1
|
Cai L, Tan Y, Watson S, Wintergerst K. Diabetic cardiomyopathy - Zinc preventive and therapeutic potentials by its anti-oxidative stress and sensitizing insulin signaling pathways. Toxicol Appl Pharmacol 2023; 477:116694. [PMID: 37739320 PMCID: PMC10616760 DOI: 10.1016/j.taap.2023.116694] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Oxidative stress and insulin resistance are two key mechanisms for the development of diabetic cardiomyopathy (DCM, cardiac remodeling and dysfunction). In this review, we discussed how zinc and metallothionein (MT) protect the heart from type 1 or type 2 diabetes (T1D or T2D) through its anti-oxidative function and insulin-mediated PI3K/Akt signaling activation. Both T1D and T2D-induced DCM, shown by cardiac structural remodeling and dysfunction, in wild-type mice, but not in cardiomyocyte-specific overexpressing MT mice. In contrast, mice with global MT gene deletion were more susceptible to the development of DCM. When we used zinc to treat mice with either T1D or T2D, cardiac remodeling and dysfunction were significantly prevented along with increased cardiac MT expression. To support the role of zinc homeostasis in insulin signaling pathways, treatment of diabetic mice with zinc showed the preservation of phosphorylation levels of insulin-mediated glucose metabolism-related Akt2 and GSK-3β and even rescued cardiac pathogenesis induced by global deletion of Akt2 gene in a MT-dependent manner. These results suggest the protection by zinc from DCM is through both the induction of MT and sensitization of insulin signaling. Combined our own and other works, this review comprehensively summarized the roles of zinc homeostasis in the development and progression of DCM and its therapeutic implications. At the end, we provided pre-clinical and clinical evidence for the preventive and therapeutic potential of zinc supplementation through its anti-oxidative stress and sensitizing insulin signaling actions. Understanding the intricate connections between zinc and DCM provides insights for the future interventional approaches.
Collapse
Affiliation(s)
- Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America; Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States of America.
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.
| | - Sara Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, United States of America
| | - Kupper Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, United States of America
| |
Collapse
|
2
|
Dorward AM, Stewart AJ, Pitt SJ. The role of Zn2+ in shaping intracellular Ca2+ dynamics in the heart. J Gen Physiol 2023; 155:e202213206. [PMID: 37326614 PMCID: PMC10276528 DOI: 10.1085/jgp.202213206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Increasing evidence suggests that Zn2+ acts as a second messenger capable of transducing extracellular stimuli into intracellular signaling events. The importance of Zn2+ as a signaling molecule in cardiovascular functioning is gaining traction. In the heart, Zn2+ plays important roles in excitation-contraction (EC) coupling, excitation-transcription coupling, and cardiac ventricular morphogenesis. Zn2+ homeostasis in cardiac tissue is tightly regulated through the action of a combination of transporters, buffers, and sensors. Zn2+ mishandling is a common feature of various cardiovascular diseases. However, the precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during normal cardiac function and during pathological conditions are not fully understood. In this review, we consider the major pathways by which the concentration of intracellular Zn2+ is regulated in the heart, the role of Zn2+ in EC coupling, and discuss how Zn2+ dyshomeostasis resulting from altered expression levels and efficacy of Zn2+ regulatory proteins are key drivers in the progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Amy M. Dorward
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
3
|
Kobayashi S, Hahn Y, Silverstein B, Singh M, Fleitz A, Van J, Chen H, Liang Q. Lysosomal dysfunction in diabetic cardiomyopathy. FRONTIERS IN AGING 2023; 4:1113200. [PMID: 36742461 PMCID: PMC9894896 DOI: 10.3389/fragi.2023.1113200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Diabetes is a major risk factor for a variety of cardiovascular complications, while diabetic cardiomyopathy, a disease specific to the myocardium independent of vascular lesions, is an important causative factor for increased risk of heart failure and mortality in diabetic populations. Lysosomes have long been recognized as intracellular trash bags and recycling facilities. However, recent studies have revealed that lysosomes are sophisticated signaling hubs that play remarkably diverse roles in adapting cell metabolism to an ever-changing environment. Despite advances in our understanding of the physiological roles of lysosomes, the events leading to lysosomal dysfunction and how they relate to the overall pathophysiology of the diabetic heart remain unclear and are under intense investigation. In this review, we summarize recent advances regarding lysosomal injury and its roles in diabetic cardiomyopathy.
Collapse
|
4
|
Tao S, Yang D, Zhang L, Yu L, Wang Z, Li L, Zhang J, Yao R, Huang L, Shao M. Knowledge domain and emerging trends in diabetic cardiomyopathy: A scientometric review based on CiteSpace analysis. Front Cardiovasc Med 2022; 9:891428. [PMID: 36093165 PMCID: PMC9452758 DOI: 10.3389/fcvm.2022.891428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To review the literature related to diabetic cardiomyopathy (DCM), and investigate research hotspots and development trends of this field in the relevant studies based on CiteSpace software of text mining and visualization in scientific literature. Methods The relevant literature from the last 20 years was retrieved from the Web of Science (WoS) Core Collection database. After manual selection, each document record includes title, authors, year, organization, abstract, keywords, citation, descriptors, and identifiers. We imported the downloaded data into CiteSpace V (version 5.8.R2) to draw the knowledge map and conduct cooperative network analysis, cluster analysis, burst keyword analysis, and co-citation analysis. Results After manual screening, there were 3,547 relevant pieces of literature published in the last 18 years (from 2004 to 2021), including 2,935 articles and reviews, which contained 15,533 references, and the number was increasing year by year. The publications of DCM were dedicated by 778 authors of 512 institutions in 116 countries. The People's Republic of China dominated this field (1,117), followed by the USA (768) and Canada (176). In general, most articles were published with a focus on “oxidative stress,” “heart failure,” “diabetic cardiomyopathy,” “dysfunction,” “cardiomyopathy,” “expression,” “heart,” “mechanism,” and “insulin resistance.” Then, 10 main clusters were generated with a modularity Q of 0.6442 and a weighted mean silhouette of 0.8325 by the log-likelihood ratio (LLR) algorithm, including #0 heart failure, #1 perfused heart, #2 metabolic disease, #3 protective effect, #4 diabetic patient, #5 cardiac fibrosis, #6 vascular complication, #7 mitochondrial dynamics, #8 sarcoplasmic reticulum, and #9 zinc supplementation. The top five references with the strongest citation bursts include “Boudina and Abel”, “Jia et al.”, “Fang et al.”, “Poornima et al.”, and “Aneja et al.”. Conclusion The global field of DCM has expanded in the last 20 years. The People's Republic of China contributes the most. However, there is little cooperation among authors and institutions. Overall, this bibliometric study identified the hotspots in DCM research, including “stress state,” “energy metabolism,” “autophagy,” “apoptosis,” “inflammation,” “fibrosis,” “PPAR,” etc. Thus, further research focuses on these topics that may be more helpful to identify, prevent DCM and improve prophylaxis strategies to bring benefit to patients in the near future.
Collapse
Affiliation(s)
- Shiyi Tao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deshuang Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lanxin Zhang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jin Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiqi Yao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Li Huang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Mingjing Shao
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Mingjing Shao
| |
Collapse
|
5
|
Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants (Basel) 2022; 11:antiox11040784. [PMID: 35453469 PMCID: PMC9030255 DOI: 10.3390/antiox11040784] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes is a redox disease. Oxidative stress and chronic inflammation induce a switch of metabolic homeostatic set points, leading to glucose intolerance. Several diabetes-specific mechanisms contribute to prominent oxidative distress in the heart, resulting in the development of diabetic cardiomyopathy. Mitochondrial overproduction of reactive oxygen species in diabetic subjects is not only caused by intracellular hyperglycemia in the microvasculature but is also the result of increased fatty oxidation and lipotoxicity in cardiomyocytes. Mitochondrial overproduction of superoxide anion radicals induces, via inhibition of glyceraldehyde 3-phosphate dehydrogenase, an increased polyol pathway flux, increased formation of advanced glycation end-products (AGE) and activation of the receptor for AGE (RAGE), activation of protein kinase C isoforms, and an increased hexosamine pathway flux. These pathways not only directly contribute to diabetic cardiomyopathy but are themselves a source of additional reactive oxygen species. Reactive oxygen species and oxidative distress lead to cell dysfunction and cellular injury not only via protein oxidation, lipid peroxidation, DNA damage, and oxidative changes in microRNAs but also via activation of stress-sensitive pathways and redox regulation. Investigations in animal models of diabetic cardiomyopathy have consistently demonstrated that increased expression of the primary antioxidant enzymes attenuates myocardial pathology and improves cardiac function.
