2 Prospective Cohorts. J Am Heart Assoc 2022; 11:e024012. [PMID: 35904195 PMCID: PMC9375486 DOI: 10.1161/jaha.121.024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Advanced glycation endproducts (AGEs) have been linked to cardiovascular disease (CVD) in cohorts with and without diabetes. Data are lacking on prospective associations of various α-dicarbonyl-derived AGEs and incident CVD in the general population. We tested the hypothesis that major plasma AGEs are associated with new-onset CVD in 2 population-based cohorts of differing age and comorbidities. Methods and Results Analyses involved a random subcohort (n=466) from the Cardiovascular Health Study and a case-cohort sample (n=1631) from the Multi-Ethnic Study of Atherosclerosis. Five AGEs and 2 oxidative products were measured by liquid chromatography tandem mass spectrometry. Associations with CVD (myocardial infarction and stroke) were evaluated with Cox regression. Participants in the Cardiovascular Health Study were older than the Multi-Ethnic Study of Atherosclerosis, and had more comorbidities, along with higher levels of all AGEs. During median follow-up of 11 years, 439 participants in the Multi-Ethnic Study of Atherosclerosis and 200 in the Cardiovascular Health Study developed CVD. After multivariable adjustment, carboxymethyl-lysine, 3-deoxyglucosone hydroimidazolones and a summary variable of all measured AGEs (principal component 1) were significantly associated with incident CVD in the Cardiovascular Health Study (HRs [95% CI]: 1.20 [1.01, 1.42], 1.45 [1.23, 1.72], and 1.29 [1.06, 1.56], respectively), but not the Multi-Ethnic Study of Atherosclerosis. Oxidative products were not associated with CVD in either cohort. Conclusions We found α-dicarbonyl-derived AGEs to be associated with CVD in an older cohort, but not in a healthier middle-aged/older cohort. Our results suggest that AGEs may exert detrimental cardiovascular effects only under conditions of marked dicarbonyl and oxidative stress. Further investigation of α-dicarbonyl derivatives could lead to potential new strategies for CVD prevention in high-risk older populations.
Collapse
Affiliation(s)
- Julio A Lamprea-Montealegre
- Cardiology Section San Francisco Veterans Affairs Health Care System San Francisco CA.,Kidney Health Research Collaborative San Francisco Veterans Affairs Health Care System and University of California San Francisco CA.,Department of Medicine University of California San Francisco CA
| | - Alice M Arnold
- Department of Biostatistics, School of Public Health University of Washington Seattle WA
| | - Robyn L McCLelland
- Department of Biostatistics, School of Public Health University of Washington Seattle WA
| | - Kenneth J Mukamal
- Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston MA
| | - Luc Djousse
- Division of Aging, Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| | - Mary L Biggs
- Department of Biostatistics, School of Public Health University of Washington Seattle WA
| | | | - Russell P Tracy
- Department of Pathology and Laboratory Medicine University of Vermont College of Medicine Burlington VT
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services University of Washington Seattle WA
| | - Joachim H Ix
- Division of Nephrology, Department of Medicine University of California San Diego CA
| | - Jorge R Kizer
- Cardiology Section San Francisco Veterans Affairs Health Care System San Francisco CA.,Department of Medicine University of California San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco CA
| |
Collapse
|
23
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
24
|
Methylglyoxal and glyoxalase 1-a metabolic stress pathway-linking hyperglycemia to the unfolded protein response and vascular complications of diabetes. Clin Sci (Lond) 2022; 136:819-824. [PMID: 35635155 PMCID: PMC9152679 DOI: 10.1042/cs20220099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
The study of the glyoxalase system by Thornalley and co-workers in clinical diabetes mellitus and correlation with diabetic complications revealed increased exposure of patients with diabetes to the reactive, dicarbonyl metabolite methylglyoxal (MG). Twenty-eight years later, extended and built on by Thornalley and co-workers and others, the glyoxalase system is an important pathway contributing to the development of insulin resistance and vascular complications of diabetes. Other related advances have been: characterization of a new kind of metabolic stress—‘dicarbonyl stress’; identification of the major physiological advanced glycation endproduct (AGE), MG-H1; physiological substrates of the unfolded protein response (UPR); new therapeutic agents—‘glyoxalase 1 (Glo1) inducers’; and a refined mechanism underlying the link of dysglycemia to the development of insulin resistance and vascular complications of diabetes.
