1
|
Li Y, Li LX, Cui H, Xu WX, Fu HY, Li JZ, Fan RF. Dietary Iron Overload Triggers Hepatic Metabolic Disorders and Inflammation in Laying Hen. Biol Trace Elem Res 2025; 203:346-357. [PMID: 38502261 DOI: 10.1007/s12011-024-04149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism. A model of hepatic iron overload in laying hens was developed in this study by incorporating iron into their diet, and the specific mechanisms underlying iron overload-induced hepatic injury were investigated. Firstly, this study revealed that a high-iron diet resulted in hepatic iron overload, accompanied by impaired liver function. Next, assessment of oxidative stress markers indicated a decrease in activities of T-SOD and CAT, coupled with an increase in MDA content, pointing to the iron-overloaded liver oxidative stress. Thirdly, the impact of iron overload on hepatic glycolipid and bile acid metabolism-related gene expressions were explored, including PPAR-α, GLUT2, and CYP7A1, highlighting disruptions in hepatic metabolism. Subsequently, analyses of inflammation-related genes such as iNOS and IL-1β at both protein and mRNA levels demonstrated the presence of inflammation in the liver under conditions of dietary iron overload. Overall, this study provided comprehensive evidence that dietary iron overload contributed to disorders in glycolipid and bile acid metabolism, accompanied by inflammatory responses in laying hens. Further detailing the specific pathways involved and the implications of these findings could offer valuable insights for future research and practical applications in poultry nutrition.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Lan-Xin Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
| |
Collapse
|
2
|
Reed JN, Hasan F, Karkar A, Banka D, Hinkle J, Shastri P, Srivastava N, Scherping SC, Newkirk SE, Ferris HA, Kundu BK, Kranz S, Civelek M, Keller SR. Combined effects of genetic background and diet on mouse metabolism and gene expression. iScience 2024; 27:111323. [PMID: 39640571 PMCID: PMC11617257 DOI: 10.1016/j.isci.2024.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/17/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, dietary patterns impact weight and metabolism differentially across individuals. To uncover genetic determinants for differential dietary effects, we subjected four genetically diverse mouse strains to humanized diets (American, Mediterranean, vegetarian, and vegan) with similar macronutrient composition, and performed body weight, metabolic parameter, and RNA-seq analysis. We observed pronounced diet- and strain-dependent effects on weight, and triglyceride and insulin levels. Differences in fat mass, adipose tissue, and skeletal muscle glucose uptake, and gene expression changes in most tissues were strain-dependent. In visceral adipose tissue, ∼400 genes responded to diet in a strain-dependent manner, many of them in metabolite transport and lipid metabolism pathways and several previously identified to modify diet effects in humans. Thus, genetic background profoundly impacts metabolism, though chosen dietary patterns modify the strong genetic effects. This study paves the way for future mechanistic investigations into strain-diet interactions in mice and translation to precision nutrition in humans.
Collapse
Affiliation(s)
- Jordan N. Reed
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Faten Hasan
- Department of Kinesiology, University of Virginia School of Education and Human Development, Charlottesville, VA 22903, USA
| | - Abhishek Karkar
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Dhanush Banka
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jameson Hinkle
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Preeti Shastri
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Navya Srivastava
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Steven C. Scherping
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Sarah E. Newkirk
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Heather A. Ferris
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Bijoy K. Kundu
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Sibylle Kranz
- Department of Kinesiology, University of Virginia School of Education and Human Development, Charlottesville, VA 22903, USA
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Susanna R. Keller
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
3
|
Suárez-Ortegón MF, McLachlan S, Fernández-Real JM, Wilson JF, Wild SH. Both low and high body iron stores relate to metabolic syndrome in postmenopausal women: Findings from the VIKING Health Study-Shetland (VIKING I). Eur J Clin Invest 2024; 54:e14312. [PMID: 39239983 DOI: 10.1111/eci.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND There are conflicting results among studies on the association between serum ferritin (SF) and metabolic syndrome (MetS), and by groups of sex/menopausal status. To date, there are no studies on British populations. The SF-MetS association might be U/J-shaped. We evaluated whether SF was independently associated with MetS (harmonized definition) in people from Shetland, Scotland. METHODS We analysed cross-sectional data from the Viking Health Study-Shetland (589 premenopausal women [PreMW], 625 postmenopausal women [PostW] and 832 men). Logistic regressions using two approaches, one with the lowest sex and menopausal status-specific ferritin quartile (Q) as the reference and other using the middle two quartiles combined (2-3) as the reference, were conducted to estimate the SF-MetS association. The shape of the association was verified via cubic spline analyses. The associations were adjusted for age, inflammatory and hepatic injury markers, alcohol intake, smoking and BMI. RESULTS Prevalence of MetS was 18.3%. Among PostMW both low and high SF were associated with MetS (fully adjusted odds ratios [95% confidence interval] compared to the middle two quartiles combined were: 1.99 [1.17-3.38] p =.011 for Q1 and 2.10 [1.27-3.49] p =.004 for Q4) This U-shaped pattern was confirmed in the cubic spline analysis in PostMW with a ferritin range of 15-200 ug/L. In men, a positive association between ferritin quartiles with Q1 as the reference, did not remain significant after adjustment for BMI. CONCLUSION Extreme quartiles of iron status were positively associated with MetS in PostMW, while no SF-MetS associations were found in men or PreMW. The ferritin-MetS association pattern differs between populations and U/J-shaped associations may exist.
Collapse
Affiliation(s)
| | | | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, Edinburgh, UK
- Centre for Genomic Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sarah H Wild
- Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Lv B, Liu S, Li Y, Li Z, An Y, He C, Zhang H, Huang Y, Fu W, Ma Q, Zhao B. Mulberry leaf ameliorate STZ induced diabetic rat by regulating hepatic glycometabolism and fatty acid β-oxidation. Front Pharmacol 2024; 15:1428604. [PMID: 39635431 PMCID: PMC11614592 DOI: 10.3389/fphar.2024.1428604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Type 2 diabetes (T2D) is a metabolic disorder marked by disruptions in glucolipid metabolism, with numerous signaling pathways contributing to its progression. The liver, as the hub of glycolipid metabolism, plays a pivotal role in this context. Mulberry leaf (ML), a staple in traditional Chinese medicine, is widely utilized in the clinical management of T2D. Synthesizing existing literature with the outcomes of prior research, it has become evident that ML enhances glucose metabolism via multiple pathways. Methods In our study, we induced T2D in rats through a regimen of high-sugar and high-fat diet supplementation, coupled with intraperitoneal injections of streptozotocin. We subsequently administered the aqueous extract of ML to these rats and assessed its efficacy using fasting blood glucose levels and other diagnostic indicators. Further, we conducted a comprehensive analysis of the rats' liver tissues using metabolomics and proteomics to gain insights into the underlying mechanisms. Results Our findings indicate that ML not only significantly alleviated the symptoms in T2D rats but also demonstrated the capacity to lower blood glucose levels. This was achieved by modulating the glucose-lipid metabolism and amino-terminal pathways within the liver. ACSL5, Dlat, Pdhb, G6pc, Mdh2, Cs, and other key enzymes in metabolic pathways regulated by ML may be the core targets of ML treatment for T2D. Discussion Mulberry leaf ameliorate STZ induced diabetic rat by regulating hepatic glycometabolism and fatty acid β-oxidation.
Collapse
Affiliation(s)
- Bohan Lv
- Department of Endocrinology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyuan Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yongcheng An
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wanxin Fu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Wang R, Zhang X, Ye H, Yang X, Zhao Y, Wu L, Liu H, Wen Y, Wang J, Wang Y, Yu M, Ma C, Wang L. Fibroblast growth factor 21 improves diabetic cardiomyopathy by inhibiting ferroptosis via ferritin pathway. Cardiovasc Diabetol 2024; 23:394. [PMID: 39488694 PMCID: PMC11531115 DOI: 10.1186/s12933-024-02469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 2 diabetes mellitus, and its mechanisms are complex and poorly understood. Despite growing evidence suggesting that ferroptosis plays a significant role in cardiovascular disease, it has been less extensively studied in DCM. Fibroblast growth factor 21 (FGF21), whose mechanism of action is closely related to ferroptosis, is widely utilized in studies focused on the prevention and treatment of glucolipid metabolism-related diseases and cardiovascular diseases. OBJECTIVE To confirm the significant role of ferroptosis in DCM and to investigate whether FGF21 improves DCM by inhibiting ferroptosis and elucidating its specific molecular mechanisms. METHODS The animal DCM models were established through high-fat feeding combined with streptozotocin injection in C57BL/6J mice or by db/db mice, and the diabetic cardiomyocyte injury model was created using high glucose and high fat (HG/HF) culture of primary cardiomyocytes. Intervention modeling of FGF21 were performed by injecting adeno-associated virus 9-FGF21 in mice and transfecting FGF21 siRNA or overexpression plasmid in primary cardiomyocytes. RESULTS The findings indicated that ferroptosis was exacerbated and played a significant role in DCM. The overexpression of FGF21 inhibited ferroptosis and improved cardiac injury and function, whereas the knockdown of FGF21 aggravated ferroptosis and cardiac injury and function in DCM. Furthermore, we discovered that FGF21 inhibited ferroptosis in DCM by directly acting on ferritin and prolonging its half-life. Specifically, FGF21 binded to the heavy and light chains of ferritin, thereby reducing its excessive degradation in the proteasome and lysosomal-autophagy pathways in DCM. Additionally, activating transcription factor 4 (ATF4) served as the upstream regulator of FGF21 in DCM. CONCLUSIONS The ATF4-FGF21-ferritin axis mediates the protective effects in DCM through the ferroptosis pathway and represents a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaofang Zhang
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xian Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yongting Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Han Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yun Wen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiaxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Meixin Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Caixia Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
7
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Wu Y, Xiao M, Chen J, Tao Y, Chen A, Lin H, Xu Y, Li L, Jia H, Xue Y, Jia Y, Zheng Z. Association of dietary iron intake with diabetic kidney disease among individuals with diabetes. Endocrine 2024; 85:1154-1161. [PMID: 38758293 DOI: 10.1007/s12020-024-03819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE The current study investigated the correlation between dietary iron intake and diabetic kidney disease among diabetic adults. METHODS This cross-sectional study enrolled 8118 participants who suffered from diabetes from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. Dietary iron intake was obtained from 24 h recall interviews, and diabetic kidney disease was defined as eGFR < 60 mL/min per 1.73 m2 or albumin creatinine ratio (ACR) ≥ 30 mg/g. Three weighted logistic regression models were utilized to investigate odd ratio (OR) and 95% CIs for diabetic kidney disease. Stratified analyses were performed by gender, age, BMI, HbA1c, hypertension status, and smoking status, and diabetes types. RESULTS Among 8118 participants (51.6% male, mean age 61.3 years), 40.7% of participants suffered from diabetic kidney disease. With the adjustment of potential covariates, we found that ≥ 12.59 mg of dietary iron was related to a lower risk of diabetic kidney disease (OR = 0.78, 95% CI: 0.63 to 0.96; OR = 0.79, 95% CI: 0.63 to 0.98). In stratified analyses, higher iron intake was negatively related to diabetic kidney disease, especially among those who were male, < 60 years, those with hypertension, those with HbA1c < 7.0%, and those who were ex-smokers. The result remained robust in sensitivity analyses. CONCLUSION We found that ≥ 12.59 mg of dietary iron is associated with a lower risk of diabetic kidney disease, especially in those who were male, younger, heavier weight, have better blood sugar control, and those who were ex-smokers.
