1
|
Mai X, Liu Y, Fan J, Xiao L, Liao M, Huang Z, Chen Z, Huang S, Sun R, Jiang X, Huang L, Sun J, Xie L, Chen H. Iron supplementation and iron accumulation promote adipocyte thermogenesis through PGC1α-ATGL-mediated lipolysis. J Biol Chem 2024; 300:107690. [PMID: 39159807 PMCID: PMC11420453 DOI: 10.1016/j.jbc.2024.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Iron homeostasis is essential for maintaining metabolic health and iron disorder has been linked to chronic metabolic diseases. Increasing thermogenic capacity in adipose tissue has been considered as a potential approach to regulate energy homeostasis. Both mitochondrial biogenesis and mitochondrial function are iron-dependent and essential for adipocyte thermogenic capacity, but the underlying relationships between iron accumulation and adipose thermogenesis is unclear. Firstly, we confirmed that iron homeostasis and the iron regulatory markers (e.g., Tfr1 and Hfe) are involved in cold-induced thermogenesis in subcutaneous adipose tissues using RNA-seq and bioinformatic analysis. Secondly, an Hfe (Hfe-/-)-deficient mouse model, in which tissues become overloaded with iron, was employed. We found iron accumulation caused by Hfe deficiency enhanced mitochondrial respiratory chain expression in subcutaneous white adipose in vivo and resulted in enhanced tissue thermogenesis with upregulation of PGC-1α and adipose triglyceride lipase, mitochondrial biogenesis and lipolysis. To investigate the thermogenic capacity in vitro, stromal vascular fraction from adipose tissues was isolated, followed with adipogenic differentiation. Primary adipocyte from Hfe-/- mice exhibited higher cellular oxygen consumption, associated with enhanced expression of mitochondrial oxidative respiratory chain protein, while primary adipocytes or stromal vascular fractions from WT mice supplemented with iron citrate) exhibited similar effect in thermogenic capacity. Taken together, these findings indicate iron supplementation and iron accumulation (Hfe deficiency) can regulate adipocyte thermogenic capacity, suggesting a potential role for iron homeostasis in adipose tissues.
Collapse
Affiliation(s)
- Xudong Mai
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yifan Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jigang Fan
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Miaomiao Liao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhipeng Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zijian Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shaojun Huang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Sun
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowan Jiang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liujing Huang
- Medical Affairs Department, Guangzhou Betrue Technology Co, Ltd, Guangzhou, China
| | - Jia Sun
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liwei Xie
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; College of Life and Health Sciences, Guangdong Industry Polytechnic, Guangzhou, Guangdong, China.
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Li MK, Xing C, Ma LQ. Integrative bioinformatics analysis to screen key genes and signalling pathways related to ferroptosis in obesity. Adipocyte 2023; 12:2264442. [PMID: 37878496 PMCID: PMC10601513 DOI: 10.1080/21623945.2023.2264442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/18/2023] [Indexed: 10/27/2023] Open
Abstract
Ferroptosis is closely associated with the development of disease in the body. However, there are few studies on ferroptosis-related genes (FRGs) in obesity. Therefore, key genes and signalling pathways related to ferroptosis in obesity were screened. Briefly, the RNA sequencing data of obesity and the non-obesity human samples and 259 FRGs were downloaded from GEO database and FerrDb database, respectively. The obesity-related module genes were firstly screened by weighted gene co-expression network analysis (WGCNA) and crossed with differentially expressed genes (DEGs) of obesity/normal samples and FRGs to obtain obesity-ferroptosis related (OFR) DEGs. Then, key genes were screened by PPI network. Next, the correlation of key genes and differential immune cells between obesity and normal samples were further explored by immune infiltration analysis. Finally, microRNA (miRNA)-messenger RNA (mRNA), transcription factor (TF)-mRNA networks and drug-gene interaction networks were constructed. As a result, 17 OFR DEGs were obtained, which mainly participated in processes such as lipid metabolism or adipocyte differentiation. The 4 key genes, STAT3, IL-6, PTGS2, and VEGFA, constituted the network. M2 macrophages, T cells CD8, mast cells activated, and T cells CD4 memory resting had significant differences between obesity and normal samples. Moreover, 51 miRNAs and 164 drugs were predicted for 4 key genes. All in all, this study has screened 4 FRGs, including IL-6, VEGFA, STAT3, and PTGS2, in obesity patients.
Collapse
Affiliation(s)
- Ming-Ke Li
- Digestive Department, The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chang Xing
- Pediatric Hematology and Digestive Department, Qu Jing Maternal and Child Health-care Hospital, Qujing, China
| | - Lan-Qing Ma
- Digestive Department, The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond) 2023; 47:554-563. [PMID: 37029208 PMCID: PMC10299911 DOI: 10.1038/s41366-023-01299-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
A bidirectional relationship exists between adipose tissue metabolism and iron regulation. Total body fat, fat distribution and exercise influence iron status and components of the iron-regulatory pathway, including hepcidin and erythroferrone. Conversely, whole body and tissue iron stores associate with fat mass and distribution and glucose and lipid metabolism in adipose tissue, liver, and muscle. Manipulation of the iron-regulatory proteins erythroferrone and erythropoietin affects glucose and lipid metabolism. Several lines of evidence suggest that iron accumulation and metabolism may play a role in the development of metabolic diseases including obesity, type 2 diabetes, hyperlipidaemia and non-alcoholic fatty liver disease. In this review we summarise the current understanding of the relationship between iron homoeostasis and metabolic disease.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Feng J, Shan X, Wang L, Lu J, Cao Y, Yang L. Association of Body Iron Metabolism with Type 2 Diabetes Mellitus in Chinese Women of Childbearing Age: Results from the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients 2023; 15:nu15081935. [PMID: 37111154 PMCID: PMC10141641 DOI: 10.3390/nu15081935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
High iron stores have been reported to be associated with type 2 diabetes mellitus (T2DM). However, evidence for the associations of iron metabolism with T2DM is inconsistent, and whether there is a threshold effect remains controversial. In the present study, we aimed to examine the associations between various iron biomarkers and the risk of T2DM as well as impaired glucose metabolism (IGM) and hyperglycemia in Chinese women of childbearing age. A total of 1145 women were divided into three groups (normal blood glucose metabolism group; IGM group; T2DM group). Biomarkers of iron metabolism (serum ferritin (SF), transferrin, soluble transferrin receptor (sTfR), transferrin saturation, serum iron, total body iron, and sTfR-to-lgferritin index) were measured. After adjusting for various confounding risk factors, SF and sTfR were positively associated with the risk of IGM (fourth vs. first quartile: SF odds ratio (OR) = 1.93 (95% CI 1.17-3.20) and sTfR OR = 3.08 (95% CI 1.84-5.14)) and T2DM (SF OR = 2.39 (95% CI 1.40-4.06) and sTfR OR = 3.84 (95% CI 2.53-5.83)). There was a nonlinear relationship between SF and risk of T2DM and hyperglycemia (p for nonlinearity < 0.01). Our findings suggested that SF and sTfR could be independent predictors of T2DM risk.
Collapse
Affiliation(s)
- Jie Feng
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiaoyun Shan
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 241001, China
| | - Lijuan Wang
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiaxi Lu
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yang Cao
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lichen Yang
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
5
|
Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis 2023; 14:186. [PMID: 36882414 PMCID: PMC9992652 DOI: 10.1038/s41419-023-05708-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas β cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.
Collapse
|
6
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
7
|
Ding X, Bian N, Wang J, Chang X, An Y, Wang G, Liu J. Serum Ferritin Levels Are Associated with Adipose Tissue Dysfunction-Related Indices in Obese Adults. Biol Trace Elem Res 2023; 201:636-643. [PMID: 35297006 DOI: 10.1007/s12011-022-03198-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023]
Abstract
Iron overload is associated with type 2 diabetes and metabolic syndrome. However, little is known about the role of iron status on adipose tissue. We aimed to investigate the association of iron metabolism markers with adipose tissue dysfunction-related indices in obese individuals. A total of 226 obese adults with body mass index (BMI) ≥ 30 kg/m2 were recruited into the study. Hemoglobin, serum ferritin, iron, soluble transferrin receptor (sTfR), total iron-binding capacity (TIBC), transferrin saturation (TSAT), and other clinical parameters were measured. Adipose tissue dysfunction was assessed by adipose tissue insulin resistance (adipose-IR), visceral adiposity index (VAI), and lipid accumulation product (LAP) index. Serum ferritin levels, adipose-IR, and VAI progressively increased from class I to class III obesity and significantly higher in class III obesity. Correlation analysis suggested that only serum ferritin levels were positively correlated with adipose-IR (r = 0.284, P < 0.001), VAI (r = 0.209, P = 0.002), and LAP (r = 0.324, P < 0.001). Moreover, further logistic regression analysis revealed serum ferritin was significantly associated with elevated adipose-IR, VAI, and LAP. After adjustment for potential confounders, serum ferritin levels remained independently associated with elevated adipose-IR (OR = 1.004, 95% CI 1.000-1.009, P < 0.05) and VAI (OR = 1.005, 95% CI 1.001-1.009, P < 0.05). Serum ferritin was associated with elevated adipose-IR, VAI, and LAP, suggesting that ferritin could be an important early indicator for the risk of developing adipose tissue dysfunction in obese individuals.
Collapse
Affiliation(s)
- Xiaoyu Ding
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Nannan Bian
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Jiaxuan Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China.