Collapse
|
25
|
Koska J, Gerstein HC, Beisswenger PJ, Reaven PD. Response to Comment on Koska et al. Advanced Glycation End Products Predict Loss of Renal Function and High-Risk Chronic Kidney Disease in Type 2 Diabetes. Diabetes Care 2022;44:684-691. Diabetes Care 2022; 45:e111-e112. [PMID: 35653599 PMCID: PMC9210513 DOI: 10.2337/dci22-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Juraj Koska
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ
| | | | | | - Peter D. Reaven
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ
- The University of Arizona College of Medicine—Phoenix, Phoenix, AZ
| |
Collapse
|
26
|
Steenbeke M, Speeckaert R, Desmedt S, Glorieux G, Delanghe JR, Speeckaert MM. The Role of Advanced Glycation End Products and Its Soluble Receptor in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23073439. [PMID: 35408796 PMCID: PMC8998875 DOI: 10.3390/ijms23073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are more prone to oxidative stress and chronic inflammation, which may lead to an increase in the synthesis of advanced glycation end products (AGEs). Because AGEs are mostly removed by healthy kidneys, AGE accumulation is a result of both increased production and decreased kidney clearance. On the other hand, AGEs may potentially hasten decreasing kidney function in CKD patients, and are independently related to all-cause mortality. They are one of the non-traditional risk factors that play a significant role in the underlying processes that lead to excessive cardiovascular disease in CKD patients. When AGEs interact with their cell-bound receptor (RAGE), cell dysfunction is initiated by activating nuclear factor kappa-B (NF-κB), increasing the production and release of inflammatory cytokines. Alterations in the AGE-RAGE system have been related to the development of several chronic kidney diseases. Soluble RAGE (sRAGE) is a decoy receptor that suppresses membrane-bound RAGE activation and AGE-RAGE-related toxicity. sRAGE, and more specifically, the AGE/sRAGE ratio, may be promising tools for predicting the prognosis of kidney diseases. In the present review, we discuss the potential role of AGEs and sRAGE as biomarkers in different kidney pathologies.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Stéphanie Desmedt
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
- Research Foundation Flanders, 1000 Brussels, Belgium
- Correspondence:
| |
Collapse
|
27
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
28
|
Koska J, Gerstein HC, Beisswenger PJ, Reaven PD. Advanced Glycation End Products Predict Loss of Renal Function and High-Risk Chronic Kidney Disease in Type 2 Diabetes. Diabetes Care 2022; 45:684-691. [PMID: 35051276 PMCID: PMC8918197 DOI: 10.2337/dc21-2196] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/18/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate the association of a multicomponent advanced glycation end product (AGE) panel with decline in kidney function and its utility in predicting renal function loss (RFL) when added to routine clinical measures in type 2 diabetes. RESEARCH DESIGN AND METHODS Carboxymethyl and carboxyethyl lysine and methylglyoxal, 3-deoxyglucosone, and glyoxal hydroimidazolones were measured in baseline serum and plasma samples, respectively, from Action to Control Cardiovascular Risk in Diabetes (ACCORD) (n = 1,150) and Veterans Affairs Diabetes Trial (VADT) (n = 447) participants. A composite AGE score was calculated from individual AGE z scores. The primary outcome was a sustained 30% decline in estimated glomerular filtration rate (eGFR) (30% RFL in both cohorts). Secondary outcomes (in ACCORD) were 40% RFL, macroalbuminuria, and high-risk chronic kidney disease (hrCKD). RESULTS After adjustment for baseline and follow-up HbA1c and other risk factors in ACCORD, the AGE score was associated with reduction in eGFR (β-estimate -0.66 mL/min ⋅ 1.73 m2 per year; P = 0.001), 30% RFL (hazard ratio 1.42 [95% CI 1.13-1.78]; P = 0.003), 40% RFL (1.40 [1.13-1.74]; P = 0.003), macroalbuminuria (1.53 [1.13-2.06]; P = 0.006), and hrCKD (1.88 [1.37-2.57]; P < 0.0001). AGE score improved net reclassification (NRI) and relative integrated discrimination (IDI) for 30% RFL (NRI 23%; P = 0.02) (relative IDI 7%; P = 0.009). In VADT, the AGE score calculated by the ACCORD-derived coefficients was associated with 30% RFL (1.37 [1.03-1.82); P = 0.03) and improved NRI (24%; P = 0.03) but not IDI (P = 0.18). CONCLUSIONS These data provide further support for a causal role of AGEs in diabetic nephropathy independently of glycemic control and suggest utility of the composite AGE panel in predicting long-term decline in renal function.
Collapse
Affiliation(s)
- Juraj Koska
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ
| | | | | | - Peter D Reaven
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ.,University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| |
Collapse
|
29
|
Ban I, Sugawa H, Nagai R. Protein Modification with Ribose Generates Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine. Int J Mol Sci 2022; 23:ijms23031224. [PMID: 35163152 PMCID: PMC8835445 DOI: 10.3390/ijms23031224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/28/2022] Open
Abstract
Advanced glycation end products (AGEs) are associated with diabetes and its complications. AGEs are formed by the non-enzymatic reactions of proteins and reducing sugars, such as glucose and ribose. Ribose is widely used in glycation research as it generates AGEs more rapidly than glucose. This study analyzed the AGE structures generated from ribose-modified protein by liquid chromatography-quadrupole time-of-flight mass spectrometry. Among these AGEs, Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine (MG-H1) was the most abundant in ribose-glycated bovine serum albumin (ribated-BSA) among others, such as Nε-(carboxymethyl) lysine, Nε-(carboxyethyl) lysine, and Nω-(carboxymethyl) arginine. Surprisingly, MG-H1 was produced by ribated-BSA in a time-dependent manner, whereas methylglyoxal levels (MG) were under the detectable level. In addition, Trapa bispinosa Roxb. hot water extract (TBE) possesses several anti-oxidative compounds, such as ellagic acid, and has been reported to inhibit the formation of MG-H1 in vivo. Thus, we evaluated the inhibitory effects of TBE on MG-H1 formation using ribose- or MG-modified proteins. TBE inhibited MG-H1 formation in gelatin incubated with ribose and ribated-BSA, but not in MG-modified gelatin. Furthermore, MG-H1 formation was inhibited by diethylenetriaminepentaacetic acid. These results demonstrated that ribose reacts with proteins to generate Amadori compounds and form MG-H1 via oxidation.
