1
|
Serés-Noriega T, Perea V, Amor AJ. Screening for Subclinical Atherosclerosis and the Prediction of Cardiovascular Events in People with Type 1 Diabetes. J Clin Med 2024; 13:1097. [PMID: 38398409 PMCID: PMC10889212 DOI: 10.3390/jcm13041097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
People with type 1 diabetes (T1D) have a high cardiovascular disease (CVD) risk, which remains the leading cause of death in this population. Despite the improved control of several classic risk factors, particularly better glycaemic control, cardiovascular morbidity and mortality continue to be significantly higher than in the general population. In routine clinical practice, estimating cardiovascular risk (CVR) in people with T1D using scales or equations is often imprecise because much of the evidence comes from pooled samples of people with type 2 diabetes (T2D) and T1D or from extrapolations of studies performed on people with T2D. Given that T1D onsets at a young age, prolonged exposure to the disease and its consequences (e.g., hyperglycaemia, changes in lipid metabolism or inflammation) have a detrimental impact on cardiovascular health. Therefore, it is critical to have tools that allow for the early identification of those individuals with a higher CVR and thus be able to make the most appropriate management decisions in each case. In this sense, atherosclerosis is the prelude to most cardiovascular events. People with diabetes present pathophysiological alterations that facilitate atherosclerosis development and that may imply a greater vulnerability of atheromatous plaques. Screening for subclinical atherosclerosis using various techniques, mainly imaging, has proven valuable in predicting cardiovascular events. Its use enables the reclassification of CVR and, therefore, an individualised adjustment of therapeutic management. However, the available evidence in people with T1D is scarce. This narrative review provides and updated overview of the main non-invasive tests for detecting atherosclerosis plaques and their association with CVD in people with T1D.
Collapse
Affiliation(s)
- Tonet Serés-Noriega
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Verónica Perea
- Endocrinology and Nutrition Department, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain
| | - Antonio J. Amor
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Gupta A, Jeyaprakash P, Ghoreyshi-Hefzabad SM, Pathan F, Ozawa K, Negishi K. Left ventricular longitudinal systolic dysfunction in children with type 1 diabetes mellitus: A systematic review and meta-analysis. J Diabetes Complications 2023; 37:108528. [PMID: 37459780 DOI: 10.1016/j.jdiacomp.2023.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/14/2023] [Accepted: 06/04/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Children with type one diabetes mellitus (T1DM) may have subclinical myocardial insults but large heterogeneity exists among the reports. This study aimed to compare myocardial strain values of the left ventricle (LV) in paediatric patients with T1DM without overt cardiac disease and healthy controls. METHODS Five databases (MEDLINE, Embase, Scopus, Web of Science and Cochrane central register of controlled trials) were searched from inception to March 30, 2020. The studies reporting two-dimensional speckle tracking echocardiography in asymptomatic T1DM paediatric patients and control groups were included. Pooled mean strain values in each group and mean difference (MD) between the two groups for LV global longitudinal strain (LVGLS) and LV global circumferential strain (LVGCS) were assessed using a random effects model. RESULTS Ten studies (755 T1DM and 610 control) with LVGLS were included with 6 studies having LVGCS (534 T1DM and 403 control). Patients with T1DM had overall 3 percentage points lower LVGLS than healthy subjects (18.4 %, 95 % confidence interval [17.1, 19.6] vs 21.5 % [20.3, 22.7], MD = -3.01 [-4.30, -1.71]). A similar result was seen in LVGCS (18.7 % [15.4, 22.0] vs. 21.4 % [18.1, 24.6], MD = -3.10[-6.47, 0.26]) but not statistically significant. Meta-regression identified those with higher Haemoglobin A1c (HbA1c) had worse GLS. CONCLUSIONS Subclinical LV dysfunction among patients with T1DM occurs as early as in their childhood, while even EF is preserved. The longitudinal cardiac function is altered, but not the circumferential. GLS can be used to detect subclinical LV systolic dysfunction in paediatric population.
Collapse
Affiliation(s)
- Alpa Gupta
- Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, NSW, Australia
| | - Prajith Jeyaprakash
- Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, NSW, Australia.
| | - Seyed-Mohammad Ghoreyshi-Hefzabad
- Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, NSW, Australia
| | - Faraz Pathan
- Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, NSW, Australia.
| | - Koya Ozawa
- Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, NSW, Australia.
| | - Kazuaki Negishi
- Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, NSW, Australia.
| |
Collapse
|
3
|
Do DV, Han G, Abariga SA, Sleilati G, Vedula SS, Hawkins BS. Blood pressure control for diabetic retinopathy. Cochrane Database Syst Rev 2023; 3:CD006127. [PMID: 36975019 PMCID: PMC10049880 DOI: 10.1002/14651858.cd006127.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness. Research has established the importance of blood glucose control to prevent development and progression of the ocular complications of diabetes. Concurrent blood pressure control has been advocated for this purpose, but individual studies have reported varying conclusions regarding the effects of this intervention. OBJECTIVES To summarize the existing evidence regarding the effect of interventions to control blood pressure levels among diabetics on incidence and progression of diabetic retinopathy, preservation of visual acuity, adverse events, quality of life, and costs. SEARCH METHODS We searched several electronic databases, including CENTRAL, and trial registries. We last searched the electronic databases on 3 September 2021. We also reviewed the reference lists of review articles and trial reports selected for inclusion. SELECTION CRITERIA We included randomized controlled trials (RCTs) in which either type 1 or type 2 diabetic participants, with or without hypertension, were assigned randomly to more intense versus less intense blood pressure control; to blood pressure control versus usual care or no intervention on blood pressure (placebo); or to one class of antihypertensive medication versus another or placebo. DATA COLLECTION AND ANALYSIS Pairs of review authors independently reviewed the titles and abstracts of records identified by the electronic and manual searches and the full-text reports of any records identified as potentially relevant. The included trials were independently assessed for risk of bias with respect to outcomes reported in this review. MAIN RESULTS We included 29 RCTs conducted in North America, Europe, Australia, Asia, Africa, and the Middle East that had enrolled a total of 4620 type 1 and 22,565 type 2 diabetic participants (sample sizes from 16 to 4477 participants). In all 7 RCTs for normotensive type 1 diabetic participants, 8 of 12 RCTs with normotensive type 2 diabetic participants, and 5 of 10 RCTs with hypertensive type 2 diabetic participants, one group was assigned to one or more antihypertensive agents and the control group to placebo. In the remaining 4 RCTs for normotensive participants with type 2 diabetes and 5 RCTs for hypertensive type 2 diabetic participants, methods of intense blood pressure control were compared to usual care. Eight trials were sponsored entirely and 10 trials partially by pharmaceutical companies; nine studies received support from other sources; and two studies did not report funding source. Study designs, populations, interventions, lengths of follow-up (range less than one year to nine years), and blood pressure targets varied among the included trials. For primary review outcomes after five years of treatment and follow-up, one of the seven trials for type 1 diabetics reported incidence of retinopathy and one trial reported progression of retinopathy; one trial reported a combined outcome of incidence and progression (as defined by study authors). Among normotensive type 2 diabetics, four of 12 trials reported incidence of diabetic retinopathy and two trials reported progression of retinopathy; two trials reported combined incidence and progression. Among hypertensive type 2 diabetics, six of the 10 trials reported incidence of diabetic retinopathy and two trials reported progression of retinopathy; five of the 10 trials reported combined incidence and progression. The evidence supports an overall benefit of more intensive blood pressure intervention for five-year incidence of diabetic retinopathy (11 studies; 4940 participants; risk ratio (RR) 0.82, 95% confidence interval (CI) 0.73 to 0.92; I2 = 15%; moderate certainty evidence) and the combined outcome of incidence and progression (8 studies; 6212 participants; RR 0.78, 95% CI 0.68 to 0.89; I2 = 42%; low certainty evidence). The available evidence did not support a benefit regarding five-year progression of diabetic retinopathy (5 studies; 5144 participants; RR 0.94, 95% CI 0.78 to 1.12; I2 = 57%; moderate certainty evidence), incidence of proliferative diabetic retinopathy, clinically significant macular edema, or vitreous hemorrhage (9 studies; 8237 participants; RR 0.92, 95% CI 0.82 to 1.04; I2 = 31%; low certainty evidence), or loss of 3 or more lines on a visual acuity chart with a logMAR scale (2 studies; 2326 participants; RR 1.15, 95% CI 0.63 to 2.08; I2 = 90%; very low certainty evidence). Hypertensive type 2 diabetic participants realized more benefit from intense blood pressure control for three of the four outcomes concerning incidence and progression of diabetic retinopathy. The adverse event reported most often (13 of 29 trials) was death, yielding an estimated RR 0.87 (95% CI 0.76 to 1.00; 13 studies; 13,979 participants; I2 = 0%; moderate certainty evidence). Hypotension was reported in two trials, with an RR of 2.04 (95% CI 1.63 to 2.55; 2 studies; 3323 participants; I2 = 37%; low certainty evidence), indicating an excess of hypotensive events among participants assigned to more intervention on blood pressure. AUTHORS' CONCLUSIONS Hypertension is a well-known risk factor for several chronic conditions for which lowering blood pressure has proven to be beneficial. The available evidence supports a modest beneficial effect of intervention to reduce blood pressure with respect to preventing diabetic retinopathy for up to five years, particularly for hypertensive type 2 diabetics. However, there was a paucity of evidence to support such intervention to slow progression of diabetic retinopathy or to affect other outcomes considered in this review among normotensive diabetics. This weakens any conclusion regarding an overall benefit of intervening on blood pressure in diabetic patients without hypertension for the sole purpose of preventing diabetic retinopathy or avoiding the need for treatment for advanced stages of diabetic retinopathy.
Collapse
Affiliation(s)
- Diana V Do
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA
| | - Genie Han
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Samuel A Abariga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Barbara S Hawkins
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Benitez-Aguirre PZ, Marcovecchio ML, Chiesa ST, Craig ME, Wong TY, Davis EA, Cotterill A, Couper JJ, Cameron FJ, Mahmud FH, Neil HAW, Jones TW, Hodgson LAB, Dalton RN, Marshall SM, Deanfield J, Dunger DB, Donaghue KC. Urinary albumin/creatinine ratio tertiles predict risk of diabetic retinopathy progression: a natural history study from the Adolescent Cardio-Renal Intervention Trial (AdDIT) observational cohort. Diabetologia 2022; 65:872-878. [PMID: 35182158 PMCID: PMC8960571 DOI: 10.1007/s00125-022-05661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
AIMS/HYPOTHESIS We hypothesised that adolescents with type 1 diabetes with a urinary albumin/creatinine ratio (ACR) in the upper tertile of the normal range (high ACR) are at greater risk of three-step diabetic retinopathy progression (3DR) independent of glycaemic control. METHODS This was a prospective observational study in 710 normoalbuminuric adolescents with type 1 diabetes from the non-intervention cohorts of the Adolescent Cardio-Renal Intervention Trial (AdDIT). Participants were classified as 'high ACR' or 'low ACR' (lowest and middle ACR tertiles) using baseline standardised log10 ACR. The primary outcome, 3DR, was determined from centrally graded, standardised two-field retinal photographs. 3DR risk was determined using multivariable Cox regression for the effect of high ACR, with HbA1c, BP, LDL-cholesterol and BMI as covariates; diabetes duration was the time-dependent variable. RESULTS At baseline mean ± SD age was 14.3 ± 1.6 years and mean ± SD diabetes duration was 7.2 ± 3.3 years. After a median of 3.2 years, 83/710 (12%) had developed 3DR. In multivariable analysis, high ACR (HR 2.1 [1.3, 3.3], p=0.001), higher mean IFCC HbA1c (HR 1.03 [1.01, 1.04], p=0.001) and higher baseline diastolic BP SD score (HR 1.43 [1.08, 1.89], p=0.01) were independently associated with 3DR risk. CONCLUSIONS/INTERPRETATION High ACR is associated with greater risk of 3DR in adolescents, providing a target for future intervention studies. TRIAL REGISTRATION isrctn.org ISRCTN91419926.
Collapse
Affiliation(s)
- Paul Z Benitez-Aguirre
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
| | | | - Scott T Chiesa
- Institute of Cardiovascular Science, University College London, London, UK
| | - Maria E Craig
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Tien Y Wong
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Elizabeth A Davis
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, WA, Australia
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | | | - Jenny J Couper
- Endocrinology and Diabetes Centre, Women's and Children's Hospital, and Robinson Institute, University of Adelaide, Adelaide, SA, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Farid H Mahmud
- Division of Endocrinology, Hospital for Sick Children, Toronto, ON, Canada
| | - H Andrew W Neil
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Timothy W Jones
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, WA, Australia
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | | | - R Neil Dalton
- St Thomas' Hospital, Well Child Laboratory, Evelina London Children's Hospital, London, UK
| | - Sally M Marshall
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - John Deanfield
- Institute of Cardiovascular Science, University College London, London, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Kim C Donaghue
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia.
