1
|
An M, Akyuz M, Capik O, Yalcin C, Bertram R, Karatas EA, Karatas OF, Yildirim V. Gain of function mutation in K(ATP) channels and resulting upregulation of coupling conductance are partners in crime in the impairment of Ca 2+ oscillations in pancreatic ß-cells. Math Biosci 2024; 374:109224. [PMID: 38821258 DOI: 10.1016/j.mbs.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of β-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a β-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type β-cell cluster, restores coordinated Ca2+ oscillations in a β-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous β-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic β-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.
Collapse
Affiliation(s)
- Murat An
- Department of Basic Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Mesut Akyuz
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Cigdem Yalcin
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Vehpi Yildirim
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey; Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Puginier E, Leal-Fischer K, Gaitan J, Lallouet M, Scotti PA, Raoux M, Lang J. Extracellular electrophysiology on clonal human β-cell spheroids. Front Endocrinol (Lausanne) 2024; 15:1402880. [PMID: 38883608 PMCID: PMC11176477 DOI: 10.3389/fendo.2024.1402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Background Pancreatic islets are important in nutrient homeostasis and improved cellular models of clonal origin may very useful especially in view of relatively scarce primary material. Close 3D contact and coupling between β-cells are a hallmark of physiological function improving signal/noise ratios. Extracellular electrophysiology using micro-electrode arrays (MEA) is technically far more accessible than single cell patch clamp, enables dynamic monitoring of electrical activity in 3D organoids and recorded multicellular slow potentials (SP) provide unbiased insight in cell-cell coupling. Objective We have therefore asked whether 3D spheroids enhance clonal β-cell function such as electrical activity and hormone secretion using human EndoC-βH1, EndoC-βH5 and rodent INS-1 832/13 cells. Methods Spheroids were formed either by hanging drop or proprietary devices. Extracellular electrophysiology was conducted using multi-electrode arrays with appropriate signal extraction and hormone secretion measured by ELISA. Results EndoC-βH1 spheroids exhibited increased signals in terms of SP frequency and especially amplitude as compared to monolayers and even single cell action potentials (AP) were quantifiable. Enhanced electrical signature in spheroids was accompanied by an increase in the glucose stimulated insulin secretion index. EndoC-βH5 monolayers and spheroids gave electrophysiological profiles similar to EndoC-βH1, except for a higher electrical activity at 3 mM glucose, and exhibited moreover a biphasic profile. Again, physiological concentrations of GLP-1 increased AP frequency. Spheroids also exhibited a higher secretion index. INS-1 cells did not form stable spheroids, but overexpression of connexin 36, required for cell-cell coupling, increased glucose responsiveness, dampened basal activity and consequently augmented the stimulation index. Conclusion In conclusion, spheroid formation enhances physiological function of the human clonal β-cell lines and these models may provide surrogates for primary islets in extracellular electrophysiology.
Collapse
Affiliation(s)
- Emilie Puginier
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Karen Leal-Fischer
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Julien Gaitan
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Marie Lallouet
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Pier-Arnaldo Scotti
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Matthieu Raoux
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Jochen Lang
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| |
Collapse
|
3
|
Farnsworth NL, Piscopio RA, Schleicher WE, Ramirez DG, Miranda JG, Benninger RKP. Modulation of Gap Junction Coupling Within the Islet of Langerhans During the Development of Type 1 Diabetes. Front Physiol 2022; 13:913611. [PMID: 35837011 PMCID: PMC9274093 DOI: 10.3389/fphys.2022.913611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023] Open
Abstract
In type 1 diabetes (T1D), islet dysfunction occurs prior to diabetes onset. Pro-inflammatory cytokines can disrupt insulin secretion and Ca2+ homeostasis. Connexin36 (Cx36) gap junctions electrically couple β-cells to coordinate glucose-stimulated Ca2+ and insulin secretion. Cx36 gap junction coupling can also protect against cytokine-induced apoptosis. Our goal was to determine how islet gap junction coupling and Ca2+ dynamics are altered in mouse models of T1D prior to diabetes. Glucose tolerance was assessed in NOD and immunodeficient NOD-RAG1KO mice at 6-12 weeks age. Glucose-stimulated insulin secretion, Ca2+ dynamics, and gap junction coupling were measured in islets isolated at each age. Gap junction coupling was also measured in islets from mice that underwent transfer of diabetogenic splenocytes and from chromograninA knockout NOD mice. Cell death was measured in islets isolated from wild-type, Cx36 knockout or Cx36 over-expression mice, each treated with a cocktail of pro-inflammatory cytokines and KATP or SERCA activators/inhibitors. NOD mice over-expressing Cx36 were also monitored for diabetes development, and islets assessed for insulitis and apoptosis. NOD and NOD-RAG1KO controls showed similar glucose tolerance at all ages. Ca2+ dynamics and gap junction coupling were disrupted in islets of NOD mice at 9 weeks, compared to controls. Transfer of diabetogenic splenocytes also decreased gap junction coupling. Islets from chromograninA knockout mice displayed normal coupling. Overexpression of Cx36 protected islets from cytokine-induced apoptosis. A knockout of Cx36 amplified cytokine-induced apoptosis, which was reversed by KATP activation or SERCA activation. Cx36 overexpression in NOD mice delayed diabetes development compared to NOD controls. However, apoptosis and insulitis were not improved. Decreases in islet gap junction coupling occur prior to T1D onset. Such decreases alter islet susceptibility to apoptosis due to altered Ca2+. Future studies will determine if increasing Cx36 gap junction coupling in combination with restoring Ca2+ homeostasis protects against islet decline in T1D.
Collapse
Affiliation(s)
- Nikki L. Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States,Barbara Davis Center for Diabetes, Universty of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert A. Piscopio
- Barbara Davis Center for Diabetes, Universty of Colorado Anschutz Medical Campus, Aurora, CO, United States,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Wolfgang E. Schleicher
- Barbara Davis Center for Diabetes, Universty of Colorado Anschutz Medical Campus, Aurora, CO, United States,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David G. Ramirez
- Barbara Davis Center for Diabetes, Universty of Colorado Anschutz Medical Campus, Aurora, CO, United States,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jose G. Miranda
- Barbara Davis Center for Diabetes, Universty of Colorado Anschutz Medical Campus, Aurora, CO, United States,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard K. P. Benninger
- Barbara Davis Center for Diabetes, Universty of Colorado Anschutz Medical Campus, Aurora, CO, United States,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: Richard K. P. Benninger,
| |
Collapse
|
4
|
Ren H, Li Y, Han C, Yu Y, Shi B, Peng X, Zhang T, Wu S, Yang X, Kim S, Chen L, Tang C. Pancreatic α and β cells are globally phase-locked. Nat Commun 2022; 13:3721. [PMID: 35764654 PMCID: PMC9240067 DOI: 10.1038/s41467-022-31373-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells play a crucial role in glucose homeostasis. However, how α and β cells coordinate to produce various Ca2+ oscillation patterns is still elusive. Using a microfluidic device and transgenic mice, we recorded Ca2+ signals from islet α and β cells, and observed heterogeneous Ca2+ oscillation patterns intrinsic to each islet. After a brief period of glucose stimulation, α and β cells’ oscillations were globally phase-locked. While the activation of α cells displayed a fixed time delay of ~20 s to that of β cells, β cells activated with a tunable period. Moreover, islet α cell number correlated with oscillation frequency. We built a mathematical model of islet Ca2+ oscillation incorporating paracrine interactions, which quantitatively agreed with the experimental data. Our study highlights the importance of cell-cell interaction in generating stable but tunable islet oscillation patterns. The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells are critical in glucose homeostasis. Here the authors show that the Ca2+ oscillations of α and β cells are phase-locked, and that the oscillation pattern is tuned by paracrine interactions between α and β cells.