Collapse
|
30
|
Monnier VM, Sell DR, Gao X, Genuth SM, Lachin JM, Bebu I. Plasma advanced glycation end products and the subsequent risk of microvascular complications in type 1 diabetes in the DCCT/EDIC. BMJ Open Diabetes Res Care 2022; 10:10/1/e002667. [PMID: 35058313 PMCID: PMC8783825 DOI: 10.1136/bmjdrc-2021-002667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION To assess impact of glycemic control on plasma protein-bound advanced glycation end products (pAGEs) and their association with subsequent microvascular disease. RESEARCH DESIGN AND METHODS Eleven pAGEs were measured by liquid chromatography-mass spectrometry in banked plasma from 466 participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study at three time points (TPs): DCCT year 4 (TP1) and year 8 (TP2) and EDIC year 5/6 (TP3). Correlation coefficients assessed cross-sectional associations, and Cox proportional hazards models assessed associations with subsequent risk of microvascular complications through EDIC year 24. RESULTS Glucose-derived glycation products fructose-lysine (FL), glucosepane (GSPN) and carboxymethyl-lysine (CML) decreased with intensive glycemic control at both TP1 and TP2 (p<0.0001) but were similar at TP3, and correlated with hemoglobin A1c (HbA1c). At TP1, the markers were associated with the subsequent risk of several microvascular outcomes. These associations did not remain significant after adjustment for HbA1c, except methionine sulfoxide (MetSOX), which remained associated with diabetic kidney disease. In unadjusted models using all 3 TPs, glucose-derived pAGEs were associated with subsequent risk of proliferative diabetic retinopathy (PDR, p<0.003), clinically significant macular edema (CSME, p<0.015) and confirmed clinical neuropathy (CCN, p<0.018, except CML, not significant (NS)). Adjusted for age, sex, body mass index, diabetes duration and mean updated HbA1c, the associations remained significant for PDR (FL: p<0.002, GSPN: p≤0.02, CML: p<0.003, pentosidine: p<0.02), CMSE (CML: p<0.03), albuminuria (FL: p<0.02, CML: p<0.03) and CCN (FL: p<0.005, GSPN : p<0.003). CONCLUSIONS pAGEs at TP1 are not superior to HbA1c for risk prediction, but glucose-derived pAGEs at three TPs and MetSOX remain robustly associated with progression of microvascular complications in type 1 diabetes even after adjustment for HbA1c and other factors.
Collapse
Affiliation(s)
- Vincent M Monnier
- Pathology and Biochemistry, Case Western Reserve University Department of Pathology, Cleveland, Ohio, USA
| | - David R Sell
- Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoyu Gao
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Saul M Genuth
- Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John M Lachin
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Ionut Bebu
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| |
Collapse
|
31
|
Turki Jalil A, Alameri AA, Iqbal Doewes R, El-Sehrawy AA, Ahmad I, Ramaiah P, Kadhim MM, Kzar HH, Sivaraman R, Romero-Parra RM, Ansari MJ, Fakri Mustafa Y. Circulating and dietary advanced glycation end products and obesity in an adult population: A paradox of their detrimental effects in obesity. Front Endocrinol (Lausanne) 2022; 13:966590. [PMID: 36531466 PMCID: PMC9752071 DOI: 10.3389/fendo.2022.966590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The detrimental role of advanced glycation end products (AGEs) against cardio-metabolic health has been revealed in several previous reports. However, the results of studies regarding the association between AGEs and obesity measurements are inconsistent. In the current meta-analysis, we aimed to quantitatively summarize the results of studies that evaluated the association between circulating and dietary AGEs with obesity measurements among the adult population. METHODS A systematic search from PubMed, Embase, and Scopus electronic databases until 30 October 2022 retrieved a total of 21,429 observational studies. After duplicate removal, title/abstract screening, and full-text reading by two independent researchers, a final number of 18 manuscripts remained to be included in the meta-analysis. RESULTS Those in the highest category of circulating AGEs had ~1.5 kg/m2 reduced BMI compared with those in the lowest AGEs category [weighted mean difference (WMD): -1.485; CI: -2.459, -0.511; p = 0.003], while a nonsignificant increase in BMI was observed in the highest versus lowest category of dietary AGEs (WMD: 0.864, CI: -0.365, 2.094; p = 0.186). Also, lower amounts of circulating AGEs in individuals with obesity versus individuals without obesity were observed (WMD: -57.220, CI: -84.290, -30.149; p < 0.001). AGE type can be considered as a possible source of heterogeneity. CONCLUSION In the current meta-analysis, we observed an inverse association between circulating AGEs and body mass index among adults. Due to low study numbers, further studies are warranted to better elucidate these results.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Abduladheem Turki Jalil, ; Amr A. El-Sehrawy,
| | | | | | - Amr A. El-Sehrawy
- Department of Internal Medicine, Faculty of Medicine, Mansoura Specialized Medical Hospital, Mansoura University, Mansoura, Egypt
- *Correspondence: Abduladheem Turki Jalil, ; Amr A. El-Sehrawy,
