1
|
Jia X, Huang C, Liu F, Dong Z, Liu K. Elongation factor 2 in cancer: a promising therapeutic target in protein translation. Cell Mol Biol Lett 2024; 29:156. [PMID: 39707196 DOI: 10.1186/s11658-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
Aberrant elongation of proteins can lead to the activation of oncogenic signaling pathways, resulting in the dysregulation of oncogenic signaling pathways. Eukaryotic elongation factor 2 (eEF2) is an essential regulator of protein synthesis that precisely elongates nascent peptides in the protein elongation process. Although studies have linked aberrant eEF2 expression to various cancers, research has primarily focused on its structure, highlighting a need for deeper exploration into its molecular functions. In this review, recent advancements in the structure, guanosine triphosphatase (GTPase) activity, posttranslational modifications, regulatory factors, and inhibitors of eEF2 are summarized. These findings provide a comprehensive cognition on the critical role of eEF2 and its potential as a therapeutic target in cancer. Furthermore, this review highlights important unanswered questions that warrant investigation in future research.
Collapse
Affiliation(s)
- Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chuntian Huang
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathology and Pathophysiology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Fangfang Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Raya AI, Vidal A, López I, Rodríguez M, Aguilera-Tejero E, Pineda C. Phosphorus Restriction Prevents Rapamycin-Induced Kidney Damage in Rats. Am J Nephrol 2024:1-10. [PMID: 39383849 DOI: 10.1159/000541411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/08/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION There are conflicting reports about the effect or rapamycin on the kidneys. Rapamycin is known to promote phosphaturia that may be associated to renal injury. METHODS Detailed histopathological studies were performed on the kidneys of rats with normal (control) and reduced (Nx) renal mass that were treated with rapamycin (1.3 mg/kg for 22 days) or placebo. The effect of rapamycin was also evaluated in control and Nx rats fed different amounts of phosphorus: 0.6% P (NP), 1.2% P (HP), and 0.2% P (LP). Quantitative scores of kidney lesions were obtained for interstitial nephritis (IN), tubular damage (TD), and nephrocalcinosis (NC). RESULTS When compared with placebo, rapamycin administration to Nx rats resulted in significant increases in IN (4.17 ± 0.74 vs. 1.51 ± 0.53%) and TD (14.45 ± 1.51 vs. 8.61 ± 1.83%). Rapamycin also increased NC both in control (0.86 ± 0.23 vs. 0.14 ± 0.06%) and Nx (0.86 ± 0.32 vs. 0.15 ± 0.14%) rats. In control rats receiving rapamycin, feeding HP aggravated IN (3.25 ± 0.48%), TD (22.47 ± 4.56%), and NC (3.66 ± 0.75%), while feeding LP prevented development of any renal lesions. In Nx rats treated with rapamycin, HP intake also increased IN (8.95 ± 1.94%), TD (26.86 ± 3.95%), and NC (2.77 ± 0.60%), whereas feeding LP reduced all lesions to lower levels than in rats fed NP. Rapamycin treatment increased fractional excretion of P (FEP), and an excellent correlation between scores for renal lesions and FEP was found. CONCLUSION Rapamycin has deleterious effects on kidney pathology causing lesions that are located mainly at tubular and tubulointerstitial level. Rapamycin-induced kidney damage is more evident in rats that already have decreased renal function and seems to be related to the phosphaturic effect of the drug. Dietary P restriction prevents kidney damage in rats treated with rapamycin.
Collapse
Affiliation(s)
- Ana I Raya
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Angela Vidal
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ignacio López
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Mariano Rodríguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Escolástico Aguilera-Tejero
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Carmen Pineda
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| |
Collapse
|
3
|
Al-Diab O, Sünkel C, Blanc E, Catar RA, Ashraf MI, Zhao H, Wang P, Rinschen MM, Fritsche-Guenther R, Grahammer F, Bachmann S, Beule D, Kirwan JA, Rajewsky N, Huber TB, Gürgen D, Kusch A. Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin. Biol Sex Differ 2024; 15:72. [PMID: 39278930 PMCID: PMC11404044 DOI: 10.1186/s13293-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.
Collapse
Affiliation(s)
- Ola Al-Diab
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christin Sünkel
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rusan Ali Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pinchao Wang
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin-Buch, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- BIH Biomedical Innovation Academy (BIA), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Das F, Ghosh-Choudhury N, Kasinath BS, Sharma K, Choudhury GG. High glucose-induced downregulation of PTEN-Long is sufficient for proximal tubular cell injury in diabetic kidney disease. Exp Cell Res 2024; 440:114116. [PMID: 38830568 DOI: 10.1016/j.yexcr.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | | | | | - Kumar Sharma
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
5
|
Abou Daher A, Alkhansa S, Azar WS, Rafeh R, Ghadieh HE, Eid AA. Translational Aspects of the Mammalian Target of Rapamycin Complexes in Diabetic Nephropathy. Antioxid Redox Signal 2022; 37:802-819. [PMID: 34544257 DOI: 10.1089/ars.2021.0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite the many efforts put into understanding diabetic nephropathy (DN), direct treatments for DN have yet to be discovered. Understanding the mechanisms behind DN is an essential step in the development of novel therapeutic regimens. The mammalian target of rapamycin (mTOR) pathway has emerged as an important candidate in the quest for drug discovery because of its role in regulating growth, proliferation, as well as protein and lipid metabolism. Recent Advances: Kidney cells have been found to rely on basal autophagy for survival and for conserving kidney integrity. Recent studies have shown that diabetes induces renal autophagy deregulation, leading to kidney injury. Hyper-activation of the mTOR pathway and oxidative stress have been suggested to play a role in diabetes-induced autophagy imbalance. Critical Issues: A detailed understanding of the role of mTOR signaling in diabetes-associated complications is of major importance in the search for a cure. In this review, we provide evidence that mTOR is heavily implicated in diabetes-induced kidney injury. We suggest possible mechanisms through which mTOR exerts its negative effects by increasing insulin resistance, upregulating oxidative stress, and inhibiting autophagy. Future Directions: Both increased oxidative stress and autophagy deregulation are deeply embedded in DN. However, the mechanisms controlling oxidative stress and autophagy are not well understood. Although Akt/mTOR signaling seems to play an important role in oxidative stress and autophagy, further investigation is required to uncover the details of this signaling pathway. Antioxid. Redox Signal. 37, 802-819.