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China.
| |
Collapse
|
8
|
Duan G, Li J, Duan Y, Zheng C, Guo Q, Li F, Zheng J, Yu J, Zhang P, Wan M, Long C. Mitochondrial Iron Metabolism: The Crucial Actors in Diseases. Molecules 2022; 28:29. [PMID: 36615225 PMCID: PMC9822237 DOI: 10.3390/molecules28010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Iron is a trace element necessary for cell growth, development, and cellular homeostasis, but insufficient or excessive level of iron is toxic. Intracellularly, sufficient amounts of iron are required for mitochondria (the center of iron utilization) to maintain their normal physiologic function. Iron deficiency impairs mitochondrial metabolism and respiratory activity, while mitochondrial iron overload promotes ROS production during mitochondrial electron transport, thus promoting potential disease development. This review provides an overview of iron homeostasis, mitochondrial iron metabolism, and how mitochondrial iron imbalances-induced mitochondrial dysfunction contribute to diseases.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Cimin Long
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Kim SL, Shin S, Yang SJ. Iron Homeostasis and Energy Metabolism in Obesity. Clin Nutr Res 2022; 11:316-330. [PMID: 36381472 PMCID: PMC9633967 DOI: 10.7762/cnr.2022.11.4.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Iron plays a role in energy metabolism as a component of vital enzymes and electron transport chains (ETCs) for adenosine triphosphate (ATP) synthesis. The tricarboxylic acid (TCA) cycle and oxidative phosphorylation are crucial in generating ATP in mitochondria. At the mitochondria matrix, heme and iron-sulfur clusters are synthesized. Iron-sulfur cluster is a part of the aconitase in the TCA cycle and a functional or structural component of electron transfer proteins. Heme is the prosthetic group for cytochrome c, a principal component of the respiratory ETC. Regarding fat metabolism, iron regulates mitochondrial fat oxidation and affects the thermogenesis of brown adipose tissue (BAT). Thermogenesis is a process that increases energy expenditure, and BAT is a tissue that generates heat via mitochondrial fuel oxidation. Iron deficiency may impair mitochondrial fuel oxidation by inhibiting iron-containing molecules, leading to decreased energy expenditure. Although it is expected that impaired mitochondrial fuel oxidation may be restored by iron supplementation, its underlying mechanisms have not been clearly identified. Therefore, this review summarizes the current evidence on how iron regulates energy metabolism considering the TCA cycle, oxidative phosphorylation, and thermogenesis. Additionally, we relate iron-mediated metabolic regulation to obesity and obesity-related complications.
Collapse
Affiliation(s)
- Se Lin Kim
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| | - Sunhye Shin
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| |
Collapse
|
10
|
Chung JY, Jung HU, Kim DJ, Baek EJ, Kim HK, Kang JO, Lim JE, Oh B. Identification of five genetic variants with differential effects on obesity-related traits based on age. Front Genet 2022; 13:970657. [PMID: 36276968 PMCID: PMC9585212 DOI: 10.3389/fgene.2022.970657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a major public health concern, and its prevalence generally increases with age. As the number of elderly people is increasing in the aging population, the age-dependent increase in obesity has raised interest in the underlying mechanism. To understand the genetic basis of age-related increase in obesity, we identified genetic variants showing age-dependent differential effects on obesity. We conducted stratified analyses between young and old groups using genome-wide association studies of 355,335 United Kingom Biobank participants for five obesity-related phenotypes, including body mass index, body fat percentage, waist-hip ratio, waist circumference, and hip circumference. Using t-statistic, we identified five significant lead single nucleotide polymorphisms: rs2258461 with body mass index, rs9861311 and rs429358 with body fat percentage, rs2870099 with waist-hip ratio, and rs145500243 with waist circumference. Among these single nucleotide polymorphisms, rs429358, located in APOE gene was associated with diverse age-related diseases, such as Alzheimer’s disease, coronary artery disease, age-related degenerative macular diseases, and cognitive decline. The C allele of rs429358 gradually decreases body fat percentage as one grows older in the range of 40–69 years. In conclusion, we identified five genetic variants with differential effects on obesity-related phenotypes based on age using a stratified analysis between young and old groups, which may help to elucidate the mechanisms by which age influences the development of obesity.
Collapse
Affiliation(s)
- Ju Yeon Chung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae-Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Eun Ju Baek
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Han Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- *Correspondence: Ji Eun Lim, ; Bermseok Oh,
| | - Bermseok Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- *Correspondence: Ji Eun Lim, ; Bermseok Oh,
| |
Collapse
|
11
|
Li LX, Guo FF, Liu H, Zeng T. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets. Cell Mol Life Sci 2022; 79:201. [PMID: 35325321 PMCID: PMC11071846 DOI: 10.1007/s00018-022-04239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is a global public health challenge due to the high incidence and lack of effective therapeutics. Evidence from animal studies and ALD patients has demonstrated that iron overload is a hallmark of ALD. Ethanol exposure can promote iron absorption by downregulating the hepcidin expression, which is probably mediated by inducing oxidative stress and promoting erythropoietin (EPO) production. In addition, ethanol may enhance iron uptake in hepatocytes by upregulating the expression of transferrin receptor (TfR). Iron overload in the liver can aggravate ethanol-elicited liver damage by potentiating oxidative stress via Fenton reaction, promoting activation of Kupffer cells (KCs) and hepatic stellate cells (HSCs), and inducing a recently discovered programmed iron-dependent cell death, ferroptosis. This article reviews the current knowledge of iron metabolism, regulators of iron homeostasis, the mechanism of ethanol-induced iron overload, detrimental effects of iron overload in the liver, and potential therapeutic targets.
Collapse
Affiliation(s)
- Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
12
|
Ali A, Rehman MU, Ahmad SM, Mehraj T, Hussain I, Nadeem A, Mir MUR, Ganie SA. In Silico Tools for Analysis of Single-Nucleotide Polymorphisms in the Bovine Transferrin Gene. Animals (Basel) 2022; 12:ani12060693. [PMID: 35327090 PMCID: PMC8944579 DOI: 10.3390/ani12060693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy cattle with a high milk yield are susceptible to many infectious diseases, such as mastitis. Subclinical mastitis (SCM) is the most prevalent form of mastitis that predominantly affects animal health, and causes adverse effects on the quality and quantity of milk. In dairy animals, subclinical mastitis often remains undetected, as no gross changes in udder characteristics are visible. In the present study, 135 Holstein Friesian dairy animals were selected and screened as healthy (n = 25) and mastitic (n = 110) based on diagnostic tests such as the California mastitis test, pH, electrical conductivity, and somatic cell count. In this study, the somatic cell count was used as a gold-standard test in differentiating subclinical mastitis animals from healthy ones. The present study was carried out to study polymorphisms in the bovine transferrin gene in cows (with subclinical mastitis and healthy). For the early detection of resistant/or susceptible animals, a useful marker could be provided by the detection of single-nucleotide polymorphisms (SNPs) in the transferrin gene, which are often associated with mammary innate immune response. The sequencing results revealed three nucleotide substitutions: two transversions (230 A > C, 231 C > A) and one transition (294 A > G) in susceptible cows as compared to disease-free subjects. The nucleotide variations at position 230 (GAC > GCA) and 231 (GAC > GCA) were nonsynonymous, and corresponded to an amino acid change from aspartic acid to alanine; whereas at position 294 (GAA > GAG), the mutation was synonymous. In the present study, many in silico tools were taken into consideration to determine the effect of SNPs on protein structure and function. The PROVEAN tool found the amino acid substitution to be neutral and deleterious. PolyPhen-2 revealed the amino acid variations at positions 320 and 321 to most likely be damaging; and at the 341 position, the variations were benign. The I-Mutant and MUpro tools found that the protein stability decreased for nonsynonymous variations. The SIFT tool revealed the protein function was likely to be affected in nonsynonymous variations, with no change in the case of synonymous ones. Phylogenetic analysis of the bovine transferrin gene revealed a close relation of the CA allele with the Bos taurus transferrin, while the G allele was closely related to a cross of Bos indicus × Bos taurus serotransferrins, followed by the Bison bison transferrin. The least relation was shown by both alleles to Capra hircus, Ovis aries, and Bubalus bubalis.
Collapse
Affiliation(s)
- Aarif Ali
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India;
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama Campus (Alusteng), Ganderbal 190006, J&K, India; (I.H.); (M.U.R.M.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (M.U.R.); (S.A.G.)
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama Campus (Alusteng), Ganderbal 190006, J&K, India;
| | - Tabish Mehraj
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama Campus (Alusteng), Ganderbal 190006, J&K, India; (I.H.); (M.U.R.M.)
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Manzoor Ur Rahman Mir
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama Campus (Alusteng), Ganderbal 190006, J&K, India; (I.H.); (M.U.R.M.)
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India;
- Correspondence: (M.U.R.); (S.A.G.)
| |
Collapse
|
13
|
Romero AR, Mu A, Ayres JS. Adipose triglyceride lipase mediates lipolysis and lipid mobilization in response to iron-mediated negative energy balance. iScience 2022; 25:103941. [PMID: 35265813 PMCID: PMC8899412 DOI: 10.1016/j.isci.2022.103941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
Maintenance of energy balance is essential for overall organismal health. Mammals have evolved complex regulatory mechanisms that control energy intake and expenditure. Traditionally, studies have focused on understanding the role of macronutrient physiology in energy balance. In the present study, we examined the role of the essential micronutrient iron in regulating energy balance. We found that a short course of dietary iron caused a negative energy balance resulting in a severe whole body wasting phenotype. This disruption in energy balance was because of impaired intestinal nutrient absorption. In response to dietary iron-induced negative energy balance, adipose triglyceride lipase (ATGL) was necessary for wasting of subcutaneous white adipose tissue and lipid mobilization. Fat-specific ATGL deficiency protected mice from fat wasting, but caused a severe cachectic response in mice when fed iron. Our work reveals a mechanism for micronutrient control of lipolysis that is necessary for regulating mammalian energy balance.
Collapse
Affiliation(s)
- Alicia R. Romero
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Gene Expression Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andre Mu
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Gene Expression Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S. Ayres
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Gene Expression Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Corresponding author
| |
Collapse
|
14
|
Evaluation of the relationship between serum ferritin and insulin resistance and visceral adiposity index (VAI) in women with polycystic ovary syndrome. Eat Weight Disord 2021; 26:1581-1593. [PMID: 32772321 DOI: 10.1007/s40519-020-00980-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE There is a relationship between polycystic ovary syndrome (PCOS) and adipose tissue dysfunction (ADD), but this relationship is not clear. It has been recently shown that iron accumulation in adipose tissue is among the causes of adipose tissue dysfunction. Data on adipose tissue dysfunction in women with PCOS are insufficient. In this study, we aimed to evaluate the relationship between serum ferritin levels (iron accumulation biomarker) and visceral adiposity index (an indicator of adipose tissue dysfunction). METHODS The study is a case-control study. Women with diagnosed PCOS with 2003 Rotterdam Diagnostic Criteria (n = 40) were compared with non-PCOS group (n = 40). In this study, the cholesterol ratios, the homeostatic model evaluation index for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity control index were calculated using biochemical parameters, and the visceral adiposity index (VAI) and the lipid accumulation product (LAP) were calculated using both anthropometric and biochemical parameters. In this study, insulin resistance was evaluated by HOMA-IR and adipose tissue dysfunction was evaluated by VAI index. RESULTS According to the results of this study, women with PCOS have a worse metabolic status than women without PCOS. However, this has been shown only in overweight and obese women, not in women with normal weight. CONCLUSION As a result, the presence of obesity in women with PCOS exacerbates metabolic status. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
|
15
|
Ma W, Jia L, Xiong Q, Feng Y, Du H. The role of iron homeostasis in adipocyte metabolism. Food Funct 2021; 12:4246-4253. [PMID: 33876811 DOI: 10.1039/d0fo03442h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron plays a vital role in the metabolism of adipose tissue. On the one hand, iron is essential for differentiation, endocrine, energy supply and other physiological functions of adipocytes. Iron homeostasis affects the progression of many chronic metabolic diseases such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. In adipose tissue, iron deficiency is associated with obesity, mainly due to inflammation. Nevertheless, excessive iron in adipose tissue leads to decreased insulin sensitivity owing to mitochondrial dysfunction and adipokine changes. On the other hand, iron has an effect on the thermogenesis of adipocytes. Iron deficiency affects the production of beige fat and the direction of the differentiation of brown fat. In this review, we summarize the current understanding of the crosstalk between iron homeostasis and metabolism in adipose tissue.