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mustafa M. Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | - Hamzah H. Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - R. Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | | | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
32
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
33
|
Zhou C, Zhang Q, Lu L, Wang J, Liu D, Liu Z. Metabolomic Profiling of Amino Acids in Human Plasma Distinguishes Diabetic Kidney Disease From Type 2 Diabetes Mellitus. Front Med (Lausanne) 2021; 8:765873. [PMID: 34912824 PMCID: PMC8666657 DOI: 10.3389/fmed.2021.765873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Diabetic kidney disease (DKD) is a highly prevalent complication in patients with type 2 diabetes mellitus (T2DM). Patients with DKD exhibit changes in plasma levels of amino acids (AAs) due to insulin resistance, reduced protein intake, and impaired renal transport of AAs. The role of AAs in distinguishing DKD from T2DM and healthy controls has yet to be elucidated. This study aimed to investigate the metabolomic profiling of AAs in the plasma of patients with DKD. Methods: We established an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to detect the plasma levels of the 20 AAs in healthy controls (n = 112), patients with T2DM (n = 101), and patients with DKD (n = 101). The key AAs associated with DKD were identified by orthogonal partial least-squares discriminant analysis (OPLS-DA) models with loading plots, shared and unique structures (SUS) plots, and variable importance in projection (VIP) values. The discrimination accuracies of these key AAs were then determined by analyses of receiver-operating characteristic (ROC) curves. Results: Metabolomic profiling of plasma revealed significant alterations in levels of the 20 AAs in patients with DKD when compared to those in either patients with T2DM or healthy controls. Metabolomic profiling of the 20 AAs showed a visual separation of patients with DKD from patients with T2DM and healthy controls in OPLS-DA models. Based on loading plots, SUS plots, and VIP values in the OPLS-DA models, we identified valine and cysteine as potential contributors to the progression of DKD from patients with T2DM. Histidine was identified as a key mediator that could distinguish patients with DKD from healthy controls. Plasma levels of histidine and valine were decreased significantly in patients with DKD with a decline in kidney function, and had excellent performance in distinguishing patients with DKD from patients with T2DM and healthy controls according to ROC curves. Conclusion: Plasma levels of histidine and valine were identified as the main AAs that can distinguish patients with DKD. Our findings provide new options for the prevention, treatment, and management of DKD.
Collapse
Affiliation(s)
- Chunyu Zhou
- Blood Purification Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liqian Lu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Blood Purification Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
34
|
Zhao Y, Tang Y, Sang S. Dietary Quercetin Reduces Plasma and Tissue Methylglyoxal and Advanced Glycation End Products in Healthy Mice Treated with Methylglyoxal. J Nutr 2021; 151:2601-2609. [PMID: 34091674 DOI: 10.1093/jn/nxab176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 05/11/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Methylglyoxal (MGO), a precursor of advanced glycation end products (AGEs), has been linked to AGEs-associated diseases. OBJECTIVES This study investigated the efficacy and mechanisms of dietary quercetin in decreasing plasma and tissue concentrations of MGO and AGEs in MGO-administered mice. METHODS Male, 6-wk-old CD-1 mice were administered AIN-93G diet and water (Con) or 0.12% MGO in water (MGO) or MGO plus 0.2% (0.2Q) dietary quercetin for 1 wk (n = 5) (experiment 1), and water (Con), 0.12% MGO (MGO), or MGO plus 0.1% (0.1Q), 0.2% (0.2Q), or 0.4% (0.4Q) dietary quercetin for 6 wk (n = 10) (experiment 2). The plasma, kidney, and liver concentrations of MGO, quercetin, and isorhamnetin and their trapping adducts with MGO were determined by LC-MS, and AGE concentrations were measured by the fluorescent method. Furthermore, the expressions of glyoxalase I/II (GLO I/II) and aldose reductase (AR), MGO detoxification enzymes, were determined by Western blot. One-factor ANOVA and post hoc Dunnett's or Tukey's test were used to analyze the data. RESULTS After 1 wk of treatment, the MGO concentrations in plasma (20.2%) and kidney (29.9%) in 0.2Q mice were significantly lower than those in MGO mice. After 6 wk of treatment, the concentrations of MGO in the plasma (14.7-18.6%), kidney (20-20.8%), liver (15.4-18.6%), and tissue AGEs (28-36.8%) in 0.1Q, 0.2Q, and 0.4Q mice were significantly lower than those in MGO mice. The plasma concentrations of quercetin, isorhamnetin, and their MGO adducts were dose-dependently increased after quercetin administration. In addition, after 6 wk of quercetin administration, the expressions of GLO I/II and AR in the liver and kidney were significantly upregulated to promote MGO detoxification compared with MGO-treated mice. CONCLUSIONS Quercetin reduced plasma and tissue MGO concentrations and inhibited AGE formation by trapping MGO and regulating the MGO detoxification systems in MGO-administered healthy mice.