Collapse
Affiliation(s)
- Yichuan Wu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- De Feng Academy, Southern Medical University, Guangzhou, China
| | - Manlu Xiao
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Chen
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Tao
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- De Feng Academy, Southern Medical University, Guangzhou, China
| | - Aomiao Chen
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- De Feng Academy, Southern Medical University, Guangzhou, China
| | - Huanjia Lin
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- De Feng Academy, Southern Medical University, Guangzhou, China
| | - Ying Xu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- De Feng Academy, Southern Medical University, Guangzhou, China
| | - Linna Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxia Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yijie Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- De Feng Academy, Southern Medical University, Guangzhou, China.
| | - Zongji Zheng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- De Feng Academy, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Wang D, Ye H, Liu S, Duan H, Ma Q, Yao N, Gui Z, Yu G, Liu L, Wan H, Shen J. Sex- and age-specific associations of serum essential elements with diabetes among the Chinese adults: a community-based cross-sectional study. Nutr Metab (Lond) 2024; 21:44. [PMID: 38982520 PMCID: PMC11232217 DOI: 10.1186/s12986-024-00801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/01/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Although several studies have found the relationship between essential elements and diabetes, the studies about the association of essential elements with diabetes diagnosed according to an oral glucose tolerance test (OGTT) and glycated hemoglobin (HbA1c) in a sex- and age-specific manner were limited. To investigate the linear and nonlinear relationship of five essential elements including iron (Fe), copper (Cu), Zinc (Zn), magnesium (Mg), and calcium (Ca) with diabetes, fasting plasma glucose (FPG), 2-h postprandial plasma glucose (PPG), and HbA1c and to evaluate the sex- and age-specific heterogeneities in these relationships. METHODS A total of 8392 community-dwelling adults were recruited to complete a questionnaire and undergo checkups of anthropometric parameters and serum levels of five metals (Fe, Cu, Zn, Mg, and Ca). The multivariable logistic and linear regression, the restricted cubic spline (RCS) analysis, and subgroup analysis were applied to find the associations between the essential elements and the prevalence of diabetes as well as FPG, PPG, and HbA1c. RESULTS In the multivariable logistic regression and multivariable linear regression, serum Cu was positively associated with FPG, PPG, and HbA1c while serum Mg was significantly inversely correlated with FPG, PPG, HbA1c, and diabetes (all P < 0.001). In the RCS analysis, the non-linear relationship of Cu and diabetes (P < 0.001) was found. In the subgroup analysis, stronger positive associations of Cu with diabetes (P for interaction = 0.027) and PPG (P for interaction = 0.002) were found in younger women. CONCLUSIONS These findings may lead to more appropriate approaches to essential elements supplementation in people with diabetes of different ages and sexes. However, more prospective cohort and experimental studies are needed to probe the possible mechanism of sex- and age-specific associations between serum essential elements and diabetes.
Collapse
Affiliation(s)
- Dongmei Wang
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Hong Ye
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Siyang Liu
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Hualin Duan
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Qintao Ma
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Nanfang Yao
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zihao Gui
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Genfeng Yu
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Lan Liu
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.
| | - Jie Shen
- Institute and Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.
| |
Collapse
|
10
|
Sun Y, Liu M, Sun W, Tang X, Zhou Y, Zhang J, Yang B. A Hemoglobin Bionics-Based System for Combating Antibiotic Resistance in Chronic Diabetic Wounds via Iron Homeostasis Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405002. [PMID: 38738270 DOI: 10.1002/adma.202405002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Owing to the increased tissue iron accumulation in patients with diabetes, microorganisms may activate high expression of iron-involved metabolic pathways, leading to the exacerbation of bacterial infections and disruption of systemic glucose metabolism. Therefore, an on-demand transdermal dosing approach that utilizes iron homeostasis regulation to combat antimicrobial resistance is a promising strategy to address the challenges associated with low administration bioavailability and high antibiotic resistance in treating infected diabetic wounds. Here, it is aimed to propose an effective therapy based on hemoglobin bionics to induce disturbances in bacterial iron homeostasis. The preferred "iron cargo" is synthesized by protoporphyrin IX chelated with dopamine and gallium (PDGa), and is delivered via a glucose/pH-responsive microneedle bandage (PDGa@GMB). The PDGa@GMB downregulates the expression levels of the iron uptake regulator (Fur) and the peroxide response regulator (perR) in Staphylococcus aureus, leading to iron nutrient starvation and oxidative stress, ultimately suppressing iron-dependent bacterial activities. Consequently, PDGa@GMB demonstrates insusceptibility to genetic resistance while maintaining sustainable antimicrobial effects (>90%) against resistant strains of both S. aureus and E. coli, and accelerates tissue recovery (<20 d). Overall, PDGa@GMB not only counteracts antibiotic resistance but also holds tremendous potential in mediating microbial-host crosstalk, synergistically attenuating pathogen virulence and pathogenicity.
Collapse
Affiliation(s)
- Yihan Sun
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Weihong Sun
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoduo Tang
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Junhu Zhang
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bai Yang
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
11
|
Ahanchi NS, Khatami F, Llanaj E, Quezada-Pinedo HG, Dizdari H, Bano A, Glisic M, Eisenga MF, Vidal PM, Muka T. The complementary roles of iron and estrogen in menopausal differences in cardiometabolic outcomes. Clin Nutr 2024; 43:1136-1150. [PMID: 38593499 DOI: 10.1016/j.clnu.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/25/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Biological hormonal changes are frequently cited as an explanatory factor of sex and menopause differences in cardiometabolic diseases (CMD) and its associated risk factors. However, iron metabolism which varies between sexes and among women of different reproductive stages could also play a role. Recent evidence suggest that iron may contribute to CMD risk by modulating oxidative stress pathways and inflammatory responses, offering insights into the mechanistic interplay between iron and CMD development. In the current review, we provide a critical appraisal of the existing evidence on sex and menopausal differences in CMD, discuss the pitfall of current estrogen hypothesis as sole explanation, and the emerging role of iron in CMD as complementary pathway. Prior to menopause, body iron stores are lower in females as compared to males, but the increase during and after menopause, is tandem with an increased CMD risk. Importantly, basic science experiments show that an increased iron status is related to the development of type 2 diabetes (T2D), and different cardiovascular diseases (CVD). While epidemiological studies have consistently reported associations between heme iron intake and some iron biomarkers such as ferritin and transferrin saturation with the risk of T2D, the evidence regarding their connection to CVD remains controversial. We delve into the factors contributing to this inconsistency, and the limitation of relying on observational evidence, as it does not necessarily imply causation. In conclusion, we provide recommendations for future studies on evaluating the potential role of iron in elucidating the sex and menopausal differences observed in CMD.
Collapse
Affiliation(s)
- Noushin Sadat Ahanchi
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland; Department of Internal Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Farnaz Khatami
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland; Community Medicine Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Erand Llanaj
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hugo G Quezada-Pinedo
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics Erasmus MC-Sophia Children's Hospital University, Rotterdam, the Netherlands
| | - Helga Dizdari
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Arjola Bano
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Pedro-Marques Vidal
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
12
|
Aamer W, Al-Maraghi A, Syed N, Gandhi GD, Aliyev E, Al-Kurbi AA, Al-Saei O, Kohailan M, Krishnamoorthy N, Palaniswamy S, Al-Malki K, Abbasi S, Agrebi N, Abbaszadeh F, Akil ASAS, Badii R, Ben-Omran T, Lo B, Mokrab Y, Fakhro KA. Burden of Mendelian disorders in a large Middle Eastern biobank. Genome Med 2024; 16:46. [PMID: 38584274 PMCID: PMC11000384 DOI: 10.1186/s13073-024-01307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Genome sequencing of large biobanks from under-represented ancestries provides a valuable resource for the interrogation of Mendelian disease burden at world population level, complementing small-scale familial studies. METHODS Here, we interrogate 6045 whole genomes from Qatar-a Middle Eastern population with high consanguinity and understudied mutational burden-enrolled at the national Biobank and phenotyped for 58 clinically-relevant quantitative traits. We examine a curated set of 2648 Mendelian genes from 20 panels, annotating known and novel pathogenic variants and assessing their penetrance and impact on the measured traits. RESULTS We find that 62.5% of participants are carriers of at least 1 known pathogenic variant relating to recessive conditions, with homozygosity observed in 1 in 150 subjects (0.6%) for which Peninsular Arabs are particularly enriched versus other ancestries (5.8-fold). On average, 52.3 loss-of-function variants were found per genome, 6.5 of which affect a known Mendelian gene. Several variants annotated in ClinVar/HGMD as pathogenic appeared at intermediate frequencies in this cohort (1-3%), highlighting Arab founder effect, while others have exceedingly high frequencies (> 5%) prompting reconsideration as benign. Furthermore, cumulative gene burden analysis revealed 56 genes having gene carrier frequency > 1/50, including 5 ACMG Tier 3 panel genes which would be candidates for adding to newborn screening in the country. Additionally, leveraging 58 biobank traits, we systematically assess the impact of novel/rare variants on phenotypes and discover 39 candidate large-effect variants associating with extreme quantitative traits. Furthermore, through rare variant burden testing, we discover 13 genes with high mutational load, including 5 with impact on traits relevant to disease conditions, including metabolic disorder and type 2 diabetes, consistent with the high prevalence of these conditions in the region. CONCLUSIONS This study on the first phase of the growing Qatar Genome Program cohort provides a comprehensive resource from a Middle Eastern population to understand the global mutational burden in Mendelian genes and their impact on traits in seemingly healthy individuals in high consanguinity settings.
Collapse
Affiliation(s)
- Waleed Aamer
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Najeeb Syed
- Applied Bioinformatics Core, Sidra Medicine, Doha, Qatar
| | | | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Omayma Al-Saei
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Saleha Abbasi
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Nourhen Agrebi
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | | | - Ramin Badii
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of pediatrics, Hamad Medical Corporation, Doha, Qatar
- Department of Pediatric, Weill Cornell Medical College, Doha, Qatar
- Division of Genetic & Genomics Medicine, Sidra Medicine, Doha, Qatar
| | - Bernice Lo
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Younes Mokrab
- Department of Human Genetics, Sidra Medicine, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.
- College of Health Sciences, Qatar University, Doha, Qatar.
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
13
|
Fan L, Li L, Zhao Y, Zhao Y, Wang F, Wang Q, Ma Z, He S, Qiu J, Zhang J, Li J, Chang Z, Zhang Y. Antagonizing Effects of Chromium Against Iron-Decreased Glucose Uptake by Regulating ROS-Mediated PI3K/Akt/GLUT4 Signaling Pathway in C2C12. Biol Trace Elem Res 2024; 202:701-712. [PMID: 37156991 DOI: 10.1007/s12011-023-03695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
To investigate the effect of chromium and iron on glucose metabolism via the PI3K/Akt/GLUT4 signaling pathway. Skeletal muscle gene microarray data in T2DM (GSE7014) was selected using Gene Expression Omnibus database. Element-gene interaction datasets of chromium and iron were extracted from comparative toxicogenomics database (CTD). Gene ontology (GO)and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using DAVID online tool. Cell viability, insulin-stimulated glucose uptake, intracellular reactive oxygen species (ROS) level, and protein expression level were measured in C2C12 cells. The bioinformatics research indicated that PI3K/Akt signaling pathway participated in the effects of chromium and iron associated with T2DM. Insulin-stimulated glucose uptake level was significantly higher in chromium picolinate (Cr group) and lower in ammonium iron citrate (FA group) than that for the control group (P < 0.05); chromium picolinate + ammonium iron citrate (Cr + FA group) glucose uptake level was higher than that for the FA group (P < 0.05). Intracellular ROS level was significantly higher in the FAC group than that for the control group (P < 0.05), and that for the Cr + FA group was lower than that for the FA group (P < 0.05). p-PI3K/PI3K, p-Akt/Akt, and GLUT4 levels were significantly lower in the FA group than that for the control group (P < 0.05), and the Cr + FA group had higher levels than the FA group (P < 0.05). Chromium might have a protective effect on iron-induced glucose metabolism abnormalities through the ROS-mediated PI3K/Akt/GLUT4 signaling pathway.