Collapse
Affiliation(s)
- Wan Ma
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China.
| | | | | | | | | |
Collapse
|
16
|
Suneja S, Gangopadhyay S, Saini V, Dawar R, Kaur C. Emerging Diabetic Novel Biomarkers of the 21st Century. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1726613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractDiabetes is a growing epidemic with estimated prevalence of infected to reach ~592 million by the year 2035. An effective way to approach is to detect the disease at a very early stage to reduce the complications and improve lifestyle management. Although several traditional biomarkers including glucated hemoglobin, glucated albumin, fructosamine, and 1,5-anhydroglucitol have helped in ease of diagnosis, there is lack of sensitivity and specificity and are inaccurate in certain clinical settings. Thus, search for new and effective biomarkers is a continuous process with an aim of accurate and timely diagnosis. Several novel biomarkers have surged in the present century that are helpful in timely detection of the disease condition. Although it is accepted that a single biomarker will have its inherent limitations, combining several markers will help to identify individuals at high risk of developing prediabetes and eventually its progression to frank diabetes. This review describes the novel biomarkers of the 21st century, both in type 1 and type 2 diabetes mellitus, and their present potential for assessing risk stratification due to insulin resistance that will pave the way for improved clinical outcome.
Collapse
Affiliation(s)
- Shilpa Suneja
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Sukanya Gangopadhyay
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Vandana Saini
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Rajni Dawar
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Charanjeet Kaur
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| |
Collapse
|
17
|
Risk of Iron Overload in Obesity and Implications in Metabolic Health. Nutrients 2021; 13:nu13051539. [PMID: 34063273 PMCID: PMC8147503 DOI: 10.3390/nu13051539] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Excessive adiposity is associated with several metabolic perturbations including disturbances in iron homeostasis. Increased systemic inflammation in obesity stimulates expression of the iron regulatory hormone hepcidin, which can result in a maldistribution of bodily iron, which may be implicated in metabolic dysfunction. This study aimed to investigate the effect of adiposity and any associated inflammation on iron homeostasis and the potential implications of dysregulated iron metabolism on metabolic health. Analyses are based on a subsample from the cross-sectional Irish National Adult Nutrition Survey (2008–2010) (n = 1120). Ferritin status and risk of iron overload were determined based on established WHO ferritin ranges. Participants were classed as having a healthy % body fat or as having overfat or obesity based on age- and gender-specific % body fat ranges as determined by bioelectrical impedance. Biomarkers of iron status were examined in association with measures of body composition, serum adipocytokines and markers of metabolic health. Excessive % body fat was significantly associated with increased serum hepcidin and ferritin and an increased prevalence of severe risk of iron overload amongst males independent of dietary iron intake. Elevated serum ferritin displayed significant positive associations with serum triglycerides and markers of glucose metabolism, with an increased but non-significant presentation of metabolic risk factors amongst participants with overfat and obesity at severe risk of iron overload. Increased adiposity is associated with dysregulations in iron homeostasis, presenting as increased serum hepcidin, elevated serum ferritin and an increased risk of iron overload, with potential implications in impairments in metabolic health.
Collapse
|
18
|
Abstract
Low-grade chronic adipose tissue (AT) inflammation is now recognized as a pivotal driver of the multi-organ dysfunction associated with obesity-related complications; and adipose tissue macrophages (ATMs) are key to the development of this inflammatory milieu. Along with their role in immunosurveillance, ATMs are central regulators of AT iron homeostasis. Under optimal conditions, ATMs maintain a proper homeostatic balance of iron in adipocytes; however, during obesity, this relationship is altered, and iron is repartitioned into adipocytes as opposed to ATMs. This adipocyte iron overload leads to systemic IR and the mechanism for these effects is still under investigation. Here, we comment on the most recent findings addressing the interplay between adipocyte and ATM iron handling, and metabolic dysfunction.
Collapse
|
19
|
Kim JD, Lim DM, Park KY, Park SE, Rhee EJ, Park CY, Lee WY, Oh KW. Serum Transferrin Predicts New-Onset Type 2 Diabetes in Koreans: A 4-Year Retrospective Longitudinal Study. Endocrinol Metab (Seoul) 2020; 35:610-617. [PMID: 32981303 PMCID: PMC7520588 DOI: 10.3803/enm.2020.721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND It is well known that high serum ferritin, a marker of iron storage, predicts incident type 2 diabetes. Limited information is available on the association between transferrin, another marker of iron metabolism, and type 2 diabetes. Thus, we investigated the association between transferrin and incident type 2 diabetes. METHODS Total 31,717 participants (mean age, 40.4±7.2 years) in a health screening program in 2005 were assessed via cross-sectional analysis. We included 30,699 subjects who underwent medical check-up in 2005 and 2009 and did not have type 2 diabetes at baseline in this retrospective longitudinal analysis. RESULTS The serum transferrin level was higher in the type 2 diabetes group than in the non-type 2 diabetes group (58.32±7.74 μmol/L vs. 56.17±7.96 μmol/L, P<0.001). Transferrin correlated with fasting serum glucose and glycosylated hemoglobin in the correlational analysis (r=0.062, P<0.001 and r=0.077, P<0.001, respectively) after full adjustment for covariates. Transferrin was more closely related to homeostasis model assessment of insulin resistance than to homeostasis model assessment of β cell function (r=0.042, P<0.001 and r=-0.019, P=0.004, respectively) after full adjustment. Transferrin predicted incident type 2 diabetes in non-type 2 diabetic subjects in a multivariate linear regression analysis; the odds ratio (95% confidence interval [CI]) of the 3rd tertile compared to that in the 1st tertile of transferrin for incident diabetes was 1.319 (95% CI, 1.082 to 1.607) after full adjustment (P=0.006). CONCLUSION Transferrin is positively associated with incident type 2 diabetes in Koreans.
Collapse
Affiliation(s)
- Jong Dai Kim
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Dong-Mee Lim
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Keun-Young Park
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Li J, Pan X, Pan G, Song Z, He Y, Zhang S, Ye X, Yang X, Xie E, Wang X, Mai X, Yin X, Tang B, Shu X, Chen P, Dai X, Tian Y, Yao L, Han M, Xu G, Zhang H, Sun J, Chen H, Wang F, Min J, Xie L. Transferrin Receptor 1 Regulates Thermogenic Capacity and Cell Fate in Brown/Beige Adipocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903366. [PMID: 32596110 PMCID: PMC7312276 DOI: 10.1002/advs.201903366] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Indexed: 05/02/2023]
Abstract
Iron homeostasis is essential for maintaining cellular function in a wide range of cell types. However, whether iron affects the thermogenic properties of adipocytes is currently unknown. Using integrative analyses of multi-omics data, transferrin receptor 1 (Tfr1) is identified as a candidate for regulating thermogenesis in beige adipocytes. Furthermore, it is shown that mice lacking Tfr1 specifically in adipocytes have impaired thermogenesis, increased insulin resistance, and low-grade inflammation accompanied by iron deficiency and mitochondrial dysfunction. Mechanistically, the cold treatment in beige adipocytes selectively stabilizes hypoxia-inducible factor 1-alpha (HIF1α), upregulating the Tfr1 gene, and thermogenic adipocyte-specific Hif1α deletion reduces thermogenic gene expression in beige fat without altering core body temperature. Notably, Tfr1 deficiency in interscapular brown adipose tissue (iBAT) leads to the transdifferentiation of brown preadipocytes into white adipocytes and muscle cells; in contrast, long-term exposure to a low-iron diet fails to phenocopy the transdifferentiation effect found in Tfr1-deficient mice. Moreover, mice lacking transmembrane serine protease 6 (Tmprss6) develop iron deficiency in both inguinal white adipose tissue (iWAT) and iBAT, and have impaired cold-induced beige adipocyte formation and brown fat thermogenesis. Taken together, these findings indicate that Tfr1 plays an essential role in thermogenic adipocytes via both iron-dependent and iron-independent mechanisms.