Collapse
Affiliation(s)
- Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
35
|
Wu XQ, Zhang DD, Wang YN, Tan YQ, Yu XY, Zhao YY. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic Biol Med 2021; 171:260-271. [PMID: 34019934 DOI: 10.1016/j.freeradbiomed.2021.05.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease that inevitably progress to end-stage kidney disease. Intervention strategies such as blood glucose control is effective for preventing DKD, but many patients with DKD still reach end-stage kidney disease. Although comprehensive mechanisms shed light on the progression of DKD, the most compelling evidence has highlighted that hyperglycemia-related advanced glycation end products (AGEs) formation plays a central role in the pathogenesis of DKD. Pathologically, accumulation of AGEs-mediated receptor for AGEs (RAGE) triggers oxidative stress and inflammation, which is the major deleterious effect of AGEs in host and intestinal microenvironment of diabetic and ageing conditions. The activation of AGEs-mediated RAGE could evoke nicotinamide adenine dinucleotide phosphate oxidase-induced reactive oxygen and nitrogen species production and subsequently give rise to oxidative stress in DKD and ageing kidney. Therefore, targeting RAGE with its ligands mediated oxidative stress and chronic inflammation is considered as an additional intervention strategy for DKD and ageing kidney. In this review, we summarize AGEs/RAGE-mediated oxidative stress and inflammation signaling pathways in DKD and ageing kidney, discussing opportunities and challenges of targeting at AGEs/RAGE-induced oxidative stress that could hold the promising potential approach for improving DKD and ageing kidney.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yue-Qi Tan
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
36
|
Rabbani N, Thornalley PJ. Protein glycation - biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol 2021; 42:101920. [PMID: 33707127 PMCID: PMC8113047 DOI: 10.1016/j.redox.2021.101920] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Protein glycation provides a biomarker in widespread clinical use, glycated hemoglobin HbA1c (A1C). It is a biomarker for diagnosis of diabetes and prediabetes and of medium-term glycemic control in patients with established diabetes. A1C is an early-stage glycation adduct of hemoglobin with glucose; a fructosamine derivative. Glucose is an amino group-directed glycating agent, modifying N-terminal and lysine sidechain amino groups. A similar fructosamine derivative of serum albumin, glycated albumin (GA), finds use as a biomarker of glycemic control, particularly where there is interference in use of A1C. Later stage adducts, advanced glycation endproducts (AGEs), are formed by the degradation of fructosamines and by the reaction of reactive dicarbonyl metabolites, such as methylglyoxal. Dicarbonyls are arginine-directed glycating agents forming mainly hydroimidazolone AGEs. Glucosepane and pentosidine, an intense fluorophore, are AGE covalent crosslinks. Cellular proteolysis of glycated proteins forms glycated amino acids, which are released into plasma and excreted in urine. Development of diagnostic algorithms by artificial intelligence machine learning is enhancing the applications of glycation biomarkers. Investigational glycation biomarkers are in development for: (i) healthy aging; (ii) risk prediction of vascular complications of diabetes; (iii) diagnosis of autism; and (iv) diagnosis and classification of early-stage arthritis. Protein glycation biomarkers are influenced by heritability, aging, decline in metabolic, vascular, renal and skeletal health, and other factors. They are applicable to populations of differing ethnicities, bridging the gap between genotype and phenotype. They are thereby likely to find continued and expanding clinical use, including in the current era of developing precision medicine, reporting on multiple pathogenic processes and supporting a precision medicine approach.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical & Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
37
|
Targeting Methylglyoxal in Diabetic Kidney Disease Using the Mitochondria-Targeted Compound MitoGamide. Nutrients 2021; 13:nu13051457. [PMID: 33922959 PMCID: PMC8145135 DOI: 10.3390/nu13051457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
Diabetic kidney disease (DKD) remains the number one cause of end-stage renal disease in the western world. In experimental diabetes, mitochondrial dysfunction in the kidney precedes the development of DKD. Reactive 1,2-dicarbonyl compounds, such as methylglyoxal, are generated from sugars both endogenously during diabetes and exogenously during food processing. Methylglyoxal is thought to impair the mitochondrial function and may contribute to the pathogenesis of DKD. Here, we sought to target methylglyoxal within the mitochondria using MitoGamide, a mitochondria-targeted dicarbonyl scavenger, in an experimental model of diabetes. Male 6-week-old heterozygous Akita mice (C57BL/6-Ins2-Akita/J) or wildtype littermates were randomized to receive MitoGamide (10 mg/kg/day) or a vehicle by oral gavage for 16 weeks. MitoGamide did not alter the blood glucose control or body composition. Akita mice exhibited hallmarks of DKD including albuminuria, hyperfiltration, glomerulosclerosis, and renal fibrosis, however, after 16 weeks of treatment, MitoGamide did not substantially improve the renal phenotype. Complex-I-linked mitochondrial respiration was increased in the kidney of Akita mice which was unaffected by MitoGamide. Exploratory studies using transcriptomics identified that MitoGamide induced changes to olfactory signaling, immune system, respiratory electron transport, and post-translational protein modification pathways. These findings indicate that targeting methylglyoxal within the mitochondria using MitoGamide is not a valid therapeutic approach for DKD and that other mitochondrial targets or processes upstream should be the focus of therapy.
