1
|
Schuppelius B, Schüler R, Pivovarova-Ramich O, Hornemann S, Busjahn A, Machann J, Kruse M, Park SQ, Kabisch S, Csanalosi M, Ost AC, Pfeiffer AFH. Alterations in Glucagon Levels and the Glucagon-to-Insulin Ratio in Response to High Dietary Fat or Protein Intake in Healthy Lean Adult Twins: A Post Hoc Analysis. Nutrients 2024; 16:3905. [PMID: 39599691 PMCID: PMC11597242 DOI: 10.3390/nu16223905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Emerging data support evidence of the essential role of glucagon for lipid metabolism. However, data on the role of dietary fat intake for glucagon secretion is limited. This analysis investigated whether altering nutritional fat intake affects glucagon levels in healthy subjects. Methods: A total of 92 twins (age: 31 ± 14 years, BMI: 23 ± 3 kg/m2) consumed two 6-week diets: first a low-fat, high-carbohydrate diet (LFD) followed by an isocaloric high-fat, low-carbohydrate diet (HFD). In total, 24 twins (age: 39 ± 15 years, BMI: 24 ± 2 kg/m2) continued with a high-protein diet (HPD). Clinical investigations were performed after 6 weeks of the LFD, after 1 and 6 weeks of the HFD and after 6 weeks of the HPD. Results: The LFD caused a significant decrease in fasting glucagon (-27%, p < 0.001) compared to baseline. After 6 weeks of the HFD, glucagon increased (117%, p < 0.001 vs. LFD), while free fatty acids decreased. Six weeks of the HPD further increased glucagon levels (72%, p = 0.502 vs. HFD), although fasting amino acid levels remained constant. Fasting insulin and HOMA-IR moderately increased after one week of the HFD, while six weeks of the HPD significantly decreased both. The fasting glucagon-to-insulin ratio decreased during the LFD (p < 0.001) but increased after the HFD (p < 0.001) and even further increased after the HPD (p = 0.018). Liver fat, triglycerides and blood glucose did not increase during the HFD. The heritability of glucagon levels was 45% with the LFD. Conclusions: An HFD increases glucagon levels and the glucagon-to-insulin ratio under isocaloric conditions compared to an LFD in healthy lean subjects. This rise in glucagon may represent a metabolic response to prevent hepatic steatosis, as glucagon increases have been previously shown to induce hepatic fat oxidation.
Collapse
Affiliation(s)
- Bettina Schuppelius
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Olga Pivovarova-Ramich
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Molecular Metabolism and Precision Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Andreas Busjahn
- HealthTwiSt GmbH, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Geissweg 3, 72076 Tübingen, Germany
| | - Michael Kruse
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Soyoung Q. Park
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Neuroscience Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Marta Csanalosi
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anne-Cathrin Ost
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| |
Collapse
|
2
|
Fureman AL, Bladh M, Carlsson A, Forsander G, Lilja M, Ludvigsson J, Samuelsson U, Särnblad S, Lind T. Partial Clinical Remission of Type 1 Diabetes in Swedish Children: A Longitudinal Study from the Swedish National Quality Register (SWEDIABKIDS) and the Better Diabetes Diagnosis (BDD) Study. Diabetes Technol Ther 2024; 26:851-861. [PMID: 38842902 DOI: 10.1089/dia.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Aims/Hypotheses: To investigate the frequency and characteristics of partial remission in Swedish children with type 1 diabetes and whether the insulin delivery method, that is, continuous subcutaneous insulin infusion (CSII) or multiple daily injections (MDIs), affects incidence and duration of this period, 2007-2011. Factors that increase the proportion of subjects who enter partial remission and extend this period can improve long-term metabolic control and reduce the risk of severe hypoglycemia, improve quality of life, and, in the long run, reduce late complications. Methods: Longitudinal data from 2007 to 2020 were extracted from the Swedish National Quality Register (SWEDIABKIDS) with all reported newly diagnosed children. Data on C-peptide from the participants in the Better Diabetes Diagnosis study from 2007 to 2010 were used. The definition of partial remission was insulin dose-adjusted HbA1c: HbA1c (%) + [4 × total daily insulin dose (U/kg/day)] ≤9. Results: Of the 3887 patients, 56% were boys. More boys than girls were in partial remission throughout the follow-up period until 24 months after diabetes onset. Fewer children 0-6 years old had partial remission at 3 and 12 months but not at 24 months compared with older age-groups. A larger proportion of patients using CSII at 12 and 24 months remained in partial remission compared with those with MDI (37% vs. 33%, P = 0.02 and 31% vs. 27%, P = 0.01, respectively). The level of C-peptide was higher in the group with partial remission and mean HbA1c was lower (both P < 0.001). Partial remission at 12 months after diabetes onset was associated with CSII (odds ratio [OR]: 1.39, confidence interval [CI]:1.13, 1.71), shorter diabetes duration (OR: 0.80, CI: 0.76, 0.84), and male sex (OR: 1.23, CI: 1.04, 1.46). Conclusions/Interpretation: Insulin through MDI, longer duration of diabetes, and female sex were associated with lower frequency of partial remission. Use of CSII seems to contribute to longer partial remission among Swedish children with type 1 diabetes.
Collapse
Affiliation(s)
- Anna-Lena Fureman
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Marie Bladh
- Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Linköping University, Linköping, Sweden
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund, Lund University, Skånes University Hospital, Lund, Sweden
| | - Gun Forsander
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital and Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Lilja
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development, Östersund, Umeå University, Umea, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stefan Särnblad
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, and Department of Pediatrics, University Hospital Örebro, Örebro, Sweden
| | - Torbjörn Lind
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Chang L, Liu Y, Gu Y, Yan S, Ding L, Liu M, He Q. Inadequate Glucagon Suppression During OGTT in Prediabetes: A Systematic Review and Meta-analysis. J Clin Endocrinol Metab 2024; 109:2673-2680. [PMID: 38963886 DOI: 10.1210/clinem/dgae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
CONTEXT Glucagon plays a role in the development of type 2 diabetes, yet its role in prediabetes (preDM) remains uncertain. OBJECTIVE To evaluate glucagon levels in the fasting state and its response to glucose inhibition in preDM through meta-analysis. METHODS A systematic search across Pubmed, Embase, Web of Science, and Cochrane Library identified studies assessing glucagon levels during 75 g oral glucose tolerance test (OGTT) in both preDM and normal glucose tolerance (NGT) cohorts. Data on glucagon, glucose, and insulin were pooled using a random-effect model. RESULTS Although glucagon levels decreased in both preDM and NGT groups upon glucose challenge, glucagon levels at 0 hours, 0.5 hours, 1 hour, and 1.5 hours in preDM were significantly higher compared to NGT, despite higher glucose levels at all time points and higher insulin levels at 0 hours, 1 hour, 1.5 hours, and 2 hours during OGTT. Subgroup analysis revealed that in studies using the radioimmunoassay method, glucagon levels in preDM were higher at 0.5 hours and 1 hour than NGT, while in studies using the ELISA method, glucagon levels were similar to those of the NGT group despite higher glucose in preDM compared to NGT. Fasting glucagon level was inadequately suppressed in both impaired glucose tolerance (IGT) and impaired fasting glucose (IFG). Responsiveness to glucose inhibition was preserved in IFG, while glucagon level in IGT group at 0.5 hours after glucose intake was not suppressed and was higher than NGT. CONCLUSION Glucagon was not adequately suppressed during OGTT in preDM. Glucagon dysregulation is a contributing mechanism underlying both IFG and IGT.
Collapse
Affiliation(s)
- Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yian Gu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Siyu Yan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Tocharus C, Sutheerawattananonda M. Hypoglycemic Ability of Sericin-Derived Oligopeptides (SDOs) from Bombyx mori Yellow Silk Cocoons and Their Physiological Effects on Streptozotocin (STZ)-Induced Diabetic Rats. Foods 2024; 13:2184. [PMID: 39063270 PMCID: PMC11276246 DOI: 10.3390/foods13142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with diabetes require daily medication to maintain blood sugar levels. Nevertheless, the long-term use of antidiabetics can lose efficacy and cause degeneration in some patients. For long-term diabetes care, integrating natural dietary foods and medicine is being considered. This study investigated the impact of SDOs on blood sugar levels and their physiological effects on diabetic rats. We induced diabetes in male Wistar rats with STZ (50 mg/kg) and then administered an oral glucose tolerance test to determine the SDO dosage comparable to glibenclamide. The rats were divided into nine groups: normal, diabetic, and diabetic with insulin (10 U/kg), glibenclamide (0.6 mg/kg), bovine serum albumin (BSA; 200 mg/kg), soy protein isolate (200 mg/kg), or SDOs (50, 100, and 200 mg/kg). Diabetic rats administered SDOs had a higher body weight and serum insulin but a lower blood sugar than diabetic control rats. Biochemical assays indicated lower AST/SGOT, ALT/SGPT, BUN, and triglycerides but higher HDL in the SDO groups. Immunohistochemistry showed that SDOs reduced damaged islet cells, increased beta-cell size, and improved insulin levels while decreasing alpha cell size and glucagon. The vascular effects of SDOs were like those of normal control treatment and insulin treatment in diabetic rats. SDOs, a yellow silk protein, show potential for long-term diabetes care.