Collapse
|
6
|
Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca 2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022; 474:33-61. [PMID: 34978597 PMCID: PMC8721633 DOI: 10.1007/s00424-021-02650-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca2+ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina.
| |
Collapse
|
7
|
Insulin signaling alters antioxidant capacity in the diabetic heart. Redox Biol 2021; 47:102140. [PMID: 34560411 PMCID: PMC8473541 DOI: 10.1016/j.redox.2021.102140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic cardiomyopathy is associated with an increase in oxidative stress. However, antioxidant therapy has shown a limited capacity to mitigate disease pathology. The molecular mechanisms responsible for the modulation of reactive oxygen species (ROS) production and clearance must be better defined. The objective of this study was to determine how insulin affects superoxide radical (O2•–) levels. O2•– production was evaluated in adult cardiomyocytes isolated from control and Akita (type 1 diabetic) mice by spin-trapping electron paramagnetic resonance spectroscopy. We found that the basal rates of O2•– production were comparable in control and Akita cardiomyocytes. However, culturing cardiomyocytes without insulin resulted in a significant increase in O2•– production only in the Akita group. In contrast, O2•– production was unaffected by high glucose and/or fatty acid supplementation. The increase in O2•– was due in part to a decrease in superoxide dismutase (SOD) activity. The PI3K inhibitor, LY294002, decreased Akita SOD activity when insulin was present, indicating that the modulation of antioxidant activity is through insulin signaling. The effect of insulin on mitochondrial O2•– production was evaluated in Akita mice that underwent a 1-week treatment of insulin. Mitochondria isolated from insulin-treated Akita mice produced less O2•– than vehicle-treated diabetic mice. Quantitative proteomics was performed on whole heart homogenates to determine how insulin affects antioxidant protein expression. Of 29 antioxidant enzymes quantified, thioredoxin 1 was the only one that was significantly enhanced by insulin treatment. In vitro analysis of thioredoxin 1 revealed a previously undescribed capacity of the enzyme to directly scavenge O2•–. These findings demonstrate that insulin has a role in mitigating cardiac oxidative stress in diabetes via regulation of endogenous antioxidant activity. Insulin decreases ROS production in T1D Akita cardiomyocytes. Insulin signaling downstream of PI3K is required for this effect. Insulin increases the antioxidant capacity in the Akita heart. Trx1 is upregulated by insulin in the Akita heart in vivo.
Collapse
|
8
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
10
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
11
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
12
|
Koh JY, Lee SJ. Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases. Mol Brain 2020; 13:116. [PMID: 32843100 PMCID: PMC7448430 DOI: 10.1186/s13041-020-00654-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 01/06/2023] Open
Abstract
Transition metals, such as iron, copper, and zinc, play a very important role in life as the regulators of various physiochemical reactions in cells. Abnormal distribution and concentration of these metals in the body are closely associated with various diseases including ischemic seizure, Alzheimer's disease, diabetes, and cancer. Iron and copper are known to be mainly involved in in vivo redox reaction. Zinc controls a variety of intracellular metabolism via binding to lots of proteins in cells and altering their structure and function. Metallothionein-3 (MT3) is a representative zinc binding protein predominant in the brain. Although the role of MT3 in other organs still needs to be elucidated, many reports have suggested critical roles for the protein in the control of a variety of cellular homeostasis. Here, we review various biological functions of MT3, focusing on different cellular molecules and diseases involving MT3 in the body.
Collapse
Affiliation(s)
- Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Seoul, 05505, Republic of Korea
- Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505, Republic of Korea
| | - Sook-Jeong Lee
- Department of Bioactive Material Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
13
|
Making a case for metallothioneins conferring cardioprotection in pulmonary hypertension. Med Hypotheses 2020; 137:109572. [DOI: 10.1016/j.mehy.2020.109572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 11/23/2022]
|
14
|
Wang SY, Zhu S, Wu J, Zhang M, Xu Y, Xu W, Cui J, Yu B, Cao W, Liu J. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med (Berl) 2020; 98:245-261. [PMID: 31897508 DOI: 10.1007/s00109-019-01861-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a major cause of morbidity and mortality in diabetic patients. Reactive oxygen species (ROS) produced by oxidative stress play an important role in the development of DCM. DCM involves abnormal energy metabolism, thereby reducing energy production. Exercise has been reported to be effective in protecting the heart against ROS accumulation during the development of DCM. We hypothesize that the AMPK/PGC-1α axis may play a crucial role in exercise-induced bioenergetic metabolism and aerobic respiration on oxidative stress parameters in the development of diabetic cardiomyopathy. Using a streptozotocin/high-fat diet mouse to generate a diabetic model, our aim was to evaluate the effects of exercise on the cardiac function, mitochondrial oxidative capacity, mitochondrial function, and cardiac expression of PGC-1α. Mice fed a high-fat diet were given MO-siPGC-1α or treated with AMPK inhibitor. Mitochondrial structure and effects of switching between the Warburg effect and aerobic respiration were analysed. Exercise improved blood pressure and systolic dysfunction in diabetic mouse hearts. The beneficial effects of exercise were also observed in a mitochondrial function study, as reflected by an enhanced oxidative phosphorylation level, increased membrane potential, and decreased ROS level and oxygen consumption. On the other hand, depletion of PGC-1α attenuated the effects of exercise on the enhancement of mitochondrial function. In addition, PGC-1α may be responsible for reversing the Warburg effect to aerobic respiration, thus enhancing mitochondrial metabolism and energy homoeostasis. In this study, we demonstrate the protective effects of exercise on shifting energy metabolism from fatty acid oxidation to glucose oxidation in an established diabetic stage. These data suggest that exercise is effective at ameliorating diabetic cardiomyopathy by improving mitochondrial function and reducing metabolic disturbances.
Collapse
Affiliation(s)
- Shawn Yongshun Wang
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China.,Department of Biomedical Science, University of Hong Kong, Pokfulam, Hong Kong
| | - Siyu Zhu
- Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jian Wu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Maomao Zhang
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Yousheng Xu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Wei Xu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Jinjin Cui
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Bo Yu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China
| | - Wei Cao
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China. .,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China.
| | - Jingjin Liu
- Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China. .,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, 150086, Heilongjiang, China. .,Department of Anesthesiology, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
15
|
Xu X, Kobayashi S, Timm D, Huang Y, Zhao F, Shou W, Liang Q. Enhanced mTOR complex 1 signaling attenuates diabetic cardiac injury in OVE26 mice. FASEB J 2019; 33:12800-12811. [PMID: 31469601 DOI: 10.1096/fj.201901206r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase mechanistic target of rapamycin (mTOR) performs diverse cellular functions through 2 distinct multiprotein complexes, mTOR complex (mTORC)1 and 2. Numerous studies using rapamycin, an mTORC1 inhibitor, have implicated a role for mTORC1 in several types of heart disease. People with diabetes are more susceptible to heart failure. mTORC1 activity is increased in the diabetic heart, but its functional significance remains controversial. To investigate the role of mTORC1 in the diabetic heart, we crossed OVE26 type 1 diabetic mice with transgenic mice expressing a constitutively active mTOR (mTORca) or kinase-dead mTOR (mTORkd) in the heart. The expression of mTORca or mTORkd affected only mTORC1 but not mTORC2 activities, with corresponding changes in the activities of autophagy, a cellular degradation pathway negatively regulated by mTORC1. Diabetic cardiac damage in OVE26 mice was dramatically reduced by mTORca but exacerbated by mTORkd expression as assessed by changes in cardiac function, oxidative stress, and myocyte apoptosis. These findings demonstrated that the enhanced mTORC1 signaling in the OVE26 diabetic heart was an adaptive response that limited cardiac dysfunction, suggesting that manipulations that enhance mTORC1 activity may reduce diabetic cardiac injury, in sharp contrast to the results previously obtained with rapamycin.-Xu, X., Kobayashi, S., Timm, D., Huang, Y., Zhao, F., Shou, W., Liang, Q. Enhanced mTOR complex 1 signaling attenuates diabetic cardiac injury in OVE26 mice.