Collapse
Affiliation(s)
- Alaa Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - William S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,Department of Physiology and Biophysics, Georgetown University Medical School, Washington, District of Columbia, USA
| | - Rim Rafeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Hilda E Ghadieh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Zhdanov AV, Golubeva AV, Yordanova MM, Andreev DE, Ventura-Silva AP, Schellekens H, Baranov PV, Cryan JF, Papkovsky DB. Ghrelin rapidly elevates protein synthesis in vitro by employing the rpS6K-eEF2K-eEF2 signalling axis. Cell Mol Life Sci 2022; 79:426. [PMID: 35841486 PMCID: PMC9288388 DOI: 10.1007/s00018-022-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Activated ghrelin receptor GHS-R1α triggers cell signalling pathways that modulate energy homeostasis and biosynthetic processes. However, the effects of ghrelin on mRNA translation are unknown. Using various reporter assays, here we demonstrate a rapid elevation of protein synthesis in cells within 15–30 min upon stimulation of GHS-R1α by ghrelin. We further show that ghrelin-induced activation of translation is mediated, at least in part, through the de-phosphorylation (de-suppression) of elongation factor 2 (eEF2). The levels of eEF2 phosphorylation at Thr56 decrease due to the reduced activity of eEF2 kinase, which is inhibited via Ser366 phosphorylation by rpS6 kinases. Being stress-susceptible, the ghrelin-mediated decrease in eEF2 phosphorylation can be abolished by glucose deprivation and mitochondrial uncoupling. We believe that the observed burst of translation benefits rapid restocking of neuropeptides, which are released upon GHS-R1α activation, and represents the most time- and energy-efficient way of prompt recharging the orexigenic neuronal circuitry.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | - Anna V Golubeva
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Martina M Yordanova
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - Dmitry E Andreev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ana Paula Ventura-Silva
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Harriet Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| |
Collapse
|
7
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Choudhury GG. Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. J Biol Chem 2022; 298:102246. [PMID: 35835217 PMCID: PMC9399488 DOI: 10.1016/j.jbc.2022.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Proximal tubular epithelial cells respond to transforming growth factor β (TGFβ) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFβ-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCβII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFβ-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCβII and siRNAs against PKCβII significantly inhibited TGFβ-induced collagen I (α2) expression. In fact, constitutively active PKCβII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCβII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCβII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFβ was associated with enhanced expression of DJ-1 and activation of mTOR and PKCβII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFβ-induced expression of collagen I (α2) via an mTOR-, PKCβII-, and Hif1α-dependent mechanism to regulate renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, Texas
| | | | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas.
| |
Collapse
|
8
|
Collins KS, Eadon MT, Cheng YH, Barwinska D, Melo Ferreira R, McCarthy TW, Janosevic D, Syed F, Maier B, El-Achkar TM, Kelly KJ, Phillips CL, Hato T, Sutton TA, Dagher PC. Alterations in Protein Translation and Carboxylic Acid Catabolic Processes in Diabetic Kidney Disease. Cells 2022; 11:cells11071166. [PMID: 35406730 PMCID: PMC8997785 DOI: 10.3390/cells11071166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcriptogram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus. Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography–mass spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the human differential expression of the genes ACOX1 and ACACB. In summary, our findings demonstrate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key features in both human and murine DKD.
Collapse
Affiliation(s)
- Kimberly S. Collins
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Michael T. Eadon
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Ying-Hua Cheng
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Ricardo Melo Ferreira
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Thomas W. McCarthy
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Danielle Janosevic
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Farooq Syed
- Department of Pediatrics and Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Bernhard Maier
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Katherine J. Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Carrie L. Phillips
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Timothy A. Sutton
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
- Correspondence: (T.A.S.); (P.C.D.); Tel.: +1-317-274-7543 (T.A.S.); +1-317-278-2867 (P.C.D.); Fax: 317-274-8575 (T.A.S. & P.C.D.)
| | - Pierre C. Dagher
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
- Correspondence: (T.A.S.); (P.C.D.); Tel.: +1-317-274-7543 (T.A.S.); +1-317-278-2867 (P.C.D.); Fax: 317-274-8575 (T.A.S. & P.C.D.)
| |
Collapse
|
9
|
Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in Type 2 Diabetes Mellitus and Diabetes Complications. Curr Drug Targets 2022; 23:692-710. [PMID: 35021971 DOI: 10.2174/1389450123666220111115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a pivotal regulator of cell metabolism and growth. In the form of two different multi-protein complexes, mTORC1 and mTORC2, mTOR integrates cellular energy, nutrient and hormonal signals to regulate cellular metabolic homeostasis. In type 2 diabetes mellitus (T2DM) aberrant mTOR signaling underlies its pathological conditions and end-organ complications. Substantial evidence suggests that two mTOR-mediated signaling schemes, mTORC1-p70S6 kinase 1 (S6K1) and mTORC2-protein kinase B (AKT), play a critical role in insulin sensitivity and that their dysfunction contributes to development of T2DM. This review summaries our current understanding of the role of mTOR signaling in T2DM and its associated complications, as well as the potential use of mTOR inhibitors in treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
10
|
High glucose-stimulated enhancer of zeste homolog-2 (EZH2) forces suppression of deptor to cause glomerular mesangial cell pathology. Cell Signal 2021; 86:110072. [PMID: 34224844 DOI: 10.1016/j.cellsig.2021.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Function of mTORC1 and mTORC2 has emerged as a driver of mesangial cell pathologies in diabetic nephropathy. The mechanism of mTOR activation is poorly understood in this disease. Deptor is a constitutive subunit and a negative regulator of both mTOR complexes. Mechanistic investigation in mesangial cells revealed that high glucose decreased the expression of deptor concomitant with increased mTORC1 and mTORC2 activities, induction of hypertrophy and, expression of fibronectin and PAI-1. shRNAs against deptor mimicked these pathologic outcomes of high glucose. Conversely, overexpression of deptor significantly inhibited all effects of high glucose. To determine the mechanism of deptor suppression, we found that high glucose significantly increased the expression of EZH2, resulting in lysine-27 tri-methylation of histone H3 (H3K27Me3). Employing approaches including pharmacological inhibition, shRNA-mediated downregulation and overexpression of EZH2, we found that EZH2 regulates high glucose-induced deptor suppression along with activation of mTOR, mesangial cell hypertrophy and fibronectin/PAI-1 expression. Moreover, expression of hyperactive mTORC1 reversed shEZH2-mediated inhibition of hypertrophy and expression of fibronectin and PAI-1 by high glucose. Finally, in renal cortex of diabetic mice, we found that enhanced expression of EZH2 is associated with decreased deptor levels and increased mTOR activity and, expression of fibronectin and PAI-1. Together, our findings provide a novel mechanism for mTOR activation via EZH2 to induce mesangial cell hypertrophy and matrix expansion during early progression of diabetic nephropathy. These results suggest a strategy for leveraging the intrinsic effect of deptor to suppress mTOR activity via reducing EZH2 as a novel therapy for diabetic nephropathy.