Collapse
Affiliation(s)
- Huixia Ren
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yanjun Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Chengsheng Han
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yi Yu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Bowen Shi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaohong Peng
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Tianming Zhang
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Shufang Wu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Sneppen Kim
- Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Liangyi Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Abstract
The pancreatic β-cells are essential for regulating glucose homeostasis through the coordinated release of the insulin hormone. Dysfunction of the highly specialized β-cells results in diabetes mellitus, a growing global health epidemic. In this review, we describe the development and function of β-cells the emerging concept of heterogeneity within insulin-producing cells, and the potential of other cell types to assume β-cell functionality via transdifferentiation. We also discuss emerging routes to design cells with minimal β-cell properties and human stem cell differentiation efforts that carry the promise to restore normoglycemia in patients suffering from diabetes.
Collapse
Affiliation(s)
- Natanya Kerper
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
6
|
Collares-Buzato CB, Carvalho CP. Is type 2 diabetes mellitus another intercellular junction-related disorder? Exp Biol Med (Maywood) 2022; 247:743-755. [PMID: 35466731 DOI: 10.1177/15353702221090464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is nowadays a worldwide epidemic and has become a major challenge for health systems around the world. It is a multifactorial disorder, characterized by a chronic state of hyperglycemia caused by defects in the production as well as in the peripheral action of insulin. This minireview highlights the experimental and clinical evidence that supports the novel idea that intercellular junctions (IJs)-mediated cell-cell contacts play a role in the pathogenesis of T2D. It focuses on IJs repercussion for endocrine pancreas, intestinal barrier, and kidney dysfunctions that contribute to the onset and evolution of this metabolic disorder.
Collapse
Affiliation(s)
- Carla B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil
| | - Carolina Pf Carvalho
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, CEP 11015-020, Brazil
| |
Collapse
|
7
|
|
8
|
Martinez C, Maschio DA, de Fontes CC, Vanzela EC, Benfato ID, Gazarini ML, Carneiro EM, de Oliveira CA, Collares-Buzato CB, de F. Carvalho CP. EARLY DECREASE IN CX36 IS ASSOCIATED WITH INCREASED CELL ADHESION MOLECULES (CAMs) JUNCTIONAL CONTENT IN MOUSE PANCREATIC ISLETS AFTER SHORT-TERM HIGH-FAT DIET FEEDING. Ann Anat 2022; 241:151891. [DOI: 10.1016/j.aanat.2022.151891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
9
|
Hauke S, Rada J, Tihanyi G, Schilling D, Schultz C. ATP is an essential autocrine factor for pancreatic β-cell signaling and insulin secretion. Physiol Rep 2022; 10:e15159. [PMID: 35001557 PMCID: PMC8743876 DOI: 10.14814/phy2.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 06/14/2023] Open
Abstract
ATP has been previously identified as an autocrine signaling factor that is co-released with insulin to modulate and propagate β-cell activity within islets of Langerhans. Here, we show that β-cell activity and insulin secretion essentially rely on the presence of extracellular ATP. For this, we monitored changes of the intracellular Ca2+ concentration ([Ca2+ ]i oscillations) as an immediate read-out for insulin secretion in live cell experiments. Extensive washing of cells or depletion of extracellular ATP levels by recombinant apyrase reduced [Ca2+ ]i oscillations and insulin secretion in pancreatic cell lines and primary β-cells. Following ATP depletion, [Ca2+ ]i oscillations were stimulated by the replenishment of ATP in a concentration-dependent manner. Inhibition of endogenous ecto-ATP nucleotidases increased extracellular ATP levels, along with [Ca2+ ]i oscillations and insulin secretion, indicating that there is a constant supply of ATP to the extracellular space. Our combined results demonstrate that extracellular ATP is essential for β-cell activity. The presented work suggests extracellular ATPases as potential drug targets for the modulation of insulin release. We further found that exogenous fatty acids compensated for depleted extracellular ATP levels by the recovery of [Ca2+ ]i oscillations, indicating that autocrine factors mutually compensate for the loss of others. Thereby, our results contribute to a more detailed and complete understanding of the general role of autocrine signaling factors as a fundamental regulatory mechanism of β-cell activity and insulin secretion.
Collapse
Affiliation(s)
- Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jona Rada
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gergely Tihanyi
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Danny Schilling
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
10
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
11
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
12
|
Laguerre A, Keutler K, Hauke S, Schultz C. Regulation of Calcium Oscillations in β-Cells by Co-activated Cannabinoid Receptors. Cell Chem Biol 2021; 28:88-96.e3. [PMID: 33147441 DOI: 10.1016/j.chembiol.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023]
Abstract
Pharmacological treatment of pancreatic β cells targeting cannabinoid receptors 1 and 2 (CB1 and CB2) has been shown to result in significant effects on insulin release, possibly by modulating intracellular calcium levels ([Ca2+]i). It is unclear how the interplay of CB1 and CB2 affects insulin secretion. Here, we demonstrate by the use of highly specific receptor antagonists and the recently developed photo-releasable endocannabinoid 2-arachidonoylglycerol that both receptors have counteracting effects on cytosolic calcium oscillations. We further show that both receptors are juxtaposed in a way that increases [Ca2+]i oscillations in silent β cells but dampens them in active ones. This study highlights a functional role of CB1 and CB2 acting in concert as a compensator/attenuator switch for regulating β cell excitability.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| | - Kaya Keutler
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
13
|
Corezola do Amaral ME, Kravets V, Dwulet JM, Farnsworth NL, Piscopio R, Schleicher WE, Miranda JG, Benninger RKP. Caloric restriction recovers impaired β-cell-β-cell gap junction coupling, calcium oscillation coordination, and insulin secretion in prediabetic mice. Am J Physiol Endocrinol Metab 2020; 319:E709-E720. [PMID: 32830549 PMCID: PMC7750515 DOI: 10.1152/ajpendo.00132.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
Caloric restriction can decrease the incidence of metabolic diseases, such as obesity and Type 2 diabetes mellitus. The mechanisms underlying the benefits of caloric restriction involved in insulin secretion and glucose homeostasis are not fully understood. Intercellular communication within the islets of Langerhans, mediated by Connexin36 (Cx36) gap junctions, regulates insulin secretion dynamics and glucose homeostasis. The goal of this study was to determine whether caloric restriction can protect against decreases in Cx36 gap junction coupling and altered islet function induced in models of obesity and prediabetes. C57BL6 mice were fed with a high-fat diet (HFD), showing indications of prediabetes after 2 mo, including weight gain, insulin resistance, and elevated fasting glucose and insulin levels. Subsequently, mice were submitted to 1 mo of 40% caloric restriction (2 g/day of HFD). Mice under 40% caloric restriction showed reversal in weight gain and recovered insulin sensitivity, fasting glucose, and insulin levels. In islets of mice fed the HFD, caloric restriction protected against obesity-induced decreases in gap junction coupling and preserved glucose-stimulated calcium signaling, including Ca2+ oscillation coordination and oscillation amplitude. Caloric restriction also promoted a slight increase in glucose metabolism, as measured by increased NAD(P)H autofluorescence, as well as recovering glucose-stimulated insulin secretion. We conclude that declines in Cx36 gap junction coupling that occur in obesity can be completely recovered by caloric restriction and obesity reversal, improving Ca2+ dynamics and insulin secretion regulation. This suggests a critical role for caloric restriction in the context of obesity to prevent islet dysfunction.
Collapse
Affiliation(s)
| | - Vira Kravets
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
| | - JaeAnn M. Dwulet
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
| | - Nikki L. Farnsworth
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
| | - Robert Piscopio
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
| | - Wolfgang E. Schleicher
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
| | - Jose Guadalupe Miranda
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
| | - Richard K. P. Benninger
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Denver, Colorado
| |
Collapse
|
14
|
Scarl RT, Corbin KL, Vann NW, Smith HM, Satin LS, Sherman A, Nunemaker CS. Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium 2019; 83:102081. [PMID: 31563790 DOI: 10.1016/j.ceca.2019.102081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023]
Abstract
Pancreatic islets produce pulses of insulin and other hormones that maintain normal glucose homeostasis. These micro-organs possess exquisite glucose-sensing capabilities, allowing for precise changes in pulsatile insulin secretion in response to small changes in glucose. When communication among these cells is disrupted, precision glucose sensing falters. We measured intracellular calcium patterns in 6-mM-steps between 0 and 16 mM glucose, and also more finely in 2-mM-steps from 8 to 12 mM glucose, to compare glucose sensing systematically among intact islets and dispersed islet cells derived from the same mouse pancreas in vitro. The calcium activity of intact islets was uniformly low (quiescent) below 4 mM glucose and active above 8 mM glucose, whereas dispersed beta-cells displayed a broader activation range (2-to-10 mM). Intact islets exhibited calcium oscillations with 2-to-5-min periods, yet beta-cells exhibited longer 7-10 min periods. In every case, intact islets showed changes in activity with each 6-mM-glucose step, whereas dispersed islet cells displayed a continuum of calcium responses ranging from islet-like patterns to stable oscillations unaffected by changes in glucose concentration. These differences were also observed for 2-mM-glucose steps. Despite the diversity of dispersed beta-cell responses to glucose, the sum of all activity produced a glucose dose-response curve that was surprisingly similar to the curve for intact islets, arguing against the importance of "hub cells" for function. Beta-cells thus retain many of the features of islets, but some are more islet-like than others. Determining the molecular underpinnings of these variations could be valuable for future studies of stem-cell-derived beta-cell therapies.