Collapse
Affiliation(s)
- Jin Li
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthChina Agricultural UniversityBeijing100193China
- Department of NutritionPrecision Nutrition Innovation CenterSchool of Public HealthZhengzhou UniversityZhengzhou450001China
| | - Xiaohan Pan
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Guihua Pan
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Zijun Song
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Yao He
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Susu Zhang
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Xueru Ye
- Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xiang Yang
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Enjun Xie
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xinhui Wang
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xudong Mai
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Xiangju Yin
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Biyao Tang
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xuan Shu
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Pengyu Chen
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xiaoshuang Dai
- BGI Institute of Applied AgricultureBGI‐ShenzhenShenzhen518120China
| | - Ye Tian
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Liheng Yao
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Mulan Han
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Huijie Zhang
- Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jia Sun
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Hong Chen
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Fudi Wang
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthChina Agricultural UniversityBeijing100193China
- Department of NutritionPrecision Nutrition Innovation CenterSchool of Public HealthZhengzhou UniversityZhengzhou450001China
| | - Junxia Min
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| |
Collapse
|
21
|
Antolic A, Richards EM, Wood CE, Keller-Wood M. A Transcriptomic Model of Postnatal Cardiac Effects of Prenatal Maternal Cortisol Excess in Sheep. Front Physiol 2019; 10:816. [PMID: 31333485 PMCID: PMC6616147 DOI: 10.3389/fphys.2019.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
In utero treatment with glucocorticoids have been suggested to reprogram postnatal cardiovascular function and stress responsiveness. However, little is known about the effects of prenatal exposure to the natural corticosteroid, cortisol, on postnatal cardiovascular system or metabolism. We have demonstrated an increased incidence of stillbirth in sheep pregnancies in which there is mild maternal hypercortisolemia caused by infusion of 1 mg/kg/d cortisol. In order to model corticosteroid effects in the neonate, we created a second model in which cortisol was infused for 12 h per day for a daily infusion of 0.5 mg/kg/d. In this model we had previously found that neonatal plasma glucose was increased and plasma insulin was decreased compared to those in the control group, and that neonatal ponderal index and kidney weight were reduced and left ventricular wall thickness was increased in the 2 week old lamb. In this study, we have used transcriptomic modeling to better understand the programming effect of this maternal hypercortisolemia in these hearts. This is a time when both terminal differentiation and a shift in the metabolism of the heart from carbohydrates to lipid oxidation are thought to be complete. The transcriptomic model indicates suppression of genes in pathways for fatty acid and ketone production and upregulation of genes in pathways for angiogenesis in the epicardial adipose fat (EAT). The transcriptomic model indicates that RNA related pathways are overrepresented by downregulated genes, but ubiquitin-mediated proteolysis and protein targeting to the mitochondria are overrepresented by upregulated genes in the intraventricular septum (IVS) and left ventricle (LV). In IVS the AMPK pathway and adipocytokine signaling pathways were also modeled based on overrepresentation by downregulated genes. Peroxisomal activity is modeled as increased in EAT, but decreased in LV and IVS. Our results suggest that pathways for lipids as well as cell proliferation and cardiac remodeling have altered activity postnatally after the in utero cortisol exposure. Together, this model is consistent with the observed increase in cardiac wall thickness at necropsy and altered glucose metabolism observed in vivo, and predicts that in utero exposure to excess maternal cortisol will cause postnatal cardiac hypertrophy and altered responses to oxidative stress.
Collapse
Affiliation(s)
- Andrew Antolic
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Elaine M Richards
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Paeschke S, Baum P, Toyka KV, Blüher M, Koj S, Klöting N, Bechmann I, Thiery J, Kosacka J, Nowicki M. The Role of Iron and Nerve Inflammation in Diabetes Mellitus Type 2-Induced Peripheral Neuropathy. Neuroscience 2019; 406:496-509. [DOI: 10.1016/j.neuroscience.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
|
23
|
Ferritin regulates organismal energy balance and thermogenesis. Mol Metab 2019; 24:64-79. [PMID: 30954544 PMCID: PMC6531837 DOI: 10.1016/j.molmet.2019.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The ferritin heavy/heart chain (FTH) gene encodes the ferroxidase component of the iron (Fe) sequestering ferritin complex, which plays a central role in the regulation of cellular Fe metabolism. Here we tested the hypothesis that ferritin regulates organismal Fe metabolism in a manner that impacts energy balance and thermal homeostasis. METHODS We developed a mouse strain, referred herein as FthR26 fl/fl, expressing a tamoxifen-inducible Cre recombinase under the control of the Rosa26 (R26) promoter and carrying two LoxP (fl) sites: one at the 5'end of the Fth promoter and another the 3' end of the first Fth exon. Tamoxifen administration induces global deletion of Fth in adult FthR26Δ/Δ mice, testing whether FTH is required for maintenance of organismal homeostasis. RESULTS Under standard nutritional Fe supply, Fth deletion in adult FthR26Δ/Δ mice led to a profound deregulation of organismal Fe metabolism, oxidative stress, inflammation, and multi-organ damage, culminating in death. Unexpectedly, Fth deletion was also associated with a profound atrophy of white and brown adipose tissue as well as with collapse of energy expenditure and thermogenesis. This was attributed mechanistically to mitochondrial dysfunction, as assessed in the liver and in adipose tissue. CONCLUSION The FTH component of ferritin acts as a master regulator of organismal Fe homeostasis, coupling nutritional Fe supply to organismal redox homeostasis, energy expenditure and thermoregulation.
Collapse
|
24
|
Miranda MA, St Pierre CL, Macias-Velasco JF, Nguyen HA, Schmidt H, Agnello LT, Wayhart JP, Lawson HA. Dietary iron interacts with genetic background to influence glucose homeostasis. Nutr Metab (Lond) 2019; 16:13. [PMID: 30820238 PMCID: PMC6380031 DOI: 10.1186/s12986-019-0339-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Iron is a critical component of metabolic homeostasis, but consumption of dietary iron has increased dramatically in the last 30 years, corresponding with the rise of metabolic disease. While the link between iron metabolism and metabolic health is well established, the extent to which dietary iron contributes to metabolic disease risk is unexplored. Further, it is unknown how dietary iron interacts with genetic background to modify metabolic disease risk. METHODS LG/J and SM/J inbred mouse strains were used to investigate the relationship between genetic background and metabolic function during an 8-week high iron diet. Glucose tolerance and adiposity were assessed, colorimetric assays determined levels of circulating metabolic markers, and hepatic iron content was measured. RNA sequencing was performed on white adipose tissue to identify genes differentially expressed across strain, diet, and strain X diet cohorts. Hepatic Hamp expression and circulating hepcidin was measured, and small nucleotide variants were identified in the Hamp genic region. RESULTS LG/J mice experienced elevated fasting glucose and glucose intolerance during the high iron diet, corresponding with increased hepatic iron load, increased circulating ferritin, and signs of liver injury. Adipose function was also altered in high iron-fed LG/J mice, including decreased adiposity and leptin production and differential expression of genes involved in iron and glucose homeostasis. LG/J mice failed to upregulate hepatic Hamp expression during the high iron diet, resulting in low circulating hepcidin levels compared to SM/J mice. CONCLUSIONS This study highlights the importance of accounting for genetic variation when assessing the effects of diet on metabolic health, and suggests dietary iron's impact on liver and adipose tissue is an underappreciated component of metabolic disease risk.
Collapse
Affiliation(s)
- Mario A. Miranda
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Celine L. St Pierre
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Juan F. Macias-Velasco
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Huyen Anh Nguyen
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Lucian T. Agnello
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Jessica P. Wayhart
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Heather A. Lawson
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| |
Collapse
|
25
|
McClain DA, Sharma NK, Jain S, Harrison A, Salaye LN, Comeau ME, Langefeld CD, Lorenzo FR, Das SK. Adipose Tissue Transferrin and Insulin Resistance. J Clin Endocrinol Metab 2018; 103:4197-4208. [PMID: 30099506 PMCID: PMC6194856 DOI: 10.1210/jc.2018-00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022]
Abstract
Context Excessive body iron stores are a risk factor for decreased insulin sensitivity (SI) and diabetes. We hypothesized that transcriptional dysregulation of genes involved in iron metabolism in adipocytes causes insulin resistance. Objective and Design To define the genetic regulation of iron metabolism and its role in SI, we used gene expression, genotype, and SI data from an African American cohort (N = 256). Replication studies were performed in independent European ancestry cohorts. In vitro studies in human adipocytes were performed to define the role of a selected gene in causing insulin resistance. Results Among 62 transcripts representing iron homeostasis genes, expression of 30 in adipose tissue were correlated with SI. Transferrin (TF) and ferritin heavy polypeptide were most positively and negatively associated with SI, respectively. These observations were replicated in two independent European ancestry adipose data sets. The strongest cis-regulatory variant for TF expression (rs6785596; P = 7.84 × 10-18) was identified in adipose but not muscle or liver tissue. Variants significantly affected the normal relationship of serum ferritin to insulin resistance. Knockdown of TF in differentiated Simpson-Golabi-Behmel syndrome adipocytes by short hairpin RNA decreased intracellular iron, reduced maximal insulin-stimulated glucose uptake, and reduced Akt phosphorylation. Knockdown of TF caused differential expression of 465 genes, including genes involved in glucose transport, mitochondrial function, Wnt-pathway/ SI, chemokine activity, and obesity. Iron chelation recapitulated key changes in the expression profile induced by TF knockdown. Conclusion Genetic regulation of TF expression in adipose tissue plays a novel role in regulating SI.