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia.
| | | |
Collapse
|
5
|
Elbarbary NS, Ismail EAR, Ghallab MA. Effect of metformin as an add-on therapy on neuregulin-4 levels and vascular-related complications in adolescents with type 1 diabetes: A randomized controlled trial. Diabetes Res Clin Pract 2022; 186:109857. [PMID: 35351535 DOI: 10.1016/j.diabres.2022.109857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammation is closely associated with atherosclerosis and plays a crucial role in the development of cardiovascular disease. Metformin sensitizes body cells to insulin, which may cause a reduction of atherogenic lipid fractions. Low neuregulin-4 (Nrg-4) levels, an adipokine, are linked to obesity, insulin resistance, impaired glucose tolerance and type 2 diabetes. OBJECTIVES We assessed the effect of oral supplementation with metformin on glycemic control, neuregulin-4 levels and carotid intima media thickness (CIMT) as a marker for subclinical atherosclerosis in adolescents with type 1 diabetes mellitus (T1DM) and microvascular complications. METHODS This randomized placebo-controlled trial included 80 type 1 diabetic patients with microvascular complications who were randomly divided to receive either 24 weeks of metformin 500 mg/day or matching placebo. Fasting blood glucose (FBG), HbA1c, C-reactive protein (CRP), urinary albumin creatinine ratio (UACR), lipid profile, Nrg-4 and CIMT were assessed at baseline and study end. RESULTS Both groups were well-matched as regards baseline clinical and laboratory data (p greater than 0.05). After 24-weeks, metformin therapy for the intervention group resulted in a significant decrease of HbA1c, CRP, UACR, total cholesterol and CIMT while Nrg-4 levels were increased compared with baseline levels (p < 0.001) and with placebo group(p < 0.001). Baseline Nrg-4 levels were negatively correlated to FBG, HbA1c, total cholesterol, CRP and CIMT. Metformin was well-tolerated. CONCLUSIONS Oral metformin supplementation once daily for 24 weeks as an adjuvant therapy to intensive insulin in pediatric T1DM was safe and effective in improving glycemic control, dyslipidemia and Nrg-4 levels; hence, it decreased inflammation, microvascular complications and subclinical atherosclerosis.
Collapse
|
6
|
Banerjee D, Winocour P, Chowdhury TA, De P, Wahba M, Montero R, Fogarty D, Frankel AH, Karalliedde J, Mark PB, Patel DC, Pokrajac A, Sharif A, Zac-Varghese S, Bain S, Dasgupta I. Management of hypertension and renin-angiotensin-aldosterone system blockade in adults with diabetic kidney disease: Association of British Clinical Diabetologists and the Renal Association UK guideline update 2021. BMC Nephrol 2022; 23:9. [PMID: 34979961 PMCID: PMC8722287 DOI: 10.1186/s12882-021-02587-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022] Open
Abstract
People with type 1 and type 2 diabetes are at risk of developing progressive chronic kidney disease (CKD) and end-stage kidney failure. Hypertension is a major, reversible risk factor in people with diabetes for development of albuminuria, impaired kidney function, end-stage kidney disease and cardiovascular disease. Blood pressure control has been shown to be beneficial in people with diabetes in slowing progression of kidney disease and reducing cardiovascular events. However, randomised controlled trial evidence differs in type 1 and type 2 diabetes and different stages of CKD in terms of target blood pressure. Activation of the renin-angiotensin-aldosterone system (RAAS) is an important mechanism for the development and progression of CKD and cardiovascular disease. Randomised trials demonstrate that RAAS blockade is effective in preventing/ slowing progression of CKD and reducing cardiovascular events in people with type 1 and type 2 diabetes, albeit differently according to the stage of CKD. Emerging therapy with sodium glucose cotransporter-2 (SGLT-2) inhibitors, non-steroidal selective mineralocorticoid antagonists and endothelin-A receptor antagonists have been shown in randomised trials to lower blood pressure and further reduce the risk of progression of CKD and cardiovascular disease in people with type 2 diabetes. This guideline reviews the current evidence and makes recommendations about blood pressure control and the use of RAAS-blocking agents in different stages of CKD in people with both type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- D Banerjee
- St George's Hospitals NHS Foundation Trust, London, UK
| | - P Winocour
- ENHIDE, East and North Herts NHS Trust, Stevenage, UK
| | | | - P De
- City Hospital, Birmingham, UK
| | - M Wahba
- St Helier Hospital, Carshalton, UK
| | | | - D Fogarty
- Belfast Health and Social Care Trust, Belfast, UK
| | - A H Frankel
- Imperial College Healthcare NHS Trust, London, UK
| | | | - P B Mark
- University of Glasgow, Glasgow, UK
| | - D C Patel
- Royal Free London NHS Foundation Trust, London, UK
| | - A Pokrajac
- West Hertfordshire Hospitals, London, UK
| | - A Sharif
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - S Bain
- Swansea University, Swansea, UK
| | - I Dasgupta
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
7
|
Smigoc Schweiger D, Battelino T, Groselj U. Sex-Related Differences in Cardiovascular Disease Risk Profile in Children and Adolescents with Type 1 Diabetes. Int J Mol Sci 2021; 22:ijms221910192. [PMID: 34638531 PMCID: PMC8508122 DOI: 10.3390/ijms221910192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of higher and earlier morbidity and mortality in people with type 1 diabetes (T1D) compared to people without diabetes. In addition, women with T1D are at an even higher relative risk for CVD than men. However, the underlying pathophysiology is not well understood. Atherosclerotic changes are known to progress early in life among people with T1D, yet it is less clear when excess CVD risk begins in females with T1D. This review explores the prevalence of classical CVD risk factors (such as glycemic control, hypertension, dyslipidemia, obesity, albuminuria, smoking, diet, physical inactivity), as well as of novel biomarkers (such as chronic inflammation), in children and adolescents with T1D with particular regard to sex-related differences in risk profile. We also summarize gaps where further research and clearer clinical guidance are needed to better address this issue. Considering that girls with T1D might have a more adverse CVD risk profile than boys, the early identification of and sex-specific intervention in T1D would have the potential to reduce later CVD morbidity and excess mortality in females with T1D. To conclude, based on an extensive review of the existing literature, we found a clear difference between boys and girls with T1D in the presence of individual CVD risk factors as well as in overall CVD risk profiles; the girls were on the whole more impacted.
Collapse
Affiliation(s)
- Darja Smigoc Schweiger
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (D.S.S.); (T.B.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (D.S.S.); (T.B.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Urh Groselj
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (D.S.S.); (T.B.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Department of Cardiovascular Medicine, School of Medicine, Stanford University, 870 Quarry Road, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +386-1-522-9235; Fax: +386-1-232-0190
| |
Collapse
|
8
|
Shi M, Tang R, Huang F, Zhong T, Chen Y, Li X, Zhou Z. Cardiovascular disease in patients with type 1 diabetes: Early evaluation, risk factors and possible relation with cardiac autoimmunity. Diabetes Metab Res Rev 2021; 37:e3423. [PMID: 33252830 DOI: 10.1002/dmrr.3423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 11/01/2020] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease now is the leading cause of mortality among patients with type 1 diabetes (T1D). The risk of death from cardiovascular events in subjects with T1D is 2-10 times higher than the general population, depending on blood glucose control. Although complications of cardiovascular disease occur in middle and old age, pathological processes begin in childhood. Some methods used to evaluate subclinical cardiovascular disease, such as carotid intima-media thickness and pulse wave velocity, can detect early cardiovascular abnormalities in adolescence. The effect of risk factors including hypertension, dyslipidemia and diabetic nephropathy on cardiovascular disease has been well studied. According to the current clinical practice recommendations from the American Diabetes Association, cardiovascular risk factors should be systematically assessed at least annually and treated as recommended. And yet, the effects of intensive insulin therapy on cardiovascular risk, as well as the mechanisms of cardiac autoimmunity require further studying. This review concentrates on the cardiovascular risk in type 1 diabetes in order to provide a comprehensive outlook of its epidemiology, early assessment, risk factors and possible relations with cardiac autoimmunity, aiming to propose promising therapeutic strategies.
Collapse
Affiliation(s)
- Mei Shi
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Rong Tang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Fansu Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Ting Zhong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Yan Chen
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
9
|
Cohen M, Yaseen H, Khamaisi M, Gendelman R, Zuckerman-Levin N, Shilo S, Ilivitzki A, Weiss R, Shehadeh N. Endothelin-1 levels are decreased in pediatric Type 1 diabetes and negatively correlate with the carotid intima media thickness. Pediatr Diabetes 2021; 22:916-923. [PMID: 34018289 DOI: 10.1111/pedi.13237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS Better understanding of the timeline and risk factors for the appearance of complications in pediatric Type-1-diabetes is key for developing prevention strategies. We studied endothelial markers and their determinants in adolescents with Type-1-diabetes at different time points from diagnosis. METHODS A cross-sectional study of 58 adolescents, mean age 15.0 ± 2.4 years; 20 with recent-onset Type-1-diabetes, 20 with over 7 years of Type-1-diabetes and 18 controls. Clinical and biochemical data were collected. Fingertip arterial reactive hyperemia (EndoPAT) and carotid intima-media-thickness (cIMT) were measured to assess endothelial function and structure. RESULTS Compared to controls, individuals with prolonged Type-1-diabetes had higher mean cIMT (0.49 ± 0.07 mm vs. 0.43 ± 0.05 mm p = 0.021) and maximal cIMT (0.61 ± 0.08 mm 0.52 ± 0.08 mm, p = 0.025). Endothelin-1 levels were significantly lower in subjects with prolonged Type-1-diabetes (1.2 ± 1.0 pg/ml) compared to controls (3.0 ± 1.7, p = 0.008 pg/ml); they negatively correlated with the mean cIMT (c = - 0.291, p = 0.031) and mean 6 months hemoglobin A1c (c = - 0.301, p = 0.022) and positively correlated with mean c-peptide levels (c = 0.356, p = 0.006) and the weekly exercise time (c = 0.485, p < 0.001). Endothelin-1 levels did not correlate with EndoPAT results. CONCLUSIONS Our results suggest that the early years after the diagnosis of Type-1-diabetes are an important window for prevention of arterial damage in the pediatric population. The trajectories of relationships of Endothelin-1 with metabolic and vascular measures were opposite from the anticipated, yet consistent. Endothelin-1 related indirectly to adverse measures and directly to favorable measures. Decreased Endothelin-1 levels might reflect early stages in endothelial impairment in Type-1-diabetes, yet its' exact role in the development of complications is yet to be unraveled.
Collapse
Affiliation(s)
- Michal Cohen
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Diabetes, Endocrinology and Metabolism Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hiba Yaseen
- Rambam Hematology Research Center, The Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel
| | - Mogher Khamaisi
- Diabetes, Endocrinology and Metabolism Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Rambam Hematology Research Center, The Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel
| | - Raya Gendelman
- The Endocrinology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Nehama Zuckerman-Levin
- Diabetes, Endocrinology and Metabolism Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Smadar Shilo
- Diabetes, Endocrinology and Metabolism Institute, Rambam Health Care Campus, Haifa, Israel
| | - Anat Ilivitzki
- The Pediatric Radiology Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Ram Weiss
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Diabetes, Endocrinology and Metabolism Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Naim Shehadeh
- Diabetes, Endocrinology and Metabolism Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Couper JJ, Jones TW, Chee M, Barrett HL, Bergman P, Cameron F, Craig ME, Colman P, Davis EE, Donaghue KC, Fegan PG, Hamblin PS, Holmes-Walker DJ, Jefferies C, Johnson S, Mok MT, King BR, Sinnott R, Ward G, Wheeler BJ, Zimmermann A, Earnest A. Determinants of Cardiovascular Risk in 7000 Youth With Type 1 Diabetes in the Australasian Diabetes Data Network. J Clin Endocrinol Metab 2021; 106:133-142. [PMID: 33120421 DOI: 10.1210/clinem/dgaa727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Cardiovascular disease occurs prematurely in type 1 diabetes. The additional risk of overweight is not well characterized. OBJECTIVE The primary aim was to measure the impact of body mass index (BMI) in youth with type 1 diabetes on cardiovascular risk factors. The secondary aim was to identify other determinants of cardiovascular risk. DESIGN Observational longitudinal study of 7061 youth with type 1 diabetes followed for median 7.3 (interquartile range [IQR] 4-11) years over 41 (IQR 29-56) visits until March 2019. SETTING 15 tertiary care diabetes centers in the Australasian Diabetes Data Network.Participants were aged 2 to 25 years at baseline, with at least 2 measurements of BMI and blood pressure. MAIN OUTCOME MEASURE Standardized systolic and diastolic blood pressure scores and non-high-density lipoprotein (HDL) cholesterol were co-primary outcomes. Urinary albumin/creatinine ratio was the secondary outcome. RESULTS BMI z-score related independently to standardized blood pressure z- scores and non-HDL cholesterol. An increase in 1 BMI z-score related to an average increase in systolic/diastolic blood pressure of 3.8/1.4 mmHg and an increase in non-HDL cholesterol (coefficient + 0.16 mmol/L, 95% confidence interval [CI], 0.13-0.18; P < 0.001) and in low-density lipoprotein (LDL) cholesterol. Females had higher blood pressure z-scores, higher non-HDL and LDL cholesterol, and higher urinary albumin/creatinine than males. Indigenous youth had markedly higher urinary albumin/creatinine (coefficient + 2.15 mg/mmol, 95% CI, 1.27-3.03; P < 0.001) and higher non-HDL cholesterol than non-Indigenous youth. Continuous subcutaneous insulin infusion was associated independently with lower non-HDL cholesterol and lower urinary albumin/creatinine. CONCLUSIONS BMI had a modest independent effect on cardiovascular risk. Females and Indigenous Australians in particular had a more adverse risk profile.