Collapse
Affiliation(s)
- Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Manote Sutheerawattananonda
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Andreozzi F, Mancuso E, Rubino M, Salvatori B, Morettini M, Monea G, Göbl C, Mannino GC, Tura A. Glucagon kinetics assessed by mathematical modelling during oral glucose administration in people spanning from normal glucose tolerance to type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1376530. [PMID: 38681771 PMCID: PMC11045965 DOI: 10.3389/fendo.2024.1376530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Background/Objectives Glucagon is important in the maintenance of glucose homeostasis, with also effects on lipids. In this study, we aimed to apply a recently developed model of glucagon kinetics to determine the sensitivity of glucagon variations (especially, glucagon inhibition) to insulin levels ("alpha-cell insulin sensitivity"), during oral glucose administration. Subjects/Methods We studied 50 participants (spanning from normal glucose tolerance to type 2 diabetes) undergoing frequently sampled 5-hr oral glucose tolerance test (OGTT). The alpha-cell insulin sensitivity and the glucagon kinetics were assessed by a mathematical model that we developed previously. Results The alpha-cell insulin sensitivity parameter (named SGLUCA; "GLUCA": "glucagon") was remarkably variable among participants (CV=221%). SGLUCA was found inversely correlated with the mean glycemic values, as well as with 2-hr glycemia of the OGTT. When stratifying participants into two groups (normal glucose tolerance, NGT, N=28, and impaired glucose regulation/type 2 diabetes, IGR_T2D, N=22), we found that SGLUCA was lower in the latter (1.50 ± 0.50·10-2 vs. 0.26 ± 0.14·10-2 ng·L-1 GLUCA/pmol·L-1 INS, in NGT and IGR_T2D, respectively, p=0.009; "INS": "insulin"). Conclusions The alpha-cell insulin sensitivity is highly variable among subjects, and it is different in groups at different glucose tolerance. This may be relevant for defining personalized treatment schemes, in terms of dietary prescriptions but also for treatments with glucagon-related agents.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Mariangela Rubino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe Monea
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Christian Göbl
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
6
|
Kurnikowski A, Salvatori B, Krebs M, Budde K, Eller K, Pascual J, Morettini M, Göbl C, Hecking M, Tura A. Glucometabolism in Kidney Transplant Recipients with and without Posttransplant Diabetes: Focus on Beta-Cell Function. Biomedicines 2024; 12:317. [PMID: 38397919 PMCID: PMC10886874 DOI: 10.3390/biomedicines12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Posttransplant diabetes mellitus (PTDM) is a common complication after kidney transplantation. Pathophysiologically, whether beta-cell dysfunction rather than insulin resistance may be the predominant defect in PTDM has been a matter of debate. The aim of the present analysis was to compare glucometabolism in kidney transplant recipients with and without PTDM. To this aim, we included 191 patients from a randomized controlled trial who underwent oral glucose tolerance tests (OGTTs) 6 months after transplantation. We derived several basic indices of beta-cell function and insulin resistance as well as variables from mathematical modeling for a more robust beta-cell function assessment. Mean ± standard deviation of the insulin sensitivity parameter PREDIM was 3.65 ± 1.68 in PTDM versus 5.46 ± 2.57 in NON-PTDM. Model-based glucose sensitivity (indicator of beta-cell function) was 68.44 ± 57.82 pmol∙min-1∙m-2∙mM-1 in PTDM versus 143.73 ± 112.91 pmol∙min-1∙m-2∙mM-1 in NON-PTDM, respectively. Both basic indices and model-based parameters of beta-cell function were more than 50% lower in patients with PTDM, indicating severe beta-cell impairment. Nonetheless, some defects in insulin sensitivity were also present, although less marked. We conclude that in PTDM, the prominent defect appears to be beta-cell dysfunction. From a pathophysiological point of view, patients at high risk for developing PTDM may benefit from intensive treatment of hyperglycemia over the insulin secretion axis.
Collapse
Affiliation(s)
- Amelie Kurnikowski
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Klemens Budde
- Medizinische Klinik m. S. Nephrologie, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Julio Pascual
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Christian Göbl
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria;
| | - Manfred Hecking
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
- Kuratorium for Dialysis and Kidney Transplantation (KfH) e.V., 63263 Neu-Isenburg, Germany
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy; (B.S.); (A.T.)
| |
Collapse
|
7
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
8
|
Nielsen BU, Mathiesen IHM, Møller R, Krogh-Madsen R, Katzenstein TL, Pressler T, Shaw JAM, Ritz C, Rickels MR, Stefanovski D, Almdal TP, Faurholt-Jepsen D. Characterization of impaired beta and alpha cell function in response to an oral glucose challenge in cystic fibrosis: a cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1249876. [PMID: 37720541 PMCID: PMC10501799 DOI: 10.3389/fendo.2023.1249876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Aims The purpose of the study was to further elucidate the pathophysiology of cystic fibrosis (CF)-related diabetes (CFRD) and potential drivers of hypoglycaemia. Hence, we aimed to describe and compare beta cell function (insulin and proinsulin) and alpha cell function (glucagon) in relation to glucose tolerance in adults with CF and to study whether hypoglycaemia following oral glucose challenge may represent an early sign of islet cell impairment. Methods Adults with CF (≥18 years) were included in a cross-sectional study using an extended (-10, -1, 10, 20, 30, 45, 60, 90, 120, 150, and 180 min) or a standard (-1, 30, 60, and 120 min) oral glucose tolerance test (OGTT). Participants were classified according to glucose tolerance status and hypoglycaemia was defined as 3-hour glucose <3.9 mmol/L in those with normal glucose tolerance (NGT) and early glucose intolerance (EGI). Results Among 93 participants, 67 underwent an extended OGTT. In addition to worsening in insulin secretion, the progression to CFRD was associated with signs of beta cell stress, as the fasting proinsulin-to-insulin ratio incrementally increased (p-value for trend=0.013). The maximum proinsulin level (pmol/L) was positively associated with the nadir glucagon, as nadir glucagon increased 6.2% (95% confidence interval: 1.4-11.3%) for each unit increase in proinsulin. Those with hypoglycaemia had higher 60-min glucose, 120-min C-peptide, and 180-min glucagon levels (27.8% [11.3-46.7%], 42.9% [5.9-92.85%], and 80.3% [14.9-182.9%], respectively) and unaltered proinsulin-to-insulin ratio compared to those without hypoglycaemia. Conclusions The maximum proinsulin concentration was positively associated with nadir glucagon during the OGTT, suggesting that beta cell stress is associated with abnormal alpha cell function in adults with CF. In addition, hypoglycaemia seemed to be explained by a temporal mismatch between glucose and insulin levels rather than by an impaired glucagon response.
Collapse
Affiliation(s)
- Bibi Uhre Nielsen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Hee Mabuza Mathiesen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rikke Møller
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Terese Lea Katzenstein
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tacjana Pressler
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - James A. M. Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christian Ritz
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Darko Stefanovski
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Thomas Peter Almdal
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
9
|
Brown A, Tzanakakis ES. Mathematical modeling clarifies the paracrine roles of insulin and glucagon on the glucose-stimulated hormonal secretion of pancreatic alpha- and beta-cells. Front Endocrinol (Lausanne) 2023; 14:1212749. [PMID: 37645413 PMCID: PMC10461634 DOI: 10.3389/fendo.2023.1212749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction Blood sugar homeostasis relies largely on the action of pancreatic islet hormones, particularly insulin and glucagon. In a prototypical fashion, glucagon is released upon hypoglycemia to elevate glucose by acting on the liver while elevated glucose induces the secretion of insulin which leads to sugar uptake by peripheral tissues. This simplified view of glucagon and insulin does not consider the paracrine roles of the two hormones modulating the response to glucose of α- and β-cells. In particular, glucose-stimulated glucagon secretion by isolated α-cells exhibits a Hill-function pattern, while experiments with intact pancreatic islets suggest a 'U'-shaped response. Methods To this end, a framework was developed based on first principles and coupled to experimental studies capturing the glucose-induced response of pancreatic α- and β-cells influenced by the two hormones. The model predicts both the transient and steady-state profiles of secreted insulin and glucagon, including the typical biphasic response of normal β-cells to hyperglycemia. Results and discussion The results underscore insulin activity as a differentiating factor of the glucagon secretion from whole islets vs. isolated α-cells, and highlight the importance of experimental conditions in interpreting the behavior of islet cells in vitro. The model also reproduces the hyperglucagonemia, which is experienced by diabetes patients, and it is linked to a failure of insulin to inhibit α-cell activity. The framework described here is amenable to the inclusion of additional islet cell types and extrapancreatic tissue cells simulating multi-organ systems. The study expands our understanding of the interplay of insulin and glucagon for pancreas function in normal and pathological conditions.
Collapse
Affiliation(s)
- Aedan Brown
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Genetics, Molecular and Cellular Biology, Tufts University, Boston, MA, United States
- Pharmacology and Drug Development, Tufts University, Boston, MA, United States
- Clinical and Translational Science Institute, Tufts University, Boston, MA, United States
| |
Collapse
|
10
|
Adams MT, Waters BJ, Nimkulrat SD, Blum B. Disrupted glucose homeostasis and glucagon and insulin secretion defects in Robo βKO mice. FASEB J 2023; 37:e23106. [PMID: 37498234 PMCID: PMC10436995 DOI: 10.1096/fj.202200705rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
The axon guidance proteins, Roundabout (Robo) receptors play a critical role in morphogenesis of the islets of Langerhans. Mice with a β cell-selective deletion of Robo (Robo βKO), show severely disrupted spatial architecture of their islets, without defects in β cell differentiation or maturity. We have recently shown that Robo βKO mice have reduced synchronous glucose-stimulated β cell calcium oscillations in their islets in vivo, likely disrupting their pulsatile insulin secretion. Here, we analyze whole-body metabolic regulation in Robo βKO mice. We show that Robo βKO mice have mild defects in glucose homeostasis, and altered glucagon and insulin secretion. However, we did not observe any severe whole-body glucoregulatory phenotype following the disruption of islet architecture in Robo βKO. Our data suggest that islet architecture plays only a mild role in overall glucoregulation.
Collapse
Affiliation(s)
- Melissa T. Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bayley J. Waters
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sutichot D. Nimkulrat
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
11
|
Zhang J, Schäfer SM, Kabisch S, Csanalosi M, Schuppelius B, Kemper M, Markova M, Meyer NMT, Pivovarova-Ramich O, Keyhani-Nejad F, Rohn S, Pfeiffer AFH. Implication of sugar, protein and incretins in excessive glucagon secretion in type 2 diabetes after mixed meals. Clin Nutr 2023; 42:467-476. [PMID: 36857956 DOI: 10.1016/j.clnu.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
AIMS Amino acids powerfully release glucagon but their contribution to postprandial hyperglucagonemia in type 2 diabetes remains unclear. Exogenously applied GIP stimulates, while GLP-1 inhibits, glucagon secretion in humans. However, their role in mixed meals is unclear, which we therefore characterized. METHODS In three experiments, participants with type 2 diabetes and obese controls randomly received different loads of sugars and/or proteins. In the first experiment, participants ingested the rapidly cleaved saccharose (SAC) or slowly cleaved isomaltulose (ISO) which is known to elicit opposite profiles of GIP and GLP-1 secretion. In the second one participants received test meals which contained saccharose or isomaltulose in combination with milk protein. The third set of participants underwent randomized oral protein tests with whey protein or casein. Incretins, glucagon, C-peptide, and insulin were profiled by specific immunological assays. RESULTS 50 g of the sugars alone suppressed glucagon in controls but slightly less in type 2 diabetes patients. Participants with type 2 diabetes showed excessive glucagon responses within 15 min and lasting over 3 h, while the obese controls showed small initial and delayed greater glucagon responses to mixed meals. The release of GIP was significantly faster and greater with SAC compared to ISO, while GLP-1 showed an inverse pattern. The glucagon responses to whey or casein were only moderately increased in type 2 diabetes patients without a left shift of the dose response curve. CONCLUSIONS The rapid hypersecretion of glucagon after mixed meals in type 2 diabetes patients compared to controls is unaffected by endogenous incretins. The defective suppression of glucagon by glucose combined with hypersecretion to protein is required for the exaggerated response. CLINICAL TRIALS NUMBERS NCT03806920, NCT02219295, NCT04564391.