Collapse
|
38
|
Lissner LJ, Rodrigues L, Wartchow KM, Borba E, Bobermin LD, Fontella FU, Hansen F, Quincozes-Santos A, Souza DOG, Gonçalves CA. Short-Term Alterations in Behavior and Astroglial Function After Intracerebroventricular Infusion of Methylglyoxal in Rats. Neurochem Res 2021; 46:183-196. [PMID: 33095439 DOI: 10.1007/s11064-020-03154-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Methylglyoxal (MG) is a by-product of glycolysis. In pathological conditions, particularly diabetes mellitus, this molecule is unbalanced, causing widespread protein glycation. In addition to protein glycation, other effects resulting from high levels of MG in the central nervous system may involve the direct modulation of GABAergic and glutamatergic neurotransmission, with evidence suggesting that the effects of MG may be related to behavioral changes and glial dysfunction. In order to evaluate the direct influence of MG on behavioral and biochemical parameters, we used a high intracerebroventricular final concentration (3 μM/μL) to assess acute effects on memory and locomotor behavior in rats, as well as the underlying alterations in glutamatergic and astroglial parameters. MG induced, 12 h after injection, a decrease in locomotor activity in the Open field and anxiolytic effects in rats submitted to elevated plus-maze. Subsequently, 36 h after surgery, MG injection also induced cognitive impairment in both short and long-term memory, as evaluated by novel object recognition task, and in short-term spatial memory, as evaluated by the Y-maze test. In addition, hippocampal glutamate uptake decreased and glutamine synthetase activity and glutathione levels diminished during seventy-two hours after infusion of MG. Interestingly, the astrocytic protein, S100B, was increased in the cerebrospinal fluid, accompanied by decreased hippocampal S100B mRNA expression, without any change in protein content. Taken together, these results may improve our understanding of how this product of glucose metabolism can induce the brain dysfunction observed in diabetic patients, as well as in other neurodegenerative conditions, and further defines the role of astrocytes in disease and therapeutics.
Collapse
Affiliation(s)
- Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil
| | - Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil
| | - Ederson Borba
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil
| | - Larissa Daniele Bobermin
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil
| | - Fernanda Urruth Fontella
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil
| | - Fernanda Hansen
- Federal University of Santa Catarina (UFSC), Department of Nutrition, Nutrition Post-Graduate Program, Florianópolis, Brazil
| | - André Quincozes-Santos
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil
| | - Diogo Onofre Gomes Souza
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035003, Brazil.
| |
Collapse
|
39
|
Mojadami S, Ahangarpour A, Mard SA, Khorsandi L. Diabetic nephropathy induced by methylglyoxal: gallic acid regulates kidney microRNAs and glyoxalase1-Nrf2 in male mice. Arch Physiol Biochem 2021; 129:655-662. [PMID: 33460343 DOI: 10.1080/13813455.2020.1857775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Methylglyoxal (MG) has been reported to be a toxic by-product of glycolysis and intracellular stressor compound. This study investigated the effects of gallic acid (GA) against diabetic nephropathy (DN) induced by MG in male mice. METHODS DN was induced by methylglyoxal (600 mg/kg/day, p.o.) treated for 28 consecutive days. The animals received GA (30 mg/kg/day, p.o.) and metformin (MT) (150 mg/kg/day, p.o.) for 7 consecutive days after diabetes induction. Biochemical assays, antioxidant evaluation, microRNAs associated with fibrosis, endoplasmic reticulum stress, and histopathological analysis were examined. RESULTS MG increased malondialdehyde, albuminuria, Nrf2, miR-192 and miR-204 expression in diabetic groups and GA decreased them. Superoxide dismutase, catalase, glyoxalase1, and miR-29a expression decreased in diabetic groups and increased in treatment with GA. CONCLUSION Our results revealed that GA has improved DN induced by MG via amelioration of biochemical indices, histopathological aspects, oxidative stress and microRNAs associated with endoplasmic reticulum stress and fibrosis.
Collapse
Affiliation(s)
- Shahnaz Mojadami
- Student Research Committee, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Department of Physiology, School of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Alimentary Tract Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Alouffi S, Khan MWA. Dicarbonyls Generation, Toxicities, Detoxifications and Potential Roles in Diabetes Complications. Curr Protein Pept Sci 2020; 21:890-898. [DOI: 10.2174/1389203720666191010155145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/01/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023]
Abstract
It has been well established that advanced glycation end-products (AGEs) have a strong
correlation with diabetes and its secondary complications. Moreover, dicarbonyls, especially, methylglyoxal
(MG) and glyoxal, accelerate AGEs formation and hence, have potential roles in the pathogenesis
of diabetes. They can also induce oxidative stress and concomitantly decrease the efficiency of
antioxidant enzymes. Increased proinflammatory cytokines (tumor necrosis factor-α and interleukin-
1β) are secreted by monocytes due to the dicarbonyl-modified proteins. High levels of blood dicarbonyls
have been identified in diabetes and its associated complications (retinopathy, nephropathy and
neuropathy). This review aims to provide a better understanding by including in-depth information
about the formation of MG and glyoxal through multiple pathways with a focus on their biological
functions and detoxifications. The potential role of these dicarbonyls in secondary diabetic complications
is also discussed.
Collapse
Affiliation(s)
- Sultan Alouffi
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
41
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
42
|
Arakawa S, Suzuki R, Kurosaka D, Ikeda R, Hayashi H, Kayama T, Ohno RI, Nagai R, Marumo K, Saito M. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep 2020; 10:18774. [PMID: 33139851 PMCID: PMC7606603 DOI: 10.1038/s41598-020-75923-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) deteriorate bone strength. Among over 40 species identified in vivo, AGEs other than pentosidine were roughly estimated as total fluorescent AGEs (tfAGEs) due to technical difficulties. Using LC-QqTOF-MS, we established a system that enabled the quantitation of five AGEs (CML, CEL, MG-H1, CMA and pentosidine) as well as two mature and three immature enzymatic crosslinks. Human bone samples were collected from 149 patients who underwent total knee arthroplasty. Their clinical parameters were collected to investigate parameters that may be predictive of AGE accumulation. All the analytes were quantitated and showed significant linearity with high sensitivity and precision. The results showed that MG-H1 was the most abundant AGE, whereas pentosidine was 1/200-1/20-fold less abundant than the other four AGEs. The AGEs were significantly and strongly correlated with pentosidine, while showing moderate correlation with tfAGEs. Interestingly, multiple linear regression analysis revealed that gender contributed most to the accumulation of all the AGEs, followed by age, tartrate-resistant acid phosphatase-5b and HbA1c. Furthermore, the AGEs were negatively correlated with immature crosslinks. Mass spectrometric quantitation of AGEs and enzymatic crosslinks is crucial to a better understanding of ageing- and disease-related deterioration of bone strength.