Collapse
Affiliation(s)
- Jenny J Couper
- Women's and Children's Hospital and Robinson Research Institute University of Adelaide, North Adelaide, SA, Australia
| | - Timothy W Jones
- Perth Children's Hospital, Nedlands, WA, Australia
- Telethon Kids Institute, Nedlands, WA, Australia
| | | | | | - Philip Bergman
- Monash Children's Hospital, Clayton, VIC, Australia
- Monash University, Clayton, VIC, Australia
| | | | - Maria E Craig
- The Children's Hospital at Westmead, Westmead, NSW, Australia
- University of NSW, Sydney, NSW, Australia
| | - Peter Colman
- Royal Melbourne Hospital, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth E Davis
- Perth Children's Hospital, Nedlands, WA, Australia
- Telethon Kids Institute, Nedlands, WA, Australia
| | - Kim C Donaghue
- The Children's Hospital at Westmead, Westmead, NSW, Australia
- University of NSW, Sydney, NSW, Australia
| | | | - P Shane Hamblin
- Western Health, St Albans, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | - Bruce R King
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | | | - Glenn Ward
- St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Benjamin J Wheeler
- Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin Central, Dunedin, New Zealand
| | | | - Arul Earnest
- School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Chiesa ST, Marcovecchio ML, Benitez-Aguirre P, Cameron FJ, Craig ME, Couper JJ, Davis EA, Dalton RN, Daneman D, Donaghue KC, Jones TW, Mahmud FH, Marshall SM, Neil HAW, Dunger DB, Deanfield JE. Vascular Effects of ACE (Angiotensin-Converting Enzyme) Inhibitors and Statins in Adolescents With Type 1 Diabetes. Hypertension 2020; 76:1734-1743. [PMID: 33100044 DOI: 10.1161/hypertensionaha.120.15721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An increased albumin-creatinine ratio within the normal range can identify adolescents at higher risk of developing adverse cardio-renal outcomes as they progress into adulthood. Utilizing a parallel randomized controlled trial and observational cohort study, we characterized the progression of vascular phenotypes throughout this important period and investigated the effect of ACE (angiotensin-converting enzyme) inhibitors and statins in high-risk adolescents. Endothelial function (flow-mediated dilation and reactive hyperemia index) and arterial stiffness (carotid-femoral pulse wave velocity) were assessed in 158 high-risk participants recruited to a randomized, double-blind placebo-controlled 2×2 factorial trial (randomized, placebo-controlled trial) of ACE inhibitors and/or statins in adolescents with type 1 diabetes (AdDIT [Adolescent Type 1 Diabetes cardio-renal Intervention Trial]). Identical measures were also assessed in 215 lower-risk individuals recruited to a parallel observational study. In the randomized, placebo-controlled trial, high-risk patients randomized to ACE inhibitors had improved flow-mediated dilation after 2 to 4 years of follow-up (mean [95% CI]: 6.6% [6.0-7.2] versus 5.3% [4.7-5.9]; P=0.005), whereas no effect was observed following statin use (6.2% [5.5-6.8] versus 5.8% [5.1-6.4]; P=0.358). In the observational study, patients classed as high-risk based on albumin-creatinine ratio showed evidence of endothelial dysfunction at the end of follow-up (flow-mediated dilation=4.8% [3.8-5.9] versus 6.3% [5.8-6.7] for high-risk versus low-risk groups; P=0.015). Neither reactive hyperemia index nor pulse wave velocity were affected by either treatment (P>0.05 for both), but both were found to increase over the duration of follow-up (0.07 [0.03-0.12]; P=0.001 and 0.5 m/s [0.4-0.6]; P<0.001 for reactive hyperemia index and pulse wave velocity, respectively). ACE inhibitors improve endothelial function in high-risk adolescents as they transition through puberty. The longer-term protective effects of this intervention at this early age remain to be determined. Registration- URL: https://www.clinicaltrials.gov; Unique identifier NCT01581476.
Collapse
Affiliation(s)
- Scott T Chiesa
- From the Institute of Cardiovascular Science, University College London, United Kingdom (S.T.C., J.E.D.)
| | | | - Paul Benitez-Aguirre
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, University of Sydney, Camperdown, Australia (P.B.-A., K.C.D.)
| | - Fergus J Cameron
- Department of Paediatrics, University of Melbourne, Australia (F.J.C.)
| | - Maria E Craig
- School of Women's and Children's Health, University of New South Wales, Australia (M.E.C.)
| | - Jennifer J Couper
- Departments of Endocrinology and Diabetes, Women's and Children's Hospital, Robinson Research Institute, University of Adelaide, Australia (J.J.C.)
| | - Elizabeth A Davis
- Telethon Kids Institute, University of Western Australia, Perth (E.A.D., T.W.J.)
| | - R Neil Dalton
- Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom (R.N.D.)
| | - Denis Daneman
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada (D.D., F.H.M.)
| | - Kim C Donaghue
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, University of Sydney, Camperdown, Australia (P.B.-A., K.C.D.)
| | - Timothy W Jones
- Telethon Kids Institute, University of Western Australia, Perth (E.A.D., T.W.J.)
| | - Farid H Mahmud
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada (D.D., F.H.M.)
| | - Sally M Marshall
- Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.)
| | - H Andrew W Neil
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, United Kingdom (H.A.W.N.)
| | - David B Dunger
- Department of Paediatrics (M.L.M., D.B.D.), University of Cambridge, United Kingdom.,Wellcome Trust-MRC Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom
| | - John E Deanfield
- From the Institute of Cardiovascular Science, University College London, United Kingdom (S.T.C., J.E.D.)
| | | |
Collapse
|
12
|
Chiesa ST, Charakida M, McLoughlin E, Nguyen HC, Georgiopoulos G, Motran L, Elia Y, Marcovecchio ML, Dunger DB, Dalton RN, Daneman D, Sochett E, Mahmud FH, Deanfield JE. Elevated high-density lipoprotein in adolescents with Type 1 diabetes is associated with endothelial dysfunction in the presence of systemic inflammation. Eur Heart J 2020; 40:3559-3566. [PMID: 30863865 PMCID: PMC6855140 DOI: 10.1093/eurheartj/ehz114] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/26/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS High-density lipoprotein (HDL) function may be altered in patients with chronic disease, transforming the particle from a beneficial vasoprotective molecule to a noxious pro-inflammatory equivalent. Adolescents with Type 1 diabetes often have elevated HDL, but its vasoprotective properties and relationship to endothelial function have not been assessed. METHODS AND RESULTS Seventy adolescents with Type 1 diabetes (age 10-17 years) and 30 age-matched healthy controls supplied urine samples for the measurement of early renal dysfunction (albumin:creatinine ratio; ACR), blood samples for the assessment of cardiovascular risk factors (lipid profiles, HDL functionality, glycaemic control, and inflammatory risk score), and had their conduit artery endothelial function tested using flow-mediated dilation (FMD). HDL-c levels (1.69 ± 0.41 vs. 1.44 ± 0.29mmol/L; P < 0.001), and glycated haemoglobin (HbA1c) (8.4 ± 1.2 vs. 5.4 ± 0.2%; P < 0.001) were increased in all patients compared with controls. However, increased inflammation and HDL dysfunction were evident only in patients who also had evidence of early renal dysfunction (mean ± standard deviation for high-ACR vs. low-ACR and healthy controls: inflammatory risk score 11.3 ± 2.5 vs. 9.5 ± 2.4 and 9.2 ± 2.4, P < 0.01; HDL-mediated nitric-oxide bioavailability 38.0 ± 8.9 vs. 33.3 ± 7.3 and 25.0 ± 7.7%, P < 0.001; HDL-mediated superoxide production 3.71 ± 3.57 vs. 2.11 ± 3.49 and 1.91 ± 2.47nmol O2 per 250 000 cells, P < 0.05). Endothelial function (FMD) was impaired only in those who had both a high inflammatory risk score and high levels of HDL-c (P < 0.05). CONCLUSION Increased levels of HDL-c commonly observed in individuals with Type 1 diabetes may be detrimental to endothelial function when accompanied by renal dysfunction and chronic inflammation.
Collapse
Affiliation(s)
- Scott T Chiesa
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, London, UK
| | - Marietta Charakida
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, London, UK
| | - Eve McLoughlin
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, London, UK
| | - Helen C Nguyen
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, London, UK
| | | | - Laura Motran
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Yesmino Elia
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK.,Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - R Neil Dalton
- WellChild Laboratory, St. Thomas' Hospital, King's College London, London, UK
| | - Denis Daneman
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Etienne Sochett
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Farid H Mahmud
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - John E Deanfield
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, London, UK
| |
Collapse
|
13
|
Schäfer M, Nadeau KJ, Reusch JEB. Cardiovascular disease in young People with Type 1 Diabetes: Search for Cardiovascular Biomarkers. J Diabetes Complications 2020; 34:107651. [PMID: 32546422 PMCID: PMC7585936 DOI: 10.1016/j.jdiacomp.2020.107651] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
Premature onset of cardiovascular disease is common in people with type 1 diabetes and is relatively understudied in youth. Several reports in adolescents and young adults with diabetes demonstrate evidence of arterial stiffness and cardiac dysfunction, yet critical gaps exist in our current understanding of the temporal progression of cardiac and vascular dysfunction in these youth, and mechanistic investigations with robust pathophysiologic assessment are lacking. This review attempts to summarize relevant cardiovascular studies concerning children, adolescents, and young adults with type 1 diabetes. We focus on imaging-based biomarkers routinely applied to youth and adults that are well-established in their ability to predict adjudicated cardiovascular outcomes, and their relevant physiologic interpretation. Particularly, we focus the attention to 1) cardiac ventricular strain imaging techniques which are known to be predictive of clinical outcomes in patients with heterogenous causes of heart failure, and 2) stiffness in large arteries, a well-established prognostic marker of cardiovascular events. We conclude that there remains an urgent need for sensitive and quantitative biomarkers to define the natural history of cardiac and vascular disease origination and progression in type 1 diabetes, and set the stage for interpreting interventional studies focused on preventing, reversing or slowing disease progression.
Collapse
Affiliation(s)
- Michal Schäfer
- Division of Pediatric Cardiology, Department of Pediatrics, University of Colorado - School of Medicine, Aurora, CO, United States of America.
| | - Kristen J Nadeau
- Section of Pediatric Endocrinology, Department of Pediatrics, University of Colorado - School of Medicine, Aurora, CO, United States of America
| | - Jane E B Reusch
- Section of Endocrinology, Rocky Mountain Regional VAMC, CO, United States of America; Division of Endocrinology, Department of Medicine, United States of America; Center for Women's Health Research, University of Colorado - School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
14
|
Lespagnol E, Dauchet L, Pawlak-Chaouch M, Balestra C, Berthoin S, Feelisch M, Roustit M, Boissière J, Fontaine P, Heyman E. Early Endothelial Dysfunction in Type 1 Diabetes Is Accompanied by an Impairment of Vascular Smooth Muscle Function: A Meta-Analysis. Front Endocrinol (Lausanne) 2020; 11:203. [PMID: 32362871 PMCID: PMC7180178 DOI: 10.3389/fendo.2020.00203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background: A large yet heterogeneous body of literature exists suggesting that endothelial dysfunction appears early in type 1 diabetes, due to hyperglycemia-induced oxidative stress. The latter may also affect vascular smooth muscles (VSM) function, a layer albeit less frequently considered in that pathology. This meta-analysis aims at evaluating the extent, and the contributing risk factors, of early endothelial dysfunction, and of the possible concomitant VSM dysfunction, in type 1 diabetes. Methods: PubMed, Web of Sciences, Cochrane Library databases were screened from their respective inceptions until October 2019. We included studies comparing vasodilatory capacity depending or not on endothelium (i.e., endothelial function or VSM function, respectively) in patients with uncomplicated type 1 diabetes and healthy controls. Results: Fifty-eight articles studying endothelium-dependent function, among which 21 studies also assessed VSM, were included. Global analyses revealed an impairment of standardized mean difference (SMD) (Cohen's d) of endothelial function: -0.61 (95% CI: -0.79, -0.44) but also of VSM SMD: -0.32 (95% CI: -0.57, -0.07). The type of stimuli used (i.e., exercise, occlusion-reperfusion, pharmacological substances, heat) did not influence the impairment of the vasodilatory capacity. Endothelial dysfunction appeared more pronounced within macrovascular than microvascular beds. The latter was particularly altered in cases of poor glycemic control [HbA1c > 67 mmol/mol (8.3%)]. Conclusions: This meta-analysis not only corroborates the presence of an early impairment of endothelial function, even in response to physiological stimuli like exercise, but also highlights a VSM dysfunction in children and adults with type 1 diabetes. Endothelial dysfunction seems to be more pronounced in large than small vessels, fostering the debate on their relative temporal appearance.