Collapse
|
11
|
Lee HJ, Donati A, Feliers D, Sun Y, Ding Y, Madesh M, Salmon AB, Ikeno Y, Ross C, O'Connor CL, Ju W, Bitzer M, Chen Y, Choudhury GG, Singh BB, Sharma K, Kasinath BS. Chloride channel accessory 1 integrates chloride channel activity and mTORC1 in aging-related kidney injury. Aging Cell 2021; 20:e13407. [PMID: 34118180 PMCID: PMC8282273 DOI: 10.1111/acel.13407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/30/2021] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
The mechanism of kidney injury in aging are not well understood. In order to identify hitherto unknown pathways of aging‐related kidney injury, we performed RNA‐Seq on kidney extracts of young and aged mice. Expression of chloride (Cl) channel accessory 1 (CLCA1) mRNA and protein was increased in the kidneys of aged mice. Immunostaining showed a marked increase in CLCLA1 expression in the proximal tubules of the kidney from aged mice. Increased kidney CLCA1 gene expression also correlated with aging in marmosets and in a human cohort. In aging mice, increased renal cortical CLCA1 content was associated with hydrogen sulfide (H2S) deficiency, which was ameliorated by administering sodium hydrosulfide (NaHS), a source of H2S. In order to study whether increased CLCA1 expression leads to injury phenotype and the mechanisms involved, stable transfection of proximal tubule epithelial cells overexpressing human CLCA1 (hCLCA1) was performed. Overexpression of hCLCA1 augmented Cl− current via the Ca++‐dependent Cl− channel TMEM16A (anoctamin‐1) by patch‐clamp studies. hCLCA1 overexpression also increased the expression of fibronectin, a matrix protein, and induced the senescence‐associated secretory phenotype (SASP). Mechanistic studies underlying these changes showed that hCLCA1 overexpression leads to inhibition of AMPK activity and stimulation of mTORC1 as cellular signaling determinants of injury. Both TMEM16A inhibitor and NaHS reversed these signaling events and prevented changes in fibronectin and SASP. We conclude that CLCA1‐TMEM16A‐Cl− current pathway is a novel mediator of kidney injury in aging that is regulated by endogenous H2S.
Collapse
Affiliation(s)
- Hak Joo Lee
- Department of Medicine Center for Renal Precision Medicine University of Texas Health San Antonio TX USA
| | - Andrew Donati
- Department of Medicine Center for Renal Precision Medicine University of Texas Health San Antonio TX USA
| | - Denis Feliers
- Department of Medicine Center for Renal Precision Medicine University of Texas Health San Antonio TX USA
| | - Yuyang Sun
- Department of Periodontics University of Texas Health San Antonio TX USA
| | - Yanli Ding
- Department of Pathology University of Texas Health San Antonio TX USA
| | - Muniswamy Madesh
- Department of Medicine Center for Renal Precision Medicine University of Texas Health San Antonio TX USA
| | - Adam B. Salmon
- Department of Molecular Medicine University of Texas Health San Antonio TX USA
- Barshop Institute for Longevity and Aging Studies University of Texas Health San Antonio TX USA
- South Texas Veterans Health Care System San Antonio TX USA
- Geriatric Research Education & Clinical Center South Texas Veterans Health Care System San Antonio TX USA
| | - Yuji Ikeno
- Department of Pathology University of Texas Health San Antonio TX USA
- Department of Molecular Medicine University of Texas Health San Antonio TX USA
- South Texas Veterans Health Care System San Antonio TX USA
| | - Corinna Ross
- Texas Biomedical Research Institute Southwest National Primate Research Center San Antonio TX USA
- Department of Science and Mathematics Texas A&M University San Antonio San Antonio TX USA
| | | | - Wenjun Ju
- Department of Internal Medicine University of Michigan Ann Arbor MI USA
| | - Markus Bitzer
- Department of Internal Medicine University of Michigan Ann Arbor MI USA
| | - Yidong Chen
- Department of Population Health Sciences University of Texas Health San Antonio TX USA
- Greehey Children's Cancer Research Institute University of Texas Health San Antonio TX USA
| | - Goutam Ghosh Choudhury
- Department of Medicine Center for Renal Precision Medicine University of Texas Health San Antonio TX USA
- South Texas Veterans Health Care System San Antonio TX USA
- Geriatric Research Education & Clinical Center South Texas Veterans Health Care System San Antonio TX USA
| | - Brij B. Singh
- Department of Periodontics University of Texas Health San Antonio TX USA
| | - Kumar Sharma
- Department of Medicine Center for Renal Precision Medicine University of Texas Health San Antonio TX USA
- South Texas Veterans Health Care System San Antonio TX USA
| | - Balakuntalam S. Kasinath
- Department of Medicine Center for Renal Precision Medicine University of Texas Health San Antonio TX USA
- Barshop Institute for Longevity and Aging Studies University of Texas Health San Antonio TX USA
- South Texas Veterans Health Care System San Antonio TX USA
- Geriatric Research Education & Clinical Center South Texas Veterans Health Care System San Antonio TX USA
| |
Collapse
|
12
|
Roles of mTOR in Diabetic Kidney Disease. Antioxidants (Basel) 2021; 10:antiox10020321. [PMID: 33671526 PMCID: PMC7926630 DOI: 10.3390/antiox10020321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and the number of patients affected is increasing worldwide. Thus, there is a need to establish a new treatment for DKD to improve the renal prognosis of diabetic patients. Recently, it has shown that intracellular metabolic abnormalities are involved in the pathogenesis of DKD. In particular, the activity of mechanistic target of rapamycin complex 1 (mTORC1), a nutrient-sensing signaling molecule, is hyperactivated in various organs of diabetic patients, which suggests the involvement of excessive mTORC1 activation in the pathogenesis of diabetes. In DKD, hyperactivated mTORC1 may be involved in the pathogenesis of podocyte damage, which causes proteinuria, and tubular cell injury that decreases renal function. Therefore, elucidating the role of mTORC1 in DKD and developing new therapeutic agents that suppress mTORC1 hyperactivity may shed new light on DKD treatments in the future.
Collapse
|
13
|
Lee HJ, Mariappan MM, Norton L, Bakewell T, Feliers D, Oh SB, Donati A, Rubannelsonkumar CS, Venkatachalam MA, Harris SE, Rubera I, Tauc M, Ghosh Choudhury G, Kahn CR, Sharma K, DeFronzo RA, Kasinath BS. Proximal tubular epithelial insulin receptor mediates high-fat diet-induced kidney injury. JCI Insight 2021; 6:143619. [PMID: 33400689 PMCID: PMC7934847 DOI: 10.1172/jci.insight.143619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal-fat diet (NFD) or high-fat diet (HFD) to control and kidney proximal tubule IR–knockout (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. Baseline serum glucose, serum creatinine, and the ratio of urinary albumin to creatinine (ACR) were similar in KPTIRKO mice compared to those of controls. On HFD, weight gain and increase in serum cholesterol were similar in control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR, urinary kidney injury molecule-1–to-creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD-fed male control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.