Collapse
Affiliation(s)
- Ling Fan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liping Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yu Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Zhao
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Faxuan Wang
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Qingan Wang
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Zhanbing Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shulan He
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiangwei Qiu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiaxing Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhenqi Chang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
14
|
Li T, Zhang J, Li P. Ferritin and iron supplements in gestational diabetes mellitus: less or more? Eur J Nutr 2024; 63:67-78. [PMID: 37775606 DOI: 10.1007/s00394-023-03250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
Iron metabolism has been found to be closely related to gestational diabetes mellitus (GDM). Excessive ferritin levels were shown to be related to an increased risk of GDM because of iron overload which may lead to insulin resistance and β-cell injury by enhancing oxidative stress and inflammatory responses. On the contrary, insufficient ferritin levels can cause a number of obstetric complications, such as high incidence rates of anaemia and gestational hypertension. Therefore, high or low ferritin levels may have adverse effects on the mother and the foetus, putting clinicians in a dilemma when giving pregnant women iron supplements. This also explains why there have been more conflicting findings in the studies on dietary or oral iron supplementation during pregnancy. Hence, there is an urgent need for more evidence and strategies for appropriate recommendations for ferritin levels and iron supplementation during pregnancy to prevent iron insufficiency without causing iron overload and increasing the risk of GDM. Therefore, we gave an updated review on the association of GDM with ferritin metabolism, ferritin levels and iron supplementation based on the summary of the latest research.
Collapse
Affiliation(s)
- Tianlian Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning, China
| | - Jingfan Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning, China.
| |
Collapse
|
15
|
Parham M, Tavasoli GR, Arsang-Jang S, Habibi MA, Dameshgi DO, Pashaei MR, Ahmadpour S, Vafaeimanesh J. Effect of Iron Deficiency Anemia on Blood Glucose and Insulin Resistance in Women with Type II Diabetes: A Single-group, Clinical Interventional Study. Rev Recent Clin Trials 2024; 19:215-220. [PMID: 38561621 DOI: 10.2174/0115748871297808240308102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
AIMS Iron deficiency anemia (IDA) is one of the disorders recently associated with an increase in insulin resistance (IR) and, consequently, diabetes mellitus (DM) affection by causing oxidative stress. In this study, we look at how IDA may contribute to developing type II diabetes mellitus (T2DM), controlling diabetes, and reducing IR in women with T2DM. METHODS In this single group, clinical interventional study, we enrolled 40 women with T2DM and IDA. Before and after intervention with ferrous sulfate tablets, their blood glucose (BG) levels and IR levels were evaluated. This study was approved by the Ethics Committee of Qom University of Medical Sciences (ethics code: IR.MUQ.REC.1397.031) and registered at the Iranian Center for Clinical Trials (No. IRCT20170215032587N3). A significant level was considered p <0.05. RESULT The mean age of patients was 48.18 ± 4.6 years, with 5.3-5.8 years duration of T2DM. After the intervention, the mean fasting blood glucose (FBG) level reached 198.53 ± 48.11 to 170.93 ± 37.41, which was significant (p <0.0001). Also, hemoglobin A1C level reached from 8.49 ± 0.9 to 7.96 ± 0.58, which was significant (p <0.0001). Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) demonstrating a significant reduction of IR levels after intervention with ferrous sulfate tablets (p <0.018). CONCLUSIONS IDA treatment in patients with T2DM can significantly reduce the BG and IR levels. To better control BG, checking iron status and its correction may provide better clinical outcomes in these patients.
Collapse
Affiliation(s)
- Mahmoud Parham
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Gholam Reza Tavasoli
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Olad Dameshgi
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Reza Pashaei
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Jamshid Vafaeimanesh
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
16
|
Vinokur V, Berenshtein E, Chevion M, Chevion D. A New Concept in Antidiabetic Therapeutics: A Concerted Removal of Labile Iron and Intracellular Deposition of Zinc. Diabetes Metab J 2024; 48:59-71. [PMID: 38173374 PMCID: PMC10850271 DOI: 10.4093/dmj.2022.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/10/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND The inflammatory process is known to be an integral part of the pathophysiology of type 2 diabetes mellitus (T2DM). The "labile," redox-active iron, serving as a catalyst in Fenton reaction, producing the deleterious reactive oxygen species, triggering and maintaining inflammation, is hypothesized to play a causative role in this process. Concenter Biopharma continued the development of a new platform of iron chelators (Zygosids), first initiated at the Hebrew University of Jerusalem, Israel (HUJI), acting via the novel mechanism, based on a sequestration of the labile redox-active iron and its substitution by zinc or gallium. The mode of action of Zygosids is based on the higher affinity of the metal-binding moiety of the complex to Fe3+ in comparison to already bound ion, leading to rapid release of the ion of another metal and chelation of Fe3+. Concomitantly, zinc ion, released by the complex, is known for its antidiabetic and anti-inflammatory role. METHODS The therapeutic effect of zinc-desferrioxamine (Zygosid-50) and gallium-desferrioxamine, was tested on fat sand rat (Psammomys obesus) model of diet-induced T2DM and on Leprdb transgenic diabetic mice. RESULTS Zygosids demonstrated an ability to noticeably reduce blood glucose and insulin levels and improve the lipid profile. Moreover, an ability to mitigate insulin resistance by >90% was shown on the sand rat model. In addition, a potent anti-inflammatory effect, expressed as a diminishment of the proinflammatory cytokines in tissue levels, was demonstrated. CONCLUSION Zygosids demonstrated robust therapeutic efficacy in treatment of T2DM. Importantly, no adverse effects were detected, in all the experiments, indicating high safety profile.
Collapse
Affiliation(s)
- Vladimir Vinokur
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem (HUJI), Jerusalem, Israel
- Concenter Biopharma, Jerusalem, Israel
| | - Eduard Berenshtein
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem (HUJI), Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem (HUJI), Jerusalem, Israel
| | | |
Collapse
|
17
|
Liang Y, Luo S, Wong THT, He B, Schooling CM, Au Yeung SL. Association of iron homeostasis biomarkers in type 2 diabetes and glycaemic traits: a bidirectional two-sample Mendelian randomization study. Int J Epidemiol 2023; 52:1914-1925. [PMID: 37400992 DOI: 10.1093/ije/dyad093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Mendelian randomization (MR) studies show iron positively associated with type 2 diabetes (T2D) but included potentially biasing hereditary haemochromatosis variants and did not assess reverse causality. METHODS We assessed the relation of iron homeostasis with T2D and glycaemic traits bidirectionally, using genome-wide association studies (GWAS) of iron homeostasis biomarkers [ferritin, serum iron, total iron-binding capacity (TIBC), transferrin saturation (TSAT) (n ≤ 246 139)], T2D (DIAMANTE n = 933 970 and FinnGen n = 300 483), and glycaemic traits [fasting glucose (FG), 2-h glucose, glycated haemoglobin (HbA1c) and fasting insulin (FI) (n ≤ 209 605)]. Inverse variance weighting (IVW) was the main analysis, supplemented with sensitivity analyses and assessment of mediation by hepcidin. RESULTS Iron homeostasis biomarkers were largely unrelated to T2D, although serum iron was potentially associated with higher T2D [odds ratio: 1.07 per standard deviation; 95% confidence interval (CI): 0.99 to 1.16; P-value: 0.078) in DIAMANTE only. Higher ferritin, serum iron, TSAT and lower TIBC likely decreased HbA1c, but were not associated with other glycaemic traits. Liability to T2D likely increased TIBC (0.03 per log odds; 95% CI: 0.01 to 0.05; P-value: 0.005), FI likely increased ferritin (0.29 per log pmol/L; 95% CI: 0.12 to 0.47; P-value: 8.72 x 10-4). FG likely increased serum iron (0.06 per mmol/L; 95% CI: 0.001 to 0.12; P-value: 0.046). Hepcidin did not mediate these associations. CONCLUSION It is unlikely that ferritin, TSAT and TIBC cause T2D although an association for serum iron could not be excluded. Glycaemic traits and liability to T2D may affect iron homeostasis, but mediation by hepcidin is unlikely. Corresponding mechanistic studies are warranted.
Collapse
Affiliation(s)
- Ying Liang
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Shan Luo
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Tommy Hon Ting Wong
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Baoting He
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - C Mary Schooling
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Shiu Lun Au Yeung
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Zhao P, Lv X, Zhou Z, Yang X, Huang Y, Liu J. Indexes of ferroptosis and iron metabolism were associated with the severity of diabetic nephropathy in patients with type 2 diabetes mellitus: a cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1297166. [PMID: 38189040 PMCID: PMC10767668 DOI: 10.3389/fendo.2023.1297166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Objective To explore the correlations between diabetic nephropathy (DN) and serum levels of glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4), iron, transferrin (Tf), and ferritin in patients with type 2 diabetes mellitus (T2DM). Methods According to the urinary albumin excretion rate(UAER) or estimated glomerular filtration rate (eGFR) levels, a total of 123 patients with T2DM were separately divided into normoalbuminuria (NO), microalbuminuria (MI), macroalbuminuria (MA) groups, and G1 (eGFR ≥ 90 mL/min), G2 (eGFR ≤ 60 mL/min to < 90 mL/min), and G3 groups (eGFR< 60 mL/min), with 33 healthy participants as the control (HC). The differences in serum GPX4, ACSL4, iron, Tf, and ferritin levels between groups were compared, and the relationships between these levels were analysed. The independent correlations between UAER or DN severity and serum GPX4, ACSL4, iron, Tf, and ferritin levels were analysed by multiple linear and multinomial logistic regression, respectively. Results To the patients with T2DM, with the increase in UAER levels, GPX4, iron, and Tf levels gradually decreased, whereas ACSL4 levels increased, meanwhile with the decrease in eGFR levels, GPX4 and Tf levels gradually decreased, whereas ACSL4 levels increased. UAER were independently and positively correlated with ACSL4 [β = 17.53, 95% confidence interval (CI; 11.94, 23.13)] and negatively correlated with GPX4 [β = -1.633, 95% CI (-2.77, -0.496)] and Tf [β = -52.94, 95% CI (-95.78, -10.11)].The NO and MI groups were considered as reference groups, respectively. The severity of DN was negatively correlated with serum GPX4 [odds ratio (OR) = 0.925 and 0.902, p =0.015 and 0.001], and Tf (OR = 0.109 and 0.119, p =0.043 and 0.034), and positively correlated with ACSL4 (OR = 1.952 and 1.865, both p <0.001) in the MA group. Conclusion DN severity was negatively correlated with serum GPX4 and Tf levels and positively correlated with serum ACSL4 levels in patients with T2DM.