Collapse
Affiliation(s)
- Elodie Lespagnol
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Luc Dauchet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Mehdi Pawlak-Chaouch
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Costantino Balestra
- Environmental and Occupational (Integrative) Physiology Laboratory, Haute École Bruxelles-Brabant HE2B, Brussels, Belgium
| | - Serge Berthoin
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, United Kingdom
| | - Matthieu Roustit
- Univ. Grenoble Alpes, HP2, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Julien Boissière
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Pierre Fontaine
- Département d'endocrinologie, Diabète et maladies métaboliques, Hôpital Huriez, Université de Lille, Lille, France
| | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
- *Correspondence: Elsa Heyman
| |
Collapse
|
15
|
Valdivielso JM, Rodríguez-Puyol D, Pascual J, Barrios C, Bermúdez-López M, Sánchez-Niño MD, Pérez-Fernández M, Ortiz A. Atherosclerosis in Chronic Kidney Disease: More, Less, or Just Different? Arterioscler Thromb Vasc Biol 2019; 39:1938-1966. [PMID: 31412740 DOI: 10.1161/atvbaha.119.312705] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Patients with chronic kidney disease (CKD) are at an increased risk of premature mortality, mainly from cardiovascular causes. The association between CKD on hemodialysis and accelerated atherosclerosis was described >40 years ago. However, more recently, it has been suggested that the increase in atherosclerosis risk is actually observed in early CKD stages, remaining stable thereafter. In this regard, interventions targeting the pathogenesis of atherosclerosis, such as statins, successful in the general population, have failed to benefit patients with very advanced CKD. This raises the issue of the relative contribution of atherosclerosis versus other forms of cardiovascular injury such as arteriosclerosis or myocardial injury to the increased cardiovascular risk in CKD. In this review, the pathophysiogical contributors to atherosclerosis in CKD that are shared with the general population, or specific to CKD, are discussed. The NEFRONA study (Observatorio Nacional de Atherosclerosis en NEFrologia) prospectively assessed the prevalence and progression of subclinical atherosclerosis (plaque in vascular ultrasound), confirming an increased prevalence of atherosclerosis in patients with moderate CKD. However, the adjusted odds ratio for subclinical atherosclerosis increased with CKD stage, suggesting a contribution of CKD itself to subclinical atherosclerosis. Progression of atherosclerosis was closely related to CKD progression as well as to the baseline presence of atheroma plaque, and to higher phosphate, uric acid, and ferritin and lower 25(OH) vitamin D levels. These insights may help design future clinical trials of stratified personalized medicine targeting atherosclerosis in patients with CKD. Future primary prevention trials should enroll patients with evidence of subclinical atherosclerosis and should provide a comprehensive control of all known risk factors in addition to testing any additional intervention or placebo.
Collapse
Affiliation(s)
- José M Valdivielso
- From the Vascular & Renal Translational Research Group and UDETMA, IRBLleida. Spanish Research Network for Renal Diseases (RedInRen. ISCIII), Lleida, Spain (J.M.V., M.B.-L.)
| | - Diego Rodríguez-Puyol
- Nephrology Unit, Fundación para la investigación del Hospital Universitario Príncipe de Asturias, RedInRen, Alcalá de Henares, Madrid, Spain (D.R.-P.)
| | - Julio Pascual
- Department of Nephrology, Institute Mar for Medical Research, Hospital del Mar, RedInRen, Barcelona, Spain (J.P., C.B.)
| | - Clara Barrios
- Department of Nephrology, Institute Mar for Medical Research, Hospital del Mar, RedInRen, Barcelona, Spain (J.P., C.B.)
| | - Marcelino Bermúdez-López
- From the Vascular & Renal Translational Research Group and UDETMA, IRBLleida. Spanish Research Network for Renal Diseases (RedInRen. ISCIII), Lleida, Spain (J.M.V., M.B.-L.)
| | - Maria Dolores Sánchez-Niño
- IIS-Fundacion Jimenez Diaz, School of Medicine, University Autonoma of Madrid, FRIAT and RedInRen, Madrid, Spain (M.D.S.-N., A.O.)
| | | | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, University Autonoma of Madrid, FRIAT and RedInRen, Madrid, Spain (M.D.S.-N., A.O.)
| |
Collapse
|
16
|
Marcovecchio ML, Dalton RN, Daneman D, Deanfield J, Jones TW, Neil HAW, Dunger DB. A new strategy for vascular complications in young people with type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:429-435. [PMID: 30996294 DOI: 10.1038/s41574-019-0198-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes vascular complications, including cardiovascular disease, diabetic nephropathy and retinopathy, have a negative effect on the long-term prognosis of young people with type 1 diabetes mellitus (T1DM). Poor glycaemic control and consequent increased HbA1c levels are major risk factors for the development of vascular complications. HbA1c levels are the main focus of current management strategies; however, the recommended target is rarely achieved in adolescents. Thus, a clear need exists for improved biomarkers to identify high-risk young people early and to develop new intervention strategies. Evidence is accumulating that early increases in urinary albumin excretion could be predictive of adolescents with T1DM who are at an increased risk of developing vascular complications, independent of HbA1c levels. These findings present an opportunity to move towards the personalized care of adolescents with T1DM, which takes into consideration changes in albumin excretion and other risk factors in addition to HbA1c levels.
Collapse
Affiliation(s)
| | - R Neil Dalton
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Denis Daneman
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - John Deanfield
- Vascular Physiology Unit, Institute of Cardiovascular Science, University College London, London, UK
| | - Timothy W Jones
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - H Andrew W Neil
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
17
|
Jones S, Khanolkar AR, Gevers E, Stephenson T, Amin R. Cardiovascular risk factors from diagnosis in children with type 1 diabetes mellitus: a longitudinal cohort study. BMJ Open Diabetes Res Care 2019; 7:e000625. [PMID: 31641519 PMCID: PMC6777407 DOI: 10.1136/bmjdrc-2018-000625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/04/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND For childhood onset type 1 diabetes (T1D), the pathogenesis of atherosclerosis is greatly accelerated and results in early cardiovascular disease (CVD) and increased mortality. However, cardioprotective interventions in this age group are not routinely undertaken. AIMS To document prevalence of cardiovascular risk factors from diagnosis of childhood T1D and their relationship with disease duration and ethnicity. METHODS Routinely collected clinical records for 565 children with T1D were retrospectively analyzed. Data were collected from diagnosis and at routine check-ups at pediatric diabetes clinics across Barts Health National Health Service Trust. Age at diagnosis was 8.5 years (0.9-19.4). Mean follow-up 4.3 years (0-10.8). 48% were boys and 60% were non-white. Linear longitudinal mixed effects models were used to evaluate relationships between risk factors and diabetes duration. RESULTS CVD risk factors were present at first screening; 33.8% of children were overweight or obese, 20.5% were hypertensive (elevated diastolic blood pressure (BP)) and total cholesterol, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol were abnormal in 63.5%, 34.2% and 22.0%, respectively. Significant associations between diabetes duration and annual increases of body mass index (0.6 kg/m2), BP (0.1 SD score) and lipids (0.02-0.06 mmol/L) were noted. Annual increases were significantly higher in black children for BP and Bangladeshi children for lipids. Bangladeshi children also had greatest baseline levels. CONCLUSIONS CVD risk factors are present in up to 60% of children at diagnosis of T1D and increase in prevalence during the early years of the disease. Commencing screening in younger children and prioritizing appropriate advice and attention to ethnic variation when calculating risk should be considered.
Collapse
Affiliation(s)
| | - Amal R Khanolkar
- GOS Institute of Child Health, UCL, London, UK
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Evelien Gevers
- Department of Paediatric Endocrinology, Barts Health NHS Trust, Royal London Children's Hospital, London, UK
- Centre for Endocrinology, Queen Mary University of London, London, UK
| | | | - Rakesh Amin
- GOS Institute of Child Health, UCL, London, UK
| |
Collapse
|
18
|
Peña AS, Liew G, Anderson J, Giles LC, Gent R, Wong TY, Couper JJ. Early atherosclerosis is associated with retinal microvascular changes in adolescents with type 1 diabetes. Pediatr Diabetes 2018; 19:1467-1470. [PMID: 30175493 DOI: 10.1111/pedi.12764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/16/2018] [Accepted: 08/28/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND/OBJECTIVE Adolescents with type 1 diabetes have early macrovascular changes (increased intima-media thickness [IMT]) and early retinal changes that predict clinical disease in adulthood. We hypothesized that early changes in the macrovascular and retinal microvascular beds develop in parallel before retinopathy develops. We therefore aimed to investigate the relationship between changes in atherosclerosis (carotid and aortic IMT) and retinal vascular geometry cross-sectionally and longitudinally in adolescents with type 1 diabetes. METHODS Ninety adolescents with type 1 diabetes (41 boys, aged 13.6 ± 3.5 years) who were enrolled in a randomized controlled trial had evaluations at baseline; 41 randomized to placebo were also investigated at 12 months for carotid and aortic IMT using ultrasound and retinal vascular geometry was measured from retinal photographs. RESULTS There were significant associations between thicker mean/maximum carotid IMT and wider retinal arteriolar and venular calibers; for every 0.1 mm increase in mean carotid IMT, retinal arteriolar caliber increased by 7.90 μm (95% confidence interval [CI] 4.50, 11.30, P < 0.0001) and venular caliber by 9.61 μm (95% CI 4.16, 15.06, P = 0.0008). Increased mean aortic IMT was associated with increased arteriolar tortuosity (2.61, 95% CI 0.50, 4.71, P = 0.02). CONCLUSIONS The early changes of atherosclerosis are associated with retinal microvascular changes in adolescents with type 1 diabetes. This supports parallel adverse changes in the macro and microvascular circulations from early adolescence in type 1 diabetes, and highlights the importance of early intervention.
Collapse
Affiliation(s)
- Alexia S Peña
- Discipline of Paediatrics, The University of Adelaide and Robinson Research Institute, North Adelaide, South Australia, Australia.,Endocrinology and Diabetes Department, Women's and Children's Hospital (WCH), North Adelaide, South Australia, Australia
| | - Gerald Liew
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Camperdown, New South Wales, Australia
| | - Jemma Anderson
- Discipline of Paediatrics, The University of Adelaide and Robinson Research Institute, North Adelaide, South Australia, Australia.,Endocrinology and Diabetes Department, Women's and Children's Hospital (WCH), North Adelaide, South Australia, Australia
| | - Lynne C Giles
- School of Public Health, The University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Roger Gent
- Medical Imaging, Women's and Children's Hospital (WCH), North Adelaide, South Australia, Australia
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Center, National University of Singapore, Singapore
| | - Jennifer J Couper
- Discipline of Paediatrics, The University of Adelaide and Robinson Research Institute, North Adelaide, South Australia, Australia.,Endocrinology and Diabetes Department, Women's and Children's Hospital (WCH), North Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Donaghue KC, Marcovecchio ML, Wadwa RP, Chew EY, Wong TY, Calliari LE, Zabeen B, Salem MA, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2018: Microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes 2018; 19 Suppl 27:262-274. [PMID: 30079595 PMCID: PMC8559793 DOI: 10.1111/pedi.12742] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Kim C Donaghue
- The Children's Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Camperdown, Australia
| | | | - R P Wadwa
- University of Colorado School of Medicine, Denver, Colorado
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, the National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | | | - Bedowra Zabeen
- Department of Paediatrics and Changing Diabetes in Children Program, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Dhaka, Bangladesh
| | - Mona A Salem
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maria E Craig
- The Children's Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Camperdown, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
20
|
Bjornstad P, Donaghue KC, Maahs DM. Macrovascular disease and risk factors in youth with type 1 diabetes: time to be more attentive to treatment? Lancet Diabetes Endocrinol 2018; 6:809-820. [PMID: 29475800 PMCID: PMC6102087 DOI: 10.1016/s2213-8587(18)30035-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality in patients with type 1 diabetes. Although cardiovascular disease complications are rare until adulthood, pathology and early markers can manifest in adolescence. Whereas advances have been made in the management of microvascular complications of type 1 diabetes, similar progress in reducing macrovascular complications has not been made. The reasons for the absence of progress remain incompletely understood, but most likely relate to the long time needed for cardiovascular disease to manifest clinically and hence for risk factor management to show a clinical benefit, thus allowing inertia to prevail for diagnosis and particularly for targeting risk factors. In this Review, we summarise paediatric data on traditional and novel risk factors of cardiovascular disease, provide an overview of data from previous and current clinical trials, discuss future directions in cardiovascular disease research for paediatric patients with type 1 diabetes, and advocate for the early identification and treatment of cardiovascular disease risk factors as recommended in multiple guidelines.