Collapse
Affiliation(s)
- Jiudan Zhang
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sylva Mareike Schäfer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Institute of Nutritional Science, Justus-Liebig University of Giessen, Giessen, Germany
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Marta Csanalosi
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Bettina Schuppelius
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Nina Marie Tosca Meyer
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Olga Pivovarova-Ramich
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Reseach Group Molecular Nutritional Medicine, Dept. of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany; Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
12
|
Laurenti MC, Arora P, Dalla Man C, Andrews JC, Rizza RA, Matveyenko A, Bailey KR, Cobelli C, Vella A. The relationship between insulin and glucagon concentrations in non-diabetic humans. Physiol Rep 2022; 10:e15380. [PMID: 35822422 PMCID: PMC9277417 DOI: 10.14814/phy2.15380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 06/02/2023] Open
Abstract
Abnormal postprandial suppression of glucagon in Type 2 diabetes (T2DM) has been attributed to impaired insulin secretion. Prior work suggests that insulin and glucagon show an inverse coordinated relationship. However, dysregulation of α-cell function in prediabetes occurs early and independently of changes in β-cells, which suggests insulin having a less significant role on glucagon control. We therefore, sought to examine whether hepatic vein hormone concentrations provide evidence to further support the modulation of glucagon secretion by insulin. As part of a series of experiments to measure the effect of diabetes-associated genetic variation in TCF7L2 on islet cell function, hepatic vein insulin and glucagon concentrations were measured at 2-minute intervals during fasting and a hyperglycemic clamp. The experiment was performed on 29 nondiabetic subjects (age = 46 ± 2 years, BMI 28 ± 1 Kg/m2 ) and enabled post-hoc analysis, using Cross-Correlation and Cross-Approximate Entropy (Cross-ApEn) to evaluate the interaction of insulin and glucose. Mean insulin concentrations rose from fasting (33 ± 4 vs. 146 ± 12 pmol/L, p < 0.01) while glucagon was suppressed (96 ± 8 vs. 62 ± 5 ng/L, p < 0.01) during the clamp. Cross-ApEn was used to measure pattern reproducibility in the two hormones using glucagon as control mechanism (0.78 ± 0.03 vs. 0.76 ± 0.03, fasting vs. hyperglycemia) and using insulin as a control mechanism (0.78 ± 0.02 vs. 0.76 ± 0.03, fasting vs. hyperglycemia). Values did not differ between the two scenarios. Cross-correlation analysis demonstrated a small in-phase coordination between insulin and glucagon concentrations during fasting, which inverted during hyperglycemia. This data suggests that the interaction between the two hormones is not driven by either. On a minute-to-minute basis, direct control and secretion of glucagon is not mediated (or restrained) by insulin.
Collapse
Affiliation(s)
- Marcello C. Laurenti
- Division of Endocrinology, Diabetes & MetabolismEndocrine Research Unit, Mayo Clinic, College of Medicine and ScienceRochesterMinnesotaUSA
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical SciencesRochesterMinnesotaUSA
| | - Praveer Arora
- Division of Endocrinology, Diabetes & MetabolismEndocrine Research Unit, Mayo Clinic, College of Medicine and ScienceRochesterMinnesotaUSA
| | - Chiara Dalla Man
- Department of Information EngineeringUniversity of PadovaPadovaItaly
| | - James C. Andrews
- Vascular and Interventional Radiology, Mayo Clinic, College of Medicine and ScienceRochesterMinnesotaUSA
| | - Robert A. Rizza
- Division of Endocrinology, Diabetes & MetabolismEndocrine Research Unit, Mayo Clinic, College of Medicine and ScienceRochesterMinnesotaUSA
| | - Aleksey Matveyenko
- Division of Endocrinology, Diabetes & MetabolismEndocrine Research Unit, Mayo Clinic, College of Medicine and ScienceRochesterMinnesotaUSA
| | - Kent R. Bailey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, College of Medicine and ScienceRochesterMinnesotaUSA
| | - Claudio Cobelli
- Department of Woman and Child's HealthUniversity of PadovaPadovaItaly
| | - Adrian Vella
- Division of Endocrinology, Diabetes & MetabolismEndocrine Research Unit, Mayo Clinic, College of Medicine and ScienceRochesterMinnesotaUSA
| |
Collapse
|
13
|
Ren H, Li Y, Han C, Yu Y, Shi B, Peng X, Zhang T, Wu S, Yang X, Kim S, Chen L, Tang C. Pancreatic α and β cells are globally phase-locked. Nat Commun 2022; 13:3721. [PMID: 35764654 PMCID: PMC9240067 DOI: 10.1038/s41467-022-31373-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells play a crucial role in glucose homeostasis. However, how α and β cells coordinate to produce various Ca2+ oscillation patterns is still elusive. Using a microfluidic device and transgenic mice, we recorded Ca2+ signals from islet α and β cells, and observed heterogeneous Ca2+ oscillation patterns intrinsic to each islet. After a brief period of glucose stimulation, α and β cells’ oscillations were globally phase-locked. While the activation of α cells displayed a fixed time delay of ~20 s to that of β cells, β cells activated with a tunable period. Moreover, islet α cell number correlated with oscillation frequency. We built a mathematical model of islet Ca2+ oscillation incorporating paracrine interactions, which quantitatively agreed with the experimental data. Our study highlights the importance of cell-cell interaction in generating stable but tunable islet oscillation patterns. The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells are critical in glucose homeostasis. Here the authors show that the Ca2+ oscillations of α and β cells are phase-locked, and that the oscillation pattern is tuned by paracrine interactions between α and β cells.
Collapse
Affiliation(s)
- Huixia Ren
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yanjun Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Chengsheng Han
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yi Yu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Bowen Shi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaohong Peng
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Tianming Zhang
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Shufang Wu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Sneppen Kim
- Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Liangyi Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Armour SL, Frueh A, Knudsen JG. Sodium, Glucose and Dysregulated Glucagon Secretion: The Potential of Sodium Glucose Transporters. Front Pharmacol 2022; 13:837664. [PMID: 35237171 PMCID: PMC8882857 DOI: 10.3389/fphar.2022.837664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Diabetes is defined by hyperglycaemia due to progressive insulin resistance and compromised insulin release. In parallel, alpha cells develop dysregulation of glucagon secretion. Diabetic patients have insufficient glucagon secretion during hypoglycaemia and a lack of inhibition of glucagon secretion at higher blood glucose levels resulting in postprandial hyperglucagonaemia, which contributes to the development of hyperglycaemia. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are an efficient pharmacologic approach for the treatment of hyperglycaemia in type 2 diabetes. While SGLT2 inhibitors aim at increasing glycosuria to decrease blood glucose levels, these inhibitors also increase circulating glucagon concentrations. Here, we review recent advances in our understanding of how SGLTs are involved in the regulation of glucagon secretion. Sodium plays an important role for alpha cell function, and a tight regulation of intracellular sodium levels is important for maintaining plasma membrane potential and intracellular pH. This involves the sodium-potassium pump, sodium-proton exchangers and SGLTs. While the expression of SGLT2 in alpha cells remains controversial, SGLT1 seems to play a central role for alpha cell function. Under hyperglycaemic conditions, SGLT1 mediated accumulation of sodium results in alpha cell dysregulation due to altered cellular acidification and ATP production. Taken together, this suggests that SGLT1 could be a promising, yet highly underappreciated drug target to restore alpha cell function and improve treatment of both type 1 and 2 diabetes.
Collapse
Affiliation(s)
| | | | - Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Adams JD, Egan AM, Laurenti MC, Schembri Wismayer D, Bailey KR, Cobelli C, Dalla Man C, Vella A. Insulin secretion and action and the response of endogenous glucose production to a lack of glucagon suppression in nondiabetic subjects. Am J Physiol Endocrinol Metab 2021; 321:E728-E736. [PMID: 34658253 PMCID: PMC8782666 DOI: 10.1152/ajpendo.00284.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes is a disease characterized by impaired insulin secretion and defective glucagon suppression in the postprandial period. We examined the effect of impaired glucagon suppression on glucose concentrations and endogenous glucose production (EGP) at different degrees of insulin secretory impairment. The contribution of anthropometric characteristics, peripheral, and hepatic insulin action to this variability was also examined. To do so, we studied 54 nondiabetic subjects on two occasions in which endogenous hormone secretion was inhibited by somatostatin, with glucagon infused at a rate of 0.65 ng/kg/min, at 0 min to prevent a fall in glucagon (nonsuppressed day) or at 120 min to create a transient fall in glucagon (suppressed day). Subjects received glucose (labeled with [3-3H]-glucose) infused to mimic the systemic appearance of 50-g oral glucose. Insulin was infused to mimic a prandial insulin response in 18 subjects, another 18 received 80% of the dose, and the remaining 18 received 60%. EGP was measured using the tracer-dilution technique. Decreased prandial insulin resulted in greater % increase in peak glucose but not in integrated glucose concentrations attributable to nonsuppressed glucagon. The % change in integrated EGP was unaffected by insulin dose. Multivariate regression analysis, adjusted for age, sex, weight, and insulin dose, did not show a relationship between the EGP response to impaired suppression of glucagon and insulin action as measured at the time of screening by oral glucose tolerance. A similar analysis for hepatic insulin action also did not show a relationship with the EGP response. These data indicate that the effect of impaired glucagon suppression on EGP is independent of anthropometric characteristics and insulin action.NEW & NOTEWORTHY In prediabetes, anthropometric characteristics as well as insulin action do not alter the hepatic response to glucagon. The postprandial suppression or lack of suppression of glucagon secretion is an important factor governing postprandial glucose tolerance independent of insulin secretion.
Collapse
Affiliation(s)
- Jon D Adams
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Health and Human Performance, College of Charleston, Charleston, South Carolina
| | - Aoife M Egan
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Marcello C Laurenti
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Daniel Schembri Wismayer
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kent R Bailey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
16
|
Laurenti MC, Dalla Man C, Varghese RT, Andrews JC, Jones JG, Barosa C, Rizza RA, Matveyenko A, De Nicolao G, Bailey KR, Cobelli C, Vella A. Insulin Pulse Characteristics and Insulin Action in Non-diabetic Humans. J Clin Endocrinol Metab 2021; 106:1702-1709. [PMID: 33606017 PMCID: PMC8344841 DOI: 10.1210/clinem/dgab100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Pulsatile insulin secretion is impaired in diseases such as type 2 diabetes that are characterized by insulin resistance. This has led to the suggestion that changes in insulin pulsatility directly impair insulin signaling. We sought to examine the effects of pulse characteristics on insulin action in humans, hypothesizing that a decrease in pulse amplitude or frequency is associated with impaired hepatic insulin action. METHODS We studied 29 nondiabetic subjects on two occasions. On 1 occasion, hepatic and peripheral insulin action was measured using a euglycemic clamp. The deuterated water method was used to estimate the contribution of gluconeogenesis to endogenous glucose production. On a separate study day, we utilized nonparametric stochastic deconvolution of frequently sampled peripheral C-peptide concentrations during fasting to reconstruct portal insulin secretion. In addition to measuring basal and pulsatile insulin secretion, we used approximate entropy to measure orderliness and Fourier transform to measure the average, and the dispersion of, insulin pulse frequencies. RESULTS In univariate analysis, basal insulin secretion (R2 = 0.16) and insulin pulse amplitude (R2 = 0.09) correlated weakly with insulin-induced suppression of gluconeogenesis. However, after adjustment for age, sex, and weight, these associations were no longer significant. The other pulse characteristics also did not correlate with the ability of insulin to suppress endogenous glucose production (and gluconeogenesis) or to stimulate glucose disappearance. CONCLUSIONS Overall, our data demonstrate that insulin pulse characteristics, considered independently of other factors, do not correlate with measures of hepatic and peripheral insulin sensitivity in nondiabetic humans.