Collapse
Affiliation(s)
- Donald A McClain
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- W. G. (Bill) Hefner VA Medical Center - Salisbury, Salisbury, North Carolina
| | - Neeraj K Sharma
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shalini Jain
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alexandria Harrison
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lipika N Salaye
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary E Comeau
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Felipe R Lorenzo
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- W. G. (Bill) Hefner VA Medical Center - Salisbury, Salisbury, North Carolina
| | - Swapan K Das
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
26
|
Ryan BJ, Van Pelt DW, Guth LM, Ludzki AC, Gioscia-Ryan RA, Ahn C, Foug KL, Horowitz JF. Plasma ferritin concentration is positively associated with in vivo fatty acid mobilization and insulin resistance in obese women. Exp Physiol 2018; 103:1443-1447. [PMID: 30178895 DOI: 10.1113/ep087283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 01/27/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do obese women with relatively high whole-body iron stores exhibit elevated in vivo rates of fatty acid (FA) release from adipose tissue compared with a well-matched cohort of obese women with relatively low iron stores? What is the main finding and its importance? Obese women with high plasma [ferritin] (a marker of whole-body iron stores) had greater FA mobilization, lipolytic activation in adipose tissue and insulin resistance (IR) compared with obese women with lower plasma [ferritin]. Given that elevated FA mobilization is intimately linked with the development of IR, these findings suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability. ABSTRACT High rates of fatty acid (FA) mobilization from adipose tissue are associated with insulin resistance (IR) in obesity. In vitro evidence suggests that iron stimulates lipolysis in adipocytes, but whether iron is related to in vivo FA mobilization is unknown. We hypothesized that plasma ferritin concentration ([ferritin]), a marker of body iron stores, would be positively associated with FA mobilization. We measured [ferritin], the rate of appearance of FA in the systemic circulation (FA Ra; stable isotope dilution), key adipose tissue lipolytic proteins and IR (hyperinsulinaemic-euglycaemic clamp) in 20 obese, premenopausal women. [Ferritin] was correlated with FA Ra (r = 0.65; P = 0.002) and IR (r = 0.57; P = 0.008); these relationships remained significant after controlling for body mass index and plasma [C-reactive protein] (a marker of systemic inflammation) in multiple regression analyses. We then stratified subjects into tertiles based on [ferritin] to compare subjects with 'High-ferritin' versus 'Low-ferritin'. Plasma [hepcidin] was more than fivefold greater (P < 0.05) in the High-ferritin versus Low-ferritin group, but there was no difference in plasma [C-reactive protein] between groups, indicating that the large difference in plasma [ferritin] reflects a difference in iron stores, not systemic inflammation. We found that FA Ra, adipose protein abundance of hormone-sensitive lipase and adipose triglyceride lipase, and IR were significantly greater in subjects with High-ferritin versus Low-ferritin (all P < 0.05). These data provide the first evidence linking iron and in vivo FA mobilization and suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Lisa M Guth
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel A Gioscia-Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Chiwoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine L Foug
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Aregbesola A, de Mello VDF, Lindström J, Voutilainen S, Virtanen JK, Keinänen-Kiukaanniemi S, Tuomainen TP, Tuomilehto J, Uusitupa M. Serum adiponectin/Ferritin ratio in relation to the risk of type 2 diabetes and insulin sensitivity. Diabetes Res Clin Pract 2018; 141:264-274. [PMID: 29777745 DOI: 10.1016/j.diabres.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/21/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
AIMS Body iron inhibits the metabolism of adiponectin, an insulin sensitizing adipokine. We investigated the relationships of baseline and average of 4-year change in values of serum adiponectin (sA), serum ferritin (sF) and sA/sF ratio on type 2 diabetes (T2D) risk and insulin sensitivity (Matsuda ISI) and secretion (disposition index; DI30). METHODS Prospective analyses were conducted in participants with impaired glucose tolerance of the Finnish Diabetes Prevention Study (n = 516) recruited in 1993-1998. Cox and linear regression analyses were used to investigate the associations of sA, sF and sA/sF ratio, as continuous variables, with incident T2D, Matsuda ISI, and DI30. RESULTS During the mean follow-up of 8.2 years, 157 incident T2D cases occurred (intervention group, n = 65 and control group, n = 92). In adjusted models, baseline sA and sA/sF ratio were inversely associated with T2D risk (HR = 0.49, 95% CI 0.31-0.76, P = 0.002 and HR = 0.83, 95% CI 0.70-0.99, P = 0.044, respectively). Furthermore, a direct association was observed with Matsuda ISI (β=0.13, 95% CI 0.03-0.22, P = 0.009, for sA and β=0.04, 95% CI 0.01-0.07, P = 0.035, for sA/sF ratio) during the average 4-year follow-up. The changes in sA and sA/sF ratio were also inversely associated with T2D risk (HR = 0.36, 95% CI 0.20-0.63, P < 0.001 and HR = 0.76, 95% CI 0.62-0.92, P = 0.006, respectively), and directly with Matsuda ISI (β=0.27, 95% CI 0.17-0.38, P < 0.001, for sA and β=0.07, 95% CI 0.03-0.11, P < 0.001, for sA/sF ratio). No consistent associations were found with DI30. CONCLUSIONS: Baseline levels and changes during the follow-up in sA and sA/sF ratio are related to T2D risk and insulin sensitivity.
Collapse
Affiliation(s)
- Alex Aregbesola
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI70211 Kuopio, Finland.
| | - Vanessa D F de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI70211 Kuopio, Finland
| | - Jaana Lindström
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI70211 Kuopio, Finland
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI70211 Kuopio, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center and Unit of General Practice, Oulu University Hospital and Oulu Health Center, Oulu, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI70211 Kuopio, Finland
| | - Jaakko Tuomilehto
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria; Dasman Diabetes Institute, Dasman, Kuwait; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, FI70211 Kuopio, Finland
| |
Collapse
|
28
|
Yan HF, Liu ZY, Guan ZA, Guo C. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect 2018; 7:604-616. [PMID: 29678877 PMCID: PMC5911700 DOI: 10.1530/ec-18-0054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The mechanisms underlying obesity and anti-obesity processes have garnered remarkable attention as potential therapeutic targets for obesity-associated metabolic syndromes. Our prior work has shown the healing efficacy of iron reduction therapies for hepatic steatosis in a rodent model of diabetes and obesity. In this study, we investigated how iron depletion by deferoxamine (DFO) affected adipocyte dysfunction in the epididymal adipose tissues of ob/ob mice. METHODS Male ob/ob mice were assigned to either a vehicle-treated or DFO-treated group. DFO (100 mg/kg body weight) was injected intraperitoneally for 15 days. RESULTS We confirmed that iron deposits were statistically increased in the epididymal fat pad of 26-week-old ob/ob mice compared with wild-type (WT) mice. DFO significantly improved vital parameters of adipose tissue biology by reducing reactive oxygen species and inflammatory marker (TNFα, IL-2, IL-6, and Hepcidin) secretion, by increasing the levels of antioxidant enzymes, hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-targeted proteins, and by altering adipocytic iron-, glucose- and lipid-associated metabolism proteins. Meanwhile, hypertrophic adipocytes were decreased in size, and insulin signaling pathway-related proteins were also activated after 15 days of DFO treatment. CONCLUSIONS These findings suggest that dysfunctional iron homeostasis contributes to the pathophysiology of obesity and insulin resistance in adipose tissues of ob/ob mice. Further investigation is required to develop safe iron chelators as effective treatment strategies against obesity, with potential for rapid clinical application.
Collapse
Affiliation(s)
- Hong-Fa Yan
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Zhao-Yu Liu
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Zhi-Ang Guan
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health SciencesNortheastern University, Shenyang, China
| |
Collapse
|
29
|
Sabrina N, Bai CH, Chang CC, Chien YW, Chen JR, Chang JS. Serum Iron:Ferritin Ratio Predicts Healthy Body Composition and Reduced Risk of Severe Fatty Liver in Young Adult Women. Nutrients 2017; 9:nu9080833. [PMID: 28777296 PMCID: PMC5579626 DOI: 10.3390/nu9080833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022] Open
Abstract
Dysregulated iron metabolism is associated with altered body composition and nonalcoholic fatty liver disease (NAFLD); however, mechanisms underlying this association remain undefined. We investigated this association in 117 women. Middle-aged women (≥45 years old (y)) were heavier and had lower serum iron, higher serum hepcidin, ferritin, and severe NAFLD incidence than young adult women (<45 y). Age-adjusted linear regression analysis revealed that young adult women with the highest serum iron:ferritin ratio (Tertile 3) had a 5.08-unit increased percentage of muscle mass [β = 5.08 (1.48-8.68), p < 0.001] and a 1.21-unit decreased percentage visceral fat mass [β = -1.21 (-2.03 to -0.39), p < 0.001] compared with those with the lowest serum iron:ferritin ratio (Tertile 1; reference). The iron:ferritin dietary pattern, characterized by high consumption of beef, lamb, dairy products, fruits, and whole grains, and low consumption of refined carbohydrates (rice, noodles, and bread and pastries), and deep- and stir-fried foods, predicted a 90% [odds ratio: 0.10, 95% confidence interval: 0.02-0.47, p < 0.001] reduced risk of mild vs. moderate and severe NAFLD in young adult women. Our findings suggest that the serum iron:ferritin ratio more accurately predicts body composition and reduced risk of severe fatty liver progression in young adult women compared to middle-aged women.
Collapse
Affiliation(s)
- Nindy Sabrina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Chyi-Huey Bai
- Department of Public Health, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Jiun-Rong Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan.
| |
Collapse
|
30
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Hay SM, McArdle HJ, Hayes HE, Stevens VJ, Rees WD. The effect of iron deficiency on the temporal changes in the expression of genes associated with fat metabolism in the pregnant rat. Physiol Rep 2016; 4:4/21/e12908. [PMID: 27905292 PMCID: PMC5112487 DOI: 10.14814/phy2.12908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Iron is essential for the oxidative metabolism of lipids. Lipid metabolism changes during gestation to meet the requirements of the growing fetus and to prepare for lactation. The temporal effects of iron deficiency during gestation were studied in female rats fed complete or iron‐deficient diets. Plasma triglycerides were elevated in the iron‐deficient group throughout gestation. There were time‐dependent changes in the triglyceride content of the maternal liver, falling at the midpoint of gestation and then increasing on d21.5. Compared to the control, triglycerides in the maternal liver were not different in the iron‐deficient group prior to pregnancy and on d12.5, but were markedly reduced by d21.5. The abundance of mRNAs in the maternal liver suggests that lipogenesis is unchanged and beta‐oxidation is reduced on d21.5 by iron deficiency. On d21.5 of gestation, the expression of placental lipase was unchanged by iron deficiency, however, the abundance of mRNAs for SREBP‐1c, FABP4 were reduced, suggesting that there were changes in fatty acid handling. In the fetal liver, iron deficiency produced a marked decrease in the abundance of the L‐CPT‐1 mRNA, suggesting that beta‐oxidation is reduced. This study shows that the major effect of iron deficiency on maternal lipid metabolism occurs late in gestation and that perturbed lipid metabolism may be a common feature of models of fetal programming.
Collapse
Affiliation(s)
- Susan M Hay
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, U.K
| | - Harry J McArdle
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, U.K
| | - Helen E Hayes
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, U.K
| | - Valerie J Stevens
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, U.K
| | - William D Rees
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, U.K.
| |
Collapse
|
32
|
Shu XB, Zhang L, Huang J, Ji G. Relationship between iron overload and nonalcoholic fatty liver disease: An update. Shijie Huaren Xiaohua Zazhi 2016; 24:3398-3403. [DOI: 10.11569/wcjd.v24.i22.3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As a component of the multiple hits, iron overload plays an important role in the development of nonalcoholic fatty liver disease (NAFLD). Iron overload could affect glucose, lipid, energy metabolism and inflammatory reaction. This paper reviews the relationship between iron overload and nonalcoholic fatty liver disease, in order to clarify how and why iron overload influences the progression of NAFLD.