Collapse
Affiliation(s)
- Petter Bjornstad
- Department of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA.
| | - Kim C Donaghue
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, University of Sydney, NSW, Australia
| | - David M Maahs
- Department of Pediatric Endocrinology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
21
|
Marcovecchio ML, Chiesa ST, Armitage J, Daneman D, Donaghue KC, Jones TW, Mahmud FH, Marshall SM, Neil HAW, Dalton RN, Deanfield J, Dunger DB, Acerini C, Ackland F, Anand B, Barrett T, Birrell V, Campbell F, Charakida M, Cheetham T, Chiesa S, Cooper C, Doughty I, Dutta A, Edge J, Gray A, Hamilton-Shield J, Mann N, Marcovecchio ML, Rayman G, Robinson JM, Russell-Taylor M, Sankar V, Smith A, Thalange N, Yaliwal C, Benitez-Aguirre P, Cameron F, Cotterill A, Couper J, Craig M, Davis E, Donaghue K, Jones TW, Verge C, Bergman P, Rodda C, Clarson C, Curtis J, Daneman D, Mahmud F, Sochett E, Marshall S, Armitage J, Bingley P, Van’t Hoff W, Dunger D, Dalton N, Daneman D, Neil A, Deanfield J, Jones T, Donaghue K, Baigent C, Emberson J, Flather M, Bilous R. Renal and Cardiovascular Risk According to Tertiles of Urinary Albumin-to-Creatinine Ratio: The Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT). Diabetes Care 2018; 41:1963-1969. [PMID: 30026334 DOI: 10.2337/dc18-1125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Baseline data from the Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT) indicated that tertiles of urinary albumin-to-creatinine ratios (ACRs) in the normal range at age 10-16 years are associated with risk markers for diabetic nephropathy (DN) and cardiovascular disease (CVD). We aimed to determine whether the top ACR tertile remained associated with DN and CVD risk over the 2-4-year AdDIT study. RESEARCH DESIGN AND METHODS One hundred fifty adolescents (mean age 14.1 years [SD 1.6]) with baseline ACR in the upper tertile (high-ACR group) recruited to the AdDIT trial, who remained untreated, and 396 (age 14.3 years [1.6]) with ACR in the middle and lower tertiles (low-ACR group), who completed the parallel AdDIT observational study, were evaluated prospectively with assessments of ACR and renal and CVD markers, combined with carotid intima-media thickness (cIMT) at baseline and end of study. RESULTS After a median follow-up of 3.9 years, the cumulative incidence of microalbuminuria was 16.3% in the high-ACR versus 5.5% in the low-ACR group (log-rank P < 0.001). Cox models showed independent contributions of the high-ACR group (hazard ratio 4.29 [95% CI 2.08-8.85]) and HbA1c (1.37 [1.10-1.72]) to microalbuminuria risk. cIMT change from baseline was significantly greater in the high- versus low-ACR group (mean difference 0.010 mm [0.079], P = 0.006). Changes in estimated glomerular filtration rate, systolic blood pressure, and hs-CRP were also significantly greater in the high-ACR group (P < 0.05). CONCLUSIONS ACR at the higher end of the normal range at the age of 10-16 years is associated with an increased risk of progression to microalbuminuria and future CVD risk, independently of HbA1c.
Collapse
Affiliation(s)
| | - Scott T. Chiesa
- National Centre for Cardiovascular Prevention and Outcomes, University College London, London, U.K
| | - Jane Armitage
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, U.K
| | - Denis Daneman
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kim C. Donaghue
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, University of Sydney, Camperdown, New South Wales, Australia
| | - Timothy W. Jones
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Farid H. Mahmud
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sally M. Marshall
- Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - H. Andrew W. Neil
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | - R. Neil Dalton
- Guy’s and St Thomas’ National Health Service Foundation Trust, London, U.K
| | - John Deanfield
- National Centre for Cardiovascular Prevention and Outcomes, University College London, London, U.K
| | - David B. Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, U.K
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lilje C, Cronan JC, Schwartzenburg EJ, Owers EM, Clesi P, Gomez R, Stender S, Hempe J, Chalew SA, Cardinale JP. Intima-media thickness at different arterial segments in pediatric type 1 diabetes patients and its relationship with advanced glycation end products. Pediatr Diabetes 2018; 19:450-456. [PMID: 28664608 DOI: 10.1111/pedi.12557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/09/2017] [Accepted: 06/06/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Patients with type 1 diabetes mellitus (T1DM) are at risk for premature atherosclerosis (AS), which has its origin in childhood. Carotid intima-media thickness (IMT) is an established surrogate marker for subclinical AS in adults. The first macroscopically detectable AS changes, however, begin in the abdominal aorta. Advanced glycation end products (AGE) predict microvascular complications in diabetes. OBJECTIVES To assess the sensitivity for early macrovascular changes of brachial, femoral, and aortic IMT compared to conventional carotid IMT in pediatric T1DM patients ; and the relationship of IMT with AGE. METHODS Using high-resolution external ultrasound, carotid, brachial, femoral, and aortic IMT were prospectively analyzed in children and adolescents with established T1DM and in controls (Ctrls). AGE were estimated by skin intrinsic fluorescence (SIF). Other established cardiovascular risk factors were excluded. RESULTS Seventy-six subjects (T1DM = 38; Ctrls = 38) with a mean age of 13.1 ± 4.0 years (6-19, median 13) qualified for analysis. Carotid, brachial, femoral, and aortic IMT analyses were feasible in 100%, 74%, 84%, and 92% of subjects, respectively. Aortic and femoral IMT were increased in T1DM patients (0.60 ± 0.11 vs 0.52 ± 0.10 mm, P < .001; and 0.41 ± 0.07 vs 0.36 ± 0.07 mm, P < .01, respectively) while carotid and brachial IMT were not. AGE levels were elevated in T1DM patients and correlated with aortic IMT only. The influence of AGE on aIMT did not remain significant after adjusting for T1DM and age in our small population. CONCLUSION We found aortic IMT-and to a lesser degree femoral IMT-to be more sensitive than carotid and brachial IMT for detecting early macrovascular changes in pediatric T1DM patients.
Collapse
Affiliation(s)
- Christian Lilje
- Department of Pediatrics (Cardiology), Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| | - Julie C Cronan
- School of Medicine, Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| | - Elridge J Schwartzenburg
- School of Medicine, Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| | - Elizabeth M Owers
- School of Medicine, Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| | - Patrice Clesi
- Clinical Trials Center, Children's Hospital, New Orleans, Louisiana
| | - Ricardo Gomez
- Department of Pediatrics (Endocrinology), Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| | - Sarah Stender
- Department of Pediatrics (Endocrinology), Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| | - James Hempe
- Department of Pediatrics (Endocrinology), Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| | - Stuart A Chalew
- Department of Pediatrics (Endocrinology), Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| | - Jeffrey P Cardinale
- School of Medicine, Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, Louisiana
| |
Collapse
|
23
|
Lu L, Marcovecchio ML, Dalton RN, Dunger D. Cardiovascular autonomic dysfunction predicts increasing albumin excretion in type 1 diabetes. Pediatr Diabetes 2018; 19:464-469. [PMID: 29171134 DOI: 10.1111/pedi.12614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To determine the potential role of cardiovascular autonomic dysfunction in the development of renal complications in young people with type 1 diabetes (T1D). METHODS In this prospective study, 199 children and adolescents recruited to the Oxford Regional Prospective Study underwent assessment of autonomic function ~5 years after diagnosis, and were subsequently followed with longitudinal assessments of HbA1c and urine albumin-creatinine ratio (ACR) over 8.6 ± 3.4 years. Autonomic function was assessed with 4 standardized tests of cardiovascular reflexes: heart rate (HR) response to (1) Valsalva Maneuver, (2) deep breathing, (3) standing, and (4) blood pressure (BP) response to standing. Linear mixed models were used to assess the association between autonomic parameters and future changes in ACR. RESULTS Independent of HbA1c , each SD increase in HR response to Valsalva Maneuver predicted an ACR increase of 2.16% [95% CI: 0.08; 4.28] per year (P = .04), while each SD increase in diastolic BP response to standing predicted an ACR increase of 2.55% [95% CI: 0.37; 4.77] per year (P = .02). The effect of HR response to standing on ACR reached borderline significance (-2.07% [95% CI: -4.11; 0.01] per year per SD increase, P = .051). CONCLUSIONS In this cohort of young people with T1D, enhanced cardiovascular reflexes at baseline predicted future increases in ACR. These results support a potential role for autonomic dysfunction in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Liangjian Lu
- Department of Paediatrics, MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Cambridge, UK.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - M Loredana Marcovecchio
- Department of Paediatrics, MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - R Neil Dalton
- WellChild Laboratory, Evelina London Children's Hospital, London, UK
| | - David Dunger
- Department of Paediatrics, MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Lovshin JA, Škrtić M, Bjornstad P, Moineddin R, Daneman D, Dunger D, Reich HN, Mahmud F, Scholey J, Cherney DZI, Sochett E. Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with Type 1 diabetes mellitus. Am J Physiol Renal Physiol 2018; 314:F667-F674. [PMID: 29357443 PMCID: PMC5966760 DOI: 10.1152/ajprenal.00400.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
Adolescents with Type 1 diabetes mellitus (T1DM) are at risk for hyperfiltration and elevated urinary albumin-to-creatinine ratio (ACR), which are early indicators of diabetic nephropathy. Adolescents with T1DM also develop early changes in blood pressure, cardiovascular structure, and function. Our aims were to define the relationships between hyperfiltration, ACR, and 24-h ambulatory blood pressure over time in adolescents with T1DM. Normotensive, normoalbuminuric adolescents ( n = 98) with T1DM underwent baseline and 2-yr 24-h ambulatory blood pressure monitoring, glomerular filtration rate (eGFR) estimated by cystatin C (Larsson equation), and ACR measurements. Linear regression models adjusted for diabetes duration, sex, and HbA1c were used to determine associations. Hyperfiltration (eGFR ≥ 133 ml/min) was present in 31% at baseline and 21% at 2-yr follow-up. Hyperfiltration was associated with greater odds of rapid GFR decline (>3 ml·min-1·yr-1) [OR: 5.33, 95%; CI: 1.87-15.17; P = 0.002] over 2 yr. Natural log of ACR at baseline was associated with greater odds of hyperfiltration (OR: 1.71, 95% CI: 1.00-2.92; P = 0.049) and 2-yr follow-up (OR: 2.14, 95%; CI: 1.09-4.19; P = 0.03). One SD increase in eGFR, but not ln ACR, at 2-yr follow-up conferred greater odds of nighttime nondipping pattern (OR: 1.96, 95% CI: 1.06-3.63; P = 0.03). Hyperfiltration was prevalent at baseline and at 2-yr follow-up, predicted rapid decline in GFR, and was related to ACR. Elevated GFR at 2-yr follow-up was associated with nighttime nondipping pattern. More work is needed to better understand early relationships between renal hemodynamic and systemic hemodynamic changes in adolescents with T1DM to reduce future cardiorenal complications.
Collapse
Affiliation(s)
- Julie A Lovshin
- Division of Endocrinology and Metabolism, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronoto , Toronto, Ontario , Canada
| | - Marko Škrtić
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto , Toronto, Ontario , Canada
| | - Petter Bjornstad
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto , Toronto, Ontario , Canada
- Division of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Rahim Moineddin
- Department of Family and Community Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Denis Daneman
- Division of Endocrinology and Metabolism, Department of Pediatrics, Hospital for Sick Children, University of Toronto , Toronto, Ontario , Canada
| | - David Dunger
- Department of Pediatrics, University of Cambridge , Cambridge , United Kingdom
| | - Heather N Reich
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto , Toronto, Ontario , Canada
| | - Farid Mahmud
- Division of Endocrinology and Metabolism, Department of Pediatrics, Hospital for Sick Children, University of Toronto , Toronto, Ontario , Canada
| | - James Scholey
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto , Toronto, Ontario , Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto , Toronto, Ontario , Canada
| | - Etienne Sochett
- Division of Endocrinology and Metabolism, Department of Pediatrics, Hospital for Sick Children, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
25
|
Bojanin D, Milenkovic T, Vekic J, Vukovic R, Zeljkovic A, Janac J, Ivanisevic J, Todorovic S, Mazibrada I, Spasojevic-Kalimanovska V. Effects of co-existing autoimmune diseases on serum lipids and lipoprotein subclasses profile in paediatric patients with type 1 diabetes mellitus. Clin Biochem 2018; 54:11-17. [DOI: 10.1016/j.clinbiochem.2018.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
|
26
|
Levin A, Adams E, Barrett BJ, Beanlands H, Burns KD, Chiu HHL, Chong K, Dart A, Ferera J, Fernandez N, Fowler E, Garg AX, Gilbert R, Harris H, Harvey R, Hemmelgarn B, James M, Johnson J, Kappel J, Komenda P, McCormick M, McIntyre C, Mahmud F, Pei Y, Pollock G, Reich H, Rosenblum ND, Scholey J, Sochett E, Tang M, Tangri N, Tonelli M, Turner C, Walsh M, Woods C, Manns B. Canadians Seeking Solutions and Innovations to Overcome Chronic Kidney Disease (Can-SOLVE CKD): Form and Function. Can J Kidney Health Dis 2018; 5:2054358117749530. [PMID: 29372064 PMCID: PMC5774731 DOI: 10.1177/2054358117749530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/20/2017] [Indexed: 11/17/2022] Open
Abstract
PURPOSE OF REVIEW This article serves to describe the Can-SOLVE CKD network, a program of research projects and infrastructure that has excited patients and given them hope that we can truly transform the care they receive. ISSUE Chronic kidney disease (CKD) is a complex disorder that affects more than 4 million Canadians and costs the Canadian health care system more than $40 billion per year. The evidence base for guiding care in CKD is small, and even in areas where evidence exists, uptake of evidence into clinical practice has been slow. Compounding these complexities are the variations in outcomes for patients with CKD and difficulties predicting who is most likely to develop complications over time. Clearly these gaps in our knowledge and understanding of CKD need to be filled, but the current state of CKD research is not where it needs to be. A culture of clinical trials and inquiry into the disease is lacking, and much of the existing evidence base addresses the concerns of the researchers but not necessarily those of the patients. PROGRAM OVERVIEW The Canadian Institutes of Health Research (CIHR) has launched the national Strategy for Patient-Oriented Research (SPOR), a coalition of federal, provincial, and territorial partners dedicated to integrating research into care. Canadians Seeking Solutions and Innovations to Overcome Chronic Kidney Disease (Can-SOLVE CKD) is one of five pan-Canadian chronic kidney disease networks supported through the SPOR. The vision of Can-SOLVE CKD is that by 2020 every Canadian with or at high risk for CKD will receive the best recommended care, experience optimal outcomes, and have the opportunity to participate in studies with novel therapies, regardless of age, sex, gender, location, or ethnicity. PROGRAM OBJECTIVE The overarching objective of Can-SOLVE CKD is to accelerate the translation of knowledge about CKD into clinical research and practice. By focusing on the patient's voice and implementing relevant findings in real time, Can-SOLVE CKD will transform the care that CKD patients receive, and will improve kidney health for future generations.