Collapse
Affiliation(s)
- Shoutaro Arakawa
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan.
| | - Ryusuke Suzuki
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Daisaburo Kurosaka
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryo Ikeda
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroteru Hayashi
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Rei-Ichi Ohno
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
43
|
Perkins BA, Rabbani N, Weston A, Adaikalakoteswari A, Lee JA, Lovblom LE, Cardinez N, Thornalley PJ. High fractional excretion of glycation adducts is associated with subsequent early decline in renal function in type 1 diabetes. Sci Rep 2020; 10:12709. [PMID: 32728119 PMCID: PMC7391737 DOI: 10.1038/s41598-020-69350-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Increased protein glycation, oxidation and nitration is linked to the development of diabetic nephropathy. We reported levels of serum protein glycation, oxidation and nitration and related hydrolysis products, glycation, oxidation and nitration free adducts in patients with type 1 diabetes (T1DM) during onset of microalbuminuria (MA) from the First Joslin Kidney Study, a prospective case-control study of patients with T1DM with and without early decline in GFR. Herein we report urinary excretion of the latter analytes and related fractional excretion values, exploring the link to MA and early decline in GFR. We recruited patients with T1DM and normoalbuminuria (NA) (n = 30) or new onset MA with and without early GFR decline (n = 22 and 33, respectively) for this study. We determined urinary protein glycation, oxidation and nitration free adducts by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) and deduced fractional excretion using reported plasma levels and urinary and plasma creatinine estimates. We found urinary excretion of pentosidine was increased ca. twofold in patients with MA, compared to normoalbuminuria (0.0442 vs 0.0103 nmol/mg creatinine, P < 0.0001), and increased ca. threefold in patients with early decline in GFR, compared to patients with stable GFR (0.0561 vs 0.0176 nmol/mg creatinine, P < 0.01). Urinary excretion of all other analytes was unchanged between the study groups. Remarkably, fractional excretions of 6 lysine and arginine-derived glycation free adducts were higher in patients with early decline in GFR, compared to those with stable GFR. Impaired tubular reuptake of glycation free adducts by lysine and arginine transporter proteins in patients with early GFR decline is likely involved. We conclude that higher fractional excretions of glycation adducts are potential biomarkers for early GFR decline in T1DM and MA. Measurement of these analytes could provide the basis for identifying patients at risk of early decline in renal function to target and intensify renoprotective treatment.
Collapse
Affiliation(s)
- Bruce A Perkins
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Andrew Weston
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK.,University College London School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Antonysunil Adaikalakoteswari
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK.,School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Justin A Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Leif E Lovblom
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Nancy Cardinez
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Paul J Thornalley
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK. .,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
44
|
Autophagy Functions to Prevent Methylglyoxal-Induced Apoptosis in HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340695. [PMID: 32566104 PMCID: PMC7292969 DOI: 10.1155/2020/8340695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/24/2022]
Abstract
Methylglyoxal (MGO), a reactive carbonyl species, causes cellular damage and is closely related to kidney disease, particularly diabetic nephropathy. Although MGO has been reported to induce autophagy and apoptosis, the relationships between the two pathways are unclear. Here, we evaluated whether autophagy may be the underlying mechanism inhibiting MGO-induced apoptosis. MGO treatment induced concentration- and time-dependent apoptosis in HK-2 cells. Moreover, MGO upregulated the autophagy markers p62 and LC3-II. Apoptosis caused by MGO was increased in ATG5-knockdown cells compared to that in wild-type cells. In contrast, autophagy activation by 5-aminoimidazole-4-carboxamide ribonucleotide resulted in reduced apoptosis, suggesting that autophagy played a role in protecting against MGO-induced cell death. To examine the mechanisms through which autophagy occurred following MGO stimulation, we investigated changes in AKT/mammalian target of rapamycin (mTOR) signaling. Autophagy induction by MGO treatment was not related to AKT/mTOR signaling; however, it did involve autophagy-related gene expression promoted by AMP-activated protein kinase-mediated transcription factors, such as forkhead box 1. Overall, our findings indicate that MGO-induced cellular damage can be mitigated by autophagy, suggesting that autophagy may be a potential therapeutic target for diseases such as diabetic nephropathy.