Collapse
Affiliation(s)
- Hak Joo Lee
- Center for Renal Medicine, Division of Nephrology
| | | | - Luke Norton
- Division of Diabetes, Department of Medicine
| | | | | | - Sae Byeol Oh
- Center for Renal Medicine, Division of Nephrology
| | | | | | | | - Stephen E Harris
- Department of Periodontics, University of Texas Health, San Antonio, Texas, USA
| | - Isabelle Rubera
- Universite Cote d'Azur, CNRS - UMR-7370, Laboratoire de Physiomédecine Moléculaire, Nice, France
| | - Michel Tauc
- Universite Cote d'Azur, CNRS - UMR-7370, Laboratoire de Physiomédecine Moléculaire, Nice, France
| | - Goutam Ghosh Choudhury
- Center for Renal Medicine, Division of Nephrology.,VA Research and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - C Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kumar Sharma
- Center for Renal Medicine, Division of Nephrology.,VA Research and
| | | | - Balakuntalam S Kasinath
- Center for Renal Medicine, Division of Nephrology.,VA Research and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
14
|
Samidurai A, Roh SK, Prakash M, Durrant D, Salloum FN, Kukreja RC, Das A. STAT3-miR-17/20 signalling axis plays a critical role in attenuating myocardial infarction following rapamycin treatment in diabetic mice. Cardiovasc Res 2020; 116:2103-2115. [PMID: 31738412 PMCID: PMC8463091 DOI: 10.1093/cvr/cvz315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Deregulation of mTOR (mammalian target of rapamycin) signalling occurs in diabetes, which exacerbates injury following myocardial infarction (MI). We therefore investigated the infarct-limiting effect of chronic treatment with rapamycin (RAPA, mTOR inhibitor) in diabetic mice following myocardial ischaemia/reperfusion (I/R) injury and delineated the potential protective mechanism. METHODS AND RESULTS Adult male diabetic (db/db) or wild-type (WT) (C57) mice were treated with RAPA (0.25 mg/kg/day, intraperitoneal) or vehicle (5% DMSO) for 28 days. The hearts from treated mice were subjected to global I/R in Langendorff mode. Cardiomyocytes, isolated from treated mice, were subjected to simulated ischaemia/reoxygenation (SI/RO) to assess necrosis and apoptosis. Myocardial infarct size was increased in diabetic heart following I/R as compared to WT. Likewise, enhanced necrosis and apoptosis were observed in isolated cardiomyocytes of diabetic mice following SI/RO. Treatment with RAPA reduced infarct size as well as cardiomyocyte necrosis and apoptosis of diabetes and WT mice. RAPA increased STAT3 phosphorylation and miRNA-17/20a expression in diabetic hearts. In addition, RAPA restored AKT phosphorylation (target of mTORC2) but suppressed S6 phosphorylation (target of mTORC1) following I/R injury. RAPA-induced cardioprotection against I/R injury as well as the induction of miR-17/20a and AKT phosphorylation were abolished in cardiac-specific STAT3-deficient diabetic mice, without alteration of S6 phosphorylation. The infarct-limiting effect of RAPA was obliterated in cardiac-specific miRNA-17-92-deficient diabetic mice. The post-I/R restoration of phosphorylation of STAT3 and AKT with RAPA were also abolished in miRNA-17-92-deficient diabetic mice. Additionally, RAPA suppressed the pro-apoptotic prolyl hydroxylase (Egln3/PHD3), a target of miRNA-17/20a in diabetic hearts, which was abrogated in miRNA-17-92-deficient diabetic mice. CONCLUSION Induction of STAT3-miRNA-17-92 signalling axis plays a critical role in attenuating MI in RAPA-treated diabetic mice. Our study indicates that chronic treatment with RAPA might be a promising pharmacological intervention for attenuating MI and improving prognosis in diabetic patients.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Sean K Roh
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Meeta Prakash
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - David Durrant
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Fadi N Salloum
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| |
Collapse
|
15
|
Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J Biol Chem 2020; 295:14262-14278. [PMID: 32732288 DOI: 10.1074/jbc.ra120.014994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Interaction of transforming growth factor-β (TGFβ)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFβ receptor involved in the noncanonical signaling is unknown. Here, we show that TGFβ increased the catalytic loop phosphorylation of platelet-derived growth factor receptor β (PDGFRβ), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFβ increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRβ, thus activating Akt. Inhibition of PDGFRβ using a pharmacological inhibitor and siRNAs blocked TGFβ-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRβ-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRβ in mesangial cells. Additionally, we demonstrate that PDGFRβ-initiated phosphorylation of PRAS40 is required for TGFβ-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRβ is also associated with enhanced TGFβ expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFβ noncanonical signaling, we identified how TGFβ receptor I achieves mTORC1 activation through PDGFRβ-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRβ in TGFβ-driven renal fibrosis.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | | | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA .,Department of Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
16
|
Lee HJ, Gonzalez O, Dick EJ, Donati A, Feliers D, Choudhury GG, Ross C, Venkatachalam M, Tardif SD, Kasinath BS. Marmoset as a Model to Study Kidney Changes Associated With Aging. J Gerontol A Biol Sci Med Sci 2019; 74:315-324. [PMID: 30321310 DOI: 10.1093/gerona/gly237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
We evaluated whether the marmoset, a nonhuman primate, can serve as a good model to study aging-related changes in the kidney by employing healthy young and aged marmosets of both sexes. Aging was associated with glomerulosclerosis, interstitial fibrosis, and arteriolosclerosis in both sexes; correspondingly, the content of matrix proteins was increased. Functionally, aging resulted in an increase in urinary albumin and protein excretion. There was a robust correlation between markers of fibrosis and functional changes. We explored signaling pathways as potential mechanistic events. Aging in males, but not in females, was associated with reduced renal cortical activity of AMP-activated protein kinase (AMPK) and a trend toward activation of mechanistic target of rapamycin complex 1 (mTORC1); upstream of AMPK and mTORC1, Akt and IGF-1 receptor were activated. In both sexes, aging promoted kidney activation of transforming growth factor β-1 signaling pathway. While the expression of cystathionine β-synthase (CBS), an enzyme involved hydrogen sulfide (H2S) synthesis, was reduced in both aged males and females, decreased H2S generation was seen in only males. Our studies show that the marmoset is a valid model to study kidney aging; some of the signaling pathways involved in renal senescence differ between male and female marmosets.
Collapse
Affiliation(s)
- Hak Joo Lee
- Department of Medicine, University of Texas Health, Long School of Medicine, San Antonio
| | - Olga Gonzalez
- Southwest National Primate Research Center, San Antonio, Texas
| | - Edward J Dick
- Southwest National Primate Research Center, San Antonio, Texas
| | - Andrew Donati
- Department of Medicine, University of Texas Health, Long School of Medicine, San Antonio
| | - Denis Feliers
- Department of Medicine, University of Texas Health, Long School of Medicine, San Antonio
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health, Long School of Medicine, San Antonio.,Geriatric Research Education, and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio
| | - Corinna Ross
- Department of Biology, Texas A & M University, San Antonio
| | - Manjeri Venkatachalam
- Department of Pathology, University of Texas Health, Long School of Medicine, San Antonio
| | - Suzette D Tardif
- Southwest National Primate Research Center, San Antonio, Texas.,Barshop Institute for Longevity and Aging Studies, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health, Long School of Medicine, San Antonio.,Geriatric Research Education, and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio.,Barshop Institute for Longevity and Aging Studies, San Antonio, Texas
| |
Collapse
|
17
|
Qi Y, Zhang Q, Zhu H. Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med 2019; 14:57. [PMID: 31867052 PMCID: PMC6918586 DOI: 10.1186/s13020-019-0277-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.