Collapse
Affiliation(s)
- Adeera Levin
- The University of British Columbia, Vancouver, Canada
- BC Provincial Renal Agency, Vancouver, Canada
| | - Evan Adams
- The University of British Columbia, Vancouver, Canada
- First Nations Health Authority, West Vancouver, British Columbia, Canada
| | - Brendan J. Barrett
- Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | | | - Kevin D. Burns
- University of Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ontario, Canada
| | - Helen Hoi-Lun Chiu
- BC Provincial Renal Agency, Vancouver, Canada
- Providence Health Care Research Institute, Vancouver, British Columbia, Canada
- Can-SOLVE CKD Network, Vancouver, British Columbia, Canada
| | - Kate Chong
- Can-SOLVE CKD Network, Vancouver, British Columbia, Canada
| | - Allison Dart
- University of Manitoba, Winnipeg, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Jack Ferera
- Can-SOLVE CKD Network, Vancouver, British Columbia, Canada
| | | | | | - Amit X. Garg
- Western University, London, Ontario, Canada
- Institute for Clinical Evaluative Sciences, London, Ontario, Canada
| | - Richard Gilbert
- St. Michael’s Hospital, Toronto, Ontario, Canada
- University of Toronto, Ontario, Canada
| | - Heather Harris
- Providence Health Care Research Institute, Vancouver, British Columbia, Canada
- Can-SOLVE CKD Network, Vancouver, British Columbia, Canada
| | | | - Brenda Hemmelgarn
- University of Calgary, Alberta, Canada
- Foothills Medical Centre, Calgary, Alberta, Canada
- The Interdisciplinary Chronic Disease Collaboration, Calgary, Alberta, Canada
| | | | | | | | - Paul Komenda
- University of Manitoba, Winnipeg, Canada
- Seven Oaks General Hospital, Winnipeg, Manitoba, Canada
| | | | - Christopher McIntyre
- Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Farid Mahmud
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - York Pei
- University of Toronto, Ontario, Canada
- Toronto General Hospital, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | - Graham Pollock
- Providence Health Care Research Institute, Vancouver, British Columbia, Canada
- Can-SOLVE CKD Network, Vancouver, British Columbia, Canada
| | - Heather Reich
- University of Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | - Norman D. Rosenblum
- University of Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James Scholey
- University of Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | | | - Mila Tang
- BC Provincial Renal Agency, Vancouver, Canada
- Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Navdeep Tangri
- University of Manitoba, Winnipeg, Canada
- Seven Oaks General Hospital, Winnipeg, Manitoba, Canada
| | - Marcello Tonelli
- University of Calgary, Alberta, Canada
- The Interdisciplinary Chronic Disease Collaboration, Calgary, Alberta, Canada
| | | | - Michael Walsh
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Cathy Woods
- Can-SOLVE CKD Network, Vancouver, British Columbia, Canada
| | - Braden Manns
- University of Calgary, Alberta, Canada
- Foothills Medical Centre, Calgary, Alberta, Canada
- The Interdisciplinary Chronic Disease Collaboration, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Anderson JJA, Couper JJ, Giles LC, Leggett CE, Gent R, Coppin B, Peña AS. Effect of Metformin on Vascular Function in Children With Type 1 Diabetes: A 12-Month Randomized Controlled Trial. J Clin Endocrinol Metab 2017; 102:4448-4456. [PMID: 29040598 DOI: 10.1210/jc.2017-00781] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Children with type 1 diabetes have vascular dysfunction preceding atherosclerosis. Early interventions are needed to reduce cardiovascular disease. OBJECTIVE To evaluate the effect of metformin on vascular function in children with type 1 diabetes. DESIGN Twelve-month double-blind, randomized, placebo-controlled trial. SETTING Tertiary pediatric diabetes clinic. PARTICIPANTS Ninety children (8 to 18 years of age), >50th percentile body mass index (BMI), with type 1 diabetes. INTERVENTION Metformin (up to 1 g twice a day) or placebo. MAIN OUTCOME MEASURE Vascular function measured by brachial artery ultrasound [flow-mediated dilatation/glyceryl trinitrate-mediated dilatation (GTN)]. RESULTS Ninety participants were enrolled [41 boys, 13.6 (2.5) years of age, 45 per group], 10 discontinued intervention, and 1 was lost to follow-up. On metformin, GTN improved, independent of glycosylated hemoglobin (HbA1c), by 3.3 percentage units [95% confidence interval (CI) 0.3, 6.3, P = 0.03] and insulin dose reduced by 0.2 U/kg/d (95% CI 0.1, 0.3, P = 0.001) during 12 months, with effects from 3 months. Metformin had a beneficial effect on HbA1c at 3 months (P = 0.001) and difference in adjusted HbA1c between groups during 12 months was 1.0%; 95% CI 0.4, 1.5 (10.9 mmol/mol; 95% CI 4.4, 16.4), P = 0.001. There were no effects on carotid/aortic intima media thickness, BMI, lipids, blood pressure, or other cardiovascular risk factors. Median (95% CI) adherence, evaluated by electronic monitoring, was 75.5% (65.7, 81.5), without group differences. More gastrointestinal side effects were reported on metformin (incidence rate ratio 1.65, 95% CI 1.08, 2.52, P = 0.02), with no difference in hypoglycemia or diabetic ketoacidosis. CONCLUSIONS Metformin improved vascular smooth muscle function and HbA1c, and lowered insulin dose in type 1 diabetes children. These benefits and good safety profile warrant further consideration of its use.
Collapse
Affiliation(s)
- Jemma J A Anderson
- Discipline of Paediatrics, Robinson Research Institute, University of Adelaide, Australia
- Endocrinology and Diabetes Department, Women's and Children's Hospital, Australia
| | - Jennifer J Couper
- Discipline of Paediatrics, Robinson Research Institute, University of Adelaide, Australia
- Endocrinology and Diabetes Department, Women's and Children's Hospital, Australia
| | - Lynne C Giles
- School of Public Health, Faculty of Health and Medical Sciences, University of Adelaide, Australia
| | - Catherine E Leggett
- Discipline of Paediatrics, Robinson Research Institute, University of Adelaide, Australia
- Pharmacy, Women's and Children's Hospital, Australia
| | - Roger Gent
- Medical Imaging, Women's and Children's Hospital, Australia
| | - Brian Coppin
- Flinders Medical Centre, Bedford Park, Australia
| | - Alexia S Peña
- Discipline of Paediatrics, Robinson Research Institute, University of Adelaide, Australia
- Endocrinology and Diabetes Department, Women's and Children's Hospital, Australia
| |
Collapse
|
28
|
Gourgari E, Dabelea D, Rother K. Modifiable Risk Factors for Cardiovascular Disease in Children with Type 1 Diabetes: Can Early Intervention Prevent Future Cardiovascular Events? Curr Diab Rep 2017; 17:134. [PMID: 29101482 PMCID: PMC5670186 DOI: 10.1007/s11892-017-0968-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Patients with type 1 diabetes have increased risk for cardiovascular disease. The purpose of this review is to examine the following: i) current evidence for subclinical cardiovascular disease (CVD) in children with type 1 diabetes (T1DM) ii) known modifiable risk factors for CVD and their relationship to subclinical CVD in this population iii) studies that have addressed these risk factors in order to improve CVD outcomes in children with T1DM RECENT FINDINGS: Subclinical CVD presents in children as increased carotid intima-media thickness, increased arterial stiffness, and endothelial and myocardial dysfunction. Modifiable risk factors for CVD include hyperglycemia, hyperlipidemia, obesity, hypertension, depression, and autonomic dysfunction. Very few randomized controlled studies have been done in children with T1DM to examine how modification of these risk factors can affect their CVD. Children with T1DM have subclinical CVD and multiple modifiable risk factors for CVD. More research is needed to define how modification of these factors affects the progression of CVD.
Collapse
Affiliation(s)
- Evgenia Gourgari
- Department of Pediatrics, Georgetown University, Washington DC, USA
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) and Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO USA
| | - Kristina Rother
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
29
|
Marcovecchio ML, Chiesa ST, Bond S, Daneman D, Dawson S, Donaghue KC, Jones TW, Mahmud FH, Marshall SM, Neil HAW, Dalton RN, Deanfield J, Dunger DB. ACE Inhibitors and Statins in Adolescents with Type 1 Diabetes. N Engl J Med 2017; 377:1733-1745. [PMID: 29091568 DOI: 10.1056/nejmoa1703518] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Among adolescents with type 1 diabetes, rapid increases in albumin excretion during puberty precede the development of microalbuminuria and macroalbuminuria, long-term risk factors for renal and cardiovascular disease. We hypothesized that adolescents with high levels of albumin excretion might benefit from angiotensin-converting-enzyme (ACE) inhibitors and statins, drugs that have not been fully evaluated in adolescents. METHODS We screened 4407 adolescents with type 1 diabetes between the ages of 10 and 16 years of age and identified 1287 with values in the upper third of the albumin-to-creatinine ratios; 443 were randomly assigned in a placebo-controlled trial of an ACE inhibitor and a statin with the use of a 2-by-2 factorial design minimizing differences in baseline characteristics such as age, sex, and duration of diabetes. The primary outcome for both interventions was the change in albumin excretion, assessed according to the albumin-to-creatinine ratio calculated from three early-morning urine samples obtained every 6 months over 2 to 4 years, and expressed as the area under the curve. Key secondary outcomes included the development of microalbuminuria, progression of retinopathy, changes in the glomerular filtration rate, lipid levels, and measures of cardiovascular risk (carotid intima-media thickness and levels of high-sensitivity C-reactive protein and asymmetric dimethylarginine). RESULTS The primary outcome was not affected by ACE inhibitor therapy, statin therapy, or the combination of the two. The use of an ACE inhibitor was associated with a lower incidence of microalbuminuria than the use of placebo; in the context of negative findings for the primary outcome and statistical analysis plan, this lower incidence was not considered significant (hazard ratio, 0.57; 95% confidence interval, 0.35 to 0.94). Statin use resulted in significant reductions in total, low-density lipoprotein, and non-high-density lipoprotein cholesterol levels, in triglyceride levels, and in the ratio of apolipoprotein B to apolipoprotein A1, whereas neither drug had significant effects on carotid intima-media thickness, other cardiovascular markers, the glomerular filtration rate, or progression of retinopathy. Overall adherence to the drug regimen was 75%, and serious adverse events were similar across the groups. CONCLUSIONS The use of an ACE inhibitor and a statin did not change the albumin-to-creatinine ratio over time. (Funded by the Juvenile Diabetes Research Foundation and others; AdDIT ClinicalTrials.gov number, NCT01581476 .).