Collapse
Affiliation(s)
- Marcello C Laurenti
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ron T Varghese
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN, USA
| | - James C Andrews
- Vascular and Interventional Radiology, Mayo Clinic, Rochester, MN, USA
| | - John G Jones
- Center for Neurosciences, University of Coimbra, Coimbra, Portugal
| | - Cristina Barosa
- Center for Neurosciences, University of Coimbra, Coimbra, Portugal
| | - Robert A Rizza
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Aleksey Matveyenko
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN, USA
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Giuseppe De Nicolao
- Department of Computer Engineering and Systems Science, University of Pavia, Pavia, Italy
| | - Kent R Bailey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN, USA
- Correspondence: Adrian Vella MD, Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First ST SW, 5–194 Joseph, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Xu SY, Zhang Z, Liu CY, Guo QY, Lu B, Gu P, Shao JQ. Association between time in range, a novel measurement of glycemic control and islet secretory function in chinese patients with type 2 diabetes mellitus-An observational study. Diabetes Res Clin Pract 2021; 173:108684. [PMID: 33539867 DOI: 10.1016/j.diabres.2021.108684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
AIMS To explore the association between dynamic islet secretory function and TIR (time in range), a new valuable metric of glycemic control in type 2 diabetes (T2D). METHODS In this observational study 256 patients with type 2 diabetes were included and continuous glucose monitoring system (CGMS) were applied to monitor blood glucose and also the calculation of TIR [the time spent in an individual's target glucose range (usually 3.9-10 mmol/L)]. The participants were divided into 3 groups according to the tertiles of TIR, 85 cases with TIR ≥ 65.05% (T1 group), 86 cases with 41.84 < TIR ≤ 65.05% (T2 group) and 85 cases with TIR < 41.84% (T3 group). Serum glucagon (GLA0h, GLA0.5h, GLA1h, GLA2h, GLA3h), C-peptide (Cp0h, Cp0.5h, Cp1h, Cp2h, Cp3h) concentration at different time points were measured after a 100 g standard steamed buns meal test to assess the pancreatic alpha cell and beta cell function. Spearman correlation analysis and multivariate linear stepwise regression analysis were adopted for statistical analysis. RESULTS The average age and diabetes duration of all the participants were separately 56.09 ± 13.8 years and 8.0 (4.0,15.0) years. Compared with patients in T1 group, participants in group T2 and T3 tend to have a lower concentration of C-peptide at all time points, as well as GLA0h, GLA2h and GLA3h (p < 0.05). TIR was positively correlated with C-peptide at different time points, area under the curve of C-peptide in half an hour (AUCCp0.5h), GLA0h, GLA3h, area under the curve of glucagon in half an hour (AUCGLA0.5h)(rs = 0.263, 0.414, 0.510, 0.587, 0.528, 0.360, 0.259, 0.144 and 0.208, respectively, p < 0.05) and was negatively correlated with the increment of serum glucagon from baseline at 0.5 h, 1 h and 2 h after the standard energy loaded(△GLA0.5h, △GLA1h, △GLA2h)(rs = -0.152,-0.172 and -0.203, respectively, p < 0.05). Cp2h, Cp0h and GLA0h were independent factors for TIR (β = 6.558,-6.930, 0.247, respectively, p < 0.01). CONCLUSION Both islet alpha cell and beta cell secretory function have important influence on TIR, a novel vital index of glycemic fluctuation.
Collapse
Affiliation(s)
- Shao-Ying Xu
- Department of Endocrinology, Jinling Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China.
| | - Zhen Zhang
- Department of Endocrinology, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China.
| | - Chun-Yan Liu
- Affiliated Hospital of Jiangnan University, Nanjing, Jiangsu, China.
| | - Qing-Yu Guo
- Department of Endocrinology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu, China.
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, China.
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China.
| | - Jia-Qing Shao
- Department of Endocrinology, Jinling Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Wang J, Wang S, Yang J, Henning SM, Ezzat-Zadeh Z, Woo SL, Qin T, Pan Y, Tseng CH, Heber D, Li Z. Acute Effects of Cinnamon Spice on Post-prandial Glucose and Insulin in Normal Weight and Overweight/Obese Subjects: A Pilot Study. Front Nutr 2021; 7:619782. [PMID: 33553233 PMCID: PMC7859251 DOI: 10.3389/fnut.2020.619782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
Clinical studies and meta-analyses have supported the notion that consuming cinnamon spice long term can have beneficial effects in individuals with normal glucose homeostasis and varying degrees of glucose intolerance including type 2 diabetes. The objective of this study was to evaluate the acute effect of cinnamon on the post-prandial responses to a typical American breakfast in normal and overweight/obese participants (ClinicalTrials.gov registration No. NCT04686552). The consumption of a single dose of 6 g of cinnamon added to oatmeal prepared with milk resulted in a significant reduction of one of our primary outcomes post-prandial insulin response (niAUC0−180min) in overweight/obese participants compared to control consuming breakfast without cinnamon. We also performed exploratory analysis of secondary outcomes. In normal weight participants, we observed a decrease of post-prandial glucagon response (niAUC0−180min and glucagon levels at 60–120 min) and C-peptide response (30 min) comparing breakfast with to without cinnamon. Cinnamon consumption did not change post-prandial glycemic response in normal weight participants, but increased 60 min post-prandial glucose in overweight/obese participants compared to control. In summary, cinnamon consumption differentially affected post-prandial hormonal responses in normal and overweight/obese participants.
Collapse
Affiliation(s)
- Jing Wang
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Sijia Wang
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zahra Ezzat-Zadeh
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shih-Lung Woo
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tianyu Qin
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Pan
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Chi-Hong Tseng
- Department of Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Heber
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Medicine, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA, United States
| |
Collapse
|
19
|
Morettini M, Burattini L, Göbl C, Pacini G, Ahrén B, Tura A. Mathematical Model of Glucagon Kinetics for the Assessment of Insulin-Mediated Glucagon Inhibition During an Oral Glucose Tolerance Test. Front Endocrinol (Lausanne) 2021; 12:611147. [PMID: 33828527 PMCID: PMC8020816 DOI: 10.3389/fendo.2021.611147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/26/2021] [Indexed: 01/29/2023] Open
Abstract
Glucagon is secreted from the pancreatic alpha cells and plays an important role in the maintenance of glucose homeostasis, by interacting with insulin. The plasma glucose levels determine whether glucagon secretion or insulin secretion is activated or inhibited. Despite its relevance, some aspects of glucagon secretion and kinetics remain unclear. To gain insight into this, we aimed to develop a mathematical model of the glucagon kinetics during an oral glucose tolerance test, which is sufficiently simple to be used in the clinical practice. The proposed model included two first-order differential equations -one describing glucagon and the other describing C-peptide in a compartment remote from plasma - and yielded a parameter of possible clinical relevance (i.e., SGLUCA(t), glucagon-inhibition sensitivity to glucose-induced insulin secretion). Model was validated on mean glucagon data derived from the scientific literature, yielding values for SGLUCA(t) ranging from -15.03 to 2.75 (ng of glucagon·nmol of C-peptide-1). A further validation on a total of 100 virtual subjects provided reliable results (mean residuals between -1.5 and 1.5 ng·L-1) and a negative significant linear correlation (r = -0.74, p < 0.0001, 95% CI: -0.82 - -0.64) between SGLUCA(t) and the ratio between the areas under the curve of suprabasal remote C-peptide and glucagon. Model reliability was also proven by the ability to capture different patterns in glucagon kinetics. In conclusion, the proposed model reliably reproduces glucagon kinetics and is characterized by sufficient simplicity to be possibly used in the clinical practice, for the estimation in the single individual of some glucagon-related parameters.
Collapse
Affiliation(s)
- Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
- *Correspondence: Micaela Morettini,
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Christian Göbl
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Giovanni Pacini
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Bo Ahrén
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
20
|
Sandoval D. Updating the Role of α-Cell Preproglucagon Products on GLP-1 Receptor-Mediated Insulin Secretion. Diabetes 2020; 69:2238-2245. [PMID: 33082272 PMCID: PMC7576561 DOI: 10.2337/dbi19-0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
While the field of islet biology has historically focused its attention on understanding β-cell function and the mechanisms by which these cells become dysfunctional with diabetes, there has been a scientific shift toward greater understanding of other endocrine cells of the islet and their paracrine role in regulating the β-cell. In recent years, many questions and new data have come forward regarding the paracrine role of the α-cell and specifically preproglucagon peptides in regulating insulin secretion. The role of intestinally secreted glucagon-like peptide 1 (GLP-1) in regulation of insulin secretion has been questioned, and a physiological role of pancreatic GLP-1 in regulation of insulin secretion has been proposed. In addition, in the last 2 years, a series of studies demonstrated a physiological role for glucagon, acting via the GLP-1 receptor, in paracrine regulation of insulin secretion. Altogether, this work challenges the textbook physiology of both GLP-1 and glucagon and presents a critical paradigm shift for the field. This article addresses these new findings surrounding α-cell preproglucagon products, with a particular focus on GLP-1, in the context of their roles in insulin secretion and consequently glucose metabolism.