Collapse
Affiliation(s)
- Rachel T Scarl
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Nicholas W Vann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Hallie M Smith
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Leslie S Satin
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, MD, United States
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States.
| |
Collapse
|
15
|
Loppini A, Chiodo L. Biophysical modeling of β-cells networks: Realistic architectures and heterogeneity effects. Biophys Chem 2019; 254:106247. [PMID: 31472460 DOI: 10.1016/j.bpc.2019.106247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022]
Abstract
The β-cells dynamics is the regulator of insulin secretion in the pancreas, and its investigation is a central aspect in designing effective treatment strategies for diabetes. Despite great efforts, much is still unknown about the complex organization of such endocrine cells and realistic mathematical modeling represents a useful tool to elucidate key aspects of glucose control in humans. In this contribution, we study the human β-cells collective behaviour, by modeling their electric and metabolic coupling in a cluster, of size and architecture similar to human islets of Langerhans. We focus on the effect of coupling on various dynamics regimes observed in the islets, that are spiking and bursting on multiple timescales. In particular, we test the effect of hubs, that are highly glucose-sensitive β-cells, on the overall network dynamics, observing different modulation depending on the timescale of the dynamics. By properly taking into account the role of cells heterogeneity, recently emerged, our model effectively describes the effect of hubs on the synchronization of the islet response and the correlation of β-cells activity.
Collapse
Affiliation(s)
- A Loppini
- Department of Engineering, University Campus Bio-Medico of Rome, Via Á. del Portillo 21, 00128 Rome, Italy.
| | - L Chiodo
- Department of Engineering, University Campus Bio-Medico of Rome, Via Á. del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
16
|
Stožer A, Markovič R, Dolenšek J, Perc M, Marhl M, Slak Rupnik M, Gosak M. Heterogeneity and Delayed Activation as Hallmarks of Self-Organization and Criticality in Excitable Tissue. Front Physiol 2019; 10:869. [PMID: 31333504 PMCID: PMC6624746 DOI: 10.3389/fphys.2019.00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Self-organized critical dynamics is assumed to be an attractive mode of functioning for several real-life systems and entails an emergent activity in which the extent of observables follows a power-law distribution. The hallmarks of criticality have recently been observed in a plethora of biological systems, including beta cell populations within pancreatic islets of Langerhans. In the present study, we systematically explored the mechanisms that drive the critical and supercritical behavior in networks of coupled beta cells under different circumstances by means of experimental and computational approaches. Experimentally, we employed high-speed functional multicellular calcium imaging of fluorescently labeled acute mouse pancreas tissue slices to record calcium signals in a large number of beta cells simultaneously, and with a high spatiotemporal resolution. Our experimental results revealed that the cellular responses to stimulation with glucose are biphasic and glucose-dependent. Under physiological as well as under supraphysiological levels of stimulation, an initial activation phase was followed by a supercritical plateau phase with a high number of global intercellular calcium waves. However, the activation phase displayed fingerprints of critical behavior under lower stimulation levels, with a progressive recruitment of cells and a power-law distribution of calcium wave sizes. On the other hand, the activation phase provoked by pathophysiologically high glucose concentrations, differed considerably and was more rapid, less continuous, and supercritical. To gain a deeper insight into the experimentally observed complex dynamical patterns, we built up a phenomenological model of coupled excitable cells and explored empirically the model’s necessities that ensured a good overlap between computational and experimental results. It turned out that such a good agreement between experimental and computational findings was attained when both heterogeneous and stimulus-dependent time lags, variability in excitability levels, as well as a heterogeneous cell-cell coupling were included into the model. Most importantly, since our phenomenological approach involved only a few parameters, it naturally lends itself not only for determining key mechanisms of self-organized criticality at the tissue level, but also points out various features for comprehensive and realistic modeling of different excitable systems in nature.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia.,Faculty of Energy Technology, University of Maribor, Krško, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia.,Complexity Science Hub Vienna, Vienna, Austria
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Institute of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
17
|
Hauke S, Keutler K, Phapale P, Yushchenko DA, Schultz C. Endogenous Fatty Acids Are Essential Signaling Factors of Pancreatic β-Cells and Insulin Secretion. Diabetes 2018; 67:1986-1998. [PMID: 29748290 DOI: 10.2337/db17-1215] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022]
Abstract
The secretion of insulin from β-cells depends on extracellular factors, in particular glucose and other small molecules, some of which act on G-protein-coupled receptors. Fatty acids (FAs) have been discussed as exogenous secretagogues of insulin for decades, especially after the FA receptor GPR40 (G-protein-coupled receptor 40) was discovered. However, the role of FAs as endogenous signaling factors has not been investigated until now. In the present work, we demonstrate that lowering endogenous FA levels in β-cell medium by stringent washing or by the application of FA-free (FAF) BSA immediately reduced glucose-induced oscillations of cytosolic Ca2+ ([Ca2+]i oscillations) in MIN6 cells and mouse primary β-cells, as well as insulin secretion. Mass spectrometry confirmed BSA-mediated removal of FAs, with palmitic, stearic, oleic, and elaidic acid being the most abundant species. [Ca2+]i oscillations in MIN6 cells recovered when BSA was replaced by buffer or as FA levels in the supernatant were restored. This was achieved by recombinant lipase-mediated FA liberation from membrane lipids, by the addition of FA-preloaded FAF-BSA, or by the photolysis of cell-impermeant caged FAs. Our combined data support the hypothesis of FAs as essential endogenous signaling factors for β-cell activity and insulin secretion.