Collapse
Affiliation(s)
- Xianmin Xu
- Sanford Research, Sioux Falls, South Dakota, USA
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Derek Timm
- Sanford Research, Sioux Falls, South Dakota, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Fengyi Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Weinian Shou
- Department of Pediatrics, Riley Heart Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
16
|
Ge T, Yu Y, Cui J, Cai L. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad. Am J Physiol Heart Circ Physiol 2019; 317:H264-H275. [PMID: 31100011 DOI: 10.1152/ajpheart.00123.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is a metabolic disorder characterized by hyperglycemia, resulting in low-grade systemic inflammation. Diabetic cardiomyopathy (DCM) is a common complication among diabetic patients, and the mechanism underlying its induction of cardiac remodeling and dysfunction remains unclear. Numerous experimental and clinical studies have suggested that adaptive immunity, especially T lymphocyte-mediated immunity, plays a potentially important role in the pathogenesis of diabetes and DCM. Metallothioneins (MTs), cysteine-rich, metal-binding proteins, have antioxidant properties. Some potential mechanisms underlying the cardioprotective effects of MTs include the role of MTs in calcium regulation, zinc homeostasis, insulin sensitization, and antioxidant activity. Moreover, metal homeostasis, especially MT-regulated zinc homeostasis, is essential for immune function. This review discusses aberrant immune regulation in diabetic heart disease with respect to endothelial insulin resistance and the effects of hyperglycemia and hyperlipidemia on tissues and the different effects of intracellular and extracellular MTs on adaptive immunity. This review shows that intracellular MTs are involved in naïve T-cell activation and reduce regulatory T-cell (Treg) polarization, whereas extracellular MTs promote proliferation and survival in naïve T cells and Treg polarization but inhibit their activation, thus revealing potential therapeutic strategies targeting the regulation of immune cell function by MTs.
Collapse
Affiliation(s)
- Tingwen Ge
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky
| | - Youxi Yu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University , Changchun, Jilin , China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
17
|
Mondragon P, Bergdahl A. Metallothionein expression in slow- vs. fast-twitch muscle fibers following 4 weeks of streptozotocin-induced type 1 diabetes. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Type 1 diabetes (T1DM) is known to cause an increase in reactive oxygen species (ROS) and elevated intracellular glucose levels. We investigated the metallothionein I and II (MT I+II) antioxidants expression in soleus (mainly slow-twitch) and plantaris (predominantly fast-twitch) skeletal muscle using a rodent model of streptozotocin-induced diabetes. The presence of oxidative stress was confirmed by the detection of increased levels of protein carbonyl formation in the diabetic tissues. DAB (3,3′-diaminobenzidine) immunostaining and Western blotting analyses demonstrated that MT I+II expression was significantly upregulated in the diabetic soleus and plantaris muscle tissues compared with their respective controls. Moreover, no significant difference was detected between the plantaris and soleus controls or between the plantaris and soleus diabetic tissues. These findings suggest that there is an increase in MT protein expression in the soleus and plantaris muscles associated with the induction of T1DM. A better understanding of the molecular mechanisms that allow MT to prevent the oxidative stress associated with diabetes could lead to a novel therapeutic strategy for this chronic disease and its associated complications.
Collapse
Affiliation(s)
- Pamela Mondragon
- Department of Exercise Science, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6, Canada
| | - Andreas Bergdahl
- Department of Exercise Science, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
18
|
Dewanjee S, Joardar S, Bhattacharjee N, Dua TK, Das S, Kalita J, Manna P. Edible leaf extract of Ipomoea aquatica Forssk. (Convolvulaceae) attenuates doxorubicin-induced liver injury via inhibiting oxidative impairment, MAPK activation and intrinsic pathway of apoptosis. Food Chem Toxicol 2017; 105:322-336. [PMID: 28478100 DOI: 10.1016/j.fct.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022]
Abstract
Ipomoea aquatica Forssk. (Convolvulaceae) is an aquatic vegetable traditionally employed against toxic effects of xenobiotics. The present study has been designed to investigate the molecular mechanism underlying the beneficial role of the edible (aqueous) leaf extract of I. aquatica (AEIA) against doxorubicin (Dox)-induced liver injury. AEIA exhibited a dose-dependent (∼400 μg/ml) increase in cell viability against Dox (1 μM) in isolated rodent hepatocytes. AEIA (400 μg/ml) prevented the Dox-induced increase in ROS, redox imbalance, and activation of mitogen activated protein kinases (MAPK) and intrinsic pathway of apoptosis in hepatocytes. In the in vivo assay, administration of AEIA (100 mg/kg, p.o.) against Dox (3 mg/kg, i.p.) also reduced the oxidative impairment, DNA fragmentation, ATP formation, and up-regulated the mitochondrial co-enzymes Qs in the liver tissues of Wistar rats. Histological assessments were in agreement with the biochemical findings. Substantial quantities of phyto-antioxidants in AEIA may mediate its beneficial function against Dox-induced liver injury.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Swarnalata Joardar
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Subhadip Das
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jatin Kalita
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.
| |
Collapse
|
19
|
Kain V, Halade GV. Metabolic and Biochemical Stressors in Diabetic Cardiomyopathy. Front Cardiovasc Med 2017; 4:31. [PMID: 28620607 PMCID: PMC5449449 DOI: 10.3389/fcvm.2017.00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct consequence of uncontrolled metabolic syndrome and is widespread in US population and worldwide. Despite of the heterogeneous and distinct features of DCM, the clinical relevance of DCM is now becoming established. DCM progresses to pathological cardiac remodeling with the higher risk of heart attack and subsequent heart failure in diabetic patients. In this review, we emphasize lipid substrate quality and the phenotypic, metabolic, and biochemical stressors of DCM in the rodent and human pathophysiology. We discuss lipoxygenase signaling in the inflammatory pathway with multiple contributing and confounding factors leading to DCM. Additionally, emerging biochemical pathways are emphasized to make progress toward therapeutic advancement to treat DCM.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Ritchie RH, Zerenturk EJ, Prakoso D, Calkin AC. Lipid metabolism and its implications for type 1 diabetes-associated cardiomyopathy. J Mol Endocrinol 2017; 58:R225-R240. [PMID: 28373293 DOI: 10.1530/jme-16-0249] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Abstract
Diabetic cardiomyopathy was first defined over four decades ago. It was observed in small post-mortem studies of diabetic patients who suffered from concomitant heart failure despite the absence of hypertension, coronary disease or other likely causal factors, as well as in large population studies such as the Framingham Heart Study. Subsequent studies continue to demonstrate an increased incidence of heart failure in the setting of diabetes independent of established risk factors, suggesting direct effects of diabetes on the myocardium. Impairments in glucose metabolism and handling receive the majority of the blame. The role of concomitant impairments in lipid handling, particularly at the level of the myocardium, has however received much less attention. Cardiac lipid accumulation commonly occurs in the setting of type 2 diabetes and has been suggested to play a direct causal role in the development of cardiomyopathy and heart failure in a process termed as cardiac lipotoxicity. Excess lipids promote numerous pathological processes linked to the development of cardiomyopathy, including mitochondrial dysfunction and inflammation. Although somewhat underappreciated, cardiac lipotoxicity also occurs in the setting of type 1 diabetes. This phenomenon is, however, largely understudied in comparison to hyperglycaemia, which has been widely studied in this context. The current review addresses the changes in lipid metabolism occurring in the type 1 diabetic heart and how they are implicated in disease progression. Furthermore, the pathological pathways linked to cardiac lipotoxicity are discussed. Finally, we consider novel approaches for modulating lipid metabolism as a cardioprotective mechanism against cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Rebecca H Ritchie
- Heart Failure PharmacologyBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical SchoolMonash University, Melbourne, Victoria, Australia
| | - Eser J Zerenturk
- Lipid Metabolism & Cardiometabolic Disease LaboratoryBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Darnel Prakoso
- Heart Failure PharmacologyBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- School of BiosciencesThe University of Melbourne, Parkville, Victoria, Australia
| | - Anna C Calkin
- Central Clinical SchoolMonash University, Melbourne, Victoria, Australia