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Scott T Chiesa
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Simon Bond
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Denis Daneman
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Sarah Dawson
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Kim C Donaghue
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Timothy W Jones
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Farid H Mahmud
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Sally M Marshall
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - H Andrew W Neil
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - R Neil Dalton
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - John Deanfield
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - David B Dunger
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| |
Collapse
|
30
|
Forbes JM, Fotheringham AK. Vascular complications in diabetes: old messages, new thoughts. Diabetologia 2017; 60:2129-2138. [PMID: 28725914 DOI: 10.1007/s00125-017-4360-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023]
Abstract
In parallel with the growing diabetes pandemic, there is an increasing burden of micro- and macrovascular complications, occurring in the majority of patients. The identification of a number of synergistic accelerators of disease, providing therapeutic pathways, has stabilised the incidence of complications in most western nations. However, the primary instigators of diabetic complications and, thus, prevention strategies, remain elusive. This has necessitated a refocus on natural history studies, where tissue and plasma samples are sequentially taken to determine when and how disease initiates. In addition, recent Phase III trials, wherein the pleiotropic effects of compounds were arguably as beneficial as their glucose-lowering capacity in slowing the progression of complications, have identified knowledge gaps. Recently the influence of other widely recognised pathological pathways, such as mitochondrial production of reactive oxygen species, has been challenged, highlighting the need for a diverse and robust global research effort to ascertain viable therapeutic targets. Technological advances, such as -omics, high-resolution imaging and computational modelling, are providing opportunities for strengthening and re-evaluating research findings. Newer areas such as epigenetics, energetics and the increasing scrutiny of our synergistic inhabitants, the microbiota, also offer novel targets as biomarkers. Ultimately, however, this field requires concerted lobbying to support all facets of diabetes research.
Collapse
Affiliation(s)
- Josephine M Forbes
- Glycation and Diabetes, Mater Research Institute - Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
- Mater Clinical School, The University of Queensland, Brisbane, QLD, Australia.
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| | - Amelia K Fotheringham
- Glycation and Diabetes, Mater Research Institute - Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Panduru NM, Forsblom C, Saraheimo M, Thorn LM, Gordin D, Elonen N, Harjusalo V, Bierhaus A, Humpert PM, Groop PH. Urinary liver-type fatty acid binding protein is an independent predictor of stroke and mortality in individuals with type 1 diabetes. Diabetologia 2017; 60:1782-1790. [PMID: 28601908 DOI: 10.1007/s00125-017-4328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS In type 1 diabetes, cardiovascular disease (CVD) and diabetic nephropathy progress in parallel, thereby potentiating the risk of premature death during their development. Since urinary liver-type fatty acid binding protein (L-FABP) predicts the progression of diabetic nephropathy, the aim of this study was to investigate whether urinary L-FABP also predicts cardiovascular outcomes and mortality. METHODS We tested our hypothesis in a Finnish cohort of 2329 individuals with type 1 diabetes and a median follow-up of 14.1 years. The L-FABP to creatinine ratio was determined from baseline urine samples. The predictive value of urinary L-FABP was evaluated using Cox regression models, while its added predictive benefit for cardiovascular outcomes and mortality was evaluated using a panel of statistical indexes. RESULTS Urinary L-FABP predicted incident stroke independently of traditional risk factors (HR 1.33 [95% CI 1.20, 1.49]) and after further adjustment for eGFR (HR 1.28 [95% CI 1.14, 1.44]) or AER (HR 1.24 [95% CI 1.06, 1.44]). In addition, it predicted mortality independently of traditional risk factors (HR 1.34 [95% CI 1.24, 1.45]), and after adjustment for eGFR (HR 1.29 [95% CI 1.18, 1.39]) or AER (HR 1.22 [95% CI 1.09, 1.36]). Urinary L-FABP was as good a predictor as eGFR or AER, and improved the AUC for both outcomes on top of traditional risk factors, with no reclassification benefit (integrated discrimination improvement/net reclassification improvement) for stroke or mortality when AER or eGFR were added to traditional risk factors. However, urinary L-FABP was not a predictor of other cardiovascular endpoints (coronary artery disease, peripheral vascular disease and overall CVD events) when adjusted for the AER. CONCLUSIONS/INTERPRETATION Urinary L-FABP is an independent predictor of stroke and mortality in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Nicolae M Panduru
- Second Clinical Department - Diabetes, Nutrition and Metabolic Disorders Unit, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum 1 Helsinki, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, FI-00014, Helsinki, Finland
- Research Programmes Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum 1 Helsinki, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, FI-00014, Helsinki, Finland
- Research Programmes Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Saraheimo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum 1 Helsinki, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, FI-00014, Helsinki, Finland
- Research Programmes Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lena M Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum 1 Helsinki, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, FI-00014, Helsinki, Finland
- Research Programmes Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum 1 Helsinki, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, FI-00014, Helsinki, Finland
- Research Programmes Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nina Elonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum 1 Helsinki, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, FI-00014, Helsinki, Finland
- Research Programmes Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Valma Harjusalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum 1 Helsinki, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, FI-00014, Helsinki, Finland
- Research Programmes Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Angelika Bierhaus
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Per M Humpert
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
- Stoffwechselzentrum Rhein Pfalz, Mannheim, Germany
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum 1 Helsinki, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, FI-00014, Helsinki, Finland.
- Research Programmes Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | | |
Collapse
|
32
|
|
33
|
Sochett E, Noone D, Grattan M, Slorach C, Moineddin R, Elia Y, Mahmud FH, Dunger DB, Dalton N, Cherney D, Scholey J, Reich H, Deanfield J. Relationship between serum inflammatory markers and vascular function in a cohort of adolescents with type 1 diabetes. Cytokine 2017; 99:233-239. [PMID: 28760408 DOI: 10.1016/j.cyto.2017.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The contribution of inflammation to endothelial/vascular dysfunction in early Type I Diabetes (T1D) is not well understood. The objective of this study was to examine the interaction between systemic inflammation and vascular function in adolescent's with and without-T1D. METHODS 51 subjects from our observational cohort of adolescents with T1D (JDRF-CCTN), and 59 healthy controls (HC) were studied. Serum cytokines-chemokines were quantified using Human 41-Plex Array, and vascular function was measured by Flow Mediated Dilatation (FMD), Pulse Wave Velocity (PWV) and Blood Pressure (BP). Factor Analysis was used to identify pro- and anti-inflammatory cytokine-chemokine factors, which were then correlated with vascular outcomes. RESULTS Three pro-inflammatory factors were identified in HC and three in TID, and a single anti-inflammatory factor in both groups. In HC there was a positive correlation (r=0.33; p=0.01) between control proinflammatory Factor 1 and systolic BP and a negative correlation between control proinflammatory Factor 3(r=-0.29; p=0.02) and diastolic BP. Control proinflammatory Factor 2 correlated positively with PWV. In TID subjects, no correlations were found between any of the pro-inflammatory factors and the vascular measurements. No correlations were found between the anti-inflammatory factors and BP, FMD and PWV in either HC or T1D. Levels of pro-inflammatory analytes, EGF, GRO, PDGF-BB, PDGF-AA and sCD40L were significantly higher in T1D. CONCLUSIONS The cytokine-chemokine signature in early T1D, prior to the development of arterial disease, is significantly different from that seen in healthy controls. This may be relevant to pathophysiology, determining risk and identifying target cytokines-chemokines for intervention in T1D.
Collapse
Affiliation(s)
- Etienne Sochett
- Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; Division of Endocrinology, Hospital for Sick Children, Toronto, Canada.
| | - Damien Noone
- Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; Division of Nephrology, Hospital for Sick Children, Toronto, Canada
| | - Michael Grattan
- Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; London Health Sciences Centre, Children's Hospital, University of Western Ontario, London, Ontario, Canada
| | - Cameron Slorach
- Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Rahim Moineddin
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada
| | - Yesmino Elia
- Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Farid H Mahmud
- Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK Department of Medicine, UK
| | - Neil Dalton
- WellChild Laboratory, Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | - David Cherney
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Canada
| | - James Scholey
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Canada
| | - Heather Reich
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Canada
| | - John Deanfield
- Institute of Child Health, University College London, London, UK
| |
Collapse
|
34
|
Dunger DB. Banting Memorial Lecture 2016 Reducing lifetime risk of complications in adolescents with Type 1 diabetes. Diabet Med 2017; 34:460-466. [PMID: 27973749 DOI: 10.1111/dme.13299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
Abstract
Adolescence is a challenging period of life for any young person, and for those with Type 1 diabetes, physiological and psychological factors can result in a deterioration in glycaemic control. In young people with Type 1 diabetes, puberty may be an additional risk factor impacting on the lifetime risk for renal and cardiovascular complications. Our longitudinal studies have identified that increases in urinary albumin excretion through childhood are associated with the development of microalbuminuria and a generalized endotheliopathy linked to cardiovascular risk. Screening of participants recruited to the Adolescent type 1 Diabetes cardio-renal Intervention Trial (AdDIT) confirms that these early changes in albumin excretion are related to both diabetic nephropathy and cardiovascular risk; in part, independent of glycaemic control. Thus, as well as current attempts to improve glycaemic control through enhanced targeted insulin delivery, pumps, sensors and closed loop, we have explored the role of angiotensin-converting enzyme inhibitors and statins in providing cardio-renal protection during adolescence.
Collapse
Affiliation(s)
- D B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Fusaro MFGS, Zanini JLSS, Silva IN. Increased carotid intima-media thickness in Brazilian adolescents with type 1 diabetes mellitus. Diabetol Metab Syndr 2016; 8:74. [PMID: 27895720 PMCID: PMC5106830 DOI: 10.1186/s13098-016-0190-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 11/05/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Increased carotid intima-media thickness (CIMT), a marker of subclinical atherosclerosis, is an independent predictor of future cardiovascular events, and has been reported in children with various chronic diseases, including type 1 diabetes mellitus (DM1). OBJECTIVES Evaluate CIMT and its association with cardiovascular risk factors in Brazilian adolescents with DM1. METHODS Cross-sectional study of 118 adolescents, 57 with DM1 and no chronic complications related to the disease, and 61 healthy individuals. Clinical, biochemical, and high-resolution B-mode ultrasonographic evaluations according to the Consensus Statement of the American Society of Echocardiography CIMT Task Force were performed. RESULTS Adolescents with diabetes (66.6% female) were 14.5 ± 2.9 years old and had 9.0 ± 4.0 years of disease duration. The healthy adolescents (62.3% female) were 14.3 ± 2.6 years old. All the adolescents had blood pressure within their reference ranges. In 66% of DM1 adolescents the systolic blood pressure was >50th percentile. Increased CIMT was observed in adolescents with diabetes compared with those in the control group: 0.53 vs 0.51 mm (p < 0.004) on the right side, and 0.55 vs 0.51 mm (p < 0.001) on the left side. CIMT presented independent and positive associations with diabetes duration, total cholesterol level, low-density lipoprotein cholesterol level, and systolic blood pressure percentile in DM1 adolescents. CONCLUSIONS Increased CIMT was observed in young Brazilian adolescents with DM1, and was associated with cardiovascular risk factors. CIMT assessment may be useful for the early identification and monitoring of cardiovascular risk in this age group.
Collapse
Affiliation(s)
- Maria Fernanda Gontijo Sepulveda Fusaro
- Divisão de Endocrinologia Infantil e do Adolescente-Departamento de Pediatria, Faculdade de Medicina/Hospital das Clínicas, Universidade Federal de Minas Gerais, Av Alfredo Balena 190, s/267, Belo Horizonte, MG 30130-100 Brazil
| | - Jovita Lane Soares Santos Zanini
- Department of Anatomy and Image, Hospital das Clínicas, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivani Novato Silva
- Divisão de Endocrinologia Infantil e do Adolescente-Departamento de Pediatria, Faculdade de Medicina/Hospital das Clínicas, Universidade Federal de Minas Gerais, Av Alfredo Balena 190, s/267, Belo Horizonte, MG 30130-100 Brazil
| |
Collapse
|
36
|
Tauschmann M, Allen JM, Wilinska ME, Thabit H, Acerini CL, Dunger DB, Hovorka R. Home Use of Day-and-Night Hybrid Closed-Loop Insulin Delivery in Suboptimally Controlled Adolescents With Type 1 Diabetes: A 3-Week, Free-Living, Randomized Crossover Trial. Diabetes Care 2016; 39:2019-2025. [PMID: 27612500 PMCID: PMC5079605 DOI: 10.2337/dc16-1094] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/18/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study evaluated the feasibility, safety, and efficacy of day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes under free-living conditions. RESEARCH DESIGN AND METHODS In an open-label randomized crossover study, 12 suboptimally controlled adolescents on insulin pump therapy (mean ± SD age 14.6 ± 3.1 years; HbA1c 69 ± 8 mmol/mol [8.5 ± 0.7%]; duration of diabetes 7.8 ± 3.5 years) underwent two 21-day periods in which hybrid closed-loop insulin delivery was compared with sensor-augmented insulin pump therapy in random order. During the closed-loop intervention, a model predictive algorithm automatically directed insulin delivery between meals and overnight. Participants used a bolus calculator to administer prandial boluses. RESULTS The proportion of time that sensor glucose was in the target range (3.9-10 mmol/L; primary end point) was increased during the closed-loop intervention compared with sensor-augmented insulin pump therapy by 18.8 ± 9.8 percentage points (mean ± SD; P < 0.001), the mean sensor glucose level was reduced by 1.8 ± 1.3 mmol/L (P = 0.001), and the time spent above target was reduced by 19.3 ± 11.3 percentage points (P < 0.001). The time spent with sensor glucose levels below 3.9 mmol/L was low and comparable between interventions (median difference 0.4 [interquartile range -2.2 to 1.3] percentage points; P = 0.33). Improved glucose control during closed-loop was associated with increased variability of basal insulin delivery (P < 0.001) and an increase in the total daily insulin dose (53.5 [39.5-72.1] vs. 51.5 [37.6-64.3] units/day; P = 0.006). Participants expressed positive attitudes and experience with the closed-loop system. CONCLUSIONS Free-living home use of day-and-night closed-loop in suboptimally controlled adolescents with type 1 diabetes is safe, feasible, and improves glucose control without increasing the risk of hypoglycemia. Larger and longer studies are warranted.