Collapse
Affiliation(s)
- Yiyu Qi
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China.,4Department of Pharmacology, Pharmacy College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY) 2019; 11:8048-8067. [PMID: 31586989 PMCID: PMC6814615 DOI: 10.18632/aging.102355] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
Abstract
From the dawn of civilization, humanity has dreamed of immortality. So why didn't the discovery of the anti-aging properties of mTOR inhibitors change the world forever? I will discuss several reasons, including fear of the actual and fictional side effects of rapamycin, everolimus and other clinically-approved drugs, arguing that no real side effects preclude their use as anti-aging drugs today. Furthermore, the alternative to the reversible (and avoidable) side effects of rapamycin/everolimus are the irreversible (and inevitable) effects of aging: cancer, stroke, infarction, blindness and premature death. I will also discuss why it is more dangerous not to use anti-aging drugs than to use them and how rapamycin-based drug combinations have already been implemented for potential life extension in humans. If you read this article from the very beginning to its end, you may realize that the time is now.
Collapse
|
19
|
Fasting and rapamycin: diabetes versus benevolent glucose intolerance. Cell Death Dis 2019; 10:607. [PMID: 31406105 PMCID: PMC6690951 DOI: 10.1038/s41419-019-1822-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Rapamycin (Sirolimus) slows aging, extends life span, and prevents age-related diseases, including diabetic complications such as retinopathy. Puzzlingly, rapamycin can induce insulin sensitivity, but may also induce insulin resistance or glucose intolerance without insulin resistance. This mirrors the effect of fasting and very low calorie diets, which improve insulin sensitivity and reverse type 2 diabetes, but also can cause a form of glucose intolerance known as benevolent pseudo-diabetes. There is no indication that starvation (benevolent) pseudo-diabetes is detrimental. By contrast, it is associated with better health and life extension. In transplant patients, a weak association between rapamycin/everolimus use and hyperglycemia is mostly due to a drug interaction with calcineurin inhibitors. When it occurs in cancer patients, the hyperglycemia is mild and reversible. No hyperglycemic effects of rapamycin/everolimus have been detected in healthy people. For antiaging purposes, rapamycin/everolimus can be administrated intermittently (e.g., once a week) in combination with intermittent carbohydrate restriction, physical exercise, and metformin.
Collapse
|
20
|
Abstract
Designed a century ago to treat epilepsy, the ketogenic diet (KD) is also effective against obesity and diabetes. Paradoxically, some studies in rodents have found that the KD seemingly causes diabetes, contradicting solid clinical data in humans. This paradox can be resolved by applying the concept of starvation pseudo-diabetes, which was discovered in starved animals almost two centuries ago, and has also been observed in some rapamycin-treated rodents. Intriguingly, use of the KD and rapamycin is indicated for a similar spectrum of diseases, including Alzheimer's disease and cancer. Even more intriguingly, benevolent (starvation) pseudo-diabetes may counteract type 2 diabetes or its complications.
Collapse
|
21
|
Maity S, Das F, Ghosh-Choudhury N, Kasinath BS, Ghosh Choudhury G. High glucose increases miR-214 to power a feedback loop involving PTEN and the Akt/mTORC1 signaling axis. FEBS Lett 2019; 593:2261-2272. [PMID: 31240704 DOI: 10.1002/1873-3468.13505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Abstract
The mechanism of PTEN repression by high glucose in diabetic nephropathy is not known. Using proximal tubular cells, we show that inhibition of PI3 kinase/Akt and their inactive enzymes prevents high glucose-induced PTEN downregulation. Similarly, rapamycin (Rapa) and shRaptor block suppression of PTEN by high glucose. In contrast, the constitutive activation of Akt and mechanistic target of rapamycin (mTOR)C1 decrease the expression of PTEN, similarly to high glucose. Remarkably, PI3 kinase/Akt/mTORC1 inhibition significantly attenuates high glucose-stimulated increase in miR-214, which targets PTEN, while constitutively active Akt/mTORC1 increases miR-214. Furthermore, anti-miR-214 and mTORC1 inhibition block high glucose-induced hypertrophy and fibronectin expression. These results reveal the first evidence for the presence of a high glucose-forced positive feedback conduit between the three-layered kinase cascade and miR-214/ PTEN in tubular cell injury.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, UT Health San Antonio, TX, USA
| | - Falguni Das
- Department of Medicine, UT Health San Antonio, TX, USA
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA.,Department of Pathology, UT Health San Antonio, San Antonio, TX, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health San Antonio, TX, USA.,VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health San Antonio, TX, USA.,VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
22
|
Das F, Maity S, Ghosh-Choudhury N, Kasinath BS, Ghosh Choudhury G. Deacetylation of S6 kinase promotes high glucose-induced glomerular mesangial cell hypertrophy and matrix protein accumulation. J Biol Chem 2019; 294:9440-9460. [PMID: 31028173 DOI: 10.1074/jbc.ra118.007023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
S6 kinase acts as a driver for renal hypertrophy and matrix accumulation, two key pathologic signatures of diabetic nephropathy. As a post-translational modification, S6 kinase undergoes acetylation at the C terminus. The role of this acetylation to regulate kidney glomerular cell hypertrophy and matrix expansion is not known. In mesangial cells, high glucose decreased the acetylation and enhanced phosphorylation of S6 kinase and its substrates rps6 and eEF2 kinase that lead to dephosphorylation of eEF2. To determine the mechanism of S6 kinase deacetylation, we found that trichostatin A, a pan-histone deacetylase (HDAC) inhibitor, blocked all high glucose-induced effects. Furthermore, high glucose increased the expression and association of HDAC1 with S6 kinase. HDAC1 decreased the acetylation of S6 kinase and mimicked the effects of high glucose, resulting in mesangial cell hypertrophy and expression of fibronectin and collagen I (α2). In contrast, siRNA against HDAC1 inhibited these effects by high glucose. A C-terminal acetylation-mimetic mutant of S6 kinase suppressed high glucose-stimulated phosphorylation of S6 kinase, rps6 and eEF2 kinase, and inhibited the dephosphorylation of eEF2. Also, the acetylation mimetic attenuated the mesangial cell hypertrophy and fibronectin and collagen I (α2) expression. Conversely, an S6 kinase acetylation-deficient mutant induced all the above effects of high glucose. Finally, in the renal glomeruli of diabetic rats, the acetylation of S6 kinase was significantly reduced concomitant with increased HDAC1 and S6 kinase activity. In aggregate, our data uncovered a previously unrecognized role of S6 kinase deacetylation in high glucose-induced mesangial cell hypertrophy and matrix protein expression.