- Lipid Metabolism & Cardiometabolic Disease LaboratoryBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice. Int J Mol Sci 2017; 18:ijms18030580. [PMID: 28272348 PMCID: PMC5372596 DOI: 10.3390/ijms18030580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 01/04/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is highly prevalent in type 2 diabetes (T2DM) patients. Zinc is an important essential trace metal, whose deficiency is associated with various chronic ailments, including vascular diseases. We assessed T2DM B6.BKS(D)-Leprdb/J (db/db) mice fed for six months on a normal diet containing three zinc levels (deficient, adequate, and supplemented), to explore the role of zinc in DCM development and progression. Cardiac function, reflected by ejection fraction, was significantly decreased, along with increased left ventricle mass and heart weight to tibial length ratio, in db/db mice. As a molecular cardiac hypertrophy marker, atrial natriuretic peptide levels were also significantly increased. Cardiac dysfunction and hypertrophy were accompanied by significantly increased fibrotic (elevated collagen accumulation as well as transforming growth factor β and connective tissue growth factor levels) and inflammatory (enhanced expression of tumor necrosis factor alpha, interleukin-1β, caspase recruitment domain family member 9, and B-cell lymphoma/leukemia 10, and activated p38 mitogen-activated protein kinase) responses in the heart. All these diabetic effects were exacerbated by zinc deficiency, and not affected by zinc supplementation, respectively. Mechanistically, oxidative stress and damage, mirrored by the accumulation of 3-nitrotyrosine and 4-hydroxy-2-nonenal, was significantly increased along with significantly decreased expression of Nrf2 and its downstream antioxidants (NQO-1 and catalase). This was also exacerbated by zinc deficiency in the db/db mouse heart. These results suggested that zinc deficiency promotes the development and progression of DCM in T2DM db/db mice. The exacerbated effects by zinc deficiency on the heart of db/db mice may be related to further suppression of Nrf2 expression and function.
Collapse
|
22
|
Hölscher ME, Bode C, Bugger H. Diabetic Cardiomyopathy: Does the Type of Diabetes Matter? Int J Mol Sci 2016; 17:ijms17122136. [PMID: 27999359 PMCID: PMC5187936 DOI: 10.3390/ijms17122136] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, type 2 diabetes mellitus has evolved as a rapidly increasing epidemic that parallels the increased prevalence of obesity and which markedly increases the risk of cardiovascular disease across the globe. While ischemic heart disease represents the major cause of death in diabetic subjects, diabetic cardiomyopathy (DC) summarizes adverse effects of diabetes mellitus on the heart that are independent of coronary artery disease (CAD) and hypertension. DC increases the risk of heart failure (HF) and may lead to both heart failure with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF). Numerous molecular mechanisms have been proposed to underlie DC that partially overlap with mechanisms believed to contribute to heart failure. Nevertheless, the existence of DC remains a topic of controversy, although the clinical relevance of DC is increasingly recognized by scientists and clinicians. In addition, relatively little attention has been attributed to the fact that both underlying mechanisms and clinical features of DC may be partially distinct in type 1 versus type 2 diabetes. In the following review, we will discuss clinical and preclinical literature on the existence of human DC in the context of the two different types of diabetes mellitus.
Collapse
Affiliation(s)
- Maximilian E Hölscher
- Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Christoph Bode
- Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Heiko Bugger
- Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| |
Collapse
|
23
|
Bhattacharjee N, Khanra R, Dua TK, Das S, De B, Zia-Ul-Haq M, De Feo V, Dewanjee S. Sansevieria roxburghiana Schult. & Schult. F. (Family: Asparagaceae) Attenuates Type 2 Diabetes and Its Associated Cardiomyopathy. PLoS One 2016; 11:e0167131. [PMID: 27893829 PMCID: PMC5125675 DOI: 10.1371/journal.pone.0167131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sansevieria roxburghiana Schult. & Schult. F. (Family: Asparagaceae) rhizome has been claimed to possess antidiabetic activity in the ethno-medicinal literature in India. Therefore, present experiments were carried out to explore the protective role of edible (aqueous) extract of S. roxburghiana rhizome (SR) against experimentally induced type 2 diabetes mellitus (T2DM) and its associated cardiomyopathy in Wistar rats. METHODS SR was chemically characterized by GC-MS analysis. Antidiabetic activity of SR (50 and 100 mg/kg, orally) was measured in high fat diets (ad libitum) + low-single dose of streptozotocin (35 mg/kg, intraperitoneal) induced type 2 diabetic (T2D) rat. Fasting blood glucose level was measured at specific intermissions. Serum biochemical and inflammatory markers were estimated after sacrificing the animals. Besides, myocardial redox status, expressions of signal proteins (NF-κB and PKCs), histological and ultrastructural studies of heart were performed in the controls and SR treated T2D rats. RESULTS Phytochemical screening of the crude extract revealed the presence of phenolic compounds, sugar alcohols, sterols, amino acids, saturated fatty acids within SR. T2D rats exhibited significantly (p < 0.01) higher fasting blood glucose level with respect to control. Alteration in serum lipid profile (p < 0.01) and increased levels of lactate dehydrogenase (p < 0.01) and creatine kinase (p < 0.01) in the sera revealed the occurrence of hyperlipidemia and cell destruction in T2D rats. T2DM caused significant (p < 0.05-0.01) alteration in the biochemical markers in the sera. T2DM altered the redox status (p < 0.05-0.01), decreased (p < 0.01) the intracellular NAD and ATP concentrations in the myocardial tissues of experimental rats. While investigating the molecular mechanism, activation PKC isoforms was observed in the selected tissues. T2D rats also exhibited an up-regulation in nuclear NF-κB (p65) in the cardiac tissues. So, oral administration of SR (50 and 500 mg/kg) could reduce hyperglycemia, hyperlipidemia, membrane disintegration, oxidative stress, vascular inflammation and prevented the activation of oxidative stress induced signaling cascades leading to cell death. Histological and ultra-structural studies of cardiac tissues supported the protective characteristics of SR. CONCLUSIONS From the present findings it can be concluded that, SR could offer protection against T2DM and its associated cardio-toxicity via multiple mechanisms viz. hypoglycemic, antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tarun K. Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Susmita Das
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Bratati De
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - M. Zia-Ul-Haq
- Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore, Pakistan
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- * E-mail: (SD); (VDF)
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- * E-mail: (SD); (VDF)
| |
Collapse
|
24
|
Abstract
Purpose The glutathione (GSH) antioxidant system has been shown to play an important role in the maintenance of good health and disease prevention. Various approaches have been used to enhance GSH availability including diet, nutritional supplementation, and drug administration, with minor to moderate success. Exercise training has evolved as a new approach. The purpose of this study was to investigate the effects of aerobic exercise training (AET), circuit weight training (CWT), and combined training (AET + CWT) on general adaptations, and resistance to acutely induced oxidative stress, as assessed by changes in the GSH antioxidant system. Methods Eighty healthy sedentary volunteers participated in the study who were randomly assigned to four groups: control (no exercise); AET, CWT, and AET + CWT. Exercise training programs were designed to simulate outpatient cardiac rehabilitation (40 min × 3 days × 6 weeks). Venous blood sampling was taken at rest and post maximal graded exercise test (GXT). A new improved spectrophotometric venous assay analysis technique was used. A mixed model repeated measures analysis of variance design was used with t-tests for preplanned comparisons evaluated at Bonferroni-adjusted α levels. Results Effectiveness of the exercise training programs was demonstrated by significant between-group (exercise group versus control) comparisons. AET, CWT, and AET + CWT showed significant pretraining-posttraining increases in resting GSH and glutathione-glutathione disulfide ratio (GSH:GSSG), and significant decreases in GSSG levels ( P <0.005). AET + CWT showed the most pronounced effect compared with AET or CWT alone ( P <0.025). Conclusion This study represents the first longitudinal investigation involving the effects of multiple modes of exercise training on the GSH antioxidant system with evidence, suggesting the GHS:GSSG ratio as the most sensitive change marker. The significant findings of this study have potential clinical implications to individuals involved in cardiac and pulmonary rehabilitation. Eur J Cardiovasc Prev Rehabil 14:630-637 © 2007 The European Society of Cardiology
Collapse
|
25
|
Liang Q, Kobayashi S. Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol 2016; 95:57-69. [PMID: 26739215 PMCID: PMC6263145 DOI: 10.1016/j.yjmcc.2015.12.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/03/2015] [Accepted: 12/26/2015] [Indexed: 02/07/2023]
Abstract
Diabetes is a well-known risk factor for heart failure. Diabetic heart damage is closely related to mitochondrial dysfunction and increased ROS generation. However, clinical trials have shown no effects of antioxidant therapies on heart failure in diabetic patients, suggesting that simply antagonizing existing ROS by antioxidants is not sufficient to reduce diabetic cardiac injury. A potentially more effective treatment strategy may be to enhance the overall capacity of mitochondrial quality control to maintain a pool of healthy mitochondria that are needed for supporting cardiac contractile function in diabetic patients. Mitochondrial quality is controlled by a number of coordinated mechanisms including mitochondrial fission and fusion, mitophagy and biogenesis. The mitochondrial damage consistently observed in the diabetic hearts indicates a failure of the mitochondrial quality control mechanisms. Recent studies have demonstrated a crucial role for each of these mechanisms in cardiac homeostasis and have begun to interrogate the relative contribution of insufficient mitochondrial quality control to diabetic cardiac injury. In this review, we will present currently available literature that links diabetic heart disease to the dysregulation of major mitochondrial quality control mechanisms. We will discuss the functional roles of these mechanisms in the pathogenesis of diabetic heart disease and their potentials for targeted therapeutical manipulation.