Collapse
|
21
|
Saponaro C, Gmyr V, Thévenet J, Moerman E, Delalleau N, Pasquetti G, Coddeville A, Quenon A, Daoudi M, Hubert T, Vantyghem MC, Bousquet C, Martineau Y, Kerr-Conte J, Staels B, Pattou F, Bonner C. The GLP1R Agonist Liraglutide Reduces Hyperglucagonemia Induced by the SGLT2 Inhibitor Dapagliflozin via Somatostatin Release. Cell Rep 2020; 28:1447-1454.e4. [PMID: 31390560 DOI: 10.1016/j.celrep.2019.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/02/2018] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
The newest classes of anti-diabetic agents include sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 receptor (GLP1R) agonists. The SGLT2 inhibitor dapagliflozin reduces glucotoxicity by glycosuria but elevates glucagon secretion. The GLP1R agonist liraglutide inhibits glucagon; therefore, we hypothesize that the cotreatment of dapagliflozin with liraglutide could reduce hyperglucagonemia and hyperglycemia. Here we use five complementary models: human islet cultures, healthy mice, db/db mice, diet-induced obese (DIO) mice, and somatostatin receptor-2 (SSTR2) KO mice. A single administration of liraglutide and dapagliflozin in combination improves glycemia and reduces dapagliflozin-induced glucagon secretion in diabetic mice. Chronic treatment with liraglutide and dapagliflozin produces a sustainable reduction of glycemia compared with each drug alone. Moreover, liraglutide reduces dapagliflozin-induced glucagon secretion by enhancing somatostatin release, as demonstrated by SSTR2 inhibition in human islets and in mice. Collectively, these data provide mechanistic insights into how intra-islet GLP1R activation is critical for the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Chiara Saponaro
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Valéry Gmyr
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Julien Thévenet
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Ericka Moerman
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Nathalie Delalleau
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Gianni Pasquetti
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Anais Coddeville
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Audrey Quenon
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Mehdi Daoudi
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Thomas Hubert
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Marie-Christine Vantyghem
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France; CHU Lille, Clinique Médicale: Endocrinologie Diabétologie Métabolismes, 59000 Lille, France
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, University Toulouse III Paul Sabatier, Toulouse, France; Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, University Toulouse III Paul Sabatier, Toulouse, France; Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Julie Kerr-Conte
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France
| | - Bart Staels
- University of Lille, U1011-EGID, 59000 Lille, France; INSERM, U1011, 59000 Lille, France; CHU Lille, Service Biochimie Automatisée Pathologies des Protéines, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - François Pattou
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France; CHU Lille, Service de Chirurgie Métabolique et Endocrienne, 59000 Lille, France
| | - Caroline Bonner
- University of Lille, U1190-EGID, 59000 Lille, France; INSERM, U1190, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France.
| |
Collapse
|
22
|
Hamasaki H, Morimitsu S. Association of Glucagon With Obesity, Glycemic Control and Renal Function in Adults With Type 2 Diabetes Mellitus. Can J Diabetes 2020; 45:249-254. [PMID: 33129755 DOI: 10.1016/j.jcjd.2020.08.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES In this study, we used a double-antibody sandwich enzyme-linked immunosorbent assay to assess the association between blood glucagon levels and indices of obesity, glycemic control and renal function in patients with type 2 diabetes mellitus (T2DM). METHODS This investigation was a cross-sectional study on inpatients with T2DM who had plasma glucagon levels measured during hospitalization. Associations of fasting glucagon levels (G0), 120-minute postbreakfast plasma glucagon (G120), fasting glucagon/C-peptide ratio (G0/CPR0) and postbreakfast glucagon/C-peptide ratio (G120/CPR120) with clinical data were evaluated using multiple regression analysis. RESULTS A total of 345 patients were enrolled in the study. G0, and G120 were significantly and positively associated with serum C-peptide levels. Moreover, G0 and G120 were positively associated with waist circumference, and G0 was negatively associated with duration of diabetes mellitus. Interestingly, both G0 and G120 were negatively associated with the estimated glomerular filtration rate. In addition, G120/CPR120 was positively associated with duration of diabetes mellitus and glycoalbumin levels. CONCLUSIONS The balance between glucagon and insulin secretion is significantly associated with abdominal obesity and important for maintaining glucose homeostasis. Postprandial hyperglucagonemia could also be related to deterioration of renal function.
Collapse
Affiliation(s)
- Hidetaka Hamasaki
- Hamasaki Clinic, Kagoshima, Japan; Department of Diabetes, Imakiire General Hospital, Kagoshima, Japan.
| | - Shingo Morimitsu
- Department of Diabetes, Imakiire General Hospital, Kagoshima, Japan
| |
Collapse
|
23
|
Omar-Hmeadi M, Lund PE, Gandasi NR, Tengholm A, Barg S. Paracrine control of α-cell glucagon exocytosis is compromised in human type-2 diabetes. Nat Commun 2020; 11:1896. [PMID: 32312960 PMCID: PMC7171169 DOI: 10.1038/s41467-020-15717-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
Glucagon is released from pancreatic α-cells to activate pathways that raise blood glucose. Its secretion is regulated by α-cell-intrinsic glucose sensing and paracrine control through insulin and somatostatin. To understand the inadequately high glucagon levels that contribute to hyperglycemia in type-2 diabetes (T2D), we analyzed granule behavior, exocytosis and membrane excitability in α-cells of 68 non-diabetic and 21 T2D human donors. We report that exocytosis is moderately reduced in α-cells of T2D donors, without changes in voltage-dependent ion currents or granule trafficking. Dispersed α-cells have a non-physiological V-shaped dose response to glucose, with maximal exocytosis at hyperglycemia. Within intact islets, hyperglycemia instead inhibits α-cell exocytosis, but not in T2D or when paracrine inhibition by insulin or somatostatin is blocked. Surface expression of somatostatin-receptor-2 is reduced in T2D, suggesting a mechanism for the observed somatostatin resistance. Thus, elevated glucagon in human T2D may reflect α-cell insensitivity to paracrine inhibition at hyperglycemia. Glucagon is elevated Type-2 diabetes, which contributes to poor glucose control in patients with the disease. Here the authors report that secretion of the hormone is controlled by paracrine inhibition, and that resistance of α-cells to somatostatin can explain hyperglucagonemia in type-2 diabetes.
Collapse
Affiliation(s)
- Muhmmad Omar-Hmeadi
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden
| | - Per-Eric Lund
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden
| | - Nikhil R Gandasi
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden
| | - Anders Tengholm
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden.
| |
Collapse
|
24
|
Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl) 2020; 98:451-467. [PMID: 32067063 DOI: 10.1007/s00109-020-01887-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
26
|
Whitticar NB, Nunemaker CS. Reducing Glucokinase Activity to Enhance Insulin Secretion: A Counterintuitive Theory to Preserve Cellular Function and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:378. [PMID: 32582035 PMCID: PMC7296051 DOI: 10.3389/fendo.2020.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic beta-cells are the only cells in the body that can synthesize and secrete insulin. Through the process of glucose-stimulated insulin secretion, beta-cells release insulin into circulation, stimulating GLUT4-dependent glucose uptake into peripheral tissue. Insulin is normally secreted in pulses that promote signaling at the liver. Long before type 2 diabetes is diagnosed, beta-cells become oversensitive to glucose, causing impaired pulsatility and overstimulation in fasting levels of glucose. The resulting hypersecretion of insulin can cause poor insulin signaling and clearance at the liver, leading to hyperinsulinemia and insulin resistance. Continued overactivity can eventually lead to beta-cell exhaustion and failure at which point type 2 diabetes begins. To prevent or reverse the negative effects of overstimulation, beta-cell activity can be reduced. Clinical studies have revealed the potential of beta-cell rest to reverse new cases of diabetes, but treatments lack durable benefits. In this perspective, we propose an intervention that reduces overactive glucokinase activity in the beta-cell. Glucokinase is known as the glucose sensor of the beta-cell due to its high control over insulin secretion. Therefore, glycolytic overactivity may be responsible for hyperinsulinemia early in the disease and can be reduced to restore normal stimulus-secretion coupling. We have previously reported that reducing glucokinase activity in prediabetic mouse islets can restore pulsatility and enhance insulin secretion. Building on this counterintuitive finding, we review the importance of pulsatile insulin secretion and highlight how normalizing glucose sensing in the beta cell during prediabetic hyperinsulinemia may restore pulsatility and improve glucose homeostasis.
Collapse
Affiliation(s)
- Nicholas B. Whitticar
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH, United States
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Craig S. Nunemaker
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- *Correspondence: Craig S. Nunemaker
| |
Collapse
|
27
|
Insulin Secretion Depends on Intra-islet Glucagon Signaling. Cell Rep 2019; 25:1127-1134.e2. [PMID: 30380405 DOI: 10.1016/j.celrep.2018.10.018] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
The intra-islet theory states that glucagon secretion is suppressed when insulin secretion is stimulated, but glucagon's role in intra-islet paracrine regulation is controversial. This study investigated intra-islet functions of glucagon in mice. We examined glucagon-induced insulin secretion using isolated perfused pancreata from wild-type, GLP-1 receptor (GLP-1R) knockout, diphtheria toxin-induced proglucagon knockdown, β cell-specific glucagon receptor (Gcgr) knockout, and global Gcgr knockout (Gcgr-/-) mice. We found that glucagon stimulates insulin secretion through both Gcgr and GLP-1R. Moreover, loss of either Gcgr or GLP-1R does not change insulin responses, whereas combined blockage of both receptors significantly reduces insulin secretion. Active GLP-1 is identified in pancreatic perfusate from Gcgr-/- but not wild-type mice, suggesting that β cell GLP-1R activation results predominantly from glucagon action. Our results suggest that combined activity of glucagon and GLP-1 receptors is essential for β cell secretory responses, emphasizing a role for paracrine intra-islet glucagon actions to maintain appropriate insulin secretion.
Collapse
|
28
|
Espino J, Rodríguez AB, Pariente JA. Melatonin and Oxidative Stress in the Diabetic State: Clinical Implications and Potential Therapeutic Applications. Curr Med Chem 2019; 26:4178-4190. [PMID: 29637854 DOI: 10.2174/0929867325666180410094149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
All living organisms exhibit circadian rhythms, which govern the majority of biological functions, including metabolic processes. Misalignment of these circadian rhythms increases the risk of developing metabolic diseases. Thus, disruption of the circadian system has been proven to affect the onset of type 2 diabetes mellitus (T2DM). In this context, the pineal indoleamine melatonin is a signaling molecule able to entrain circadian rhythms. There is mounting evidence that suggests a link between disturbances in melatonin production and impaired insulin, glucose, lipid metabolism, and antioxidant capacity. Besides, several genetic association studies have causally associated various single nucleotide polymorphysms (SNPs) of the human MT2 receptor with increased risk of developing T2DM. Taken together, these data suggest that endogenous as well as exogenous melatonin may influence diabetes and associated metabolic disturbances not only by regulating insulin secretion but also by providing protection against reactive oxygen species (ROS) since pancreatic β-cells are very susceptible to oxidative stress due to their low antioxidant capacity.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Ana B Rodríguez
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - José A Pariente
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
29
|
Udoka Nwosu B. Partial Clinical Remission of Type 1 Diabetes Mellitus in Children: Clinical Applications and Challenges with its Definitions. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10310168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The honeymoon phase, or partial clinical remission (PCR) phase, of Type 1 diabetes mellitus (T1DM) is a transitory period that is marked by endogenous insulin production by surviving β cells following a diabetes diagnosis and the introduction of insulin therapy. It is a critical window in the course of the disease that has short and long-term implications for the patient, such as a significant reduction in the risk of long-term complications of T1DM. To promote long-term cardiovascular health in children with newly diagnosed T1DM, three key steps are necessary: the generation of a predictive model for non-remission, the adoption of a user-friendly monitoring tool for remission and non-remission, and the establishment of the magnitude of the early-phase cardiovascular disease risk in these children in objective terms through changes in lipid profile. However, only about 50% of children diagnosed with T1DM experience the honeymoon phase. Accurate and prompt detection of the honeymoon phase has been hampered by the lack of an objective and easily applicable predictive model for its detection at the time of T1DM diagnosis, the complex formulas needed to confirm and monitor PCR, and the absence of a straightforward, user-friendly tool for monitoring PCR. This literature review discusses the most up-to-date information in this field by describing an objective predictive model for non-remission, an easy tool for monitoring remission or non-remission, and objective evidence for the cardiovascular protective effect of PCR in the early phase of the disease. The goal is to present non-remission as an independent clinical entity with significantly poorer long-term prognosis than partial remission.