Collapse
|
33
|
Gotardo ÉMF, Caria CREP, de Oliveira CC, Rocha T, Ribeiro ML, Gambero A. Effects of iron supplementation in mice with hypoferremia induced by obesity. Exp Biol Med (Maywood) 2016; 241:2049-2055. [PMID: 27439539 DOI: 10.1177/1535370216660398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron is an important micronutrient, but it can also act as a dangerous element by interfering with glucose homeostasis and inflammation, two features that are already disturbed in obese subjects. In this work, we study the effects of systemic iron supplementation on metabolic and inflammatory responses in mice with hypoferremia induced by obesity to better characterize whether iron worsens the parameters that are already altered after 24 weeks of a high-fat diet (HFD). Mice were maintained on a control diet or a HFD for 24 weeks and received iron-III polymaltose (50 mg/kg/every 2 days) during the last two weeks. Glucose homeostasis (basal glucose and insulin test tolerance) and systemic and visceral adipose tissue (VAT) inflammation were assessed. Iron levels were measured in serum. The Prussian blue reaction was used in isolated macrophages to detect iron deposition. Iron supplementation resulted in an increased number of VAT macrophages that were positive for Prussian blue staining as well as increased serum iron levels. Systemic hepcidin, leptin, resistin, and monocyte chemoattractant protein-1 (MCP-1) levels were not altered by iron supplementation. Local adipose tissue inflammation was also not made worse by iron supplementation because the levels of hepcidin, MCP-1, leptin, and interleukin (IL)-6 were not altered. In contrast, iron supplementation resulted in an increased production of IL-10 by adipose tissue and VAT macrophages. Leukocytosis and VAT plasminogen activator inhibitor-1 (PAI-1) level were reduced, but insulin resistance was not altered after iron supplementation. In conclusion, systemic iron supplementation in mice with hypoferremia induced by obesity did not worsen inflammatory marker or adipose tissue inflammation or the metabolic status established by obesity. Iron deposition was observed in adipose tissue, mainly in macrophages, suggesting that these cells have mechanisms that promote iron incorporation without increasing the production of inflammatory mediators.
Collapse
Affiliation(s)
- Érica Martins Ferreira Gotardo
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Cintia Rabelo E Paiva Caria
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Caroline Candida de Oliveira
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Thalita Rocha
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Alessandra Gambero
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| |
Collapse
|
34
|
Huber B, Link A, Linke K, Gehrke SA, Winnefeld M, Kluger PJ. Integration of Mature Adipocytes to Build-Up a Functional Three-Layered Full-Skin Equivalent. Tissue Eng Part C Methods 2016; 22:756-64. [PMID: 27334067 PMCID: PMC4991605 DOI: 10.1089/ten.tec.2016.0141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large, deep full-thickness skin wounds from high-graded burns or trauma are not able to reepithelialize sufficiently, resulting in scar formation, mobility limitations, and cosmetic deformities. In this study, in vitro-constructed tissue replacements are needed. Furthermore, such full-skin equivalents would be helpful as in vivo-like test systems for toxicity, cosmetic, and pharmaceutical testing. Up to date, no skin equivalent is available containing the underlying subcutaneous fatty tissue. In this study, we composed a full-skin equivalent and evaluated three different media for the coculture of mature adipocytes, fibroblasts, and keratinocytes. Therefore, adipocyte medium was supplemented with ascorbyl-2-phosphate and calcium chloride, which are important for successful epidermal stratification (Air medium). This medium was further supplemented with two commercially available factor combinations often used for the in vitro culture of keratinocytes (Air-HKGS and Air-KGM medium). We showed that in all media, keratinocytes differentiated successfully to build a stratified epidermal layer and expressed cytokeratin 10 and 14. Perilipin A-positive adipocytes could be found in all tissue models for up to 14 days, whereas adipocytes in the Air-HKGS and Air-KGM medium seemed to be smaller. Adipocytes in all tissue models were able to release adipocyte-specific factors, whereas the supplementation of keratinocyte-specific factors had a slightly negative effect on adipocyte functionality. The permeability of the epidermis of all models was comparable since they were able to withstand a deep penetration of cytotoxic Triton X in the same manner. Taken together, we were able to compose functional three-layered full-skin equivalents by using the Air medium.
Collapse
Affiliation(s)
- Birgit Huber
- 1 Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart , Stuttgart, Germany
| | - Antonia Link
- 2 Reutlingen University , School of Applied Chemistry, Reutlingen, Germany .,3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| | - Kirstin Linke
- 3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| | - Sandra A Gehrke
- 4 Beiersdorf AG, Research and Development , Hamburg, Germany
| | - Marc Winnefeld
- 4 Beiersdorf AG, Research and Development , Hamburg, Germany
| | - Petra J Kluger
- 2 Reutlingen University , School of Applied Chemistry, Reutlingen, Germany .,3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| |
Collapse
|
35
|
Kim MK, Chon SJ, Jung YS, Kim BO, Noe EB, Yun BH, Cho S, Choi YS, Lee BS, Seo SK. The Relationship between Serum Ferritin Levels and Insulin Resistance in Pre- and Postmenopausal Korean Women: KNHANES 2007-2010. PLoS One 2016; 11:e0157934. [PMID: 27337113 PMCID: PMC4919039 DOI: 10.1371/journal.pone.0157934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/07/2016] [Indexed: 01/25/2023] Open
Abstract
Background Serum ferritin levels increase in postmenopausal women, and they are reported to be linked to major health problems. Here, we investigated the association between serum ferritin levels and insulin resistance (IR) in postmenopausal women. Methods A total of 6632 healthy Korean women (4357 premenopausal and 2275 postmenopausal) who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) in 2007–2010 were enrolled in the study. Serum ferritin values were divided into six groups for the premenopausal and postmenopausal groups. IR and obesity indices were evaluated according to the six serum ferritin groups. Statistical analysis was carried out using SAS software, version 9.2 (SAS Institute Inc., Cary, NC, USA). Results The association between the IR indices and ferritin groups had a higher level of statistical significance in the postmenopausal group than in the premenopausal group. In addition, for the postmenopausal group, the estimates increased significantly in the sixth ferritin group compared to those in the first ferritin group. However, the association between the obesity indices and ferritin levels was not significantly different between the premenopausal and postmenopausal groups. Conclusion Elevated serum ferritin levels were associated with an increased risk of insulin resistance in postmenopausal women.
Collapse
Affiliation(s)
- Min Kyoung Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gil Hospital, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yeon Soo Jung
- Department of Obstetrics and Gynecology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Bo Ok Kim
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Bee Noe
- Seoul Rachel Fertility Center, Seoul, Republic of Korea
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - SiHyun Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress. Annu Rev Nutr 2016; 36:241-73. [PMID: 27146016 DOI: 10.1146/annurev-nutr-071715-050939] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Ingrid Wahl Moen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jakob Bondo Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
37
|
Iron Overload Coordinately Promotes Ferritin Expression and Fat Accumulation in Caenorhabditis elegans. Genetics 2016; 203:241-53. [PMID: 27017620 DOI: 10.1534/genetics.116.186742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/20/2016] [Indexed: 01/22/2023] Open
Abstract
The trace element iron is crucial for living organisms, since it plays essential roles in numerous cellular functions. Systemic iron overload and the elevated level of ferritin, a ubiquitous intracellular protein that stores and releases iron to maintain the iron homeostasis in cells, has long been epidemiologically associated with obesity and obesity-related diseases. However, the underlying mechanisms of this association remain unclear. Here, using Caenorhabditis elegans, we show that iron overload induces the expression of sgk-1, encoding the serum and glucocorticoid-inducible kinase, to promote the level of ferritin and fat accumulation. Mutation of cyp-23A1, encoding a homolog of human cytochrome P450 CYP7B1 that is related to neonatal hemochromatosis, further enhances the elevated expression of ftn-1, sgk-1, and fat accumulation. sgk-1 positively regulates the expression of acs-20 and vit-2, genes encoding homologs of the mammalian FATP1/4 fatty acid transport proteins and yolk lipoproteins, respectively, to facilitate lipid uptake and translocation for storage under iron overload. This study reveals a completely novel pathway in which sgk-1 plays a central role to synergistically regulate iron and lipid homeostasis, offering not only experimental evidence supporting a previously unverified link between iron and obesity, but also novel insights into the pathogenesis of iron and obesity-related human metabolic diseases.
Collapse
|
38
|
Huth C, Beuerle S, Zierer A, Heier M, Herder C, Kaiser T, Koenig W, Kronenberg F, Oexle K, Rathmann W, Roden M, Schwab S, Seissler J, Stöckl D, Meisinger C, Peters A, Thorand B. Biomarkers of iron metabolism are independently associated with impaired glucose metabolism and type 2 diabetes: the KORA F4 study. Eur J Endocrinol 2015; 173:643-53. [PMID: 26294793 DOI: 10.1530/eje-15-0631] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Iron has been suggested to play a role in the etiology of type 2 diabetes mellitus (T2DM). Except for ferritin, evidence is sparse for other markers of iron metabolism that are regulated differently and might act through independent pathways. We therefore investigated the associations of serum ferritin, transferrin, soluble transferrin receptor (sTfR), transferrin saturation (TSAT), sTfR-to-log10ferritin (sTfR-F) index, and iron with impaired glucose metabolism (IGM/'prediabetes'), T2DM, and four continuous glucose and insulin traits. DESIGN AND METHODS Data from 2893 participants of the population-based Cooperative Health Research in the Region of Augsburg (KORA) F4 study (Germany) was investigated through regression analysis. The results were adjusted for socio-demographic, life-style, and obesity measures as well as metabolic, inflammatory, and other iron biomarkers following a step-wise approach. Non-linearity was tested by adding a non-linear spline component to the model. RESULTS Ferritin and transferrin were positively associated with IGM (fourth vs first sex-specific quartile: ferritin odds ratio (OR)=2.08 (95% CI 1.43-3.04) and transferrin OR=1.89 (95% CI 1.32-2.70)), T2DM (ferritin OR=1.98 (95% CI 1.22-3.22) and transferrin OR=2.42 (95% CI 1.54-3.81)), and fasting as well as 2-h glucose. TSAT (OR=0.55 (95% CI 0.34-0.88)) and iron (OR=0.61 (95% CI 0.38-0.97)) were inversely associated with T2DM, sTfR-F-index was inversely associated with IGM (OR=0.67 (95% CI 0.48-0.95)). There was no strong evidence for non-linear relationships. CONCLUSIONS The observed associations of several markers of iron metabolism with hyperglycemia and insulin resistance suggest that iron stores as well as iron-related metabolic pathways contribute to the pathogenesis of IGM and T2DM. Moreover, TSAT levels are decreased in T2DM patients.