Collapse
Affiliation(s)
- Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
26
|
Shaver A, Nichols A, Thompson E, Mallick A, Payne K, Jones C, Manne NDPK, Sundaram S, Shapiro JI, Sodhi K. Role of Serum Biomarkers in Early Detection of Diabetic Cardiomyopathy in the West Virginian Population. Int J Med Sci 2016; 13:161-8. [PMID: 26941576 PMCID: PMC4773280 DOI: 10.7150/ijms.14141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Diabetic cardiomyopathy (DCM) is an established complication of diabetes mellitus. In West Virginia, the especially high incidence of diabetes and heart failure validate the necessity of developing new strategies for earlier detection of DCM. Since most DCM patients remain asymptomatic until the later stages of the disease when the fibrotic complications become irreversible, we aimed to explore biomarkers that can identify early-stage DCM. METHODS The patients were grouped into 4 categories based on clinical diabetic and cardiac parameters: Control, Diabetes (DM), Diastolic dysfunction (DD), and Diabetes with diastolic dysfunction (DM+DD), the last group being the preclinical DCM group. RESULTS Echocardiography images indicated severe diastolic dysfunction in patients with DD+DM and DD compared to DM or control patients. In the DM and DM+DD groups, TNFα, isoprostane, and leptin were elevated compared to control (p<0.05), as were clinical markers HDL, glucose and hemoglobin A1C. Fibrotic markers IGFBP7 and TGF-β followed the same trend. The Control group showed higher beneficial levels of adiponectin and bilirubin, which were reduced in the DM and DM+DD groups (p<0.05). CONCLUSION The results from our study support the clinical application of biomarkers in diagnosing early stage DCM, which will enable attenuation of disease progression prior to the onset of irreversible complications.
Collapse
Affiliation(s)
- Adam Shaver
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Alexandra Nichols
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | | | - Amrita Mallick
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Kristen Payne
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Chris Jones
- 2. Department of Cardiology, Marshall University
| | | | - Shanmuga Sundaram
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Joseph I Shapiro
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Komal Sodhi
- 4. Department of Surgery and Pharmacology, Marshall University, USA
| |
Collapse
|
27
|
Saravanan S, Pari L. Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice. Chem Biol Interact 2015; 245:1-11. [PMID: 26680107 DOI: 10.1016/j.cbi.2015.11.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
Obesity is one of several factors implicated in chronic kidney disease (CKD). Thymol, a monoterpene phenolic compound found in the oils of thyme with multiple biological properties especially antidiabetic activity. The present study was undertaken to evaluate the thymol against diabetic nephropathy by high fat diet (HFD)-induced diabetic C57BL/6J mice. After 10 weeks of continuous dietary intervention, HFD (fat- 35.2%) to mice presented characteristic features of progressive nephropathy by significant increased in kidney weight, blood, and urinary parameters, glomerulosclerosis, oxidative stress, hyperlipidemia and subsequent renal injuries. After intragastric administration of thymol (40 mg/kg BW) daily for the subsequent 5 weeks significantly decreased the blood, urinary parameters and kidney weight. Thymol inhibited the activation of transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF). Also, significantly increased the antioxidants and suppresses the lipid peroxidation markers in erythrocytes and kidney tissue compared to the diabetic mice. Thymol downregulated the expression level of sterol regulatory element binding protein-1c (SREBP-1c) and reduced the lipid accumulation in renal. Histopathological study of kidney tissues showed that extracellular mesangial matrix expansion, glomerulosclerosis in diabetic mice were suppressed by thymol. Further, our results indicate that administration of thymol afforded remarkable protection against HFD-induced diabetic nephropathy.
Collapse
Affiliation(s)
- Settu Saravanan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Leelevinothan Pari
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
28
|
Belmonte F, Das S, Sysa-Shah P, Sivakumaran V, Stanley B, Guo X, Paolocci N, Aon MA, Nagane M, Kuppusamy P, Steenbergen C, Gabrielson K. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 309:H1271-80. [PMID: 26254336 DOI: 10.1152/ajpheart.00517.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.
Collapse
Affiliation(s)
- Frances Belmonte
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Vidhya Sivakumaran
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Brian Stanley
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Masaki Nagane
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Periannan Kuppusamy
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Gabrielson
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland;
| |
Collapse
|
29
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca(2+) handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. RECENT ADVANCES Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. CRITICAL ISSUES Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. FUTURE DIRECTIONS Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction.
Collapse
Affiliation(s)
- Chad A Galloway
- 1Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Yisang Yoon
- 2Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
31
|
McCarty MF, DiNicolantonio JJ. The protection conferred by chelation therapy in post-MI diabetics might be replicated by high-dose zinc supplementation. Med Hypotheses 2015; 84:451-5. [DOI: 10.1016/j.mehy.2015.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
|
32
|
Elezaby A, Sverdlov AL, Tu VH, Soni K, Luptak I, Qin F, Liesa M, Shirihai OS, Rimer J, Schaffer JE, Colucci WS, Miller EJ. Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. J Mol Cell Cardiol 2015; 79:275-83. [PMID: 25497302 PMCID: PMC4301992 DOI: 10.1016/j.yjmcc.2014.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity leads to metabolic heart disease (MHD) that is associated with a pathologic increase in myocardial fatty acid (FA) uptake and impairment of mitochondrial function. The mechanism of mitochondrial dysfunction in MHD, which results in oxidant production and decreased energetics, is poorly understood but may be related to excess FAs. Determining the effects of cardiac FA excess on mitochondria can be hindered by the systemic sequelae of obesity. Mice with cardiomyocyte-specific overexpression of the fatty acid transport protein FATP1 have increased cardiomyocyte FA uptake and develop MHD in the absence of systemic lipotoxicity, obesity or diabetes. We utilized this model to assess 1) the effect of cardiomyocyte lipid accumulation on mitochondrial structure and energetic function and 2) the role of lipid-driven transcriptional regulation, signaling, toxic metabolite accumulation, and mitochondrial oxidative stress in lipid-induced MHD. METHODS Cardiac lipid species, lipid-dependent signaling, and mitochondrial structure/function were examined from FATP1 mice. Cardiac structure and function were assessed in mice overexpressing both FATP1 and mitochondrial-targeted catalase. RESULTS FATP1 hearts exhibited a net increase (+12%) in diacylglycerol, with increases in several very long-chain diacylglycerol species (+160-212%, p<0.001) and no change in ceramide, sphingomyelin, or acylcarnitine content. This was associated with an increase in phosphorylation of PKCα and PKCδ, and a decrease in phosphorylation of AKT and expression of CREB, PGC1α, PPARα and the mitochondrial fusion genes MFN1, MFN2 and OPA1. FATP1 overexpression also led to marked decreases in mitochondrial size (-49%, p<0.01), complex II-driven respiration (-28.6%, p<0.05), activity of isolated complex II (-62%, p=0.05), and expression of complex II subunit B (SDHB) (-60% and -31%, p<0.01) in the absence of change in ATP synthesis. Hydrogen peroxide production was not increased in FATP1 mitochondria, and cardiac hypertrophy and diastolic dysfunction were not attenuated by overexpression of catalase in mitochondria in FATP1 mice. CONCLUSIONS Excessive delivery of FAs to the cardiac myocyte in the absence of systemic disorders leads to activation of lipid-driven signaling and remodeling of mitochondrial structure and function.