Collapse
Affiliation(s)
- Benjamin Udoka Nwosu
- Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
30
|
Edgerton DS, Scott M, Farmer B, Williams PE, Madsen P, Kjeldsen T, Brand CL, Fledelius C, Nishimura E, Cherrington AD. Targeting insulin to the liver corrects defects in glucose metabolism caused by peripheral insulin delivery. JCI Insight 2019; 5:126974. [PMID: 30830873 DOI: 10.1172/jci.insight.126974] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peripheral hyperinsulinemia resulting from subcutaneous insulin injection is associated with metabolic defects which include abnormal glucose metabolism. The first aim of this study was to quantify the impairments in liver and muscle glucose metabolism that occur when insulin is delivered via a peripheral vein compared to when it is given through its endogenous secretory route (the hepatic portal vein) in overnight fasted conscious dogs. The second aim was to determine if peripheral delivery of a hepato-preferential insulin analog could restore the physiologic response to insulin that occurs under meal feeding conditions. This study is the first to show that hepatic glucose uptake correlates with insulin's direct effects on the liver under hyperinsulinemic-hyperglycemic conditions. In addition, glucose uptake was equally divided between the liver and muscle when insulin was infused into the portal vein, but when it was delivered into a peripheral vein the percentage of glucose taken up by muscle was 4-times greater than that going to the liver, with liver glucose uptake being less than half of normal. These defects could not be corrected by adjusting the dose of peripheral insulin. On the other hand, hepatic and non-hepatic glucose metabolism could be fully normalized by a hepato-preferential insulin analog.
Collapse
Affiliation(s)
- Dale S Edgerton
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee, USA
| | - Melanie Scott
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee, USA
| | - Ben Farmer
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee, USA
| | - Phillip E Williams
- Vanderbilt University Medical Center, Division of Surgical Research, Nashville, Tennessee, USA
| | - Peter Madsen
- Research and Development, Novo Nordisk A/S, Novo Nordisk Park, Maaleov, Denmark
| | - Thomas Kjeldsen
- Research and Development, Novo Nordisk A/S, Novo Nordisk Park, Maaleov, Denmark
| | - Christian L Brand
- Research and Development, Novo Nordisk A/S, Novo Nordisk Park, Maaleov, Denmark
| | - Christian Fledelius
- Research and Development, Novo Nordisk A/S, Novo Nordisk Park, Maaleov, Denmark
| | - Erica Nishimura
- Research and Development, Novo Nordisk A/S, Novo Nordisk Park, Maaleov, Denmark
| | - Alan D Cherrington
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Abstract
The epidemic of Type 2 diabetes mellitus necessitates development of novel therapeutic and preventative strategies to attenuate expansion of this debilitating disease. Evidence links the circadian system to various aspects of diabetes pathophysiology and treatment. The aim of this review will be to outline the rationale for therapeutic targeting of the circadian system in the treatment and prevention of Type 2 diabetes mellitus and consequent metabolic comorbidities.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Medicine, Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
32
|
Belikov AV. Age-related diseases as vicious cycles. Ageing Res Rev 2019; 49:11-26. [PMID: 30458244 DOI: 10.1016/j.arr.2018.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 10/05/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
The mortality rates of age-related diseases (ARDs) increase exponentially with age. Processes described by the exponential growth function typically involve a branching chain reaction or, more generally, a positive feedback loop. Here I propose that each ARD is mediated by one or several positive feedback loops (vicious cycles). I then identify critical vicious cycles in five major ARDs: atherosclerosis, hypertension, diabetes, Alzheimer's and Parkinson's. I also propose that the progression of ARDs can be halted by selectively interrupting the vicious cycles and suggest the most promising targets.
Collapse
Affiliation(s)
- Aleksey V Belikov
- Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky per., 9, 141701 Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
33
|
Pluschke AM, Williams BA, Zhang D, Anderson ST, Roura E, Gidley MJ. Male grower pigs fed cereal soluble dietary fibres display biphasic glucose response and delayed glycaemic response after an oral glucose tolerance test. PLoS One 2018; 13:e0193137. [PMID: 29494594 PMCID: PMC5832219 DOI: 10.1371/journal.pone.0193137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/05/2018] [Indexed: 01/10/2023] Open
Abstract
Acute and sustained soluble dietary fibre (SDF) consumption are both associated with improved glucose tolerance in humans and animal models (e.g. porcine). However, the effects on glucose tolerance in grower pigs, adapted to diets with a combination of SDF have not been studied previously. In this experiment, cereal SDF wheat arabinoxylan (AX) and oat β-glucan (BG) were fed individually and in combination to determine the effect on glucose tolerance in jugular vein catheterized grower pigs. Five groups of Large White male grower pigs were fed highly digestible diets containing either 10% AX, 10% BG, 5% AX with 5% BG, a model cereal whole wheat flour (WWF), or a control wheat starch diet (WS) with no SDF. Blood was collected via jugular vein catheters over 240 minutes following a feed challenge and an oral glucose tolerance test (OGTT) on two separate days. Postprandial blood samples were used to determine plasma glucose, insulin, non-esterified fatty acids (NEFA), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), peptide tyrosine tyrosine (PYY), ghrelin, glucagon and cortisol concentrations. No dietary effects on glycaemic response were observed following the feed challenge or the OGTT as determined by the area under the curve (AUC). A biphasic glucose and insulin response was detected for all pigs following the OGTT. The current study showed male grower pigs have tight glycaemic control and glucose tolerance regardless of diet. In addition, pigs fed the combined SDF had a reduced GIP response and delayed insulin peak following the feed challenge. Incretin (GLP-1 and GIP) secretion appeared asynchronous reflecting their different enteroendocrine cell locations and response to nutrient absorption.
Collapse
Affiliation(s)
- Anton M. Pluschke
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
- * E-mail: (AP); (MJG)
| | - Barbara A. Williams
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
| | - Dagong Zhang
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
| | - Stephen T. Anderson
- School of Biomedical Science, The University of Queensland, St Lucia Brisbane, Australia
| | - Eugeni Roura
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
| | - Michael J. Gidley
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
- * E-mail: (AP); (MJG)
| |
Collapse
|
34
|
Wewer Albrechtsen NJ. Glucagon receptor signaling in metabolic diseases. Peptides 2018; 100:42-47. [PMID: 29412830 DOI: 10.1016/j.peptides.2017.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023]
Abstract
Glucagon is a peptide hormone secreted from the pancreatic alpha cells in response to hypoglycemia but in some patients with type 2 diabetes a paradoxical hypersecretion results from the intake of glucose. In rodent, antagonizing the actions of glucagon have been shown to be effective for lowering blood glucose levels and this has recently have been solidified in patients with type 2 diabetes. Although the reported increases of liver enzymes, hyperglucagonemia, and alpha cell hyperplasia resulting from glucagon receptor antagonism may potentially limit the clinical applicability of glucagon receptor antagonists, they may serve as an instrumental toolbox for delineating the physiology of glucagon. Agonizing glucagon receptor signaling may be relevant, in particular when combined with glucagon-like peptide-1 receptor analogues in the perspective of body weight lowering therapy. Here, we will focus on new conceptual aspects of glucagon biology and how this may led to new diagnostics and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, and the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
35
|
Mumme L, Breuer TGK, Rohrer S, Schenker N, Menge BA, Holst JJ, Nauck MA, Meier JJ. Defects in α-Cell Function in Patients With Diabetes Due to Chronic Pancreatitis Compared With Patients With Type 2 Diabetes and Healthy Individuals. Diabetes Care 2017; 40:1314-1322. [PMID: 28751547 DOI: 10.2337/dc17-0792] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/03/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetes frequently develops in patients with chronic pancreatitis. We examined the alterations in the glucagon response to hypoglycemia and to oral glucose administration in patients with diabetes due to chronic pancreatitis. RESEARCH DESIGN AND METHODS Ten patients with diabetes secondary to chronic pancreatitis were compared with 13 patients with type 2 diabetes and 10 healthy control subjects. A stepwise hypoglycemic clamp and an oral glucose tolerance test (OGTT) were performed. RESULTS Glucose levels during the OGTT were higher in patients with diabetes and chronic pancreatitis and lower in control subjects (P < 0.0001). Insulin and C-peptide levels were reduced, and the glucose-induced suppression of glucagon was impaired in both groups with diabetes (all P < 0.0001 vs. control subjects). During hypoglycemia, glucagon concentrations were reduced in patients with chronic pancreatitis and with type 2 diabetes (P < 0.05). The increase in glucagon during the clamp was inversely related to the glucose-induced glucagon suppression and positively related to β-cell function. Growth hormone responses to hypoglycemia were lower in patients with type 2 diabetes (P = 0.0002) but not in patients with chronic pancreatitis. CONCLUSIONS α-Cell responses to oral glucose ingestion and to hypoglycemia are disturbed in patients with diabetes and chronic pancreatitis and in patients with type 2 diabetes. The similarities between these defects suggest a common etiology.