Collapse
Affiliation(s)
- Pingping Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoyu Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | | | - Xiaolan Yang
- Clinical Laboratory of The First People’s Hospital of Baiyin, Baiyin, Gansu, China
| | - Ying Huang
- Clinical Laboratory of The First People’s Hospital of Baiyin, Baiyin, Gansu, China
| | - Jingfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Babayev M, Klaunig J, Silveyra P, Henschel B, Gletsu-Miller N. Impact on oxidative stress of oral, high-dose, iron supplementation for management of iron deficiency after bariatric surgery, a preliminary study. J Trace Elem Med Biol 2023; 80:127310. [PMID: 37801789 DOI: 10.1016/j.jtemb.2023.127310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES High-dose oral iron supplementation for patients who develop iron deficiency after bariatric surgery may induce oxidative stress in the gastrointestine. The study's objective was to test this hypothesis by determining the impact of high-dose oral iron on systemic oxidative stress. METHODS We used archived plasma samples from a randomized controlled clinical trial (NCT02404012) comparing FeSO4 (195 mg/day, NatureMade®, West Hills, CA) with a heme iron polypeptide (HIP, 60.4 mg/day, Proferrin®, Colorado Biolabs, Lafayette, CO) for 8 weeks. Systemic oxidative stress was measured using malondialdehyde and total antioxidant capacity (MDA, Abcam, ab238537 and TAC, Abcam, ab65329 Cambridge, UK) assays. Data was log-transformed and presented as means and standard deviations; a mixed model was used to determine the effects of time (0, 2, 4, and 8 weeks) and treatment (FeSO4 versus HIP) on oxidative stress. RESULTS The FeSO4 (N = 8) and HIP (N = 5) participants were balanced in body mass index (35.0 ± 5.5 kg/m2), race (93 % White), time post-surgery (7.3 ± 3.3 years), as well as serum concentrations of iron (P > 0.05). The FeSO4 group tended to be older (44.3 ± 4.5 years) and they had lower concentrations of serum ferritin (6.5 ± 2.7 µg/mL) than the HIP (38.2 ± 9.3 years, and 12.9 ± 16.8 µg/mL) group (P = 0.080, and P = 0.017 respectively). We observed a larger increase in serum iron in the FeSO4 group during the 8 weeks of Fe supplementation, compared to that in the HIP group (p = 0.004). We observed a decreasing trend in MDA over the 8 weeks (p = 0.080) in the FeSO4 treatment group. There were no significant differences in TAC between and within FeSO4 and HIP groups over the 8 week supplementation period. CONCLUSIONS This preliminary study suggests that high-dose oral iron supplementation for iron deficiency does not adversely impact systemic oxidative stress in patients undergoing bariatric surgery.
Collapse
Affiliation(s)
- Maksat Babayev
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, 1025 E 7th Street, Bloomington, IN 47405, United States
| | - James Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, 1025 E 7th Street, Bloomington, IN 47405, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, 1025 E 7th Street, Bloomington, IN 47405, United States
| | - Beate Henschel
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health Bloomington, 2719 E. 10th Street, Bloomington, IN 47405, United States
| | - Nana Gletsu-Miller
- Department of Applied Health Science, Indiana University School of Public Health Bloomington, 1025 E 7th Street, Bloomington, IN 47405, United States.
| |
Collapse
|
20
|
Maguolo A, Gabbianelli R, Maffeis C. Micronutrients in early life and offspring metabolic health programming: a promising target for preventing non-communicable diseases. Eur J Clin Nutr 2023; 77:1105-1112. [PMID: 37604969 DOI: 10.1038/s41430-023-01333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Chronic non-communicable diseases are the leading cause of morbidity and mortality worldwide. Developing and implementing effective preventive strategies is the best way to ensure the overall metabolic health status of the population and to counter the global burden of non-communicable diseases. Predisposition to obesity and other non-communicable diseases is due to a combination of genetic and environmental factors throughout life, but the early environment, particularly the environment during the fetal period and the early years of life, is crucial in determining metabolic health, hence the concept of 'fetal programming'. The origins of this causal link between environmental factors and disease lie in epigenetic mechanisms. Among the environmental factors, diet plays a crucial role in this process. Substantial evidence documented the key role of macronutrients in the programming of metabolic diseases early in life. Recently, the effect of maternal micronutrient intake on offspring metabolic health in later life emerged. The purpose of this narrative review is to bring to light available evidence in the literature on the effect of maternal micronutrient status on offspring metabolic health and underlying epigenetic mechanisms that drive this link to highlight its potential role in the prevention of non-communicable diseases.
Collapse
Affiliation(s)
- Alice Maguolo
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy.
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Park MS, Lee S, Baek Y, Lee J, Park SS, Cho JH, Jin HJ, Yoo HR. Characteristics of insulin resistance in Korean adults from the perspective of circadian and metabolic sensing genes. Genes Genomics 2023; 45:1475-1487. [PMID: 37768516 PMCID: PMC10682234 DOI: 10.1007/s13258-023-01443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/20/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND The biological clock allows an organism to anticipate periodic environmental changes and adjust its physiology and behavior accordingly. OBJECTIVE This retrospective cross-sectional study examined circadian gene polymorphisms and clinical characteristics associated with insulin resistance (IR). METHODS We analyzed data from 1,404 Korean adults aged 30 to 55 with no history of cancer and cardio-cerebrovascular disease. The population was classified according to sex and homeostasis model assessment of insulin resistance (HOMA-IR) values. Demographics, anthropometric and clinical characteristics, and single nucleotide polymorphisms (SNPs) were analyzed with respect to sex, age, and HOMA-IR values. We used association rule mining to identify sets of SNPs from circadian and metabolic sensing genes that may be associated with IR. RESULTS Among the subjects, 15.0% of 960 women and 24.3% of 444 men had HOMA-IR values above 2. Most of the parameters differed significantly between men and women, as well as between the groups with high and low insulin sensitivity. Body fat mass of the trunk, which was significantly higher in insulin-resistant groups, had a higher correlation with high sensitivity C-reactive protein and hemoglobin levels in women, and alanine aminotransferase and aspartate aminotransferase levels in men. Homozygous minor allele genotype sets of SNPs rs17031578 and rs228669 in the PER3 gene could be more frequently found among women with HOMA-IR values above 2 (p = .014). CONCLUSION Oxidative stress enhanced by adiposity and iron overload, which may also be linked to NRF2 and PER3-related pathways, is related to IR in adulthood. However, due to the small population size in this study, more research is needed.
Collapse
Affiliation(s)
- Miso S Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, 75 Daedeok-daero 176beon-gil, Seo- gu, Daejeon, 35235, Korea.
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea.
| | - Siwoo Lee
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
| | - Younghwa Baek
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
| | - Juho Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, University of Science & Technology, Daejeon, Korea
| | - Sang-Soo Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, 75 Daedeok-daero 176beon-gil, Seo- gu, Daejeon, 35235, Korea
| | - Jung-Hyo Cho
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Korea
| | - Hee-Jeong Jin
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
| | - Ho-Ryong Yoo
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, 75 Daedeok-daero 176beon-gil, Seo- gu, Daejeon, 35235, Korea
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|
22
|
Ortiz-Marrón H, Cabañas Pujadas G, Donoso Navarro E, Burreros García M, Herreros Álvaro MI, Mejía Fernández de Velasco AM, Cornejo Gutiérrez A, Galán I. Association between biomarkers of iron status and cardiometabolic risk in Spanish children aged 9-10 years. The ELOIN study. Eur J Pediatr 2023; 182:5649-5659. [PMID: 37819420 PMCID: PMC10746575 DOI: 10.1007/s00431-023-05244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
The relationship between iron metabolism and cardiometabolic risk factors has been scarcely studied in children, and the results are controversial. The objective of this study was to evaluate the association between iron parameters and lipid, glycemic and blood pressure alterations in the pediatric population. This was a cross-sectional study of 1954 children between 9 and 10 years of age in Madrid (Spain), participants in a longitudinal study of childhood obesity. Iron metabolism parameters, i.e., serum iron (Is), ferritin (Fs), transferrin (Tf) and transferrin saturation (STf) and lipid, glycemic and blood pressure profiles were evaluated. Odds ratios (ORs) were estimated using logistic regression models adjusted for sociodemographic characteristics, diet, physical activity, C-reactive protein and body mass index. Compared with the participants in the low Is and STf tertiles, those in the upper tertiles had a lower risk of low HDL-Chol (OR: 0.34; 95%CI: 0.17; 0.67) and OR: 0.44 (95%CI: 0.23; 0.84), respectively, and children in the upper Fs tertile had an OR of 2.07 (95%CI: 1.16; 3.68) for low HDL-Chol. Children in the highest Is and STf tertiles had a lower risk of prediabetes [OR: 0.63 (95%CI: 0.41; 0.97) and OR: 0.53 (95%CI: 0.34; 0.82)] and insulin resistance (IR) (OR: 0.37; 95%CI: 0.22; 0.64), and those in the upper Tf tertile had a higher risk of IR (OR: 1.90; 95%CI: 1.16; 3.12). An increased risk of hypertension was found only in children in the upper Fs tertile (OR: 1.46; 95%CI: 1.01; 2.13). CONCLUSIONS Biomarkers of iron metabolism are associated with cardiometabolic alterations in the pediatric population, with a variable direction and magnitude depending on the indicators used. WHAT IS KNOWN • Iron metabolism is related to important cardiometabolic alterations such as metabolic syndrome and its components. • Association between biomarkers of iron status and cardiometabolic risk have been less explored in children. WHAT IS NEW • Biomarkers of iron metabolism are associated with cardiometabolic alterations in the pediatric population. • Iron parameters in the pediatric population could be of great help to detect and prevent cardiometabolic abnormalities early.
Collapse
Affiliation(s)
- Honorato Ortiz-Marrón
- Cardiovascular Disease Surveillance Technical Unit, Directorate-General of Public Health. Ministry of Health of Community of Madrid, Madrid, Spain.
| | - Gloria Cabañas Pujadas
- Cardiovascular Disease Surveillance Technical Unit, Directorate-General of Public Health. Ministry of Health of Community of Madrid, Madrid, Spain
| | - Encarnación Donoso Navarro
- Clinical Analysis and Biochemistry Service, Puerta de Hierro University Hospital, Madrid, Majadahonda, Spain
| | - Mar Burreros García
- Health Center Collado Mediano. Collado Mediano, Ministry of Health of Community of Madrid, Madrid, Spain
| | | | | | - Ana Cornejo Gutiérrez
- Health Center Barcelona. Móstoles. Ministry of Health of Community of Madrid, Madrid, Spain
| | - Iñaki Galán
- National Centre for Epidemiology, Institute of Health Carlos III. Madrid, Madrid, Spain
- Department of Preventive Medicine and Public Health. Faculty of Medicine, Universidad Autónoma de Madrid (IdiPaz), Autonomous University of Madrid), Madrid, Spain
| |
Collapse
|
23
|
Suarez-Ortegón MF, Ordoñez-Betancourth JE, Ortega-Ávila JG, Yibby Forero A, Fernández-Real JM. Excess adiposity and iron-deficient status in Colombian women of reproductive age. Obesity (Silver Spring) 2023; 31:3025-3042. [PMID: 37814827 DOI: 10.1002/oby.23871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Information about excess adiposity markers different from BMI and iron status is limited and more so about the shape of these associations. This study evaluated the relationship between three adiposity markers and iron-deficient status in reproductive-age women. METHODS Cross-sectional analysis in 6357 non-pregnant women from the Colombian nutritional health survey (ENSIN) 2010. Exposures were the following: waist circumference (WC), waist-to-height ratio (W-HtR), BMI, and WC > 80 cm, W-HtR > 0.5, and BMI ≥ 25 and ≥30. Outcomes were the following: iron deficiency (ID) as serum ferritin <15 μg/L, ID as ferritin <30 μg/L, anemia, and continuous values of ferritin and hemoglobin. Logistic and linear regressions adjusted for sociodemographic/inflammation covariates were conducted. RESULTS All the adiposity markers, continuous or categorical, were inversely and significantly associated with both ID thresholds in fully adjusted models (p < 0.05). W-HtR reported stronger effect estimates for ID (odds ratios < 0.5) and for prediction of log-ferritin levels (fully adjusted β-coefficient [95% CI] 0.61 [0.39-0.82], p < 0.01) and was also inversely associated with anemia (p < 0.05). In cubic splines analyses, W-HtR, WC, and BMI were linearly associated with ID from values closer to international thresholds of general or central obesity, and the patterns of WC and BMI tended toward flatness. A significant decline in the likelihood of anemia was steeper by increasing W-HtR than by increasing BMI. After exclusion of women with C reactive protein > 5 mg/L or adjustment for C reactive protein, adiposity markers remained significantly related to ferritin levels and W-HtR with anemia. CONCLUSIONS Women with higher adiposity were less likely to have an iron-deficient status. W-HtR was the strongest and most consistently associated marker. Inflammation would not be involved in the associations found.