Collapse
Affiliation(s)
- Sebastian Hauke
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kaya Keutler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR
| | - Prasad Phapale
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, Prague, Czech Republic
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
18
|
Ma Y, Han X, de Castro RB, Zhang P, Zhang K, Hu Z, Qin L. Analysis of the bystander effect in cone photoreceptors via a guided neural network platform. SCIENCE ADVANCES 2018; 4:eaas9274. [PMID: 29750200 PMCID: PMC5942910 DOI: 10.1126/sciadv.aas9274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The mammalian retina system consists of a complicated photoreceptor structure, which exhibits extensive random synaptic connections. To study retinal development and degeneration, various experimental models have been used previously, but these models are often uncontrollable, are difficult to manipulate, and do not provide sufficient similarity or precision. Therefore, the mechanisms in many retinal diseases remain unclear because of the limited capability in observing the progression and molecular driving forces. For example, photoreceptor degeneration can spread to surrounding healthy photoreceptors via a phenomenon known as the bystander effect; however, no in-depth observations can be made to decipher the molecular mechanisms or the pathways that contribute to the spreading. It is then necessary to build dissociated neural networks to investigate the communications with controllability of cells and their treatment. We developed a neural network chip (NN-Chip) to load single neurons into highly ordered microwells connected by microchannels for synapse formation to build the neural network. By observing the distribution of apoptosis spreading from light-induced apoptotic cones to the surrounding cones, we demonstrated convincing evidence of the existence of a cone-to-cone bystander killing effect. Combining the NN-Chip with microinjection technology, we also found that the gap junction protein connexin 36 (Cx36) is critical for apoptosis spreading and the bystander effect in cones. In addition, our unique NN-Chip platform provides a quantitative, high-throughput tool for investigating signaling mechanisms and behaviors in neurons and opens a new avenue for screening potential drug targets to cure retinal diseases.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ricardo Bessa de Castro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
- College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kai Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zhongbo Hu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
19
|
Fukuda Y, Akagi T, Asaoka T, Eguchi H, Sasaki K, Iwagami Y, Yamada D, Noda T, Kawamoto K, Gotoh K, Kobayashi S, Mori M, Doki Y, Akashi M. Layer-by-layer cell coating technique using extracellular matrix facilitates rapid fabrication and function of pancreatic β-cell spheroids. Biomaterials 2018; 160:82-91. [DOI: 10.1016/j.biomaterials.2018.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 12/13/2022]
|
20
|
2- OMe -lysophosphatidylcholine analogues are GPR119 ligands and activate insulin secretion from βTC-3 pancreatic cells: Evaluation of structure-dependent biological activity. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:91-103. [DOI: 10.1016/j.bbalip.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 01/08/2023]
|
21
|
Umrani MR, Joglekar MV, Somerville Glover E, Wong W, Hardikar AA. Connexins and microRNAs: Interlinked players in regulating islet function? Islets 2017; 9:99-108. [PMID: 28686518 PMCID: PMC5624287 DOI: 10.1080/19382014.2017.1331192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/09/2023] Open
Abstract
Pancreatic β-cells are connected to neighboring endocrine cells through the adherin proteins and gap junctions. Connexin 36 (Cx36) is one of the most well-studied and abundantly expressed gap-junction proteins within rodent islets, which is important in coordinated insulin secretion. The expression of connexins is regulated at various levels and by several mechanisms; one of which is via microRNAs. In past 2 decades, microRNAs (miRNAs) have emerged as key molecules in developmental, physiologic and pathological processes. However, very few studies have demonstrated miRNA-mediated regulation of connexins. Even though there are no reports yet on miRNAs and Cx36; we envisage that considering the important role of connexins and microRNAs in insulin secretion, there would be common pathways interlinking these biomolecules. Here, we discuss the current literature on connexins and miRNAs specifically with reference to islet function.
Collapse
Affiliation(s)
- Malati R. Umrani
- National centre for cell science, Ganeshkhind, Pune University Campus, Pune, India
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Mugdha V. Joglekar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Ella Somerville Glover
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Wilson Wong
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Anandwardhan A. Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
22
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
23
|
Heileman KL, Daoud J, Tabrizian M. Elaboration of a finite element model of pancreatic islet dielectric response to gap junction expression and insulin release. Colloids Surf B Biointerfaces 2016; 148:474-480. [PMID: 27665380 DOI: 10.1016/j.colsurfb.2016.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/23/2022]
Abstract
Dielectric spectroscopy could potentially be a powerful tool to monitor isolated human pancreatic islets for applications in diabetes therapy and research. Isolated intact human islets provide the most relevant means to understand the cellular and molecular mechanisms associated with diabetes. The advantages of dielectric spectroscopy for continuous islet monitoring are that it is a non-invasive, inexpensive and real-time technique. We have previously assessed the dielectric response of human islet samples during stimulation and differentiation. Because of the complex geometry of islets, analytical solutions are not sufficiently representative to provide a pertinent model of islet dielectric response. Here, we present a finite element dielectric model of a single intact islet that takes into account the tight packing of islet cells and intercellular junctions. The simulation yielded dielectric spectra characteristic of cell aggregates, similar to those produced with islets. In addition, the simulation showed that both exocytosis, such as what occurs during insulin secretion, and differential gap junction expression have significant effects on islet dielectric response. Since the progression of diabetes has some connections with dysfunctional islet gap junctions and insulin secretion, the ability to monitor these islet features with dielectric spectroscopy would benefit diabetes research.
Collapse
Affiliation(s)
| | | | - Maryam Tabrizian
- Biomedical Engineering Department, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
24
|
Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J, Westermark GT, Presto J, Ericzon BG, Kelly JW. Current and future treatment of amyloid diseases. J Intern Med 2016; 280:177-202. [PMID: 27165517 PMCID: PMC4956553 DOI: 10.1111/joim.12506] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment.
Collapse
Affiliation(s)
- M Ankarcrona
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - C Monteiro
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - C Fearns
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - E T Powers
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - G T Westermark
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J Presto
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B-G Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - J W Kelly
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
25
|
Cigliola V, Populaire C, Pierri CL, Deutsch S, Haefliger JA, Fadista J, Lyssenko V, Groop L, Rueedi R, Thorel F, Herrera PL, Meda P. A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells. PLoS One 2016; 11:e0150880. [PMID: 26959991 PMCID: PMC4784816 DOI: 10.1371/journal.pone.0150880] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/20/2016] [Indexed: 01/16/2023] Open
Abstract
Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36), which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D). GJD2 is also expressed in neurons, which share a number of common features with pancreatic β-cells. Given that a synonymous exonic single nucleotide polymorphism of human Cx36 (SNP rs3743123) associates with altered function of central neurons in a subset of epileptic patients, we investigated whether this SNP also caused alterations of β-cell function. Transfection of rs3743123 cDNA in connexin-lacking HeLa cells resulted in altered formation of gap junction plaques and cell coupling, as compared to those induced by wild type (WT) GJD2 cDNA. Transgenic mice expressing the very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression consistently lead to a post-natal reduction of islet Cx36 levels and β-cell survival, resulting in hyperglycemia in selected lines. These changes were not observed in sex- and age-matched controls expressing WT hCx36. The variant GJD2 only marginally associated to heterogeneous populations of diabetic patients. The data document that a silent polymorphism of GJD2 is associated with altered β-cell function, presumably contributing to T2D pathogenesis.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Celine Populaire
- Centre Hospitalier Régional Universitaire Besançon, Besançon, France
| | - Ciro L. Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Samuel Deutsch
- Joint Genome Institute, Walnut Creek, California, United States of America
| | | | - João Fadista
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Steno Diabetes Center A/S, Gentofte, Denmark
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
26
|
Markwardt ML, Seckinger KM, Rizzo MA. Regulation of Glucokinase by Intracellular Calcium Levels in Pancreatic β Cells. J Biol Chem 2015; 291:3000-9. [PMID: 26698632 DOI: 10.1074/jbc.m115.692160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Glucokinase (GCK) controls the rate of glucose metabolism in pancreatic β cells, and its activity is rate-limiting for insulin secretion. Posttranslational GCK activation can be stimulated through either G protein-coupled receptors or receptor tyrosine kinase signaling pathways, suggesting a common mechanism. Here we show that inhibiting Ca(2+) release from the endoplasmic reticulum (ER) decouples GCK activation from receptor stimulation. Furthermore, pharmacological release of ER Ca(2+) stimulates activation of a GCK optical biosensor and potentiates glucose metabolism, implicating rises in cytoplasmic Ca(2+) as a critical regulatory mechanism. To explore the potential for glucose-stimulated GCK activation, the GCK biosensor was optimized using circularly permuted mCerulean3 proteins. This new sensor sensitively reports activation in response to insulin, glucagon-like peptide 1, and agents that raise cAMP levels. Transient, glucose-stimulated GCK activation was observed in βTC3 and MIN6 cells. An ER-localized channelrhodopsin was used to manipulate the cytoplasmic Ca(2+) concentration in cells expressing the optimized FRET-GCK sensor. This permitted quantification of the relationship between cytoplasmic Ca(2+) concentrations and GCK activation. Half-maximal activation of the FRET-GCK sensor was estimated to occur at ∼400 nm Ca(2+). When expressed in islets, fluctuations in GCK activation were observed in response to glucose, and we estimated that posttranslational activation of GCK enhances glucose metabolism by ∼35%. These results suggest a mechanism for integrative control over GCK activation and, therefore, glucose metabolism and insulin secretion through regulation of cytoplasmic Ca(2+) levels.