Collapse
Affiliation(s)
- Martin Tauschmann
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.,Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Janet M Allen
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.,Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Malgorzata E Wilinska
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.,Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Hood Thabit
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - David B Dunger
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, U.K.,Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Roman Hovorka
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, U.K. .,Department of Paediatrics, University of Cambridge, Cambridge, U.K
| |
Collapse
|
37
|
Anderson J, Couper JJ, Mpundu-Kaambwa C, Giles LC, Gent R, Coppin B, Peña AS. An Extra 1,000 Steps Per Day Relates to Improved Cardiovascular Health in Children With Type 1 Diabetes. Diabetes Care 2016; 39:e108-9. [PMID: 27307286 DOI: 10.2337/dc16-0526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/27/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Jemma Anderson
- Robinson Research Institute and Discipline of Paediatrics, The University of Adelaide, Adelaide, Australia Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, Australia
| | - Jennifer J Couper
- Robinson Research Institute and Discipline of Paediatrics, The University of Adelaide, Adelaide, Australia Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, Australia
| | - Christine Mpundu-Kaambwa
- Discipline of Paediatrics, The University of Adelaide Research and Evaluation Unit, Women's and Children's Hospital, Adelaide, Australia
| | - Lynne C Giles
- Epidemiology and Biostatistics Unit, School of Public Health, Faculty of Health Sciences, The University of Adelaide, Adelaide, Australia
| | - Roger Gent
- Division of Medical Imaging, Women's and Children's Hospital, Adelaide, Australia
| | - Brian Coppin
- Department of Paediatrics, Flinders Medical Centre and Flinders University, Adelaide, Australia
| | - Alexia S Peña
- Robinson Research Institute and Discipline of Paediatrics, The University of Adelaide, Adelaide, Australia Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, Australia
| |
Collapse
|
38
|
Tauschmann M, Allen JM, Wilinska ME, Thabit H, Stewart Z, Cheng P, Kollman C, Acerini CL, Dunger DB, Hovorka R. Day-and-Night Hybrid Closed-Loop Insulin Delivery in Adolescents With Type 1 Diabetes: A Free-Living, Randomized Clinical Trial. Diabetes Care 2016; 39:1168-74. [PMID: 26740634 PMCID: PMC4915556 DOI: 10.2337/dc15-2078] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate feasibility, safety, and efficacy of day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes under free-living conditions without remote monitoring or supervision. RESEARCH DESIGN AND METHODS In an open-label, randomized, free-living, crossover study design, 12 adolescents receiving insulin pump therapy (mean [±SD] age 15.4 ± 2.6 years; HbA1c 8.3 ± 0.9%; duration of diabetes 8.2 ± 3.4 years) underwent two 7-day periods of sensor-augmented insulin pump therapy or hybrid closed-loop insulin delivery without supervision or remote monitoring. During the closed-loop insulin delivery, a model predictive algorithm automatically directed insulin delivery between meals and overnight; prandial boluses were administered by participants using a bolus calculator. RESULTS The proportion of time when the sensor glucose level was in the target range (3.9-10 mmol/L) was increased during closed-loop insulin delivery compared with sensor-augmented pump therapy (72 vs. 53%, P < 0.001; primary end point), the mean glucose concentration was lowered (8.7 vs. 10.1 mmol/L, P = 0.028), and the time spent above the target level was reduced (P = 0.005) without changing the total daily insulin amount (P = 0.55). The time spent in the hypoglycemic range was low and comparable between interventions. CONCLUSIONS Unsupervised day-and-night hybrid closed-loop insulin delivery at home is feasible and safe in young people with type 1 diabetes. Compared with sensor-augmented insulin pump therapy, closed-loop insulin delivery may improve glucose control without increasing the risk of hypoglycemia in adolescents with suboptimally controlled type 1 diabetes.
Collapse
Affiliation(s)
- Martin Tauschmann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K. Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Janet M Allen
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K. Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Malgorzata E Wilinska
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K. Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Hood Thabit
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Zoë Stewart
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | | | | | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - David B Dunger
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K. Department of Paediatrics, University of Cambridge, Cambridge, U.K
| | - Roman Hovorka
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K. Department of Paediatrics, University of Cambridge, Cambridge, U.K.
| |
Collapse
|
39
|
Peña AS, Maftei O, Harrington J, Anderson J, Hirte C, Gent R, Couper J. Lack of evidence for progression of atherosclerosis during puberty in type 1 diabetes. Pediatr Diabetes 2016; 17:199-205. [PMID: 25683127 DOI: 10.1111/pedi.12265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Children with type 1 diabetes have early changes in vascular structure with increased aortic intima-media thickness (aIMT) or carotid IMT (cIMT). aIMT may be an earlier, more sensitive marker; however, longitudinal data in type 1 diabetes are lacking. This study will aim to evaluate changes in vascular structure (aIMT and cIMT) over 2 yr during puberty in children with type 1 diabetes and compare them with those in healthy children. RESEARCH DESIGN AND METHODS A total of 110 children (aged 10-18 yr, 55 males) participated in a prospective cohort study, including 77 children with type 1 diabetes and 33 age- and sex-matched healthy children. Ultrasound assessments of aIMT and cIMT; and clinical and biochemical data were collected at baseline and 2 yr later. RESULTS Mean and maximal aIMT or cIMT did not worsen over time in children with type 1 diabetes compared with healthy children. Longer duration of diabetes related to an increase in aIMT. Improvement in HDL cholesterol and leptin related to a decrease in aIMT. Higher baseline IMT related to an improvement in IMT in children with type 1 diabetes (mean and maximal aIMT: β = -0.52, p < 0.001; β = -0.49, p = 0.001, and mean and maximal cIMT: β = -0.36, p = 0.003; β = -0.40, p = 0.001), independent of cardiovascular risk factors. CONCLUSIONS Aortic and carotid IMT does not deteriorate during puberty in children with type 1 diabetes. This has implications for the design of interventional studies in this important age group.
Collapse
Affiliation(s)
- Alexia S Peña
- Robinson Research Institute and Discipline of Paediatrics, University of Adelaide, Adelaide, South Australia, 5006, Australia.,Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | - Oana Maftei
- Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | - Jennifer Harrington
- Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | - Jemma Anderson
- Robinson Research Institute and Discipline of Paediatrics, University of Adelaide, Adelaide, South Australia, 5006, Australia.,Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | - Craig Hirte
- Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | - Roger Gent
- Medical Imaging, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | - Jennifer Couper
- Robinson Research Institute and Discipline of Paediatrics, University of Adelaide, Adelaide, South Australia, 5006, Australia.,Endocrinology and Diabetes Centre, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| |
Collapse
|
40
|
Bradley TJ, Slorach C, Mahmud FH, Dunger DB, Deanfield J, Deda L, Elia Y, Har RLH, Hui W, Moineddin R, Reich HN, Scholey JW, Mertens L, Sochett E, Cherney DZI. Early changes in cardiovascular structure and function in adolescents with type 1 diabetes. Cardiovasc Diabetol 2016; 15:31. [PMID: 26879273 PMCID: PMC4754808 DOI: 10.1186/s12933-016-0351-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/05/2016] [Indexed: 01/24/2023] Open
Abstract
Background Children with type 1 diabetes (T1D) are at higher risk of early adult-onset cardiovascular disease. We assessed cardiovascular structure and function in adolescents with T1D compared with healthy controls and the relationships between peripheral vascular function and myocardial parameters. Methods and results 199 T1D [14.4 ± 1.6 years, diabetes duration 6.2 (2.0–12.8) years] and 178 controls (14.4 ± 2.1 years) completed endothelial function by flow mediated vasodilatation (FMD), arterial stiffness using pulse wave velocity (PWV) along with M-mode, pulse wave and tissue Doppler, and myocardial deformation echocardiographic imaging. Systolic (113 ± 10 vs. 110 ± 9 mmHg; p = 0.0005) and diastolic (62 ± 7 vs. 58 ± 7 mmHg; p < 0.0001) blood pressures, carotid femoral PWV and endothelial dysfunction measurements were increased in T1D compared with controls. Systolic and diastolic left ventricular dimensions and function by M-mode and pulse wave Doppler assessment were not significantly different. Mitral valve lateral e’ (17.6 ± 2.6 vs. 18.6 ± 2.6 cm/s; p < 0.001) and a’ (5.4 ± 1.1 vs. 5.9 ± 1.1 cm/s; p < 0.001) myocardial velocities were decreased and E/e’ (7.3 ± 1.2 vs. 6.7 ± 1.3; p = 0.0003) increased in T1D. Left ventricular mid circumferential strain (−20.4 ± 2.3 vs. −19.5 ± 1.7 %; p < 0.001) was higher, whereas global longitudinal strain was lower (−19.0 ± 1.9 vs. −19.8 ± 1.5 % p < 0.001) in T1D. Conclusions Adolescents with T1D exhibit early changes in blood pressure, peripheral vascular function and left ventricular myocardial deformation indices with a shift from longitudinal to circumferential shortening. Longitudinal follow-up of these changes in ongoing prospective trials may allow detection of those most at risk for cardiovascular abnormalities including hypertension that could preferentially benefit from early therapeutic interventions.
Collapse
Affiliation(s)
- Timothy J Bradley
- Department of Paediatrics, Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Cameron Slorach
- Department of Paediatrics, Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Farid H Mahmud
- Department of Paediatrics, Division of Endocrinology, JDRF-Canadian Clinical Trial Network (JDRF-CCTN) Sick Kids Multicenter Clinical Trial Center, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - David B Dunger
- Department of Pediatrics, University of Cambridge, Cambridge, UK.
| | - John Deanfield
- University College Hospital, London, UK. .,Heart Hospital and Great Ormond Street Hospital, London, UK.
| | - Livia Deda
- Department of Paediatrics, Division of Endocrinology, JDRF-Canadian Clinical Trial Network (JDRF-CCTN) Sick Kids Multicenter Clinical Trial Center, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Yesmino Elia
- Department of Paediatrics, Division of Endocrinology, JDRF-Canadian Clinical Trial Network (JDRF-CCTN) Sick Kids Multicenter Clinical Trial Center, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Ronnie L H Har
- Department of Paediatrics, Division of Endocrinology, JDRF-Canadian Clinical Trial Network (JDRF-CCTN) Sick Kids Multicenter Clinical Trial Center, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Wei Hui
- Department of Paediatrics, Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Rahim Moineddin
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada.
| | - Heather N Reich
- Department of Medicine, Division of Nephrology, University Health Network, Toronto General Hospital, University of Toronto, 585 University Avenue, 8 N-845, Toronto, ON, M5G 2N2, Canada.
| | - James W Scholey
- Department of Medicine, Division of Nephrology, University Health Network, Toronto General Hospital, University of Toronto, 585 University Avenue, 8 N-845, Toronto, ON, M5G 2N2, Canada.
| | - Luc Mertens
- Department of Paediatrics, Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Etienne Sochett
- Department of Paediatrics, Division of Endocrinology, JDRF-Canadian Clinical Trial Network (JDRF-CCTN) Sick Kids Multicenter Clinical Trial Center, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, University Health Network, Toronto General Hospital, University of Toronto, 585 University Avenue, 8 N-845, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
41
|
Katz M, Giani E, Laffel L. Challenges and Opportunities in the Management of Cardiovascular Risk Factors in Youth With Type 1 Diabetes: Lifestyle and Beyond. Curr Diab Rep 2015; 15:119. [PMID: 26520142 PMCID: PMC4893313 DOI: 10.1007/s11892-015-0692-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in persons with type 1 diabetes (T1D). Specific risk factors associated with diabetes, such as hyperglycemia and kidney disease, have been demonstrated to increase the incidence and progression of CVD. Nevertheless, few data exist on the effects of traditional risk factors such as dyslipidemia, obesity, and hypertension on CVD risk in youth with T1D. Improvements in understanding and approaches to the evaluation and management of CVD risk factors, specifically for young persons with T1D, are desirable. Recent advances in noninvasive techniques to detect early vascular damage, such as the evaluation of endothelial dysfunction and aortic or carotid intima-media thickness, provide new tools to evaluate the progression of CVD in childhood. In the present review, current CVD risk factor management, challenges, and potential therapeutic interventions in youth with T1D are described.
Collapse
Affiliation(s)
- Michelle Katz
- Genetics and Epidemiology Section, Harvard Medical School, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.
| | - Elisa Giani
- Genetics and Epidemiology Section, Harvard Medical School, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.
| | - Lori Laffel
- Genetics and Epidemiology Section, Harvard Medical School, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|