Collapse
Affiliation(s)
- Milton Fabián Suarez-Ortegón
- Departamento de Alimentación y Nutrición, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Seccional Cali, Cali, Colombia
| | | | - José Guillermo Ortega-Ávila
- Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Seccional Cali, Cali, Colombia
| | | | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi) and Hospital Trueta, Girona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Girona, Spain
| |
Collapse
|
24
|
Huang Q, Tian H, Tian L, Zhao X, Li L, Zhang Y, Qiu Z, Lei S, Xia Z. Inhibiting Rev-erbα-mediated ferroptosis alleviates susceptibility to myocardial ischemia-reperfusion injury in type 2 diabetes. Free Radic Biol Med 2023; 209:135-150. [PMID: 37805047 DOI: 10.1016/j.freeradbiomed.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The complex progression of type-2 diabetes (T2DM) may result in increased susceptibility to myocardial ischemia-reperfusion (IR) injury. IR injuries in multiple organs involves ferroptosis. Recently, the clock gene Rev-erbα has aroused considerable interest as a novel therapeutic target for metabolic and ischemic heart diseases. Herein, we investigated the roles of Rev-erbα and ferroptosis in myocardial IR injury during T2DM and its potential mechanisms. A T2DM model, myocardial IR and a tissue-specific Rev-erbα-/- mouse in vivo were established, and a high-fat high glucose environment with hypoxia-reoxygenation (HFHG/HR) in H9c2 were also performed. After myocardial IR, glycolipid profiles, creatine kinase-MB, AI, and the expression of Rev-erbα and ferroptosis-related proteins were increased in diabetic rats with impaired cardiac function compared to non-diabetic rats, regardless of the time at which IR was induced. The ferroptosis inhibitor ferrostatin-1 decreased AI in diabetic rats given IR and LPO levels in cells treated with HFHG/HR, as well as the expression of Rev-erbα and ACSL4. The ferroptosis inducer erastin increased AI and LPO levels and ACSL4 expression. Treatment with the circadian regulator nobiletin and genetically targeting Rev-erbα via siRNA or CRISPR/Cas9 technology both protected against severe myocardial injury and decreased Rev-erbα and ACSL4 expression, compared to the respective controls. Taken together, these data suggest that ferroptosis is involved in the susceptibility to myocardial IR injury during T2DM, and that targeting Rev-erbα could alleviate myocardial IR injury by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Hao Tian
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Liqun Tian
- Department of Anaesthesiology, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Xiaoshuai Zhao
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Lu Li
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Yuxi Zhang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhen Qiu
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Shaoqing Lei
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
25
|
Zhu B, Wei Y, Zhang M, Yang S, Tong R, Li W, Long E. Metabolic dysfunction-associated steatotic liver disease: ferroptosis related mechanisms and potential drugs. Front Pharmacol 2023; 14:1286449. [PMID: 38027027 PMCID: PMC10665502 DOI: 10.3389/fphar.2023.1286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
Collapse
Affiliation(s)
- Baoqiang Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingming Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyuan Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Enwu Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
26
|
Ouyang J, Zhou L, Wang Q. Spotlight on iron and ferroptosis: research progress in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1234824. [PMID: 37772084 PMCID: PMC10525335 DOI: 10.3389/fendo.2023.1234824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Iron, as the most abundant metallic element within the human organism, is an indispensable ion for sustaining life and assumes a pivotal role in governing glucose and lipid metabolism, along with orchestrating inflammatory responses. The presence of diabetes mellitus (DM) can induce aberrant iron accumulation within the corporeal system. Consequentially, iron overload precipitates a sequence of important adversities, subsequently setting in motion a domino effect wherein ferroptosis emerges as the utmost pernicious outcome. Ferroptosis, an emerging variant of non-apoptotic regulated cell death, operates independently of caspases and GSDMD. It distinguishes itself from alternative forms of controlled cell death through distinctive morphological and biochemical attributes. Its principal hallmark resides in the pathological accrual of intracellular iron and the concomitant generation of iron-driven lipid peroxides. Diabetic retinopathy (DR), established as the predominant cause of adult blindness, wields profound influence over the well-being and psychosocial strain experienced by afflicted individuals. Presently, an abundance of research endeavors has ascertained the pervasive engagement of iron and ferroptosis in the microangiopathy inherent to DR. Evidently, judicious management of iron overload and ferroptosis in the early stages of DR bears the potential to considerably decelerate disease progression. Within this discourse, we undertake a comprehensive exploration of the regulatory mechanisms governing iron homeostasis and ferroptosis. Furthermore, we expound upon the subsequent detriments induced by their dysregulation. Concurrently, we elucidate the intricate interplay linking iron overload, ferroptosis, and DR. Delving deeper, we engage in a comprehensive deliberation regarding strategies to modulate their influence, thereby effecting prospective interventions in the trajectory of DR's advancement or employing them as therapeutic modalities.
Collapse
Affiliation(s)
- Junlin Ouyang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Radushkevitz-Frishman T, Charni-Natan M, Goldstein I. Dynamic chromatin accessibility during nutritional iron overload reveals a BMP6-independent induction of cell cycle genes. J Nutr Biochem 2023:109407. [PMID: 37336330 DOI: 10.1016/j.jnutbio.2023.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Iron is essential to organism physiology as it participates in numerous biological processes including oxygen transport, respiration and erythropoiesis. Although iron is critical to physiology, excess iron is toxic to cells and tissues due to generation of reactive oxygen species. Therefore, well-kept iron homeostasis is a mainstay of proper cell and organ function. Iron overload disorders, caused by nutritional or genetic factors, contribute to many pathologies such as diabetes, non-alcoholic steatohepatitis and hepatocellular carcinoma. The liver is not only vulnerable to the effects of iron overload, it is also the major organ controlling iron homeostasis. During iron overload, Bone Morphogenic Protein (BMP) levels increase and initiate a hepatic response aimed at lowering iron levels. The transcriptional effects of iron overload are not well-characterized and the underlining enhancer regulation is uncharted. Here, we profiled the liver's transcriptome and chromatin accessibility following nutritional iron overload. We found marked changes in gene expression and enhancer accessibility following iron overload. Surprisingly, 16% of genes induced following iron overload participate in propagating the cell cycle. Induction of cell cycle genes was independent of BMP. Genome-wide enhancer landscape profiling revealed hundreds of enhancers with altered activity following iron overload. Characterization of transcription factor motifs and footprints in iron-regulated enhancers showed a role for the Activator Protein 1 (AP-1) transcription factor in promoting cell cycle-related transcription. In summary, we found that the transcriptional program at play during iron overload is bifurcated in which BMP signaling controls iron homeostasis genes while an AP-1-driven program controls cell cycle genes.
Collapse
Affiliation(s)
- Talia Radushkevitz-Frishman
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel.
| |
Collapse
|
28
|
Sulhariza HZ, Zalilah MS, Geeta A. Maternal hemoglobin change from early pregnancy to second trimester is associated with risk of gestational diabetes mellitus: a retrospective cohort study. Front Nutr 2023; 10:1197485. [PMID: 37396129 PMCID: PMC10308040 DOI: 10.3389/fnut.2023.1197485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The accrual of iron that is reflected in high maternal hemoglobin (Hb) status is increasingly recognized as a risk factor for gestational diabetes mellitus (GDM). Changes in maternal Hb level could also implicate glycemic status in pregnancy. This study aimed to determine the associations between maternal Hb levels and their changes with GDM. Methods In this retrospective cohort study, a total of 1,315 antenatal records of mothers with singleton pregnancies from eight health clinics of a district in the northern region of Peninsular Malaysia who delivered between 1st January 2016-31st December 2017 were analyzed. Data extracted from the records were socio-demographic, anthropometric, obstetrical, and clinical data. Hb levels were extracted at booking (<14 weeks) and second trimester (14-28 weeks). Change in Hb was determined by subtracting the Hb level in the second trimester from the booking Hb level and was categorized as decreased, unchanged, and increased Hb. The associations between maternal Hb levels and their changes with GDM risk were analyzed using multiple regression, adjusting for covariates in four different models. Model 1: maternal age and height. Model 2: covariates of Model 1 added with parity, history of GDM, and family history of diabetes. Model 3: covariates of Model 2 added with iron supplementation at booking. Model 4: covariates of Model 3 added with Hb level at booking. Results and Discussions Unchanged Hb level from booking to second trimester was significantly associated with GDM risk in Model 1 (AOR: 2.55; 95% CI: 1.20, 5.44; p < 0.05), Model 2 (AOR: 2.45, 95% CI: 1.13, 5.34; p < 0.05) Model 3 (AOR: 2.42; 95% CI: 1.11, 5.27; p < 0.05), and Model 4 (AOR: 2.51; 95% CI: 1.15, 5.49; p < 0.05). No significant associations were observed between maternal Hb levels and GDM in the study. Conclusion Unchanged Hb levels from the booking (<14 weeks of gestation) to the second trimester (14-28 weeks) increased GDM risk. Further investigation is warranted to evaluate the associations between changes in maternal Hb and GDM risk and to identify potential factors influencing this relationship.