Collapse
Affiliation(s)
- Michele L Markwardt
- From the University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kendra M Seckinger
- From the University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mark A Rizzo
- From the University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
27
|
Abstract
The pancreas produces enzymes with a digestive function and hormones with a metabolic function, which are produced by distinct cell types of acini and islets, respectively. Within these units, secretory cells coordinate their functioning by exchanging information via signals that flow in the intercellular spaces and are generated either at distance (several neural and hormonal inputs) or nearby the pancreatic cells themselves (inputs mediated by membrane ionic-specific channels and by ionic- and metabolite-permeant pannexin channels and connexin "hemichannels"). Pancreatic secretory cells further interact via the extracellular matrix of the pancreas (inputs mediated by integrins) and directly with neighboring cells, by mechanisms that do not require extracellular mediators (inputs mediated by gap and tight junction channels). Here, we review the expression and function of the connexins and pannexins that are expressed by the main secretory cells of the exocrine and endocrine pancreatic cells. Available data show that the patterns of expression of these proteins differ in acini and islets, supporting distinct functions in the physiological secretion of pancreatic enzymes and hormones. Circumstantial evidence further suggests that alterations in the signaling provided by these proteins are involved in pancreatic diseases.
Collapse
|
28
|
Pizarro-Delgado J, Deeney JT, Martín-del-Río R, Corkey BE, Tamarit-Rodriguez J. KCl -Permeabilized Pancreatic Islets: An Experimental Model to Explore the Messenger Role of ATP in the Mechanism of Insulin Secretion. PLoS One 2015; 10:e0140096. [PMID: 26444014 PMCID: PMC4596849 DOI: 10.1371/journal.pone.0140096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 09/22/2015] [Indexed: 11/18/2022] Open
Abstract
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS-1 cells. Taking advantage of hemicannels'opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.
Collapse
Affiliation(s)
| | - Jude T. Deeney
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Barbara E. Corkey
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | |
Collapse
|
29
|
Ionic imbalance, in addition to molecular crowding, abates cytoskeletal dynamics and vesicle motility during hypertonic stress. Proc Natl Acad Sci U S A 2015; 112:E3104-13. [PMID: 26045497 DOI: 10.1073/pnas.1421290112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell volume homeostasis is vital for the maintenance of optimal protein density and cellular function. Numerous mammalian cell types are routinely exposed to acute hypertonic challenge and shrink. Molecular crowding modifies biochemical reaction rates and decreases macromolecule diffusion. Cell volume is restored rapidly by ion influx but at the expense of elevated intracellular sodium and chloride levels that persist long after challenge. Although recent studies have highlighted the role of molecular crowding on the effects of hypertonicity, the effects of ionic imbalance on cellular trafficking dynamics in living cells are largely unexplored. By tracking distinct fluorescently labeled endosome/vesicle populations by live-cell imaging, we show that vesicle motility is reduced dramatically in a variety of cell types at the onset of hypertonic challenge. Live-cell imaging of actin and tubulin revealed similar arrested microfilament motility upon challenge. Vesicle motility recovered long after cell volume, a process that required functional regulatory volume increase and was accelerated by a return of extracellular osmolality to isosmotic levels. This delay suggests that, although volume-induced molecular crowding contributes to trafficking defects, it alone cannot explain the observed effects. Using fluorescent indicators and FRET-based probes, we found that intracellular ATP abundance and mitochondrial potential were reduced by hypertonicity and recovered after longer periods of time. Similar to the effects of osmotic challenge, isovolumetric elevation of intracellular chloride concentration by ionophores transiently decreased ATP production by mitochondria and abated microfilament and vesicle motility. These data illustrate how perturbed ionic balance, in addition to molecular crowding, affects membrane trafficking.
Collapse
|
30
|
Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells. Pflugers Arch 2015; 467:2219-28. [DOI: 10.1007/s00424-014-1681-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
|
31
|
Hraha TH, Westacott MJ, Pozzoli M, Notary AM, McClatchey PM, Benninger RKP. Phase transitions in the multi-cellular regulatory behavior of pancreatic islet excitability. PLoS Comput Biol 2014; 10:e1003819. [PMID: 25188228 PMCID: PMC4154652 DOI: 10.1371/journal.pcbi.1003819] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/16/2014] [Indexed: 12/23/2022] Open
Abstract
The pancreatic islets of Langerhans are multicellular micro-organs integral to maintaining glucose homeostasis through secretion of the hormone insulin. β-cells within the islet exist as a highly coupled electrical network which coordinates electrical activity and insulin release at high glucose, but leads to global suppression at basal glucose. Despite its importance, how network dynamics generate this emergent binary on/off behavior remains to be elucidated. Previous work has suggested that a small threshold of quiescent cells is able to suppress the entire network. By modeling the islet as a Boolean network, we predicted a phase-transition between globally active and inactive states would emerge near this threshold number of cells, indicative of critical behavior. This was tested using islets with an inducible-expression mutation which renders defined numbers of cells electrically inactive, together with pharmacological modulation of electrical activity. This was combined with real-time imaging of intracellular free-calcium activity [Ca2+]i and measurement of physiological parameters in mice. As the number of inexcitable cells was increased beyond ∼15%, a phase-transition in islet activity occurred, switching from globally active wild-type behavior to global quiescence. This phase-transition was also seen in insulin secretion and blood glucose, indicating physiological impact. This behavior was reproduced in a multicellular dynamical model suggesting critical behavior in the islet may obey general properties of coupled heterogeneous networks. This study represents the first detailed explanation for how the islet facilitates inhibitory activity in spite of a heterogeneous cell population, as well as the role this plays in diabetes and its reversal. We further explain how islets utilize this critical behavior to leverage cellular heterogeneity and coordinate a robust insulin response with high dynamic range. These findings also give new insight into emergent multicellular dynamics in general which are applicable to many coupled physiological systems, specifically where inhibitory dynamics result from coupled networks. As science has successfully broken down the elements of many biological systems, the network dynamics of large-scale cellular interactions has emerged as a new frontier. One way to understand how dynamical elements within large networks behave collectively is via mathematical modeling. Diabetes, which is of increasing international concern, is commonly caused by a deterioration of these complex dynamics in a highly coupled micro-organ called the islet of Langerhans. Therefore, if we are to understand diabetes and how to treat it, we must understand how coupling affects ensemble dynamics. While the role of network connectivity in islet excitation under stimulatory conditions has been well studied, how connectivity also suppresses activity under fasting conditions remains to be elucidated. Here we use two network models of islet connectivity to investigate this process. Using genetically altered islets and pharmacological treatments, we show how suppression of islet activity is solely dependent on a threshold number of inactive cells. We found that the islet exhibits critical behavior in the threshold region, rapidly transitioning from global activity to inactivity. We therefore propose how the islet and multicellular systems in general can generate a robust stimulated response from a heterogeneous cell population.
Collapse
Affiliation(s)
- Thomas H. Hraha
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Matthew J. Westacott
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Marina Pozzoli
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aleena M. Notary
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - P. Mason McClatchey
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Richard K. P. Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nunemaker CS, Satin LS. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 2014; 47:49-63. [PMID: 24610206 PMCID: PMC4382805 DOI: 10.1007/s12020-014-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Collapse
Affiliation(s)
- Craig S. Nunemaker
- Division of Endocrinology and Metabolism, Department of, Medicine, University of Virginia, P.O. Box 801413, Charlottesville, VA 22901, USA,
| | - Leslie S. Satin
- Pharmacology Department, University of Michigan Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
- Brehm Diabetes Research Center, University of Michigan, Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
| |
Collapse
|
33
|
Benninger RKP, Piston DW. Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab 2014; 25:399-406. [PMID: 24679927 PMCID: PMC4112137 DOI: 10.1016/j.tem.2014.02.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022]
Abstract
Coordinated pulses of electrical activity and insulin secretion are a hallmark of the islet of Langerhans. These coordinated behaviors are lost when β cells are dissociated, which also leads to increased insulin secretion at low glucose levels. Islets without gap junctions exhibit asynchronous electrical activity similar to dispersed cells, but their secretion at low glucose levels is still clamped off, putatively by a juxtacrine mechanism. Mice lacking β cell gap junctions have near-normal average insulin levels, but are glucose intolerant due to reduced first-phase and pulsatile insulin secretion, illustrating the importance of temporal dynamics. Here, we review the quantitative data on islet synchronization and the current mathematical models that have been developed to explain these behaviors and generate greater understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering and Barbara Davis Center, University of Colorado Anschutz Medical campus, Aurora, CO, USA.