Collapse
Affiliation(s)
- Cornelia Huth
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Simon Beuerle
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany
| | - Astrid Zierer
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany
| | - Margit Heier
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Christian Herder
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Thorsten Kaiser
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany
| | - Florian Kronenberg
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany
| | - Konrad Oexle
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany
| | - Wolfgang Rathmann
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Michael Roden
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Sigrid Schwab
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany
| | - Jochen Seissler
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Doris Stöckl
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Christa Meisinger
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Annette Peters
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| | - Barbara Thorand
- Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research (DZD)Partner Düsseldorf, GermanyInstitute of Laboratory MedicineClinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, GermanyDepartment of Internal Medicine II - CardiologyUniversity of Ulm Medical Center, Ulm, GermanyDivision of Genetic EpidemiologyDepartment of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, AustriaInstitute of Human GeneticsKlinikum Rechts der Isar, Technische Universität München, Munich, GermanyInstitute of Biometrics and EpidemiologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyMedizinische Klinik und Poliklinik IVDiabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, München, GermanyClinical Cooperation Group DiabetesLudwig-Maximilians-Universität München and Helmholtz Zentrum München, München, Germany Institute of Epidemiology IIHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764 Neuherberg, GermanyGerman Center for Diabetes Research (DZD)Partner Neuherberg, GermanyMONICA/KORA Myocardial Infarction RegistryCentral Hospital of Augsburg, Augsburg, GermanyInstitute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University
| |
Collapse
|
39
|
Fernández-Real JM, McClain D, Manco M. Mechanisms Linking Glucose Homeostasis and Iron Metabolism Toward the Onset and Progression of Type 2 Diabetes. Diabetes Care 2015; 38:2169-76. [PMID: 26494808 DOI: 10.2337/dc14-3082] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The bidirectional relationship between iron metabolism and glucose homeostasis is increasingly recognized. Several pathways of iron metabolism are modified according to systemic glucose levels, whereas insulin action and secretion are influenced by changes in relative iron excess. We aimed to update the possible influence of iron on insulin action and secretion and vice versa. RESEARCH DESIGN AND METHODS The mechanisms that link iron metabolism and glucose homeostasis in the main insulin-sensitive tissues and insulin-producing β-cells were revised according to their possible influence on the development of type 2 diabetes (T2D). RESULTS The mechanisms leading to dysmetabolic hyperferritinemia and hepatic overload syndrome were diverse, including diet-induced alterations in iron absorption, modulation of gluconeogenesis, heme-mediated disruption of circadian glucose rhythm, impaired hepcidin secretion and action, and reduced copper availability. Glucose metabolism in adipose tissue seems to be affected by both iron deficiency and excess through interaction with adipocyte differentiation, tissue hyperplasia and hypertrophy, release of adipokines, lipid synthesis, and lipolysis. Reduced heme synthesis and dysregulated iron uptake or export could also be contributing factors affecting glucose metabolism in the senescent muscle, whereas exercise is known to affect iron and glucose status. Finally, iron also seems to modulate β-cells and insulin secretion, although this has been scarcely studied. CONCLUSIONS Iron is increasingly recognized to influence glucose metabolism at multiple levels. Body iron stores should be considered as a potential target for therapy in subjects with T2D or those at risk for developing T2D. Further research is warranted.
Collapse
Affiliation(s)
- José Manuel Fernández-Real
- University Hospital of Girona "DrJosepTrueta," Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Girona, Spain
| | - Donald McClain
- Departments of Biochemistry and Internal Medicine, University of Utah, Salt Lake City, UT Veterans Administration Research Service, Salt Lake City VAHCS, Salt Lake City, UT
| | - Melania Manco
- Bambino Gesù Children's Hospital and Research Institute, Research Unit for Multifactorial Disease, Rome, Italy
| |
Collapse
|
40
|
Guglielmi V, D'Adamo M, Bellia A, Ciotto RT, Federici M, Lauro D, Sbraccia P. Iron status in obesity: An independent association with metabolic parameters and effect of weight loss. Nutr Metab Cardiovasc Dis 2015; 25:541-547. [PMID: 25843660 DOI: 10.1016/j.numecd.2015.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Growing evidence has shown that ferritin concentrations are associated with obesity and insulin resistance, and with nonalcoholic fatty liver disease. However, it is unclear whether ferritin is simply an inflammatory marker, or it may directly contribute to the pathogenesis of obesity-related metabolic alterations. The aim of our study was to investigate the independent associations of ferritin levels with metabolic parameters in overweight/obese subjects before and after hypocaloric diet-induced weight changes. METHODS AND RESULTS A sample study of 48 premenopausal, 39 postmenopausal women and 50 men was retrospectively analyzed. Clinical, bioimpedentiometry and biochemical data from baseline evaluations and after 3, 6 and 12 months of hypocaloric diet were collected. In the whole sample study, the baseline values of ferritin concentrations were positively correlated with body mass index (BMI) (r = 0.21, p < 0.05) and mass body fat (MBF) (r = 0.26, p < 0.05), whereas the serum iron level was negatively correlated with MBF (r = -0.29, p < 0.05). In premenopausal women, BMI-adjusted ferritin concentrations were negatively associated with high-density lipoprotein-cholesterol and positively related with triglycerides and aspartate aminotransferase. Moreover, the quantitative ferritin reduction at 12 months was positively associated with the relative reduction of BMI (r = 0.34, p < 0.05). Finally, the association between changes of alanine aminotransferase and ferritin levels at 12 months from baseline turned out to be independent of respective BMI changes (β = 0.31, p < 0.05). CONCLUSION In obesity, ferritin, putatively entailing increased iron storage, is independently associated with lipid derangements and transaminase levels, and the association with the latter persists after weight changes.
Collapse
Affiliation(s)
- V Guglielmi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - M D'Adamo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - A Bellia
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - R T Ciotto
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - M Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - D Lauro
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - P Sbraccia
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
41
|
Abstract
OBJECTIVE Iron participates in several mechanisms involving inflammation and innate immunity, yet the dysregulation of its homeostasis is a major cause of metabolic syndrome. Adipocytes should play a major role in iron metabolism, as an impairment in iron turnover is closely related to insulin resistance, obesity, and type 2 diabetes. The aim of this study was to investigate the role of iron in an in vitro-inflamed adipocyte model. METHODS Gene expression of tumor necrosis factor-α, interleukin-6, inflammatory chemokines (CCL3, CCL4, and CXCL12), and molecules involved in iron metabolism were evaluated in an in vitro mouse 3T3-L1 cell model. Cells underwent treatment with FeSO4 heptahydrate and lipopolysaccharide (LPS) stimulation. Toll-like receptor 4 (TLR4) membrane expression, lipid droplet immunohystochemistry, and lipolysis were also evaluated. RESULTS Iron sulphate heptahydrate elicited gene expression of hepcidin, hemojuvelin, and ferroportin at different time courses. Additionally, it activated lipolysis but did not trigger any adipokine gene expression. When cells treated with physiological doses of iron were also stimulated with LPS, an enhancement in the LPS-induced gene expression of cytokines and chemokines was observed. The enhancement occurred with different patterns depending on different time courses and investigated genes, showing its maximal effect for IL-6 gene expression. CONCLUSIONS FeSO4 heptahydrate at a relatively physiological dose, induced gene expression of iron modulatory proteins and also enhanced RNA transcripts of several inflammatory cytokines and chemokines through a priming/synergistic mechanism involving membrane TLR4.
Collapse
|
42
|
Wlazlo N, van Greevenbroek MMJ, Ferreira I, Jansen EHJM, Feskens EJM, van der Kallen CJH, Schalkwijk CG, Bravenboer B, Stehouwer CDA. Iron metabolism is prospectively associated with insulin resistance and glucose intolerance over a 7-year follow-up period: the CODAM study. Acta Diabetol 2015; 52:337-48. [PMID: 25267079 DOI: 10.1007/s00592-014-0646-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/30/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Several markers of iron metabolism have been associated with insulin resistance (IR) and type 2 diabetes mellitus in cross-sectional studies. However, prospective data on these associations are scarce, and it is currently unclear in which tissues iron metabolism may contribute to IR. Therefore, we investigated whether markers of iron metabolism were associated with IR in muscle, liver, and adipocytes, and with glucose intolerance over a 7-year follow-up period. DESIGN AND METHODS Serum ferritin, transferrin, total iron, non-transferrin-bound iron, and transferrin saturation were determined at baseline of a prospective cohort study in 509 individuals (60 % men, age 59 ± 6.9 years, body mass index 28.5 ± 4.3). Both at baseline and after a 7-year follow-up (n = 386), measures of glucose, insulin (during glucose tolerance tests), and non-esterified fatty acids were obtained. Using generalized estimating equations, we investigated associations between baseline iron markers and indices of muscle, liver, and adipocyte insulin resistance (adipocyte IR), as well as glucose intolerance, over the 7-year period. RESULTS Over a 7-year period, baseline serum ferritin (per 10 μg/L increase) was positively associated with homeostasis model assessment insulin resistance (HOMA2-IR) [β = 0.77 % (95 % CI 0.50-1.03)], hepatic insulin resistance (hepatic IR) [β = 0.39 % (0.23-0.55)], adipocyte IR [β = 1.00 % (0.65-1.35)], and AUCglucose [β = 0.32 % (0.18-0.46)] after adjustment for several covariates, including inflammatory markers (all p < 0.001). Similarly, serum transferrin (per 0.1 g/L) was associated with HOMA2-IR [β = 2.66 % (1.55-3.78)], hepatic IR [β = 1.16 % (0.47-1.85)], adipocyte IR [β = 3.75 % (2.27-5.25)], and AUCglucose [β = 1.35 % (0.74-1.96)] over 7 years. CONCLUSIONS Iron metabolism and related factors may contribute to IR in muscle, liver, and adipocytes, eventually leading to impaired glucose metabolism and hyperglycaemia.
Collapse
Affiliation(s)
- Nick Wlazlo
- Department of Internal Medicine, Catharina Hospital, Eindhoven, The Netherlands,
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aigner E, Weiss G, Datz C. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World J Hepatol 2015; 7:177-188. [PMID: 25729473 PMCID: PMC4342600 DOI: 10.4254/wjh.v7.i2.177] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/12/2014] [Accepted: 12/31/2014] [Indexed: 02/06/2023] Open
Abstract
Elevated iron stores as indicated by hyperferritinemia with normal or mildly elevated transferrin saturation and mostly mild hepatic iron deposition are a characteristic finding in subjects with non-alcoholic fatty liver disease (NAFLD). Excess iron is observed in approximately one third of NAFLD patients and is commonly referred to as the “dysmetabolic iron overload syndrome”. Clinical evidence suggests that elevated body iron stores aggravate the clinical course of NAFLD with regard to liver-related and extrahepatic disease complications which relates to the fact that excess iron catalyses the formation of toxic hydroxyl-radicals subsequently resulting in cellular damage. Iron removal improves insulin sensitivity, delays the onset of type 2 diabetes mellitus, improves pathologic liver function tests and likewise ameliorates NAFLD histology. Several mechanisms contribute to pathologic iron accumulation in NAFLD. These include impaired iron export from hepatocytes and mesenchymal Kupffer cells as a consequence of imbalances in the concentrations of iron regulatory factors, such as hepcidin, cytokines, copper or other dietary factors. This review summarizes the knowledge about iron homeostasis in NAFLD and the rationale for its therapeutic implications.