Collapse
Affiliation(s)
- Lena Mumme
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Thomas G K Breuer
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Rohrer
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nina Schenker
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Björn A Menge
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jens J Holst
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Nauck
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Kawamori D. Exploring the molecular mechanisms underlying α- and β-cell dysfunction in diabetes. Diabetol Int 2017; 8:248-256. [PMID: 30603330 PMCID: PMC6224887 DOI: 10.1007/s13340-017-0327-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Abstract
Pancreatic islet dysfunction, including impaired insulin secretion in β cells and dysregulated glucagon secretion in α cells, is the chief pathology of diabetes. In β cells, oxidative stress, evoked by chronic hyperglycemia, was found to induce dysfunction of a critical transcription factor, PDX1, caused by its nucleocytoplasmic translocation via interactions with the insulin and JNK signaling pathways and another transcription factor, FOXO1. The significance of α-cell insulin signaling in the physiological and pathological regulation of α-cell biology was demonstrated in α-cell-specific insulin receptor knockout mice, which exhibited dysregulated glucagon secretion. Moreover, a high-glucose load directly induced excessive glucagon secretion in a glucagon-secreting cell line and isolated islets, together with impairment of insulin signaling. These findings indicate that disordered insulin signaling is central to the pathophysiology of islet dysfunction in both α and β cells. On the other hand, certain beneficial effects of GLP-1 on dysfunctional α and β cells indicate that it has therapeutic potential for diabetes patients who exhibit insulin resistance in islets. These studies, involving basic medical research approaches, have-at least in part-clarified the molecular mechanisms underlying α- and β-cell dysfunction in diabetes, and offer important clues that should aid the development of future therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Dan Kawamori
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
37
|
A predictive model for lack of partial clinical remission in new-onset pediatric type 1 diabetes. PLoS One 2017; 12:e0176860. [PMID: 28459844 PMCID: PMC5411061 DOI: 10.1371/journal.pone.0176860] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023] Open
Abstract
IMPORTANCE >50% of patients with new-onset type 1 diabetes (T1D) do not enter partial clinical remission (PCR); early identification of these patients may improve initial glycemic control and reduce long-term complications. AIM To determine whether routinely obtainable clinical parameters predict non-remission in children and adolescents with new-onset T1D. SUBJECTS AND METHODS Data on remission were collected for the first 36 months of disease in 204 subjects of ages 2-14 years with new-onset type 1 diabetes. There were 86 remitters (age 9.1±3.0y; male 57%), and 118 non-remitters (age 7.0±3.1y; male 40.7%). PCR was defined as insulin-dose adjusted hemoglobin A1c of ≤9. RESULTS Non-remission occurred in 57.8% of subjects. Univariable analysis showed that the risk for non-remission was increased 9-fold in patients with 4 diabetes-associated auto-antibodies (OR = 9.90, p = 0.010); 5-fold in patients <5 years old (odds ratio = 5.38, p = 0.032), 3-fold in those with bicarbonate of <15 mg/dL at diagnosis (OR = 3.71, p = 0.008). Combined estimates of risk potential for HC03 and the number of autoantibodies by multivariable analysis, adjusted for BMI standard deviation score, showed HC03 <15 mg/dL with a clinically significant 10-fold risk (OR = 10.1, p = 0.074); and the number of autoantibodies with a 2-fold risk for non-remission (OR = 1.9, p = 0.105). Male sex and older age were associated with decreased risk for non-remission. A receiver-operating characteristic curve model depicting sensitivity by 1-specificity for non-remission as predicted by bicarbonate <15 mg/dL, age <5y, female sex, and >3 diabetes-associated autoantibodies had an area under the curve of 0.73. CONCLUSIONS More than 50% of children and adolescents with new-onset T1D do not undergo partial clinical remission and are thus at an increased risk for long-term complications of diabetes mellitus. A predictive model comprising of bicarbonate <15 mg/dL, age <5y, female sex, and >3 diabetes-associated autoantibodies has 73% power for correctly predicting non-remission in children and adolescents with new-onset T1D. Early identification of these non-remitters may guide the institution of targeted therapy to limit dysglycemia and reduce the prevalence of long-term deleterious complications.
Collapse
|
38
|
Halden TAS, Egeland EJ, Åsberg A, Hartmann A, Midtvedt K, Khiabani HZ, Holst JJ, Knop FK, Hornum M, Feldt-Rasmussen B, Jenssen T. GLP-1 Restores Altered Insulin and Glucagon Secretion in Posttransplantation Diabetes. Diabetes Care 2016; 39:617-24. [PMID: 26908914 DOI: 10.2337/dc15-2383] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/04/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Development of posttransplantation diabetes (PTDM) is characterized by reduced insulin secretion and sensitivity. We aimed to investigate whether hyperglucagonemia could play a role in PTDM and to examine the insulinotropic and glucagonostatic effects of the incretin hormone glucagon-like peptide 1 (GLP-1) during fasting and hyperglycemic conditions, respectively. RESEARCH DESIGN AND METHODS Renal transplant recipients with (n = 12) and without (n = 12) PTDM underwent two separate experimental days with 3-h intravenous infusions of GLP-1 (0.8 pmol/kg/min) and saline, respectively. After 1 h of infusion, a 2-h hyperglycemic clamp (fasting plasma glucose + 5 mmol/L) was established. Five grams of arginine was given as an intravenous bolus 10 min before termination of the clamp. RESULTS Fasting concentrations of glucagon (P = 0.92) and insulin (P = 0.23) were similar between the groups. In PTDM patients, glucose-induced glucagon suppression was significantly less pronounced (maximal suppression from baseline: 43 ± 12 vs. 65 ± 12%, P < 0.001), while first- and second-phase insulin secretion were significantly lower. The PTDM group also exhibited a significantly lower insulin response to arginine (P = 0.01) but similar glucagon and proinsulin responses compared with control subjects. In the preclamp phase, GLP-1 lowered fasting plasma glucose to the same extent in both groups but reduced glucagon only in PTDM patients. During hyperglycemic clamp, GLP-1 reduced glucagon concentrations and increased first- and second-phase insulin secretion in both groups. CONCLUSIONS PTDM is characterized by reduced glucose-induced insulin secretion and attenuated glucagon suppression during a hyperglycemic clamp. Similar to the case in type 2 diabetes, GLP-1 infusion seems to improve (insulin) or even normalize (glucagon) these pathophysiological defects.
Collapse
Affiliation(s)
- Thea A S Halden
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erlend J Egeland
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway Norwegian Renal Registry, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anders Hartmann
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karsten Midtvedt
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hassan Z Khiabani
- Department of Pharmacology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bo Feldt-Rasmussen
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Trond Jenssen
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
39
|
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48:e219. [PMID: 26964835 PMCID: PMC4892884 DOI: 10.1038/emm.2016.6] [Citation(s) in RCA: 509] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed.
Collapse
Affiliation(s)
- Pia V Röder
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| | - Bingbing Wu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Yixian Liu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Weiping Han
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| |
Collapse
|
40
|
Lefèbvre PJ, Paquot N, Scheen AJ. Inhibiting or antagonizing glucagon: making progress in diabetes care. Diabetes Obes Metab 2015; 17:720-5. [PMID: 25924114 DOI: 10.1111/dom.12480] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
Absolute or relative hyperglucagonaemia has been recognized for years in all experimental or clinical forms of diabetes. It has been suggested that excess secretion of glucagon by the islet α cells is a direct consequence of intra-islet insulin secretory defects. Recent studies have shown that knockout of the glucagon receptor or administration of a monoclonal specific glucagon receptor antibody make insulin-deficient type 1 diabetic rodents thrive without insulin. These observations suggest that glucagon plays an essential role in the pathophysiology of diabetes and that targeting the α cell and glucagon are innovative approaches in the management of diabetes. Despite active research and identification of promising compounds, no one selective glucagon antagonist is presently used in the treatment of diabetes. Interestingly, besides insulin, several drugs used today in the management of diabetes appear to exert their effects, in part, by inhibiting glucagon secretion (glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors and, possibly, sulphonylureas) or glucagon action (metformin). The potential risks associated with total glucagon suppression include α-cell hyperplasia, increased mass of the pancreas, increased susceptibility to hepatosteatosis and hepatocellular injury and increased risk of hypoglycaemia, and these should be considered in the search and development of new compounds reducing glucagon receptor signalling. More than 40 years after its initial description, hyperglucagonaemia in diabetes can no longer be ignored or minimized, and its correction represents an attractive way to improve diabetes management.
Collapse
Affiliation(s)
- P J Lefèbvre
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University of Liège, Liège, Belgium
| | - N Paquot
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University of Liège, Liège, Belgium
| | - A J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University of Liège, Liège, Belgium
- Division of Clinical Pharmacology, Department of Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
41
|
Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 2015; 95:513-48. [PMID: 25834231 DOI: 10.1152/physrev.00013.2014] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preproglucagon gene (Gcg) is expressed by specific enteroendocrine cells (L-cells) of the intestinal mucosa, pancreatic islet α-cells, and a discrete set of neurons within the nucleus of the solitary tract. Gcg encodes multiple peptides including glucagon, glucagon-like peptide-1, glucagon-like peptide-2, oxyntomodulin, and glicentin. Of these, glucagon and GLP-1 have received the most attention because of important roles in glucose metabolism, involvement in diabetes and other disorders, and application to therapeutics. The generally accepted model is that GLP-1 improves glucose homeostasis indirectly via stimulation of nutrient-induced insulin release and by reducing glucagon secretion. Yet the body of literature surrounding GLP-1 physiology reveals an incompletely understood and complex system that includes peripheral and central GLP-1 actions to regulate energy and glucose homeostasis. On the other hand, glucagon is established principally as a counterregulatory hormone, increasing in response to physiological challenges that threaten adequate blood glucose levels and driving glucose production to restore euglycemia. However, there also exists a potential role for glucagon in regulating energy expenditure that has recently been suggested in pharmacological studies. It is also becoming apparent that there is cross-talk between the proglucagon derived-peptides, e.g., GLP-1 inhibits glucagon secretion, and some additive or synergistic pharmacological interaction between GLP-1 and glucagon, e.g., dual glucagon/GLP-1 agonists cause more weight loss than single agonists. In this review, we discuss the physiological functions of both glucagon and GLP-1 by comparing and contrasting how these peptides function, variably in concert and opposition, to regulate glucose and energy homeostasis.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
42
|
Patarrão RS, Lautt WW, Macedo MP. Acute glucagon induces postprandial peripheral insulin resistance. PLoS One 2015; 10:e0127221. [PMID: 25961284 PMCID: PMC4427479 DOI: 10.1371/journal.pone.0127221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions.