| | - David W Piston
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
34
|
Pizarro-Delgado J, Fasciani I, Temperan A, Romero M, González-Nieto D, Alonso-Magdalena P, Nualart-Marti A, Estil'les E, Paul DL, Martín-del-Río R, Montanya E, Solsona C, Nadal A, Barrio LC, Tamarit-Rodríguez J. Inhibition of connexin 36 hemichannels by glucose contributes to the stimulation of insulin secretion. Am J Physiol Endocrinol Metab 2014; 306:E1354-66. [PMID: 24735890 DOI: 10.1152/ajpendo.00358.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The existence of functional connexin36 (Cx36) hemichannels in β-cells was investigated in pancreatic islets of rat and wild-type (Cx36(+/+)), monoallelic (Cx36(+/-)), and biallelic (Cx36(-/-)) knockout mice. Hemichannel opening by KCl depolarization was studied by measuring ATP release and changes of intracellular ATP (ADP). Cx36(+/+) islets lost ATP after depolarization with 70 mM KCl at 5 mM glucose; ATP loss was prevented by 8 and 20 mM glucose or 50 μM mefloquine (connexin inhibitor). ATP content was higher in Cx36(-/-) than Cx36(+/+) islets and was not decreased by KCl depolarization; Cx36(+/-) islets showed values between that of control and homozygous islets. Five minimolar extracellular ATP increased ATP content and ATP/ADP ratio and induced a biphasic insulin secretion in depolarized Cx36(+/+) and Cx36(+/-) but not Cx36(-/-) islets. Cx36 hemichannels expressed in oocytes opened upon depolarization of membrane potential, and their activation was inhibited by mefloquine and glucose (IC₅₀ ∼8 mM). It is postulated that glucose-induced inhibition of Cx36 hemichannels in islet β-cells might avoid depolarization-induced ATP loss, allowing an optimum increase of the ATP/ADP ratio by sugar metabolism and a biphasic stimulation of insulin secretion. Gradual suppression of glucose-induced insulin release in Cx36(+/-) and Cx36(-/-) islets confirms that Cx36 gap junction channels are necessary for a full secretory stimulation and might account for the glucose intolerance observed in mice with defective Cx36 expression. Mefloquine targeting of Cx36 on both gap junctions and hemichannels also suppresses glucose-stimulated secretion. By contrast, glucose stimulation of insulin secretion requires Cx36 hemichannels' closure but keeping gap junction channels opened.
Collapse
Affiliation(s)
| | - Ilaria Fasciani
- Research Department, "Ramón y Cajal" Hospital-IRYCIS, Madrid, Spain
| | - Ana Temperan
- Research Department, "Ramón y Cajal" Hospital-IRYCIS, Madrid, Spain
| | - María Romero
- Research Department, "Ramón y Cajal" Hospital-IRYCIS, Madrid, Spain
| | | | - Paloma Alonso-Magdalena
- Institute of Bioengineering and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Miguel Hernández University, Elche, Spain
| | - Anna Nualart-Marti
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine - Campus Bellvitge, University of Barcelona, Hospitalet del Llobregat, Barcelona, Spain; IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Hospitalet del Llobregat, Barcelona, Spain
| | - Elisabet Estil'les
- CIBERDEM, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, Barcelona, Spain; and
| | - David L Paul
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | | | - Eduard Montanya
- CIBERDEM, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, Barcelona, Spain; and Endocrine Unit, Hospital Universitari Bellvitge-IDIBELL, Barcelona, Spain
| | - Carles Solsona
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine - Campus Bellvitge, University of Barcelona, Hospitalet del Llobregat, Barcelona, Spain; IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Hospitalet del Llobregat, Barcelona, Spain
| | - Angel Nadal
- Institute of Bioengineering and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Miguel Hernández University, Elche, Spain
| | | | - J Tamarit-Rodríguez
- Biochemistry Department, Medical School, Complutense University, Madrid, Spain;
| |
Collapse
|
35
|
Higgins AZ, Karlsson JOM. Effects of intercellular junction protein expression on intracellular ice formation in mouse insulinoma cells. Biophys J 2014; 105:2006-15. [PMID: 24209845 DOI: 10.1016/j.bpj.2013.09.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022] Open
Abstract
The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >-5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>-15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell strains lacking the gap junction protein connexin-36 exhibited nonnegligible ice propagation rates.
Collapse
Affiliation(s)
- Adam Z Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon
| | | |
Collapse
|
36
|
Farnsworth NL, Benninger RKP. New insights into the role of connexins in pancreatic islet function and diabetes. FEBS Lett 2014; 588:1278-87. [PMID: 24583073 DOI: 10.1016/j.febslet.2014.02.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022]
Abstract
Multi-cellular systems require complex signaling mechanisms for proper tissue function, to mediate signaling between cells in close proximity and at distances. This holds true for the islets of Langerhans, which are multicellular micro-organs located in the pancreas responsible for glycemic control, through secretion of insulin and other hormones. Coupling of electrical and metabolic signaling between islet β-cells is required for proper insulin secretion and effective glycemic control. β-cell specific coupling is established through gap junctions composed of connexin36, which results in coordinated insulin release across the islet. Islet connexins have been implicated in both Type-1 and Type-2 diabetes; however a clear link remains to be determined. The goal of this review is to discuss recent discoveries regarding the role of connexins in regulating insulin secretion, the regulation of connexins within the islet, and recent studies which support a role for connexins in diabetes. Further studies which investigate the regulation of connexins in the islet and their role in diabetes may lead to novel diabetes therapies which regulate islet function and β-cell survival through modulation of gap junction coupling.
Collapse
Affiliation(s)
- Nikki L Farnsworth
- Barbara Davis center for childhood diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Richard K P Benninger
- Barbara Davis center for childhood diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
37
|
Short KW, Head WS, Piston DW. Connexin 36 mediates blood cell flow in mouse pancreatic islets. Am J Physiol Endocrinol Metab 2014; 306:E324-31. [PMID: 24326425 PMCID: PMC3920012 DOI: 10.1152/ajpendo.00523.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/06/2013] [Indexed: 01/12/2023]
Abstract
The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with synchronous pulses of electrical activity and insulin secretion across all β-cells in the islet. Connexin 36 (Cx36) gap junctions between islet β-cells mediate this synchronization, which is lost in Cx36 knockout mice (Cx36(-/-)). This leads to glucose intolerance in these mice, despite normal plasma insulin levels and insulin sensitivity. Thus, we sought to investigate whether the glucose-dependent changes in intraislet blood cell flow are also dependent on coordinated pulsatile electrical activity. We visualized and quantified blood cell flow using high-speed in vivo fluorescence imaging of labeled red blood cells and plasma. With the use of a live animal glucose clamp, blood cell flow was measured during either hypoglycemia (∼50 mg/dl) or hyperglycemia (∼300 mg/dl). In contrast to the large glucose-dependent islet blood velocity changes observed in wild-type mice, only minimal differences are observed in both Cx36(+/-) and Cx36(-/-) mice. This observation supports a novel model where intraislet blood cell flow is regulated by the coordinated electrical activity in the islet β-cells. Because Cx36 expression and function is reduced in type 2 diabetes, the resulting defect in intraislet blood cell flow regulation may also play a significant role in diabetic pathology.
Collapse
Affiliation(s)
- Kurt W Short
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | | | |
Collapse
|
38
|
Diaferia GR, Cirulli V, Biunno I. SEL1L regulates adhesion, proliferation and secretion of insulin by affecting integrin signaling. PLoS One 2013; 8:e79458. [PMID: 24324549 PMCID: PMC3854660 DOI: 10.1371/journal.pone.0079458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/28/2013] [Indexed: 12/16/2022] Open
Abstract
SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin signalling to create a favourable micro-environment for ß-cell development and function.