Collapse
Affiliation(s)
- Aly Elezaby
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Aaron L Sverdlov
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Vivian H Tu
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Kanupriya Soni
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Ivan Luptak
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Fuzhong Qin
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Marc Liesa
- Boston University School of Medicine, Obesity and Nutrition Section, Department of Medicine, Boston, MA 02118, United States
| | - Orian S Shirihai
- Boston University School of Medicine, Obesity and Nutrition Section, Department of Medicine, Boston, MA 02118, United States
| | - Jamie Rimer
- Washington University School of Medicine, Diabetic Cardiovascular Disease Center, St Louis, MO 63110, United States
| | - Jean E Schaffer
- Washington University School of Medicine, Diabetic Cardiovascular Disease Center, St Louis, MO 63110, United States
| | - Wilson S Colucci
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Edward J Miller
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States.
| |
Collapse
|
33
|
Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:252-61. [DOI: 10.1016/j.bbadis.2014.05.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023]
|
34
|
Fuentes-Antrás J, Picatoste B, Gómez-Hernández A, Egido J, Tuñón J, Lorenzo Ó. Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015; 2015:656795. [PMID: 25973429 PMCID: PMC4417999 DOI: 10.1155/2015/656795] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy entails a serious cardiac dysfunction induced by alterations in structure and contractility of the myocardium. This pathology is initiated by changes in energy substrates and occurs in the absence of atherothrombosis, hypertension, or other cardiomyopathies. Inflammation, hypertrophy, fibrosis, steatosis, and apoptosis in the myocardium have been studied in numerous diabetic experimental models in animals, mostly rodents. Type I and type II diabetes were induced by genetic manipulation, pancreatic toxins, and fat and sweet diets, and animals recapitulate the main features of human diabetes and related cardiomyopathy. In this review we update and discuss the main experimental models of diabetic cardiomyopathy, analysing the associated metabolic, structural, and functional abnormalities, and including current tools for detection of these responses. Also, novel experimental models based on genetic modifications of specific related genes have been discussed. The study of specific pathways or factors responsible for cardiac failures may be useful to design new pharmacological strategies for diabetic patients.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - B. Picatoste
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - A. Gómez-Hernández
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - J. Egido
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - J. Tuñón
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - Ó. Lorenzo
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
35
|
Subramaniam S, Hedayathullah Khan HB, G G, Palanvelu S, Tiruvaiyaru Panchanadham S. Effect of Semecaprus anacardiumon Diabetes-Induced Alterations in the Activities of Marker Enzymes and Antioxidant Enzymes in Type 2 Diabetes Induced Cardiac Vascular Damage Model in Rats. J Diet Suppl 2014; 11:347-60. [DOI: 10.3109/19390211.2013.859219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem 2014; 158:546-54. [DOI: 10.1016/j.foodchem.2014.02.151] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 01/04/2023]
|
37
|
Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S. Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc Diabetol 2014; 13:118. [PMID: 25142225 PMCID: PMC4243842 DOI: 10.1186/s12933-014-0118-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathophysiological processes underlying diabetic-related cardiomyopathies are complex. Mitochondria dysfunction is often described as a cause of cardiac impairment but its extent may depend on the type of experimental diabetes. Here we proposed to compare drug- or diet-induced models of diabetes in terms of metabolic features, cardiac and mitochondrial functions. METHODS Mice were fed with regular chow or fat-enriched diet. After three weeks, they received either citrate or streptozotocin injections for five consecutive days. Metabolic parameters, myocardial contractile function and mitochondrial respiration were measured after three more weeks. Fat mass volumes were assessed by magnetic resonance imaging. Oral glucose tolerance test, insulin tolerance test, triglyceride and adipocytokine quantification were evaluated to establish metabolic profiles. Cardiac function was assessed ex vivo onto a Langendorff column. Isolated cardiac mitochondria respiration was obtained using high-resolution oxygraphy. RESULTS Mice fed with the fat-enriched regimen presented abdominal obesity, increased blood glucose, elevated leptin level, glucose intolerance, and insulin resistance. Mice treated with streptozotocin, independently of the regimen, lost their capacity to release insulin in response to glucose ingestion. Mice fed with regular chow diet and injected with streptozotocin developed cardiac dysfunction without mitochondrial respiration defect. However, both groups of high-fat diet fed mice developed cardiac alterations associated with reduction in mitochondrial oxygen consumption, despite an increase in mitochondrial biogenesis signalling. CONCLUSIONS We explored three animal models mimicking type 1 and 2 diabetes. While cardiac dysfunction was present in the three groups of mice, mitochondrial respiration impairment was only obvious in models reproducing features of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Steve Lancel
- EA 4484 - Physiology Department, Faculty of Medicine, Lille 2 University, 1, place de Verdun, Lille 59045, France.
| |
Collapse
|
38
|
Raudenska M, Gumulec J, Podlaha O, Sztalmachova M, Babula P, Eckschlager T, Adam V, Kizek R, Masarik M. Metallothionein polymorphisms in pathological processes. Metallomics 2014; 6:55-68. [PMID: 24068159 DOI: 10.1039/c3mt00132f] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) are a class of metal-binding proteins characterized by a high cysteine content and low molecular weight. MTs play an important role in metal metabolism and protect cells against the toxic effects of radiation, alkylating agents and oxygen free radicals. The evidence that individual genetic characteristics of MTs play an important role in physiological and pathological processes associated with antioxidant defense and detoxification inspired targeted studies of genetic polymorphisms in a clinical context. In recent years, common MT polymorphisms were identified and associated with, particularly, western lifestyle diseases such as cancer, complications of atherosclerosis, and type 2 diabetes mellitus along with related complications. This review summarizes all evidence regarding MT polymorphisms of major human MTs (MT1, MT2, MT3 and MT4), their relation to pathological processes, and outlines specific applications of MTs as a set of genetic markers for certain pathologies.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Investig 2014; 5:623-34. [PMID: 25422760 PMCID: PMC4234223 DOI: 10.1111/jdi.12250] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 01/29/2023] Open
Abstract
Diabetic cardiomyopathy as an important threat to health occurs with or without coexistence of vascular diseases. The exact mechanisms underlying the disease remain incompletely clear. Although several pathological mechanisms responsible for diabetic cardiomyopathy have been proposed, oxidative stress is widely considered as one of the major causes for the pathogenesis of the disease. Hyperglycemia-, hyperlipidemia-, hypertension- and inflammation-induced oxidative stress are major risk factors for the development of microvascular pathogenesis in the diabetic myocardium, which results in abnormal gene expression, altered signal transduction and the activation of pathways leading to programmed myocardial cell deaths. In the present article, we aim to provide an extensive review of the role of oxidative stress and anti-oxidants in diabetic cardiomyopathy based on our own works and literature information available.