Collapse
Affiliation(s)
- Husni Zain Sulhariza
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Public Health, National Institute of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Mohd Shariff Zalilah
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Appannah Geeta
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Kose T, Sharp PA, Latunde-Dada GO. Phenolic Acids Rescue Iron-Induced Damage in Murine Pancreatic Cells and Tissues. Molecules 2023; 28:molecules28104084. [PMID: 37241825 DOI: 10.3390/molecules28104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Iron is an essential element involved in a variety of physiological functions. However, excess iron catalyzes the generation of reactive oxygen species (ROS) via the Fenton reaction. Oxidative stress, caused by an increase in intracellular ROS production, can be a contributory factor to metabolic syndromes such as dyslipidemia, hypertension, and type 2 diabetes (T2D). Accordingly, interest has grown recently in the role and use of natural antioxidants to prevent iron-induced oxidative damage. This study investigated the protective effect of the phenolic acids; ferulic acid (FA) and its metabolite ferulic acid 4-O-sulfate disodium salt (FAS) against excess iron-related oxidative stress in murine MIN6 cells and the pancreas of BALB/c mice. Rapid iron overload was induced with 50 μmol/L ferric ammonium citrate (FAC) and 20 μmol/L 8-hydroxyquinoline (8HQ) in MIN6 cells, while iron dextran (ID) was used to facilitate iron overload in mice. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, ROS levels were determined by dihydrodichlorofluorescein (H2DCF) cell-permeant probe, iron levels were measured by inductively coupled plasma mass spectrometry (ICP-MS), glutathione, SOD (superoxide dismutase) and lipid peroxidation, and mRNA were assayed with commercially available kits. The phenolic acids enhanced cell viability in iron-overloaded MIN6 cells in a dose-dependent manner. Furthermore, MIN6 cells exposed to iron showed elevated levels of ROS, glutathione (GSH) depletion and lipid peroxidation (p < 0.05) compared to cells that were protected by treatment with FA or FAS. The treatment of BALB/c mice with FA or FAS following exposure to ID increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) gene levels in the pancreas. Consequently, levels of its downstream antioxidant genes, HO-1, NQO1, GCLC and GPX4, increased in the pancreas. In conclusion, this study shows that FA and FAS protect pancreatic cells and liver tissue from iron-induced damage via the Nrf2 antioxidant activation mechanism.
Collapse
Affiliation(s)
- Tugba Kose
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK
| | - Paul A Sharp
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK
| | - Gladys O Latunde-Dada
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
30
|
Huang Q, Tian L, Zhang Y, Qiu Z, Lei S, Xia ZY. Nobiletin alleviates myocardial ischemia-reperfusion injury via ferroptosis in rats with type-2 diabetes mellitus. Biomed Pharmacother 2023; 163:114795. [PMID: 37146415 DOI: 10.1016/j.biopha.2023.114795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Susceptibility to myocardial ischemia-reperfusion (IR) injury in type-2 diabetes (T2DM) remains disputed, although studies have reported that ferroptosis is associated with myocardial IR injury. Nobiletin, a flavonoid isolated from citrus peels, is an antioxidant that possesses anti-inflammatory and anti-diabetic activities. However, it remains unknown whether nobiletin has any protective effects on susceptibility to myocardial IR injury during T2DM in rats via ferroptosis. To investigate the effects and underlying mechanisms of nobiletin on myocardial IR injury during T2DM, we induced myocardial IR model in rats at T2DM onset vs mature disease. We also established a high-fat high-glucose (HFHG) and hypoxia-reoxygenation (H/R) model in H9c2 cells to imitate abnormal glycolipid metabolism during T2DM. Myocardial injury, oxidative stress and ferroptosis towards myocardial IR in rats with mature T2DM but not at T2DM onset were increased. These changes were restored under treatment with ferrostain-1 or nobiletin. Both ferrostain-1 and nobiletin decreased the expression of ferroptosis-related proteins including Acyl-CoA synthetase long chain family member 4 (ACSL4) and nuclear receptor coactivator 4 (NCOA4) but not glutathione peroxidase 4 (GPX4) in rats with mature T2DM and cells with HFHG and H/R injury. Nobiletin strengthened the effect of si-ACSL4 on inhibiting ACSL4 expression, and also inhibited the effect of Erastin or oe-ACSL4 on increasing ACSL4 expression. Taken together, our data indicates that ferroptosis involves in susceptibility to myocardial IR injury in rats during T2DM. Nobiletin has therapeutic potential for alleviating myocardial IR injury associated with ACSL4- and NCOA4-related ferroptosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Liqun Tian
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China; Department of Anaesthesiology, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Yi Zhang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China; Department of Anaesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincical Qianfoshan Hospital, Shandong Institute of Anesthesia and Resoiratory Critical Medicine, PR China
| | - Zhen Qiu
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Shaoqing Lei
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhong-Yuan Xia
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
31
|
Malekpour K, Hazrati A, Soudi S, Roshangar L, Pourfathollah AA, Ahmadi M. Combinational administration of mesenchymal stem cell-derived exosomes and metformin reduces inflammatory responses in an in vitro model of insulin resistance in HepG2 cells. Heliyon 2023; 9:e15489. [PMID: 37153436 PMCID: PMC10160701 DOI: 10.1016/j.heliyon.2023.e15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetes is a highly common metabolic disorder in advanced societies. One of the causes of diabetes is insulin resistance, which is associated with a loss of sensitivity to insulin-sensitive cells. Insulin resistance develops in the body of a person prone to diabetes many years before diabetes development. Insulin resistance is associated with complications such as hyperglycemia, hyperlipidemia, and compensatory hyperinsulinemia and causes liver inflammation, which, if left untreated, can lead to cirrhosis, fibrosis, and even liver cancer. Metformin is the first line of treatment for patients with diabetes, which lowers blood sugar and increases insulin sensitivity by inhibiting gluconeogenesis in liver cells. The use of metformin has side effects, including a metallic taste in the mouth, vomiting, nausea, diarrhea, and upset stomach. For this reason, other treatments, along with metformin, are being developed. Considering the anti-inflammatory role of mesenchymal stem cells (MSCs) derived exosomes, their use seems to help improve liver tissue function and prevent damage caused by inflammation. This study investigated the anti-inflammatory effect of Wharton's jelly MSCs derived exosomes in combination with metformin in the HepG2 cells insulin resistance model induced by high glucose. This study showed that MSCs derived exosomes as an anti-inflammatory agent in combination with metformin could increase the therapeutic efficacy of metformin without needing to change metformin doses by decreasing inflammatory cytokines production, including IL-1, IL-6, and TNF-α and apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Corresponding author.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding author.
| |
Collapse
|
32
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
33
|
Lv H, Wang Y, Liu J, Zhen C, Zhang X, Liu Y, Lou C, Guo H, Wei Y. Exposure to a static magnetic field attenuates hepatic damage and function abnormality in obese and diabetic mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166719. [PMID: 37116230 DOI: 10.1016/j.bbadis.2023.166719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Static magnetic fields (SMFs) exhibit significant effect on health care. However, the effect of SMF on hepatic metabolism and function in obesity and diabetes are still unknown. Liver is not only the main site for glucolipid metabolism but also the core part for iron metabolism regulation. Dysregulations of iron metabolism and redox status are risk factors for the development of hepatic injury and affect glucolipid metabolism in obesity and diabetes. Mice of HFD-induced obesity and HFD/streptozocin-induced diabetes were exposed to a moderate-intensity SMF (0.4-0.7 T, direction: upward, 4 h/day, 8 weeks). Results showed that SMF attenuated hepatic damage by decreasing inflammation and fibrosis in obese and diabetic mice. SMF had no effects on improving glucose/insulin tolerance but regulated proteins (GLUT1 and GLUT4) and genes (G6pc, Pdk4, Gys2 and Pkl) participating in glucose metabolism with phosphorylation of Akt/AMPK/GSK3β. SMF also reduced lipid droplets accumulation through decreasing Plin2 and Plin5 and regulated lipid metabolism with elevated hepatic expressions of PPARγ and C/EBPα in obese mice. In addition, SMF decreased hepatic iron deposition with lower FTH1 expression and modulated systematic iron homeostasis via BMP6-mediated regulation of hepcidin. Moreover, SMF balanced hepatic redox status with regulation on mitochondrial function and MAPKs/Nrf2/HO-1 pathway. Finally, we found that SMF activated hepatic autophagy and enhanced lipophagy by upregulating PNPLA2 expression in obese and diabetic mice. Our results demonstrated that SMF significantly ameliorated the development of hepatic injury in obese and diabetic mice by inhibiting inflammatory level, improving glycolipid metabolism, regulating iron metabolism, balancing redox level and activating autophagy.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China.
| | - Yijia Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Junyu Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Xinyi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuetong Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Chenge Lou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Huijie Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yunpeng Wei
- School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
34
|
Na G, Zhang J, Lv D, Chen P, Song X, Cai F, Zheng S, Wan W, Shan Y. Germinated Brown rice enhanced n-3 PUFA metabolism in type 2 diabetes patients: A randomized controlled trial. Clin Nutr 2023; 42:579-589. [PMID: 36870245 DOI: 10.1016/j.clnu.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Brown rice (BR) has been considered as a potential strategy in improving T2DM. However, there are a lack of population-based trials on the association of Germinated brown rice (GBR) and diabetes. AIMS We aimed to explore the influence of GBR diet in T2DM patients for 3 months and whether this effect relates to serum fatty acids. METHODS Two hundred and twenty T2DM patients have been enrolled and eligible subjects (n = 112, 61 female, 51 male) were randomly divided into GBR intervention group (n = 56) and control group (n = 56). Except those who lost follow-up and withdrew, final GBR group and control group consisted of 42 and 43 patients, respectively. Participants in GBR group were asked to consume 100 g/d GBR instead of equal refined grain (RG) for 3 months, while control group maintain their usual eating habits. A structured questionnaire was used for demographic information at baseline, and basic indicators were measured both at the beginning and end of the trail to evaluate plasma glucose and lipids levels. RESULTS In GBR group, mean dietary inflammation index (DII) decreased, indicating GBR intervention retarded patient inflammation. Besides, glycolipid related parameters, including FBG, HbA1c, TC and HDL, were all significantly lower than those in control group. Excitingly, fatty acid composition was changed by intake of GBR, especially n-3 PUFA and n-3/n-6 PUFA rate were significantly increased. Moreover, subjects in GBR group had higher levels of n-3 metabolites, such as RVE, MaR1 and PD1, reducing inflammatory effect. In contrast, n-6 metabolites, like LTB4 and PGE2 which could promote inflammatory effect, were lower in GBR group. CONCLUSION We confirmed that diet with 100 g/d GBR for 3 months could really improve T2DM to some extent. This beneficial effect may be related to n-3 metabolites, namely inflammation changes. TRIAL REGISTRATION ChiCRT-IOR-17013999, www.chictr.org.cn.
Collapse
Affiliation(s)
- Guanqiong Na
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Dian Lv
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Ping Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyue Song
- School of Chemical and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Fenfen Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Sicong Zheng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenting Wan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujuan Shan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
35
|
Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis 2023; 14:186. [PMID: 36882414 PMCID: PMC9992652 DOI: 10.1038/s41419-023-05708-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas β cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.
Collapse
|
36
|
Bonet A, Pampalona J, Jose-Cunilleras E, Nacher V, Ruberte J. Ferritin But Not Iron Increases in Retina Upon Systemic Iron Overload in Diabetic and Iron-Dextran Injected Mice. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 36912597 PMCID: PMC10019492 DOI: 10.1167/iovs.64.3.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Purpose Iron overload causes oxidative damage in the retina, and it has been involved in the pathogeny of diabetic retinopathy, which is one of the leading causes of blindness in the adult population worldwide. However, how systemic iron enters the retina during diabetes and the role of blood retinal barrier (BRB) in this process remains unclear. Methods The db/db mouse, a well-known model of type 2 diabetes, and a model of systemic iron overload induced by iron dextran intraperitoneal injection, were used. Perls staining and mass spectrophotometry were used to study iron content. Western blot and immunohistochemistry of iron handling proteins were performed to study systemic and retinal iron metabolism. BRB function was assessed by analyzing vascular leakage in fundus angiographies, whole retinas, and retinal sections and by studying the status of tight junctions using transmission electron microscopy and Western blot analysis. Results Twenty-week-old db/db mice with systemic iron overload presented ferritin overexpression without iron increase in the retina and did not show any sign of BRB breakdown. These findings were also observed in iron dextran-injected mice. In those animals, after BRB breakdown induced by cryopexy, iron entered massively in the retina. Conclusions Our results suggested that BRB protects the retina from excessive iron entry in early stages of diabetic retinopathy. Furthermore, ferritin overexpression before iron increase may prepare the retina for a potential BRB breakdown and iron entry from the systemic circulation.