Collapse
Affiliation(s)
| | - Vincenzo Cirulli
- Department of Medicine, University of Washington, Institute for Stem Cells and Regenerative Medicine, Seattle, Washington, United States of America
- * E-mail: (VC); (IB)
| | - Ida Biunno
- Stem Cell Science Unit, IRCCS Multimedica, Milan, Italy
- Institute of Genetic and Biomedical Research (IRGB), National Research Council, Milan, Italy
- * E-mail: (VC); (IB)
| |
Collapse
|
39
|
Higgins AZ, Karlsson JOM. Effect of intercellular junction protein expression on water transport during freezing of MIN6 cells. Cryobiology 2013; 67:248-50. [PMID: 23933158 DOI: 10.1016/j.cryobiol.2013.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/28/2013] [Indexed: 11/30/2022]
Abstract
A mouse insulinoma (MIN6) strain in which connexin expression has been inhibited by antisense technology holds promise as an experimental model system for investigating the role of gap junctions in intercellular ice propagation. However, to properly interpret measurements of intracellular ice formation kinetics, the effects of cell dehydration on cytoplasmic supercooling must be determined. Thus, the cell membrane water permeability in monolayer cultures of the antisense-transfected MIN6 strain was measured using a fluorescence quenching method. By repeating the experiments at 4°C, 12°C, 21°C, and 37°C, the activation energy for water transport was determined to be E(a) = 51 ± 3 k J/mol. Although differences between membrane permeability measurements in theantisense and wild-type strains were not statistically significant, simulation of water transport during rapid freezing (130°C/min) predicted that intracellular supercooling in the genetically modified MIN6 strain may become significantly larger than the supercooling in wild-type cells at temperatures below -15°C.
Collapse
Affiliation(s)
- Adam Z Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331-2702, USA
| | | |
Collapse
|
40
|
Penko D, Rojas-Canales D, Mohanasundaram D, Peiris HS, Sun WY, Drogemuller CJ, Keating DJ, Coates PTH, Bonder CS, Jessup CF. Endothelial progenitor cells enhance islet engraftment, influence β-cell function, and modulate islet connexin 36 expression. Cell Transplant 2013; 24:37-48. [PMID: 24069942 DOI: 10.3727/096368913x673423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic β-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the β-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study.
Collapse
Affiliation(s)
- Daniella Penko
- School of Medicine, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Goel P, Mehta A. Learning theories reveal loss of pancreatic electrical connectivity in diabetes as an adaptive response. PLoS One 2013; 8:e70366. [PMID: 23936417 PMCID: PMC3731314 DOI: 10.1371/journal.pone.0070366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/17/2013] [Indexed: 01/08/2023] Open
Abstract
Cells of almost all solid tissues are connected with gap junctions which permit the direct transfer of ions and small molecules, integral to regulating coordinated function in the tissue. The pancreatic islets of Langerhans are responsible for secreting the hormone insulin in response to glucose stimulation. Gap junctions are the only electrical contacts between the beta-cells in the tissue of these excitable islets. It is generally believed that they are responsible for synchrony of the membrane voltage oscillations among beta-cells, and thereby pulsatility of insulin secretion. Most attempts to understand connectivity in islets are often interpreted, bottom-up, in terms of measurements of gap junctional conductance. This does not, however, explain systematic changes, such as a diminished junctional conductance in type 2 diabetes. We attempt to address this deficit via the model presented here, which is a learning theory of gap junctional adaptation derived with analogy to neural systems. Here, gap junctions are modelled as bonds in a beta-cell network, that are altered according to homeostatic rules of plasticity. Our analysis reveals that it is nearly impossible to view gap junctions as homogeneous across a tissue. A modified view that accommodates heterogeneity of junction strengths in the islet can explain why, for example, a loss of gap junction conductance in diabetes is necessary for an increase in plasma insulin levels following hyperglycemia.
Collapse
Affiliation(s)
- Pranay Goel
- Mathematics and Biology, Indian Insitute of Science Education and Research Pune, Pune, Maharashtra, India.
| | | |
Collapse
|
42
|
Lee YS, Morinaga H, Kim JJ, Lagakos W, Taylor S, Keshwani M, Perkins G, Dong H, Kayali AG, Sweet IR, Olefsky J. The fractalkine/CX3CR1 system regulates β cell function and insulin secretion. Cell 2013; 153:413-25. [PMID: 23582329 DOI: 10.1016/j.cell.2013.03.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/31/2012] [Accepted: 02/25/2013] [Indexed: 02/06/2023]
Abstract
Here, we demonstrate that the fractalkine (FKN)/CX3CR1 system represents a regulatory mechanism for pancreatic islet β cell function and insulin secretion. CX3CR1 knockout (KO) mice exhibited a marked defect in glucose and GLP1-stimulated insulin secretion, and this defect was also observed in vitro in isolated islets from CX3CR1 KO mice. In vivo administration of FKN improved glucose tolerance with an increase in insulin secretion. In vitro treatment of islets with FKN increased intracellular Ca(2+) and potentiated insulin secretion in both mouse and human islets. The KO islets exhibited reduced expression of a set of genes necessary for the fully functional, differentiated β cell state, whereas treatment of wild-type (WT) islets with FKN led to increased expression of these genes. Lastly, expression of FKN in islets was decreased by aging and high-fat diet/obesity, suggesting that decreased FKN/CX3CR1 signaling could be a mechanism underlying β cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cigliola V, Chellakudam V, Arabieter W, Meda P. Connexins and β-cell functions. Diabetes Res Clin Pract 2013; 99:250-9. [PMID: 23176806 DOI: 10.1016/j.diabres.2012.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 11/20/2022]
Abstract
Proper functioning of pancreatic islets requires that numerous β-cells are properly coordinated. With evolution, many mechanisms have converged, which now allow individual β-cells to sense the state of activity of their neighbors as well as the changes taking place in the extracellular medium, and to regulate accordingly their own function. Here, we review one such mechanism for intercellular coordination, which depends on connexins. These integral membrane proteins accumulate at sites of close apposition between adjacent islet cell membranes, referred to as gap junctions. Recent evidence demonstrates that connexin-dependent signaling is relevant for the in vivo control of insulin biosynthesis and release, as well as for the survival of β-cells under stressing conditions. The data suggest that alterations of this signaling may be implicated in the β-cell alterations which characterize most forms of diabetes, raising the tantalizing possibility that targeting of the direct intercellular communications β-cells establish within each pancreatic islet may provide a novel, therapeutically useful strategy.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, 1 rue Michel-Servet, Geneva, Switzerland
| | | | | | | |
Collapse
|
44
|
Meda P. Protein-mediated interactions of pancreatic islet cells. SCIENTIFICA 2013; 2013:621249. [PMID: 24278783 PMCID: PMC3820362 DOI: 10.1155/2013/621249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 05/29/2023]
Abstract
The islets of Langerhans collectively form the endocrine pancreas, the organ that is soley responsible for insulin secretion in mammals, and which plays a prominent role in the control of circulating glucose and metabolism. Normal function of these islets implies the coordination of different types of endocrine cells, noticeably of the beta cells which produce insulin. Given that an appropriate secretion of this hormone is vital to the organism, a number of mechanisms have been selected during evolution, which now converge to coordinate beta cell functions. Among these, several mechanisms depend on different families of integral membrane proteins, which ensure direct (cadherins, N-CAM, occludin, and claudins) and paracrine communications (pannexins) between beta cells, and between these cells and the other islet cell types. Also, other proteins (integrins) provide communication of the different islet cell types with the materials that form the islet basal laminae and extracellular matrix. Here, we review what is known about these proteins and their signaling in pancreatic β -cells, with particular emphasis on the signaling provided by Cx36, given that this is the integral membrane protein involved in cell-to-cell communication, which has so far been mostly investigated for effects on beta cell functions.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
45
|