Collapse
Affiliation(s)
- Quan Liu
- Center of Cardiovascular Diseases at the First Hospital of the Jilin University Changchun, China
| | - Shudong Wang
- Center of Cardiovascular Diseases at the First Hospital of the Jilin University Changchun, China ; Kosair Children's Hospital Research Institute, the Department of Pediatrics, the University of Louisville Louisville, KY, USA
| | - Lu Cai
- Kosair Children's Hospital Research Institute, the Department of Pediatrics, the University of Louisville Louisville, KY, USA ; Departments of Radiation Oncology, Pharmacology and Toxicology, the University of Louisville Louisville, KY, USA
| |
Collapse
|
40
|
Cong W, Zhao T, Zhu Z, Huang B, Ma W, Wang Y, Tan Y, Chakrabarti S, Li X, Jin L, Cai L. Metallothionein prevents cardiac pathological changes in diabetes by modulating nitration and inactivation of cardiac ATP synthase. J Nutr Biochem 2014; 25:463-74. [PMID: 24629910 DOI: 10.1016/j.jnutbio.2013.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/14/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023]
Abstract
Mitochondrial ATP production is the main energy source for the cell. Diabetes reduces the efficient generation of ATP, possibly due to the inactivation of ATP synthase. However, the exact mechanism by which diabetes induces inactivation of ATP synthase remains unknown, as well as whether such inactivation has a role in the development of pathological abnormalities of the diabetic heart. To address these issues, we used cardiac metallothionein-transgenic (MT-TG) and wild-type (WT) mice with streptozotocin-induced diabetes, since we have demonstrated previously that diabetes-induced cardiac damage and remodeling were found in WT diabetic mice, but not in MT-TG diabetic mice. Immunohistochemical and biochemical assays were used to compare pathological and biochemical changes of the heart between MT-TG and WT diabetic mice, and a proteomic assay to evaluate ATP synthase expression and tyrosine nitration, with its activity. LC/MS analysis revealed that diabetes increased tyrosine nitration of the ATP synthase α subunit at Tyr(271), Tyr(311), and Tyr(476), and the β subunit at Tyr(269) and Tyr(508), and also significantly reduced ATP synthase activity by ~32%. These changes were not observed in MT-TG diabetic mice. Furthermore, parallel experiments with induced expression of cardiac MT by zinc supplementation in diabetic mice produced similar effects. These results suggest that MT can preserve ATP synthase activity in streptozotocin-induced diabetes, probably through the inhibition of ATP synthase nitration.
Collapse
Affiliation(s)
- Weitao Cong
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Zhejiang, P.R. China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Ting Zhao
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Zhejiang, P.R. China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhongxin Zhu
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Zhejiang, P.R. China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Binbin Huang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Zhejiang, P.R. China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Weide Ma
- Laboratory of Gynecology and Obstetrics, People's Hospital of Wenzhou, Zhejiang, P.R. China
| | - Yuehui Wang
- Department of Geriatric Medicine, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Zhejiang, P.R. China; Kosair Children's Hospital Research Institute (KCHRI), Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Subrata Chakrabarti
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Zhejiang, P.R. China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Litai Jin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Zhejiang, P.R. China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China.
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Zhejiang, P.R. China; Kosair Children's Hospital Research Institute (KCHRI), Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
41
|
Dual-mode enhancement of metallothionein protein with cell transduction and retention peptide fusion. J Control Release 2013; 171:193-200. [DOI: 10.1016/j.jconrel.2013.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/14/2013] [Accepted: 07/02/2013] [Indexed: 02/04/2023]
|
42
|
Powell DW, Kenagy DN, Zheng S, Coventry SC, Xu J, Cai L, Carlson EC, Epstein PN. Associations between structural and functional changes to the kidney in diabetic humans and mice. Life Sci 2013; 93:257-64. [PMID: 23800643 PMCID: PMC3770478 DOI: 10.1016/j.lfs.2013.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/09/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
Type 1 and Type 2 diabetic patients are at high risk of developing diabetic nephropathy (DN). Renal functional decline is gradual and there is high variability between patients, though the reason for the variability is unknown. Enough diabetic patients progress to end stage renal disease to make diabetes the leading cause of renal failure. The first symptoms of DN do not appear for years or decades after the onset of diabetes. During and after the asymptomatic period structural changes develop in the diabetic kidney. Typically, but not always, the first symptom of DN is albuminuria. Loss of renal filtration rate develops later. This review examines the structural abnormalities of diabetic kidneys that are associated with and possibly the basis for advancing albuminuria and declining GFR. Mouse models of diabetes and genetic manipulations of these models have become central to research into mechanisms underlying DN. This article also looks at the value of these mouse models to understanding human DN as well as potential pitfalls in translating the mouse results to humans.
Collapse
Affiliation(s)
- David W. Powell
- Department of Medicine, University of Louisville, Louisville, KY
| | - David N. Kenagy
- Department of Pedatrics, University of Louisville, Louisville, KY
| | - Shirong Zheng
- Department of Pedatrics, University of Louisville, Louisville, KY
| | | | - Jianxiang Xu
- Department of Pedatrics, University of Louisville, Louisville, KY
| | - Lu Cai
- Department of Pedatrics, University of Louisville, Louisville, KY
| | - Edward C. Carlson
- Department of Anatomy and Cell Biology, University of North Dakota, Grand Forks, ND
| | - Paul N. Epstein
- Department of Pedatrics, University of Louisville, Louisville, KY
| |
Collapse
|
43
|
Abstract
SIGNIFICANCE Mitochondria are the cellular energy-producing organelles and are at the crossroad of determining cell life and death. As such, the function of mitochondria has been intensely studied in metabolic disorders, including diabetes and associated maladies commonly grouped under all-inclusive pathological condition of metabolic syndrome. More recently, the altered metabolic profiles and function of mitochondria in these ailments have been correlated with their aberrant morphologies. This review describes an overview of mitochondrial fission and fusion machineries, and discusses implications of mitochondrial morphology and function in these metabolic maladies. RECENT ADVANCES Mitochondria undergo frequent morphological changes, altering the mitochondrial network organization in response to environmental cues, termed mitochondrial dynamics. Mitochondrial fission and fusion mediate morphological plasticity of mitochondria and are controlled by membrane-remodeling mechanochemical enzymes and accessory proteins. Growing evidence suggests that mitochondrial dynamics play an important role in diabetes establishment and progression as well as associated ailments, including, but not limited to, metabolism-secretion coupling in the pancreas, nonalcoholic fatty liver disease progression, and diabetic cardiomyopathy. CRITICAL ISSUES While mitochondrial dynamics are intimately associated with mitochondrial bioenergetics, their cause-and-effect correlation remains undefined in metabolic diseases. FUTURE DIRECTIONS The involvement of mitochondrial dynamics in metabolic diseases is in its relatively early stages. Elucidating the role of mitochondrial dynamics in pathological metabolic conditions will aid in defining the intricate form-function correlation of mitochondria in metabolic pathologies and should provide not only important clues to metabolic disease progression, but also new therapeutic targets.