Collapse
Affiliation(s)
- Aina Bonet
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Pampalona
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduard Jose-Cunilleras
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Víctor Nacher
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
37
|
Hispidin Inhibits Ferroptosis Induced by High Glucose via the miR-15b-5p/GLS2 Axis in Pancreatic Beta Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9428241. [PMID: 36865751 PMCID: PMC9974274 DOI: 10.1155/2023/9428241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/20/2022] [Indexed: 02/23/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health issue that lacks effective treatments. Dysfunction and/or death of pancreatic β-cells (PBCs) are considered a major cause of T2DM. Therefore, elucidating the mechanisms underlying the death of PBCs might be helpful to develop novel strategies to treat T2DM. Ferroptosis is a newly identified form of cell death that has distinct features. However, knowledge regarding the role of ferroptosis in the death of PBCs remains limited. In the current study, we used high glucose (10 mM) (HG) levels to induce ferroptosis in PBC. We also observed that hispidin, a polyphenol compound that can be isolated from Phellinus linteus, could attenuate ferroptosis induced by HG in PBCs. Mechanistic investigations showed that hispidin led to the upregulation of miR-15b-5p, which directly inhibits the expression of glutaminase (GLS2) which plays an essential role in the glutamine metabolism. In addition, we found that overexpression of GLS2 could abrogate the protective effect of hispidin against ferroptosis caused by HG in PBCs. Therefore, our study provides novel insights into the mechanisms that regulate the death of PBCs.
Collapse
|
38
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
39
|
Qin Y, Huang Y, Li Y, Qin L, Wei Q, Chen X, Yang C, Zhang M. Association between systemic iron status and β-cell function and insulin sensitivity in patients with newly diagnosed type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1143919. [PMID: 37077360 PMCID: PMC10107407 DOI: 10.3389/fendo.2023.1143919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE Abnormal iron metabolism is related to the risk of diabetes, but the underlying mechanism of this association remains uncertain. This study was conducted to evaluate the contributions of systemic iron status to β-cell function and insulin sensitivity of patients with newly diagnosed T2DM. METHODS A total of 162 patients with newly diagnosed T2DM and 162 healthy controls were enrolled in the study. Basic characteristics, biochemical indicators, and iron metabolism biomarkers, including serum iron (SI), ferritin (SF), transferrin (Trf), and transferrin saturation (TS), were collected. All patients underwent a 75 g oral glucose tolerance test. A series of parameters for assessing β-cell function and insulin sensitivity were calculated. The multivariate stepwise linear regression model was used to investigate the contributions of iron metabolism to β-cell function and insulin sensitivity. RESULTS Compared with healthy controls, patients with newly diagnosed T2DM had significantly higher levels of SF. Among the diabetic patients, the SI and TS levels were higher, and the percentage of Trf levels below normal values was lower in men than in women. In all diabetic patients, SF was the independent risk factor associated with impaired β-cell function. Further stratification analysis showed that Trf was an independent protective factor for β-cell function in male patients, while SF was an independent risk factor for impaired β-cell function in female patients. However, systemic iron status did not affect insulin sensitivity. CONCLUSION Elevated SF levels and decreased Trf levels had a profound effect on impaired β-cell function in Chinese patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Yao Qin
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiting Huang
- Department of Clinical Nutrition, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxiao Li
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Qin
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianying Wei
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanhui Yang
- Department of Endocrinology, the First People’s Hospital of Lianyungang, Lianyungang, China
| | - Mei Zhang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Mei Zhang,
| |
Collapse
|
40
|
Packer M. Alleviation of functional iron deficiency by SGLT2 inhibition in patients with type 2 diabetes. Diabetes Obes Metab 2022; 25:1143-1146. [PMID: 36583283 DOI: 10.1111/dom.14963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
41
|
Molz P, Dallemole DR, Molz WA, Priebe Steffens J, Wildner Maluf S, Baroni Cruz D, Rieger A, Salvador M, Prá D, Rech Franke SI. Iron supplementation does not aggravate impaired glucose tolerance and sugar overload-induced genotoxicity in rats. Mol Cell Biochem 2022:10.1007/s11010-022-04625-8. [PMID: 36564575 DOI: 10.1007/s11010-022-04625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022]
Abstract
High sugar intake is a major risk factor for metabolic disorders. Genotoxicity is an important factor in diabetes onset, and iron (Fe) may be an aggravating element. However, this relationship is still poorly established. Thus, this study evaluated whether Fe supplementation could aggravate obesity, impaired glucose tolerance, and sugar overload-induced genotoxicity in rats. A total of 24 rats were treated with different diets: standard diet (SD, n = 8), invert sugar overload (320 g/L, HSD, n = 8), or Fe plus invert sugar overload (2.56 mg/L of Fe2+, Fe-HSD, n = 8) for four months. After treatment, the Fe-HSD group showed no excessive weight gain or impaired glucose tolerance. DNA damage in blood, as assessed by comet assay, gradually increased in HSD during treatment (p < 0.001), whereas Fe-HSD showed a nonlinear increase in DNA damage. Moreover, Fe-HSD presented 0.6-fold more DNA damage compared with SD (p = 0.0055) in the 1st month of treatment. At months 2 and 3, results show a ≥ 1.4-fold increase in HSD and Fe-HSD DNA damage, respectively, compared with SD (p < 0.01). At the end of the experiment, only HSD DNA damage differed from SD (1.5-fold more, p = 0.0196). Fe supplementation did not aggravate the invert sugar-induced DNA damage (p > 0.05). In the pancreas, results showed no differences in DNA damage. Mutagenicity, evaluated by micronucleus testing, was not observed regardless of treatment (p = 0.428). Fe supplementation, in the evaluated concentration, did not aggravate weight gain, impaired glucose tolerance, and sugar overload-induced genotoxicity in rats.
Collapse
Affiliation(s)
- Patrícia Molz
- Laboratory of Experimental Nutrition, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil.,Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil.,Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Danieli Rosane Dallemole
- Laboratory of Histology and Pathology, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Walter Augusto Molz
- Medicine Course, Department of Biology and Pharmacy, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Juliana Priebe Steffens
- Laboratory of Experimental Nutrition, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Sharbel Wildner Maluf
- Laboratory of Cytogenetics and Genome Stability, Graduate Program in Pharmacy and University Hospital, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Dennis Baroni Cruz
- Medicine Course, Department of Biology and Pharmacy, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Alexandre Rieger
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Mirian Salvador
- Laboratory of Oxidative Stress and Antioxidants, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Daniel Prá
- Laboratory of Experimental Nutrition, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil.,Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Silvia Isabel Rech Franke
- Laboratory of Experimental Nutrition, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil. .,Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil.
| |
Collapse
|
42
|
Prasad M K, Mohandas S, Kunka Mohanram R. Role of ferroptosis inhibitors in the management of diabetes. Biofactors 2022; 49:270-296. [PMID: 36468443 DOI: 10.1002/biof.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, the iron-dependent, lipid peroxide-mediated cell death, has garnered attention due to its critical involvement in crucial physiological and pathological cellular processes. Indeed, several studies have attributed its role in developing a range of disorders, including diabetes. As accumulating evidence further the understanding of ferroptotic mechanisms, the impact this specialized mode of cell death has on diabetic pathogenesis is still unclear. Several in vivo and in vitro studies have highlighted the association of ferroptosis with beta-cell death and insulin resistance, supported by observations of marked alterations in ferroptotic markers in experimental diabetes models. The constant improvement in understanding ferroptosis in diabetes has demonstrated it as a potential therapeutic target in diabetic management. In this regard, ferroptosis inhibitors promise to rescue pancreatic beta-cell function and alleviate diabetes and its complications. This review article elucidates the key ferroptotic pathways that mediate beta-cell death in diabetes, and its complications. In particular, we share our insight into the cross talk between ferroptosis and other hallmark pathogenic mediators such as oxidative and endoplasmic reticulum stress regulators relevant to diabetes progression. Further, we extensively summarize the recent developments on the role of ferroptosis inhibitors and their therapeutic action in alleviating diabetes and its complications.
Collapse
Affiliation(s)
- Krishna Prasad M
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar Kunka Mohanram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
43
|
Ali RB, Ahmed MH, Ibrahim HK, Mahmood HS. Tracking hepcidin level in induced type 2 diabetic rats and how Empagliflozin affects its level. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY = JOURNAL DE LA THERAPEUTIQUE DES POPULATIONS ET DE LA PHARMACOLOGIE CLINIQUE 2022; 29:e158-e166. [PMID: 36473727 DOI: 10.47750/jptcp.2022.965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepcidin is a hormone that contributes to iron homeostasis, produced either through hepatic or extrahepatic pathways. Its production may be affected by proinflammatory mediators released by macrophages, which play a role in the development of peripheral insulin resistance. Insulin itself may increase the production of hepcidin hormone from pancreatic β-cells. OBJECTIVES To evaluate the impact of induction of type 2 diabetes mellitus (T2DM) in albino wister rats on the level of hepcidin. Also, to examine the role of 2-week use of Empagliflozin, a sodium-glucose cotransporter-2 inhibitor (SGLT2 Inhibitor), on the hepcidin level comparing to control. METHOD An interventional study includes randomization of 36 rats into three groups (A: negative control, B: positive control, and C: Empagliflozin group). Two rats were excluded from the study for different reasons. T2DM was induced using high-fat diet/high-sugar diet (HFD/HSD) for 8 weeks. Empagliflozin was then given to Group C for 2 weeks at a dose of 35 mg/kg/day. Hepcidin level was determined at the baseline, and at week 8 and week 10 intervals. Hepcidin was determined using enzyme-linked immunosorbent assay (ELISA). RESULTS Hepcidin level significantly increased following the induction of T2DM in both B and C Groups. Hepcidin level in Group B insignificantly reduced 2 weeks after discontinuation of HFD/HSD and significantly reduced in Group C. Group A experienced no statistical difference in hepcidin level at week 10 when compared to baseline. CONCLUSION Induction of T2DM is associated with a significant increase in the level of hepcidin. Empagliflozin significantly reduced hepcidin level in newly induced diabetic rats.