Collapse
Affiliation(s)
| | | | | | | | - Goutam Ghosh Choudhury
- Departments of Medicine and .,Departments of Medicine and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229 and
| |
Collapse
|
23
|
Takenaka T, Kobori H, Miyazaki T, Suzuki H, Nishiyama A, Ishii N, Yamashita M, Hayashi M. Klotho protein supplementation reduces blood pressure and renal hypertrophy in db/db mice, a model of type 2 diabetes. Acta Physiol (Oxf) 2019; 225:e13190. [PMID: 30251773 DOI: 10.1111/apha.13190] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
Abstract
AIMS Klotho interacts with various membrane proteins, such as receptors for transforming growth factor (TGF)-β and insulin-like growth factor (IGF), to alter their function. Renal expression of klotho is diminished in diabetes. The present study examined whether exogenous klotho protein supplementation ameliorates kidney injury and renin-angiotensin system (RAS) in db/db mice. METHODS We investigated the effects of klotho supplementation on diabetic kidney injury and RAS. Recombinant human klotho protein (10 μg/kg/d) was administered to db/db mice daily. RESULTS Klotho protein supplementation reduced kidney weight, systolic blood pressure (SBP), albuminuria, glomerular filtration rate, and 8-epi-prostaglandin F2α excretion without affecting body weight. Although klotho supplementation did not alter glycated albumin, it reduced renal angiotensin II levels associated with reduced renal expression of angiotensinogen. Klotho supplementation improved renal expression of superoxide dismutase (SOD), and endogenous renal expression of klotho. Klotho supplementation reduced the levels of hypoxia-inducible factor, phosphorylated Akt, and phosphorylated mTOR and decreased the renal expression of TGF-β, tumour necrosis factor (TNF), and fibronectin. CONCLUSIONS These data indicate that klotho supplementation reduces blood pressure and albuminuria along with ameliorating renal RAS activation in db/db mice. Furthermore, these results suggest that klotho inhibits IGF signalling, induces SOD expression to reduce oxidative stress, and suppresses Akt-mTOR signalling to inhibit abnormal kidney growth. Collectively, the results suggest that klotho inhibits TGF-β and TNF signalling, resulting in a decline in renal fibrosis.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare; Minato Japan
| | - Hiroyuki Kobori
- International University of Health and Welfare; Minato Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhao XC, Livingston MJ, Liang XL, Dong Z. Cell Apoptosis and Autophagy in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:557-584. [PMID: 31399985 DOI: 10.1007/978-981-13-8871-2_28] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the final common pathway of all chronic kidney diseases progressing to end-stage renal diseases. Autophagy, a highly conserved lysosomal degradation pathway, plays important roles in maintaining cellular homeostasis in all major types of kidney cells including renal tubular cells as well as podocytes, mesangial cells and endothelial cells in glomeruli. Autophagy dysfunction is implicated in the pathogenesis of various renal pathologies. Here, we analyze the pathological role and regulation of autophagy in renal fibrosis and related kidney diseases in both glomeruli and tubulointerstitial compartments. Further research is expected to gain significant mechanistic insights and discover pathway-specific and kidney-selective therapies targeting autophagy to prevent renal fibrosis and related kidney diseases.
Collapse
Affiliation(s)
- Xing-Chen Zhao
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xin-Ling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
| |
Collapse
|
25
|
Akt2 causes TGFβ-induced deptor downregulation facilitating mTOR to drive podocyte hypertrophy and matrix protein expression. PLoS One 2018; 13:e0207285. [PMID: 30444896 PMCID: PMC6239304 DOI: 10.1371/journal.pone.0207285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
TGFβ promotes podocyte hypertrophy and expression of matrix proteins in fibrotic kidney diseases such as diabetic nephropathy. Both mTORC1 and mTORC2 are hyperactive in response to TGFβ in various renal diseases. Deptor is a component of mTOR complexes and a constitutive inhibitor of their activities. We identified that deptor downregulation by TGFβ maintains hyperactive mTOR in podocytes. To unravel the mechanism, we found that TGFβ -initiated noncanonical signaling controls deptor inhibition. Pharmacological inhibitor of PI 3 kinase, Ly 294002 and pan Akt kinase inhibitor MK 2206 prevented the TGFβ induced downregulation of deptor, resulting in suppression of both mTORC1 and mTORC2 activities. However, specific isoform of Akt involved in this process is not known. We identified Akt2 as predominant isoform expressed in kidney cortex, glomeruli and podocytes. TGFβ time-dependently increased the activating phosphorylation of Akt2. Expression of dominant negative PI 3 kinase and its signaling inhibitor PTEN blocked Akt2 phosphorylation by TGFβ. Inhibition of Akt2 using a phospho-deficient mutant that inactivates its kinase activity, as well as siRNA against the kinase markedly diminished TGFβ -mediated deptor suppression, its association with mTOR and activation of mTORC1 and mTORC2. Importantly, inhibition of Akt2 blocked TGFβ -induced podocyte hypertrophy and expression of the matrix protein fibronectin. This inhibition was reversed by the downregulation of deptor. Interestingly, we detected increased phosphorylation of Akt2 concomitant with TGFβ expression in the kidneys of diabetic rats. Thus, our data identify previously unrecognized Akt2 kinase as a driver of TGFβ induced deptor downregulation and sustained mTORC1 and mTORC2 activation. Furthermore, we provide the first evidence that deptor downstream of Akt2 contributes to podocyte hypertrophy and matrix protein expression found in glomerulosclerosis in different renal diseases.
Collapse
|
26
|
Wu LY, Li M, Qu ML, Li X, Pi LH, Chen Z, Zhou SL, Yi XQ, Shi XJ, Wu J, Wang S. High glucose up-regulates Semaphorin 3A expression via the mTOR signaling pathway in keratinocytes: A potential mechanism and therapeutic target for diabetic small fiber neuropathy. Mol Cell Endocrinol 2018; 472:107-116. [PMID: 29203371 DOI: 10.1016/j.mce.2017.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023]
Abstract
Small fiber neuropathy (SFN) is a common complication in diabetes, and is characterized by decreased intraepidermal nerve fiber density (IENFD). Semaphorin 3A (Sema3A), which is produced by keratinocytes, has a chemorepulsive effect on intraepidermal nerve fibers. mTOR signaling can mediate local protein synthesis that is critical for growth of axons and dendrites. Therefore, this study aimed to investigate whether Sema3A is up-regulated in diabetic keratinocytes via the mTOR-mediated p70 S6K and 4E-BP1 signaling pathways, and furthermore whether it is involved in the pathogenesis of diabetic SFN. IENFD, expression of Sema3A, and mTOR signaling, were evaluated in the skin of diabetic patients with SFN as well as control subjects. Sema3A and mTOR signaling were also assessed in HaCaT cells which had been treated with high glucose (HG) or recombinant Sema3A (rSema3A) in the presence or absence of rapamycin. Small fiber dysfunction was evaluated by examining IENFD and using behavioral tests in control and streptozotocin-induced diabetic rats treated with or without rapamycin. We found that higher Sema3A expression and over-activation of mTOR signaling, was accompanied by reduced IENFD in the skin of diabetic patients compared with control subjects. The expression of Sema3A, and mTOR signaling were up-regulated in HaCaT cells incubated with HG or rSema3A, and this could be attenuated by rapamycin. Hyperalgesia, reduced IENFD, and up-regulated Sema3A and mTOR signaling were also detected in diabetic rats. These effects were ameliorated by rapamycin treatment. Our data indicate that HG up-regulates Sema3A expression by activating mTOR signaling in diabetic keratinocytes. This pathway may therefore play a critical role in diabetic SFN.