Collapse
|
45
|
Reyaz A, Alam S, Chandra K, Kohli S, Agarwal S. Methylglyoxal and soluble RAGE in type 2 diabetes mellitus: Association with oxidative stress. J Diabetes Metab Disord 2020; 19:515-521. [PMID: 32550204 DOI: 10.1007/s40200-020-00543-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 01/17/2023]
Abstract
Purpose Methylglyoxal (MGO) and MGO related advance end product (AGE) are thought to contribute to the development of diabetes and its complications. The present study was intended to determine plasma MGO and sRAGE levels in T2DM patients and to assess the relationship between MGO and other parameters, such as sRAGE and oxidative markers. Methods The study was carried out in 100 control and T2DM subjects. Methylglyoxal, sRAGE, HbA1c, and other markers were measured by using a standard protocol and the relationship between variables was analyzed using Spearman's correlation analysis. Results Plasma MGO levels in patients with T2DM (221.1 ± 9.50 ng/mL) were significantly higher than in control subjects (121.1 ± 6.52 ng/mL, P < 0.001). The plasma level of MGO was positively correlated with glycosylated hemoglobin (HbA1c, r = 0.50, P < 0.001). Plasma soluble form of RAGE (sRAGE) was significantly decreased in T2DM subjects (5.3 ± 0.64 ng/mL) as compared to the control group (7.7 ± 0.86 ng/mL, p < 0.05). However, at increased level of glycation (HbA1c > 10%), the sRAGE level was 6.2 ± 0.42 ng/mL and was not statistically significant as compared to control healthy group (> 0.05). Moreover, we have not found any correlation between MGO and other markers (p > 0.05). Conclusions The findings of the present study showed that increased plasma MGO level is significantly associated with the HbA1c levels in T2DM patients. Moreover, the study shows that plasma sRAGE level is significantly augmented at increased level of glycation (HbA1c > 10%) in T2DM patients.
Collapse
Affiliation(s)
- Alisha Reyaz
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, 110062 New Delhi, India
| | - Sana Alam
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, 110062 New Delhi, India
| | - Kailash Chandra
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, 110062 New Delhi, India
| | - Sunil Kohli
- Department of Medicine, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Sarita Agarwal
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, 110062 New Delhi, India
| |
Collapse
|
46
|
Peters V, Yard B, Schmitt CP. Carnosine and Diabetic Nephropathy. Curr Med Chem 2020; 27:1801-1812. [DOI: 10.2174/0929867326666190326111851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/25/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
Abstract
Diabetic Nephropathy (DN) is a major complication in patients with type 1 or type 2 diabetes
and represents the leading cause of end-stage renal disease. Novel therapeutic approaches are
warranted. In view of a polymorphism in the carnosinase 1 gene CNDP1, resulting in reduced
carnosine degradation activity and a significant DN risk reduction, carnosine (β-alanyl-L-histidine)
has gained attention as a potential therapeutic target. Carnosine has anti-inflammatory, antioxidant,
anti-glycation and reactive carbonyl quenching properties. In diabetic rodents, carnosine supplementation
consistently improved renal histology and function and in most studies, also glucose metabolism.
Even though plasma half-life of carnosine in humans is short, first intervention studies in (pre-)
diabetic patients yielded promising results. The precise molecular mechanisms of carnosine mediated
protective action, however, are still incompletely understood. This review highlights the recent
knowledge on the role of the carnosine metabolism in DN.
Collapse
Affiliation(s)
- Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Benito Yard
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
47
|
Dimitropoulos A, Rosado CJ, Thomas MC. Dicarbonyl-mediated AGEing and diabetic kidney disease. J Nephrol 2020; 33:909-915. [DOI: 10.1007/s40620-020-00718-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
|
48
|
Kold-Christensen R, Johannsen M. Methylglyoxal Metabolism and Aging-Related Disease: Moving from Correlation toward Causation. Trends Endocrinol Metab 2020; 31:81-92. [PMID: 31757593 DOI: 10.1016/j.tem.2019.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MG) is a ubiquitous metabolite that spontaneously reacts with biopolymers forming advanced glycation end-products (AGEs). AGEs are strongly associated with aging-related diseases, including cancer, neurodegenerative diseases, and diabetes. As the formation of AGEs is nonenzymatic, the damage caused by MG and AGEs has been regarded as unspecific. This may have resulted in the field generally been regarded as unappealing by many researchers, as detailed mechanisms have been difficult to probe. However, accumulating evidence highlighting the importance of MG in human metabolism and disease, as well as data revealing how MG can elicit its signaling function via specific protein AGEs, could change the current mindset, accelerating the field to the forefront of future research.
Collapse
Affiliation(s)
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
49
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
50
|
Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019; 8:cells8070749. [PMID: 31331077 PMCID: PMC6678343 DOI: 10.3390/cells8070749] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress occurs when dicarbonyl metabolites (i.e., methylglyoxal, glyoxal and 3-deoxyglucosone) accumulate as a consequence of their increased production and/or decreased detoxification. This toxic condition has been associated with metabolic and age-related diseases, both of which are characterized by a pro-inflammatory and pro-oxidant state. Methylglyoxal (MGO) is the most reactive dicarbonyl and the one with the highest endogenous flux. It is the precursor of the major quantitative advanced glycated products (AGEs) in physiological systems, arginine-derived hydroimidazolones, which accumulate in aging and dysfunctional tissues. The aging process is characterized by a decline in the functional properties of cells, tissues and whole organs, starting from the perturbation of crucial cellular processes, including mitochondrial function, proteostasis and stress-scavenging systems. Increasing studies are corroborating the causal relationship between MGO-derived AGEs and age-related tissue dysfunction, unveiling a previously underestimated role of dicarbonyl stress in determining healthy or unhealthy aging. This review summarizes the latest evidence supporting a causal role of dicarbonyl stress in age-related diseases, including diabetes mellitus, cardiovascular disease and neurodegeneration.
Collapse
|