Collapse
Affiliation(s)
- Riyam Bassil Ali
- Department of Pharmacy, Al-Mansoor Technical Medical Institute/Middle Technical University, Baghdad, Iraq
| | - Majid Hameed Ahmed
- Department of Physiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Haidar K Ibrahim
- Pharmacy Department/Clinical Pharmacy, Al-Yarmouk University College, Baghdad, Iraq
| | - Hasanain Sh Mahmood
- Department of Pharmaceutics, College of Pharmacy, University of Karbala, Kerbala, Iraq.,Department of Clinical Pharmacy and Laboratory sciences, College of Pharmacy, University of Alkafeel, Najaf, Iraq;
| |
Collapse
|
44
|
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 2022; 18:683-698. [PMID: 35986176 DOI: 10.1038/s41574-022-00721-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
45
|
Pradeepa R, Shreya L, Anjana RM, Jebarani S, Kamal Raj N, Kumar MS, Jayaganesh P, Swami OC, Mohan V. Frequency of iron deficiency anemia in type 2 diabetes - Insights from tertiary diabetes care centres across India. Diabetes Metab Syndr 2022; 16:102632. [PMID: 36343394 DOI: 10.1016/j.dsx.2022.102632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
AIM To study the frequency of iron deficiency anemia (IDA) in individuals with type 2 diabetes mellitus (T2DM) seen at tertiary diabetes care centres across India. METHODS This is a retrospective study (January 1, 2017-December 31, 2019), which included 1137 individuals with T2DM, aged ≥18 years, for whom data on glycemic, lipid and haematological parameters were available. Anthropometric measurements were done using standardized techniques. Biochemical investigations included fasting plasma glucose[FPG], post prandial plasma glucose, HbA1c, lipids and serum ferritin and iron wherever feasible. RESULTS Of the 1137 individuals included for the study, 117 (10.3%) were categorized as no 'iron deficiency' (ID) group [normal hemoglobin: male ≥13 g/dl, female ≥12 g/dl and normal serum ferritin ≥70 μg/L], 123 (10.8%) as ID group [normal hemoglobin and low serum ferritin <70 μg/L)], 447 (39.3%) as IDA group [low haemoglobin: male <13 g/dl, female <12 g/dl and low serum ferritin] and 450 (39.6%) as 'anemia of chronic disease' (ACD) group [low hemoglobin and normal serum ferritin]. The percentage of women having ID (57.7%) and IDA (65.3%) was significantly higher than their male counterparts. ID was most prevalent (61.7%) in the individuals with duration of diabetes <5 years whereas ACD was most prevalent (50.5%) in individuals with long standing diabetes (>10 years). Independent risk factors for IDA were female gender (OR 3.3,95% CI:1.75-6.23, p < 0.001), duration of diabetes (OR 1.05, 95% CI 1.01-1.11, p = 0.028) and FPG (OR 1.01, 95% CI 0.99-1.00, p = 0.018). CONCLUSIONS There is a need of identifying and monitoring iron status and anemia in patients with T2DM.
Collapse
Affiliation(s)
- Rajendra Pradeepa
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Lal Shreya
- Emcure Pharmaceuticals Ltd., Pune, India
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Saravanan Jebarani
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Nithyanantham Kamal Raj
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Madhan Srinivasan Kumar
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Parthasarathy Jayaganesh
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | | | - Viswanathan Mohan
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, ICMR Centre for Advanced Research on Diabetes, Chennai, India.
| |
Collapse
|
46
|
Iron metabolism in nonalcoholic fatty liver disease: a promising therapeutic target. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Feng G, Byrne CD, Targher G, Wang F, Zheng MH. Ferroptosis and metabolic dysfunction-associated fatty liver disease: Is there a link? Liver Int 2022; 42:1496-1502. [PMID: 35007392 DOI: 10.1111/liv.15163] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), recently re-defined and re-classified as metabolic dysfunction-associated fatty liver disease (MAFLD), has become increasingly prevalent and emerged as a public health problem worldwide. To date, the precise pathogenic mechanisms underpinning MAFLD are not entirely understood, and there is no effective pharmacological therapy for NAFLD/MAFLD. As a newly discovered form of iron-dependent programmed cell death, ferroptosis can be involved in the development and progression of various chronic diseases, but the pathogenic connections and mechanisms that link MAFLD and ferroptosis have not been fully elucidated. The main characteristics of ferroptosis are the accumulation of lipid peroxides and reactive oxygen species. In this brief narrative review, the mechanisms of ferroptosis and its putative pathogenic role in MAFLD are discussed to highlight potential new research directions and ideas for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Gong Feng
- Xi'an Medical University, Xi'an, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.,The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
48
|
Li W, Feng Q, Wang C, Yin Z, Li X, Li L. LncXIST Facilitates Iron Overload and Iron Overload-Induced Islet Beta Cell Injury in Type 2 Diabetes through miR-130a-3p/ALK2 Axis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6390812. [PMID: 35720932 PMCID: PMC9203195 DOI: 10.1155/2022/6390812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Iron overload is directly associated with diabetes mellitus, loss of islet beta cell, and insulin resistance. Likewise, long noncoding RNA (lncRNA) is associated with type 2 diabetes (T2D). Moreover, lncRNAs could be induced by iron overload. Therefore, we are going to explore the molecular mechanism of lncRNA XIST in iron overload-related T2D. Real-time quantitative PCR and Western blot were used to detect gene and protein levels, respectively. TUNEL and MTT assay were performed to examine cell survival. The glucose test strip, colorimetric analysis kit, ferritin ELISA kit, and insulin ELISA kit were performed to examine the levels of glycolic, iron, and total iron-binding capacity, ferritin, and insulin in serum. Fluorospectrophotometry assay was used to examine labile iron pool level. XIST was higher expressed in T2D and iron overload-related T2D rat tissues and cells, and iron overload-induced promoted XIST expression in T2D. Higher XIST expression was associated with iron overload in patients with T2D. Knockdown of XIST alleviated iron overload and iron overload-induced INS-1 cells injury. Further, we found that XIST can sponge miR-130a-3p to trigger receptor-like kinase 2 (ALK2) expression. Moreover, knockdown of ALK2 alleviated iron overload and iron overload-induced INS-1 cells injury by inhibiting bone morphogenetic protein 6 (BMP6)/ALK2/SMAD1/5/8 axis but reversed with XIST upregulation, which was terminally boosted by overexpression of miR-130a-3p. XIST has the capacity to promote iron overload and iron overload-related T2D initiation and development through inhibition of ALK2 expression by sponging miR-130a-3p, and that targeting this axis may be an effective strategy for treating patients with T2D.
Collapse
Affiliation(s)
- Weiyuan Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiu Feng
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chenrong Wang
- Medical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Yin
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaolu Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lei Li
- Department of Endocrine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
49
|
Jaccard E, Seyssel K, Gouveia A, Vergely C, Baratali L, Gubelmann C, Froissart M, Favrat B, Marques-Vidal P, Tappy L, Waeber G. Effect of acute iron infusion on insulin secretion: A randomized, double-blind, placebo-controlled trial. EClinicalMedicine 2022; 48:101434. [PMID: 35706490 PMCID: PMC9092517 DOI: 10.1016/j.eclinm.2022.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Chronic exposure to high iron levels increases diabetes risk partly by inducing oxidative stress, but the consequences of acute iron administration on beta cells are unknown. We tested whether the acute administration of iron for the correction of iron deficiency influenced insulin secretion and the production of reactive oxygen species. Methods Single-center, double-blinded, randomized controlled trial conducted between June 2017 and March 2020. 32 women aged 18 to 47 years, displaying symptomatic iron deficiency without anaemia, were recruited from a community setting and randomly allocated (1:1) to a single infusion of 1000 mg intravenous ferric carboxymaltose (iron) or saline (placebo). The primary outcome was the between group mean difference from baseline to day 28 in first and second phase insulin secretion, assessed by a two-step hyperglycaemic clamp. All analyses were performed by intention to treat. This trial was registered in ClinicalTrials.gov NCT03191201. Findings Iron infusion did not affect first and second phase insulin release. For first phase, the between group mean difference from baseline to day 28 was 0 μU × 10 min/mL [95% CI, -22 to 22, P = 0.99]. For second phase, it was -5 μUx10min/mL [95% CI, -161 to 151; P = 0.95] at the first plateau of the clamp and -249 μUx10min/mL [95% CI, -635 to 137; P = 0.20] at the second plateau. Iron infusion increased serum ascorbyl/ascorbate ratio, a marker of plasma oxidative stress, at day 14, with restoration of normal ratio at day 28 relative to placebo. Finally, high-sensitive C-reactive protein levels remained similar among groups. Interpretation In iron deficient women without anaemia, intravenous administration of 1000 mg of iron in a single sitting did not impair glucose-induced insulin secretion despite a transient increase in the levels of circulating reactive oxygen species. Funding The Swiss National Science Foundation, University of Lausanne and Leenaards, Raymond-Berger and Placide Nicod Foundations.
Collapse
Affiliation(s)
- Evrim Jaccard
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Kévin Seyssel
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, rue du Bugnon 7a, Lausanne 1005, Switzerland
| | - Alexandre Gouveia
- Center for Primary Care and Public Health, University of Lausanne, rue du Bugnon 44, Lausanne, Switzerland
| | - Catherine Vergely
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2, EA7460),UFR des Sciences de Santé, University of Bourgogne Franche-Comté, 7 boulevard Jeanne d’ Arc, Dijon 21079, France
| | - Laila Baratali
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Cédric Gubelmann
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Marc Froissart
- Clinical Research Center, CHUV, University of Lausanne, Switzerland
| | - Bernard Favrat
- Center for Primary Care and Public Health, University of Lausanne, rue du Bugnon 44, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Luc Tappy
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, rue du Bugnon 7a, Lausanne 1005, Switzerland
| | - Gérard Waeber
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| |
Collapse
|
50
|
Tummalacharla SC, Pavuluri P, Maram SR, Vadakedath S, Kondu D, Karpay S, Kandi V. Serum Activities of Ferritin Among Controlled and Uncontrolled Type 2 Diabetes Mellitus Patients. Cureus 2022; 14:e25155. [PMID: 35747025 PMCID: PMC9206712 DOI: 10.7759/cureus.25155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
Background Diabetes mellitus (DM) is a metabolic disorder characterized by the cells' inefficient utilization of blood glucose. DM occurs in two types: type 1 DM (T1DM) and type 2 DM (T2DM). DM results in increased blood sugar levels attributed to the non-functioning of the insulin-producing islet cells of the pancreas (type 1 DM) and insulin resistance, among other causes. Despite the initiation of treatment, in some people, diabetes remains uncontrolled and, over some time, could cause damage to other organs of the body, including the eyes, heart, and kidneys, among others. Recently, it was observed that iron metabolism and increased activity of serum ferritin (hyperferritinemia) could influence the development of T2DM. This study aims to assess the activities of ferritin among controlled and uncontrolled T2DM patients and compare them with the control group who were non-diabetic. Methods The study included 30 controlled and uncontrolled T2DM patients and an equal number of controls. The study was conducted between September and October 2021, and all patients included were those attending the General Medicine outpatient department attached to the RVM Institute of Medical Sciences and Research Centre, Siddipet, Telangana, South India. Blood glucose activities were estimated by the glucose oxidase-peroxidase (GOD-POD) method using the Randox Daytona plus analyzer, and serum ferritin was measured by the chemiluminescence method using the Beckmann Coulter Access 2 instrument. Results The mean age of the cases and the controls was 56.5 years and 46.7 years, respectively. Serum ferritin activities among people with controlled diabetes (73.3±56.6 ng/ml) (p=0.0003) and uncontrolled diabetes (269.8±347.1 ng/ml) (p=0.0006) varied significantly as compared to the controls (40.853±15.55). Glucose activities among controls (82.9±7.4 mg/dl), controlled T2DM patients (120.9±28.6 mg/dl), and uncontrolled T2DM patients (316.06±145.41 mg/dl) also showed significant differences. Conclusion Hyperferritinemia is evident among uncontrolled T2DM patients. However, increased serum ferritin activities were also noted among controlled T2DM patients as compared to normal activities observed in the non-diabetic control group.
Collapse
|