Collapse
Affiliation(s)
- Liang-Yan Wu
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Mei Li
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Min-Li Qu
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xin Li
- Dept of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Lin-Hua Pi
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Zi Chen
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Shan-Lei Zhou
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xiao-Qing Yi
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xia-Jie Shi
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Dept of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China.
| | - Shan Wang
- Dept of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| |
Collapse
|
27
|
Lee HJ, Feliers D, Barnes JL, Oh S, Choudhury GG, Diaz V, Galvan V, Strong R, Nelson J, Salmon A, Kevil CG, Kasinath BS. Hydrogen sulfide ameliorates aging-associated changes in the kidney. GeroScience 2018; 40:163-176. [PMID: 29717417 PMCID: PMC5964063 DOI: 10.1007/s11357-018-0018-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 01/05/2023] Open
Abstract
Aging is associated with replacement of normal kidney parenchyma by fibrosis. Because hydrogen sulfide (H2S) ameliorates kidney fibrosis in disease models, we examined its status in the aging kidney. In the first study, we examined kidney cortical H2S metabolism and signaling pathways related to synthesis of proteins including matrix proteins in young and old male C57BL/6 mice. In old mice, increase in renal cortical content of matrix protein involved in fibrosis was associated with decreased H2S generation and AMPK activity, and activation of insulin receptor (IR)/IRS-2-Akt-mTORC1-mRNA translation signaling axis that can lead to increase in protein synthesis. In the second study, we randomized 18-19 month-old male C57BL/6 mice to receive 30 μmol/L sodium hydrosulfide (NaHS) in drinking water vs. water alone (control) for 5 months. Administration of NaHS increased plasma free sulfide levels. NaHS inhibited the increase in kidney cortical content of matrix proteins involved in fibrosis and ameliorated glomerulosclerosis. NaHS restored AMPK activity and inhibited activation of IR/IRS-2-Akt-mTORC1-mRNA translation axis. NaHS inhibited age-related increase in kidney cortical content of p21, IL-1β, and IL-6, components of the senescence-associated secretory phenotype. NaHS abolished increase in urinary albumin excretion seen in control mice and reduced serum cystatin C levels suggesting improved glomerular clearance function. We conclude that aging-induced changes in the kidney are associated with H2S deficiency. Administration of H2S ameliorates aging-induced kidney changes probably by inhibiting signaling pathways leading to matrix protein synthesis.
Collapse
Affiliation(s)
- Hak Joo Lee
- Department of Medicine, University of Texas Health San Antonio, 7703, Floyd Curl Drive, MC7882, San Antonio, TX 78229 USA
| | - Denis Feliers
- Department of Medicine, University of Texas Health San Antonio, 7703, Floyd Curl Drive, MC7882, San Antonio, TX 78229 USA
| | - Jeffrey L. Barnes
- Department of Medicine, University of Texas Health San Antonio, 7703, Floyd Curl Drive, MC7882, San Antonio, TX 78229 USA ,South Texas Veterans Health Care System, San Antonio, TX USA
| | - Sae Oh
- Department of Medicine, University of Texas Health San Antonio, 7703, Floyd Curl Drive, MC7882, San Antonio, TX 78229 USA
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health San Antonio, 7703, Floyd Curl Drive, MC7882, San Antonio, TX 78229 USA ,South Texas Veterans Health Care System, San Antonio, TX USA
| | - Vivian Diaz
- Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, TX USA
| | - Veronica Galvan
- South Texas Veterans Health Care System, San Antonio, TX USA ,Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, TX USA
| | - Randy Strong
- South Texas Veterans Health Care System, San Antonio, TX USA ,Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, TX USA
| | - James Nelson
- Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, TX USA
| | - Adam Salmon
- South Texas Veterans Health Care System, San Antonio, TX USA ,Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, TX USA ,Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX USA
| | | | - Balakuntalam S. Kasinath
- Department of Medicine, University of Texas Health San Antonio, 7703, Floyd Curl Drive, MC7882, San Antonio, TX 78229 USA ,South Texas Veterans Health Care System, San Antonio, TX USA ,Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, TX USA
| |
Collapse
|
28
|
Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochem Pharmacol 2018; 149:29-41. [DOI: 10.1016/j.bcp.2017.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
|
29
|
Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018; 75:669-688. [PMID: 28871310 PMCID: PMC5771948 DOI: 10.1007/s00018-017-2639-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.
Collapse
Affiliation(s)
- Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
30
|
Maity S, Bera A, Ghosh-Choudhury N, Das F, Kasinath BS, Choudhury GG. microRNA-181a downregulates deptor for TGFβ-induced glomerular mesangial cell hypertrophy and matrix protein expression. Exp Cell Res 2018; 364:5-15. [PMID: 29397070 DOI: 10.1016/j.yexcr.2018.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
TGFβ contributes to mesangial cell hypertrophy and matrix protein increase in various kidney diseases including diabetic nephropathy. Deptor is an mTOR-interacting protein and suppresses mTORC1 and mTORC2 activities. We have recently shown that TGFβ-induced inhibition of deptor increases the mTOR activity. The mechanism by which TGFβ regulates deptor expression is not known. Here we identify deptor as a target of the microRNA-181a. We show that in mesangial cells, TGFβ increases the expression of miR-181a to downregulate deptor. Decrease in deptor augments mTORC2 activity, resulting in phosphorylation/activation of Akt kinase. Akt promotes inactivating phosphorylation of PRAS40 and tuberin, leading to stimulation of mTORC1. miR-181a-mimic increased mTORC1 and C2 activities, while anti-miR-181a inhibited them. mTORC1 controls protein synthesis via phosphorylation of translation initiation and elongation suppressors 4EBP-1 and eEF2 kinase. TGFβ-stimulated miR-181a increased the phosphorylation of 4EBP-1 and eEF2 kinase, resulting in their inactivation. miR-181a-dependent inactivation of eEF2 kinase caused dephosphorylation of eEF2. Consequently, miR-181a-mimic increased protein synthesis and hypertrophy of mesangial cells similar to TGFβ. Anti-miR-181a blocked these events in a deptor-dependent manner. Finally, TGFβ-miR-181a-driven deptor downregulation increased the expression of fibronectin. Our results identify a novel mechanism involving miR-181a-driven deptor downregulation, which contributes to mesangial cell pathologies in renal complications.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, UT Health San Antonio, TX, United States
| | - Amit Bera
- Department of Medicine, UT Health San Antonio, TX, United States
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, UT Health San Antonio, TX, United States
| | - Falguni Das
- Department of Medicine, UT Health San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Research Center, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
31
|
Guduru SKR, Arya P. Synthesis and biological evaluation of rapamycin-derived, next generation small molecules. MEDCHEMCOMM 2018; 9:27-43. [PMID: 30108899 PMCID: PMC6072512 DOI: 10.1039/c7md00474e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Over the years, rapamycin has attracted serious attention due to its remarkable biological properties and as a potent inhibitor of the mammalian target of rapamycin (mTOR) protein through its binding with FKBP-12. Several efficient strategies that utilize synthetic and biosynthetic approaches have been utilized to develop small molecule rapamycin analogs or for synthesizing hybrid compounds containing a partial rapamycin structure to improve pharmacokinetic properties. Herein, we report selected case studies related to the synthesis of rapamycin-derived compounds and hybrid molecules to explore their biological properties.