Collapse
Affiliation(s)
- Rita S. Patarrão
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - W. Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - M. Paula Macedo
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
- APDP-ERC Portuguese Diabetes AssociationEducationand Research Center, Rua do Salitre, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
43
|
Jun LS, Millican RL, Hawkins ED, Konkol DL, Showalter AD, Christe ME, Michael MD, Sloop KW. Absence of glucagon and insulin action reveals a role for the GLP-1 receptor in endogenous glucose production. Diabetes 2015; 64:819-27. [PMID: 25288673 DOI: 10.2337/db14-1052] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The absence of insulin results in oscillating hyperglycemia and ketoacidosis in type 1 diabetes. Remarkably, mice genetically deficient in the glucagon receptor (Gcgr) are refractory to the pathophysiological symptoms of insulin deficiency, and therefore, studies interrogating this unique model may uncover metabolic regulatory mechanisms that are independent of insulin. A significant feature of Gcgr-null mice is the high circulating concentrations of GLP-1. Hence, the objective of this report was to investigate potential noninsulinotropic roles of GLP-1 in mice where GCGR signaling is inactivated. For these studies, pancreatic β-cells were chemically destroyed by streptozotocin (STZ) in Gcgr(-/-):Glp-1r(-/-) mice and in Glp-1r(-/-) animals that were subsequently treated with a high-affinity GCGR antagonist antibody that recapitulates the physiological state of Gcgr ablation. Loss of GLP-1 action substantially worsened nonfasting glucose concentrations and glucose tolerance in mice deficient in, and undergoing pharmacological inhibition of, the GCGR. Further, lack of the Glp-1r in STZ-treated Gcgr(-/-) mice elevated rates of endogenous glucose production, likely accounting for the differences in glucose homeostasis. These results support the emerging hypothesis that non-β-cell actions of GLP-1 analogs may improve metabolic control in patients with insulinopenic diabetes.
Collapse
Affiliation(s)
- Lucy S Jun
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Rohn L Millican
- BioTechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Eric D Hawkins
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Debra L Konkol
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Aaron D Showalter
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Michael E Christe
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - M Dodson Michael
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kyle W Sloop
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| |
Collapse
|
44
|
Cai EP, Luk CT, Wu X, Schroer SA, Shi SY, Sivasubramaniyam T, Brunt JJ, Zacksenhaus E, Woo M. Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action. Diabetologia 2014; 57:2555-65. [PMID: 25249236 DOI: 10.1007/s00125-014-3381-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/25/2014] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus is characterised by beta cell loss and alpha cell expansion. Analogues of glucagon-like peptide-1 (GLP-1) are used therapeutically to antagonise these processes; thus, we hypothesised that the related cell cycle regulators retinoblastoma protein (Rb) and p107 were involved in GLP-1 action. METHODS We used small interfering RNA and adenoviruses to manipulate Rb and p107 expression in insulinoma and alpha-TC cell lines. In vivo we examined pancreas-specific Rb knockout, whole-body p107 knockout and Rb/p107 double-knockout mice. RESULTS Rb, but not p107, was downregulated in response to the GLP-1 analogue, exendin-4, in both alpha and beta cells. Intriguingly, this resulted in opposite outcomes of cell cycle arrest in alpha cells but proliferation in beta cells. Overexpression of Rb in alpha and beta cells abolished or attenuated the effects of exendin-4 supporting the important role of Rb in GLP-1 modulation of cell cycling. Similarly, in vivo, Rb, but not p107, deficiency was required for the beta cell proliferative response to exendin-4. Consistent with this finding, Rb, but not p107, was suppressed in islets from humans with diabetes, suggesting the importance of Rb regulation for the compensatory proliferation that occurs under insulin resistant conditions. Finally, while p107 alone did not have an essential role in islet homeostasis, when combined with Rb deletion, its absence potentiated apoptosis of both alpha and beta cells resulting in glucose intolerance and diminished islet mass with ageing. CONCLUSIONS/INTERPRETATION We found a central role of Rb in the dual effects of GLP-1 in alpha and beta cells. Our findings highlight unique contributions of individual Rb family members to islet cell proliferation and survival.
Collapse
Affiliation(s)
- Erica P Cai
- Toronto General Research Institute, University Health Network, 101 College Street, MaRS Centre/TMDT, Room 10-363, Toronto, ON, M5G 1L7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Niederwanger A, Ciardi C, Tatarczyk T, Khan MI, Hermann M, Mittermair C, Al-Zoairy R, Salzmann K, Pedrini MT. Postprandial lipemia induces pancreatic α cell dysfunction characteristic of type 2 diabetes: studies in healthy subjects, mouse pancreatic islets, and cultured pancreatic α cells. Am J Clin Nutr 2014; 100:1222-31. [PMID: 25332320 DOI: 10.3945/ajcn.114.092023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Type 2 diabetes is associated with pancreatic α cell dysfunction, characterized by elevated fasting plasma glucagon concentrations and inadequate postprandial glucose- and insulin-induced suppression of glucagon secretion. The cause and the underlying mechanisms of α cell dysfunction are unknown. OBJECTIVE Because Western dietary habits cause postprandial lipemia for a major part of a day and, moreover, increase the risk of developing type 2 diabetes, we tested the hypothesis that postprandial lipemia with its characteristic elevation of triglyceride-rich lipoproteins (TGRLs) might cause pancreatic α cell dysfunction. DESIGN In a crossover study with 7 healthy volunteers, 2 experiments using 2 fat-enriched meals were performed on each volunteer; meal 1 was designed to increase plasma concentrations of both TGRLs and nonesterified fatty acids and meal 2 to increase TGRLs only. Intravenous glucose boli were injected at 0800 after an overnight fast and postprandially at 1300, 3 h after ingestion of a fat-enriched meal. Glucagon concentrations were measured throughout the days of the experiments. In addition to the study in humans, in vitro experiments were performed with mouse pancreatic islets and cultured pancreatic alpha TC 1 clone 9 (αTC1c9) cells, which were incubated with highly purified TGRLs. RESULTS In humans, postprandial lipemia increased plasma glucagon concentrations and led to an inadequate glucose- and insulin-induced suppression of glucagon. There was no difference between the 2 meal types. In mouse pancreatic islets and cultured pancreatic αTC1c9 cells, purified postprandial TGRLs induced abnormalities in glucagon kinetics comparable with those observed in humans. The TGRL-induced α cell dysfunction was due to reduced γ-aminobutyric acid A receptor activation in pancreatic α cells. CONCLUSION We concluded that postprandial lipemia induces pancreatic α cell dysfunction characteristic of type 2 diabetes and, therefore, propose that pancreatic α cell dysfunction could be viewed, at least partly, as a postprandial phenomenon.
Collapse
Affiliation(s)
- Andreas Niederwanger
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| | - Christian Ciardi
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| | - Tobias Tatarczyk
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| | - Mohammad I Khan
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| | - Martin Hermann
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| | - Christof Mittermair
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| | - Ramona Al-Zoairy
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| | - Karin Salzmann
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| | - Michael T Pedrini
- From the Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria (AN, CC, TT, MIK, RA-Z, KS, and MTP); KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria (MH); and the Clinical Department of Surgery, Hospital of Barmherzige Brüder, Salzburg, Austria (CM)
| |
Collapse
|
46
|
Ahrén B, Gautier JF, Berria R, Stager W, Aronson R, Bailey CJ. Pronounced reduction of postprandial glucagon by lixisenatide: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2014; 16:861-8. [PMID: 24641271 DOI: 10.1111/dom.12290] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/19/2013] [Accepted: 03/11/2014] [Indexed: 01/03/2023]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) receptor agonists improve islet function and delay gastric emptying in patients with type 2 diabetes mellitus (T2DM). This meta-analysis aimed to investigate the effects of the once-daily prandial GLP-1 receptor agonist lixisenatide on postprandial plasma glucose (PPG), glucagon and insulin levels. METHODS Six randomized, placebo-controlled studies of lixisenatide 20 µg once daily were included in this analysis: lixisenatide as monotherapy (GetGoal-Mono), as add-on to oral antidiabetic drugs (OADs; GetGoal-M, GetGoal-S) or in combination with basal insulin (GetGoal-L, GetGoal-Duo-1 and GetGoal-L-Asia). Change in 2-h PPG and glucose excursion were evaluated across six studies. Change in 2-h glucagon and postprandial insulin were evaluated across two studies. A meta-analysis was performed on least square (LS) mean estimates obtained from analysis of covariance (ANCOVA)-based linear regression. RESULTS Lixisenatide significantly reduced 2-h PPG from baseline (LS mean difference vs. placebo: -4.9 mmol/l, p < 0.001) and glucose excursion (LS mean difference vs. placebo: -4.5 mmol/l, p < 0.001). As measured in two studies, lixisenatide also reduced postprandial glucagon (LS mean difference vs. placebo: -19.0 ng/l, p < 0.001) and insulin (LS mean difference vs. placebo: -64.8 pmol/l, p < 0.001). There was a stronger correlation between 2-h postprandial glucagon and 2-h PPG with lixisenatide than with placebo. CONCLUSIONS Lixisenatide significantly reduced 2-h PPG and glucose excursion together with a marked reduction in postprandial glucagon and insulin; thus, lixisenatide appears to have biological effects on blood glucose that are independent of increased insulin secretion. These effects may be, in part, attributed to reduced glucagon secretion.
Collapse
Affiliation(s)
- B Ahrén
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Malapan K, Chang PC, Huang CK. Metabolic surgery for diabetes mellitus after pancreatectomy. Surg Obes Relat Dis 2013; 10:e43-5. [PMID: 24238731 DOI: 10.1016/j.soard.2013.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Kirubakaran Malapan
- Department of Bariatric and Metabolic International Surgery Center, E-Da Hospital, Kaohsiung City, Taiwan
| | - Po-Chih Chang
- Department of Bariatric and Metabolic International Surgery Center, E-Da Hospital, Kaohsiung City, Taiwan
| | - Chih-Kun Huang
- Department of Bariatric and Metabolic International Surgery Center, E-Da Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|
49
|
Meier JJ, Bonadonna RC. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 2013; 36 Suppl 2:S113-9. [PMID: 23882035 PMCID: PMC3920783 DOI: 10.2337/dcs13-2008] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Juris J Meier
- Division of Diabetology and Gastrointestinal Endocrinology, St. Josef-Hospital, Ruhr-University of Bochum, Bochum, Germany.
| | | |
Collapse
|
50
|
Marathe CS, Rayner CK, Jones KL, Horowitz M. Glucagon-like peptides 1 and 2 in health and disease: a review. Peptides 2013; 44:75-86. [PMID: 23523778 DOI: 10.1016/j.peptides.2013.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 02/07/2023]
Abstract
The gut derived peptides, glucagon-like peptides 1 and 2 (GLP-1 and GLP-2), are secreted following nutrient ingestion. GLP-1 and another gut peptide, glucose-dependent insulinotropic polypeptide (GIP) are collectively referred to as 'incretin' hormones, and play an important role in glucose homeostasis. Incretin secretion shares a complex interdependent relationship with both postprandial glycemia and the rate of gastric emptying. GLP-1 based therapies are now well established in the management of type 2 diabetes, while recent literature has suggested potential applications to treat obesity and protect against cardiovascular and neurological disease. The mechanism of action of GLP-2 is not well understood, but it shows promise as an intestinotropic agent.
Collapse
Affiliation(s)
- Chinmay S Marathe
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia.
| | | | | | | |
Collapse
|