Collapse
Affiliation(s)
- Chad A Galloway
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
44
|
Lim KS, Cha MJ, Kim JK, Park EJ, Chae JW, Rhim T, Hwang KC, Kim YH. Protective effects of protein transduction domain-metallothionein fusion proteins against hypoxia- and oxidative stress-induced apoptosis in an ischemia/reperfusion rat model. J Control Release 2013; 169:306-12. [DOI: 10.1016/j.jconrel.2013.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/10/2013] [Accepted: 01/27/2013] [Indexed: 11/26/2022]
|
45
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|
46
|
Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, Gulick J, Yue Z, Robbins J, Epstein PN, Liang Q. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 2013; 288:18077-92. [PMID: 23658055 DOI: 10.1074/jbc.m113.474650] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiac autophagy is inhibited in type 1 diabetes. However, it remains unknown if the reduced autophagy contributes to the pathogenesis of diabetic cardiomyopathy. We addressed this question using mouse models with gain- and loss-of-autophagy. Autophagic flux was inhibited in diabetic hearts when measured at multiple time points after diabetes induction by streptozotocin as assessed by protein levels of microtubule-associated protein light chain 3 form 2 (LC3-II) or GFP-LC3 puncta in the absence and presence of the lysosome inhibitor bafilomycin A1. Autophagy in diabetic hearts was further reduced in beclin 1- or Atg16-deficient mice but was restored partially or completely by overexpression of beclin 1 to different levels. Surprisingly, diabetes-induced cardiac damage was substantially attenuated in beclin 1- and Atg16-deficient mice as shown by improved cardiac function as well as reduced levels of oxidative stress, interstitial fibrosis, and myocyte apoptosis. In contrast, diabetic cardiac damage was dose-dependently exacerbated by beclin 1 overexpression. The cardioprotective effects of autophagy deficiency were reproduced in OVE26 diabetic mice. These effects were associated with partially restored mitophagy and increased expression and mitochondrial localization of Rab9, an essential regulator of a non-canonical alternative autophagic pathway. Together, these findings demonstrate that the diminished autophagy is an adaptive response that limits cardiac dysfunction in type 1 diabetes, presumably through up-regulation of alternative autophagy and mitophagy.
Collapse
Affiliation(s)
- Xianmin Xu
- Cardiovascular Health Research Center, Sanford Research/University of South Dakota, Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota 57104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Smith RM, Visweswaran R, Talkachova I, Wothe JK, Tolkacheva EG. Uncoupling the mitochondria facilitates alternans formation in the isolated rabbit heart. Am J Physiol Heart Circ Physiol 2013; 305:H9-18. [PMID: 23645464 DOI: 10.1152/ajpheart.00915.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alternans of action potential duration (APD) and intracellular calcium ([Ca²⁺]i) transients in the whole heart are thought to be markers of increased propensity to ventricular fibrillation during ischemia-reperfusion injuries. During ischemia, ATP production is affected and the mitochondria become uncoupled, which may affect alternans formation in the heart. The aim of our study was to investigate the role of mitochondria on the formation of APD and [Ca²⁺]i alternans in the isolated rabbit heart. We performed dual voltage and [Ca²⁺]i optical mapping of isolated rabbit hearts under control conditions, global no-flow ischemia (n = 6), and after treatment with 50 nM of the mitochondrial uncoupler FCCP (n = 6). We investigated the formation of alternans of APD, [Ca²⁺]i amplitude (CaA), and [Ca²⁺]i duration (CaD) under different rates of pacing. We found that treatment with FCCP leads to the early occurrence of APD, CaD, and CaA alternans; an increase of intraventricular APD but not CaD heterogeneity; and significant reduction in conduction velocity compared with that of control. Furthermore, we demonstrated that FCCP and global ischemia have similar effects on the prolongation of [Ca²⁺]i transients, whereas ischemia induces a significantly larger reduction of APD compared with that in FCCP treatment. In conclusion, our results demonstrate that uncoupling of mitochondria leads to an earlier occurrence of alternans in the heart. Thus, in conditions of mitochondrial stress, as seen during myocardial ischemia, uncoupled mitochondria may be responsible for the formation of both APD and [Ca²⁺]i alternans in the heart, which in turn creates a substrate for ventricular arrhythmias.
Collapse
Affiliation(s)
- Rebecca M Smith
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
48
|
Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2013; 17:325-44. [PMID: 21626163 DOI: 10.1007/s10741-011-9257-z] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is an important and prevalent risk factor for congestive heart failure. Diabetic cardiomyopathy has been defined as ventricular dysfunction that occurs in diabetic patients independent of a recognized cause such as coronary artery disease or hypertension. The disease course consists of a hidden subclinical period, during which cellular structural insults and abnormalities lead initially to diastolic dysfunction, later to systolic dysfunction, and eventually to heart failure. Left ventricular hypertrophy, metabolic abnormalities, extracellular matrix changes, small vessel disease, cardiac autonomic neuropathy, insulin resistance, oxidative stress, and apoptosis are the most important contributors to diabetic cardiomyopathy onset and progression. Hyperglycemia is a major etiological factor in the development of diabetic cardiomyopathy. It increases the levels of free fatty acids and growth factors and causes abnormalities in substrate supply and utilization, calcium homeostasis, and lipid metabolism. Furthermore, it promotes excessive production and release of reactive oxygen species, which induces oxidative stress leading to abnormal gene expression, faulty signal transduction, and cardiomyocytes apoptosis. Stimulation of connective tissue growth factor, fibrosis, and the formation of advanced glycation end-products increase the stiffness of the diabetic hearts. Despite all the current information on diabetic cardiomyopathy, translational research is still scarce due to limited human myocardial tissue and most of our knowledge is extrapolated from animals. This paper aims to elucidate some of the molecular and cellular pathophysiologic mechanisms, structural changes, and therapeutic strategies that may help struggle against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Unit, University of Porto, Porto, Portugal
| | | |
Collapse
|
49
|
Miao X, Wang Y, Sun J, Sun W, Tan Y, Cai L, Zheng Y, Su G, Liu Q, Wang Y. Zinc protects against diabetes-induced pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovasc Diabetol 2013; 12:54. [PMID: 23536959 PMCID: PMC3621739 DOI: 10.1186/1475-2840-12-54] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background Cardiovascular diseases remain a leading cause of the mortality world-wide, which is related to several risks, including the life style change and the increased diabetes prevalence. The present study was to explore the preventive effect of zinc on the pathogenic changes in the aorta. Methods A genetic type 1 diabetic OVE26 mouse model was used with/without zinc supplementation for 3 months. To determine gender difference either for pathogenic changes in the aorta of diabetic mice or for zinc protective effects on diabetes-induced pathogenic changes, both males and females were investigated in parallel by histopathological and immunohistochemical examinations, in combination of real-time PCR assay. Results Diabetes induced significant increases in aortic oxidative damage, inflammation, and remodeling (increased fibrosis and wall thickness) without significant difference between genders. Zinc treatment of these diabetic mice for three months completely prevented the above pathogenic changes in the aorta, and also significantly up-regulated the expression and function of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a pivotal regulator of anti-oxidative mechanism, and the expression of metallothionein (MT), a potent antioxidant. There was gender difference for the protective effect of zinc against diabetes-induced pathogenic changes and the up-regulated levels of Nrf2 and MT in the aorta. Conclusions These results suggest that zinc supplementation provides a significant protection against diabetes-induced pathogenic changes in the aorta without gender difference in the type 1 diabetic mouse model. The aortic protection by zinc against diabetes-induced pathogenic changes is associated with the up-regulation of both MT and Nrf2 expression.
Collapse
Affiliation(s)
- Xiao Miao
- Department of Ophthalmology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of type 1 diabetes. Biochem J 2013; 449:253-61. [PMID: 23030792 DOI: 10.1042/bj20121038] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetic cardiomyopathy refers to the changes in contractility that occur to the diabetic heart that can arise in the absence of vascular disease. Mitochondrial bioenergetic deficits and increased free radical production are pathological hallmarks of diabetic cardiomyopathy, but the mechanisms and causal relationships between mitochondrial deficits and the progression of disease are not understood. We evaluated cardiac mitochondrial function in a rodent model of chronic Type 1 diabetes (OVE26 mice) before the onset of contractility deficits. We found that the most pronounced change in OVE26 heart mitochondria is severe metabolic inflexibility. This inflexibility is characterized by large deficits in mitochondrial respiration measured in the presence of non-fatty acid substrates. Metabolic inflexibility occurred concomitantly with decreased activities of PDH (pyruvate dehydrogenase) and complex II. Hyper-acetylation of protein lysine was also observed. Treatment of control heart mitochondria with acetic anhydride (Ac2O), an acetylating agent, preferentially inhibited respiration by non-fatty acid substrates and increased superoxide production. We have concluded that metabolic inflexibility, induced by discrete enzymatic and molecular changes, including hyper-acetylation of protein lysine residues, precedes mitochondrial defects in a chronic rodent model of Type 1 diabetes.
Collapse
|