Beaudry JL, Riddell MC. Effects of glucocorticoids and exercise on pancreatic β-cell function and diabetes development. Diabetes Metab Res Rev 2012; 28:560-73. [PMID: 22556149 DOI: 10.1002/dmrr.2310] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peripheral insulin resistance and pancreatic β-cell dysfunction are hallmark characteristics of type 2 diabetes mellitus (T2DM). Several contributing factors have been proposed to promote these two defects in individuals with T2DM, including physical inactivity and chronic exposure to various psychosocial factors that increase the body's exposure to glucocorticoids, the main stress hormones in humans. Initially, β-cells have been shown to adapt to these stimuli, a phenomenon known as β-cell 'compensation'. However, long-term exposure to these physiologic and psychological stressors induces islet failure. Interestingly, glucocorticoids stimulate β-cell mass growth in parallel with promoting severe insulin resistance, the former being an important adaptive response to the latter. The direct relationship between glucocorticoids and β-cell dysfunction remains a controversial area of research. Elevations in circulating and/or tissue specific glucocorticoids have been associated with the development of obesity and T2DM in human and rodent models; however, the progression from insulin resistance to overt T2DM is highly disputed with respect to the in vivo and in vitro effects of glucocorticoids. Paradoxically, both intermittent physical stress and regular exercise alleviate insulin resistance and help to preserve β-cell mass, potentially by lowering glucocorticoid levels. Recent studies have begun to examine the mechanisms of intermittent and chronic glucocorticoid exposure and regular exercise in altering β-cell function. This review highlights recent discoveries on the physiological regulation of β-cells and diabetes development in conditions of elevated glucocorticoids, regular exercise and intermittent stress.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- School of Kinesiology and Health Science, York University, North York, Ontario, Canada
| | | |
Collapse
|
46
|
Bavamian S, Pontes H, Cancela J, Charollais A, Startchik S, Van de Ville D, Meda P. The intercellular synchronization of Ca2+ oscillations evaluates Cx36-dependent coupling. PLoS One 2012; 7:e41535. [PMID: 22848521 PMCID: PMC3405138 DOI: 10.1371/journal.pone.0041535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022] Open
Abstract
Connexin36 (Cx36) plays an important role in insulin secretion by controlling the intercellular synchronization of Ca(2+) transients induced during stimulation. The lack of drugs acting on Cx36 channels is a major limitation in further unraveling the molecular mechanism underlying this effect. To screen for such drugs, we have developed an assay allowing for a semi-automatic, fluorimetric quantification of Ca(2+) transients in large populations of MIN6 cells. Here, we show that (1) compared to control cells, MIN6 cells with reduced Cx36 expression or function showed decreased synchrony of glucose-induced Ca(2+) oscillations; (2) glibenclamide, a sulphonylurea which promotes Cx36 junctions and coupling, increased the number of synchronous MIN6 cells, whereas quinine, an antimalarial drug which inhibits Cx36-dependent coupling, decreased this proportion; (3) several drugs were identified that altered the intercellular Ca(2+) synchronization, cell coupling and distribution of Cx36; (4) some of them also affected insulin content. The data indicate that the intercellular synchronization of Ca(2+) oscillations provides a reliable and non-invasive measurement of Cx36-dependent coupling, which is useful to identify novel drugs affecting the function of β-cells, neurons, and neuron-related cells that express Cx36.
Collapse
Affiliation(s)
- Sabine Bavamian
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen XY, Gu XT, Saiyin H, Wan B, Zhang YJ, Li J, Wang YL, Gao R, Wang YF, Dong WP, Najjar SM, Zhang CY, Ding HF, Liu JO, Yu L. Brain-selective kinase 2 (BRSK2) phosphorylation on PCTAIRE1 negatively regulates glucose-stimulated insulin secretion in pancreatic β-cells. J Biol Chem 2012; 287:30368-75. [PMID: 22798068 DOI: 10.1074/jbc.m112.375618] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain-selective kinase 2 (BRSK2) has been shown to play an essential role in neuronal polarization. In the present study, we show that BRSK2 is also abundantly expressed in pancreatic islets and MIN6 β-cell line. Yeast two-hybrid screening, GST fusion protein pull-down, and co-immunoprecipitation assays reveal that BRSK2 interacts with CDK-related protein kinase PCTAIRE1, a kinase involved in neurite outgrowth and neurotransmitter release. In MIN6 cells, BRSK2 co-localizes with PCTAIRE1 in the cytoplasm and phosphorylates one of its serine residues, Ser-12. Phosphorylation of PCTAIRE1 by BRSK2 reduces glucose-stimulated insulin secretion (GSIS) in MIN6 cells. Conversely, knockdown of BRSK2 by siRNA increases serum insulin levels in mice. Our results reveal a novel function of BRSK2 in the regulation of GSIS in β-cells via a PCTAIRE1-dependent mechanism and suggest that BRSK2 is an attractive target for developing novel diabetic drugs.
Collapse
Affiliation(s)
- Xin-Ya Chen
- State Key Laboratory of Genetic Engineering, School of Life Science, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
49
|
Carvalho CPF, Oliveira RB, Britan A, Santos-Silva JC, Boschero AC, Meda P, Collares-Buzato CB. Impaired β-cell-β-cell coupling mediated by Cx36 gap junctions in prediabetic mice. Am J Physiol Endocrinol Metab 2012; 303:E144-51. [PMID: 22569071 DOI: 10.1152/ajpendo.00489.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gap junctional intercellular communication between β-cells is crucial for proper insulin biosynthesis and secretion. The aim of this work was to investigate the expression of connexin (Cx)36 at the protein level as well as the function and structure of gap junctions (GJ) made by this protein in the endocrine pancreas of prediabetic mice. C57BL/6 mice were fed a high-fat (HF) or regular chow diet for 60 days. HF-fed mice became obese and prediabetic, as shown by peripheral insulin resistance, moderate hyperglycemia, hyperinsulinemia, and compensatory increase in endocrine pancreas mass. Compared with control mice, prediabetic animals showed a significant decrease in insulin-secretory response to glucose and displayed a significant reduction in islet Cx36 protein. Ultrastructural analysis further showed that prediabetic mice had GJ plaques about one-half the size of those of the control group. Microinjection of isolated pancreatic islets with ethidium bromide revealed that prediabetic mice featured a β-cell-β-cell coupling 30% lower than that of control animals. We conclude that β-cell-β-cell coupling mediated by Cx36 made-channels is impaired in prediabetic mice, suggesting a role of Cx36-dependent cell-to-cell communication in the pathogenesis of the early β-cell dysfunctions that lead to type 2-diabetes.
Collapse
Affiliation(s)
- C P F Carvalho
- Department of Histology and Embryology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Matsumoto T, Sakurai K, Tanaka A, Ishibashi T, Tachibana K, Ishikawa K, Yokote K. The anti-ulcer agent, irsogladine, increases insulin secretion by MIN6 cells. Eur J Pharmacol 2012; 685:213-7. [PMID: 22542662 DOI: 10.1016/j.ejphar.2012.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/28/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Insulin secretion by pancreatic islets is a multicellular process. In addition to other essential systems, gap junctions are an important component of cell-to-cell communication in pancreatic islets. It is well known that dysfunction of gap junctions causes inappropriate insulin secretion. The anti-ulcer agent, irsogladine, increases gap junctions in some cell types. To examine the effect of irsogladine on insulin secretion, we investigated insulin secretion by MIN6 cells treated with or without irsogladine. The expression of connexin 36 proteins and intracellular cAMP levels were also determined using immunoblotting and ELISA assays, respectively. Irsogladine had no effect on insulin secretion under 5.6mM glucose conditions. However, under 16.7 mM glucose conditions, irsogladine (1.0 × 10(-5)M) induced a 1.7 ± 0.20 fold increase in insulin secretion compared to the control (P<0.05). This effect of irsogladine on insulin secretion was inhibited by the addition of the gap junction inhibitor 18-beta-glycyrrhetinic acid. Irsogladine treatment increased the protein level of connexin 36 in the plasma membrane fraction. The intracellular cAMP level in MIN6 cells was significantly, but mildly, increased by irsogladine treatment. Furthermore, Rp-cAMP and H89 inhibited the effects of irsogladine on insulin secretion under high glucose conditions. Irsogladine increases insulin secretion under high glucose conditions. The up-regulation of gap junction channels and the increased level of intracellular cAMP induced by irsogladine treatment suggest that these phenomena are involved in irsogladine-induced increased insulin secretion.
Collapse
Affiliation(s)
- Tsuyoshi Matsumoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | |
Collapse
|