Collapse
|
44
|
Hubler MJ, Peterson KR, Hasty AH. Iron homeostasis: a new job for macrophages in adipose tissue? Trends Endocrinol Metab 2015; 26:101-9. [PMID: 25600948 PMCID: PMC4315734 DOI: 10.1016/j.tem.2014.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/29/2022]
Abstract
Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron-handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity.
Collapse
Affiliation(s)
- Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristin R Peterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
45
|
Rumberger JM, Arch JRS, Green A. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ 2014; 2:e611. [PMID: 25320679 PMCID: PMC4193401 DOI: 10.7717/peerj.611] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022] Open
Abstract
We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 µM) also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK) activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK) phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and tumor necrosis factor-alpha-(TNF-α) mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α– , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH) with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC.
Collapse
Affiliation(s)
- John M Rumberger
- Bassett Healthcare , Cooperstown, NY , USA ; Clore Laboratory, University of Buckingham , Buckingham , UK
| | | | - Allan Green
- Department of Chemistry and Biochemistry, SUNY Oneonta , Oneonta, NY , USA
| |
Collapse
|
46
|
Orr JS, Kennedy A, Anderson-Baucum EK, Webb CD, Fordahl SC, Erikson KM, Zhang Y, Etzerodt A, Moestrup SK, Hasty AH. Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes 2014; 63:421-32. [PMID: 24130337 PMCID: PMC3900546 DOI: 10.2337/db13-0213] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.
Collapse
Affiliation(s)
- Jeb S. Orr
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Arion Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Emily K. Anderson-Baucum
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Corey D. Webb
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Steve C. Fordahl
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC
| | - Yaofang Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Corresponding author: Alyssa H. Hasty,
| |
Collapse
|
47
|
Santos Moreira J, Melo ASCPD, Noites A, Couto MF, Melo CAD, Adubeiro NCFDA. Plaster body wrap: effects on abdominal fat. Integr Med Res 2013; 2:151-156. [PMID: 28664067 PMCID: PMC5481704 DOI: 10.1016/j.imr.2013.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/21/2013] [Accepted: 09/27/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Abdominal fat is associated with metabolic disorders, leading to cardiovascular risk factors and numerous diseases. This study aimed to analyze the effect of plaster body wrap in combination with aerobic exercise on abdominal fat. METHODS Nineteen female volunteers were randomly divided into intervention group (IG; n = 10) performing aerobic exercise with plaster body wrap, and control group (CG; n = 9) performing only exercise. Subcutaneous and visceral fat were measured using ultrasound; subcutaneous fat was also estimated on analysis of skinfolds and abdominal perimeters. RESULTS At the end of the 10-sessions protocol, the IG demonstrated a significant decrease (p ≤ 0.05) in subcutaneous fat at the left anterior superior iliac spine (ASIS) level and in iliac crest perimeter measurements. A large intervention effect size strength (0.80) was found in subcutaneous fat below the navel and a moderate effect size strength on the vertical abdominal skinfold (0.62) and the perimeter of the most prominent abdominal point (0.57). Comparing the initial and final data of each group, the IG showed a significant decrease in numerous variables including visceral and subcutaneous fat above and below the navel measured by ultrasound (p ≤ 0.05). CONCLUSION Plaster body wrap in combination with aerobic exercise seems to be effective for abdominal fat reduction.
Collapse
Affiliation(s)
- Juliana Santos Moreira
- Department of Physiotherapy, School of Allied Health Sciences, Oporto Polytechnic Institute, Vila Nova de Gaia, Portugal
| | | | - Andreia Noites
- Department of Physiotherapy, School of Allied Health Sciences, Oporto Polytechnic Institute, Vila Nova de Gaia, Portugal
| | - Miriam Faria Couto
- Department of Physiotherapy, School of Allied Health Sciences, Oporto Polytechnic Institute, Vila Nova de Gaia, Portugal
| | - Cristina Argel de Melo
- Department of Physiotherapy, School of Allied Health Sciences, Oporto Polytechnic Institute, Vila Nova de Gaia, Portugal
| | | |
Collapse
|
48
|
Westerink J, Olijhoek JK, Koppen A, Faber DR, Kalkhoven E, Monajemi H, van Asbeck BS, van der Graaf Y, Visseren FLJ. The relation between body iron stores and adipose tissue function in patients with manifest vascular disease. Eur J Clin Invest 2013; 43:1240-9. [PMID: 24245570 DOI: 10.1111/eci.12165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/21/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND We investigated whether plasma ferritin levels through the pro-inflammatory effects of free iron are associated with adipose tissue dysfunction in a relevant population of patients with manifest vascular disease who would potentially benefit the most from further aetiological insights. MATERIALS AND METHODS In a cohort of 355 patients with vascular diseases, the association between plasma ferritin and adiponectin levels was quantified using linear regression analysis. Interleukin-6 and adiponectin levels were measured in medium from pre-adipocytes and adipocytes after incubation with increasing concentrations of Fe(III)-citrate and after co-incubation with iron chelators or radical scavengers. RESULTS Increasing ferritin plasma concentrations were not related to plasma adiponectin levels in patients without (β -0·13; 95% CI -0·30 to 0·04) or with the metabolic syndrome (β -0·04; 95% CI -0·17 to 0·10). Similar results were found in patients who developed a new cardiovascular event in the follow-up period. In vitro, incubation with increasing concentrations of Fe(III)-citrate-induced inflammation in pre-adipocyte cultures as witnessed by increased IL-6 secretion at 30 μm Fe(III)-citrate vs. control (500 ± 98 pg/mL vs. 194 ± 31 pg/mL, P = 0·03). Co-incubation of pre-adipocytes with iron chelators or radical scavengers prevented this inflammatory response. Incubation of adipocytes with 30 μm Fe(III)-citrate did not influence adiponectin secretion compared with control. CONCLUSIONS In patients with vascular disease, there is no association between plasma ferritin and adiponectin levels. In vitro, free iron induces an inflammatory response in pre-adipocytes, but not in adipocytes. This response was blocked by co-incubation with iron chelators or radical scavengers. Adiponectin secretion by adipocytes was not influenced by free iron.
Collapse
Affiliation(s)
- Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Juanola-Falgarona M, Cándido-Fernández J, Salas-Salvadó J, Martínez-González MA, Estruch R, Fiol M, Arija-Val V. Association between serum ferritin and osteocalcin as a potential mechanism explaining the iron-induced insulin resistance. PLoS One 2013; 8:e76433. [PMID: 24167545 PMCID: PMC3805539 DOI: 10.1371/journal.pone.0076433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Increased iron stores are associated with increased risk of type 2 diabetes, however, the mechanisms underlying these associations are poorly understood. Because a reduction of circulating osteocalcin levels after iron overload have been demonstrated in cell cultures, and osteocalcin is related to glucose and insulin metabolism, the iron-induced osteocalcin reductions could contribute to explain the role of iron metabolism in the development of type 2 diabetes mellitus. OBJECTIVE To analyzed the associations between serum total and uncarboxylated osteocalcin and adiponectin concentrations with serum ferritin and soluble transferrin receptor (sTfR) in elderly subjects. DESIGN We evaluated a total of 423 subjects from the PREDIMED cohort in a population-based cross-sectional analysis. Extensive clinical, nutritional and laboratory measurements, including total and uncarboxylated osteocalcin, adiponectin, ferritin and sTfR were recorded. RESULTS Serum ferritin was positively correlated with increased glucose and insulin circulating levels but also with HOMA-IR, and was inversely associated with total osteocalcin and adiponectin. A regression analysis revealed that serum ferritin and transferrin receptor levels were significantly associated with a decrease in total and uncarboxylated osteocalcin. Serum sTfR levels were associated with lower uncarboxylated osteocalcin levels in the whole-study subjects and remained significant only in the IFG (impaired fasting glucose) individuals. CONCLUSIONS We described, for the first time, an inverse association between serum ferritin and sTfR with osteocalcin and extend previous results on adiponectin, thus supporting that factors related to iron metabolism could contribute to the insulin resistance and the development of type 2 diabetes mellitus. TRIAL REGISTRATION Controlled-Trials.com ISRCTN35739639 <http://www.controlled-trials.com/ISRCTN35739639>.
Collapse
Affiliation(s)
- Martí Juanola-Falgarona
- Human Nutrition Unit and Preventive Medicine Unit, Faculty of Medicine and Health Sciences, IISPV, Universitat Rovira i Virgili, Reus, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - José Cándido-Fernández
- Human Nutrition Unit and Preventive Medicine Unit, Faculty of Medicine and Health Sciences, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit and Preventive Medicine Unit, Faculty of Medicine and Health Sciences, IISPV, Universitat Rovira i Virgili, Reus, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- * E-mail: (MB); (JS-S)
| | - Miguel A. Martínez-González
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Ramón Estruch
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Miquel Fiol
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- University Institute for Health Sciences Investigation, Palma de Mallorca, Spain
| | - Victoria Arija-Val
- Human Nutrition Unit and Preventive Medicine Unit, Faculty of Medicine and Health Sciences, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Mònica Bulló
- Human Nutrition Unit and Preventive Medicine Unit, Faculty of Medicine and Health Sciences, IISPV, Universitat Rovira i Virgili, Reus, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- * E-mail: (MB); (JS-S)
| | | |
Collapse
|
50
|
Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab 2013; 17:329-41. [PMID: 23473030 PMCID: PMC3648340 DOI: 10.1016/j.cmet.2013.02.007] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/03/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023]
Abstract
Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions-hereditary hemochromatosis and thalassemia-but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β cell failure and insulin resistance. Iron also regulates metabolism in most tissues involved in fuel homeostasis, with the adipocyte in particular serving an iron-sensing role. The underlying molecular mechanisms mediating these effects are numerous and incompletely understood but include oxidant stress and modulation of adipokines and intracellular signal transduction pathways.
Collapse
Affiliation(s)
- Judith A Simcox
- Departments of Medicine and Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | |
Collapse
|