Collapse
Affiliation(s)
- Shiva Krishna Reddy Guduru
- Center for Drug Discovery , Department of Pharmacology and Chemical Biology , Baylor College of Medicine , One Baylor Plaza , Houston , Texas 77030 , USA . ; ; Tel: +1 713 798 8794
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , One Baylor Plaza , Houston , Texas 77030 , USA
| | - Prabhat Arya
- Chemistry and Chemical Biology , Dr. Reddy's Institute of Life Sciences (DRILS) , University of Hyderabad Campus , Hyderabad 500046 , India
| |
Collapse
|
32
|
Bera A, Das F, Ghosh-Choudhury N, Mariappan MM, Kasinath BS, Ghosh Choudhury G. Reciprocal regulation of miR-214 and PTEN by high glucose regulates renal glomerular mesangial and proximal tubular epithelial cell hypertrophy and matrix expansion. Am J Physiol Cell Physiol 2017; 313:C430-C447. [PMID: 28701356 PMCID: PMC5668576 DOI: 10.1152/ajpcell.00081.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Aberrant expression of microRNAs (miRs) contributes to diabetic renal complications, including renal hypertrophy and matrix protein accumulation. Reduced expression of phosphatase and tensin homolog (PTEN) by hyperglycemia contributes to these processes. We considered involvement of miR in the downregulation of PTEN. In the renal cortex of type 1 diabetic mice, we detected increased expression of miR-214 in association with decreased levels of PTEN and enhanced Akt phosphorylation and fibronectin expression. Mesangial and proximal tubular epithelial cells exposed to high glucose showed augmented expression of miR-214. Mutagenesis studies using 3'-UTR of PTEN in a reporter construct revealed PTEN as a direct target of miR-214, which controls its expression in both of these cells. Overexpression of miR-214 decreased the levels of PTEN and increased Akt activity similar to high glucose and lead to phosphorylation of its substrates glycogen synthase kinase-3β, PRAS40, and tuberin. In contrast, quenching of miR-214 inhibited high-glucose-induced Akt activation and its substrate phosphorylation; these changes were reversed by small interfering RNAs against PTEN. Importantly, respective expression of miR-214 or anti-miR-214 increased or decreased the mammalian target of rapamycin complex 1 (mTORC1) activity induced by high glucose. Furthermore, mTORC1 activity was controlled by miR-214-targeted PTEN via Akt activation. In addition, neutralization of high-glucose-stimulated miR-214 expression significantly inhibited cell hypertrophy and expression of the matrix protein fibronectin. Finally, the anti-miR-214-induced inhibition of these processes was reversed by the expression of constitutively active Akt kinase and hyperactive mTORC1. These results uncover a significant role of miR-214 in the activation of mTORC1 that contributes to high-glucose-induced mesangial and proximal tubular cell hypertrophy and fibronectin expression.
Collapse
Affiliation(s)
- Amit Bera
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
| | - Falguni Das
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
- Department of Pathology, UT Health San Antonio, San Antonio, Texas; and
| | | | - Balakuntalam S Kasinath
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health San Antonio, San Antonio, Texas;
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
- Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
33
|
Ji X, Wu B, Han R, Yang J, Ayaaba E, Wang T, Han L, Ni C. The association of LAMB1 polymorphism and expression changes with the risk of coal workers' pneumoconiosis. ENVIRONMENTAL TOXICOLOGY 2017; 32:2182-2190. [PMID: 28444932 DOI: 10.1002/tox.22431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Pneumoconiosis is a serious occupational disease worldwide, which is characterized by irreversible and diffuse lung fibrotic lesions. Laminin beta 1(LAMB1) is widely expressed in tissues and it is crucial for both lung morphogenesis and physiological function. In this study, we explored the association between LAMB1 rs4320486 and risk of pneumoconiosis in a Chinese population, as well as its mechanisms. METHODS In this case-control study, 600 CWP patients and 605 controls were genotyped for the LAMB1 rs4320486 polymorphism using TaqMan methods. Luciferase reporter assay was used to assess the LAMB1 transcriptional activities. The protein levels in cells and tissues were detected by western blot, and mRNA levels were determined by qRT-PCR. RESULTS Logistic regression analysis revealed that individuals with LAMB1 rs4320486 CT/TT genotypes had a significantly decreased risk of CWP (adjusted OR = 0.78, 95%CI = 0.64-0.94), compared with individuals with CC genotypes. Luciferase assays showed that the LAMB1 rs4320486(C > T) substitution could decrease the expression of LAMB1. Compared with normal groups, mRNA levels of LAMB1 were up-regulated in lung tissues of patients with pulmonary fibrosis. Additionally, expressions of LAMB1 and α-SMA were enhanced progressively, along with the development of lung fibrosis, while E-cadherin decreased. CONCLUSIONS In this study, the functional LAMB1 rs4320486 mutation was associated with a decreased risk of CWP in a Chinese population, probably owing to the reduced activity of LAMB1 transcription. LAMB1 expression was increased in the progress of lung fibrosis, which suggests that LAMB1 may affect the initiation and progression of pneumoconiosis, or serve as a potential biomarker of pneumoconiosis for diagnosis and genetic susceptibility.
Collapse
Affiliation(s)
- Xiaoming Ji
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Baiqun Wu
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjin Yang
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Esther Ayaaba
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Han
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Gong FH, Ye YN, Li JM, Zhao HY, Li XK. Rapamycin-ameliorated diabetic symptoms involved in increasing adiponectin expression in diabetic mice on a high-fat diet. Kaohsiung J Med Sci 2017; 33:321-326. [DOI: 10.1016/j.kjms.2017.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
|
35
|
Das F, Ghosh-Choudhury N, Venkatesan B, Kasinath BS, Ghosh Choudhury G. PDGF receptor-β uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (α2) expression. Am J Physiol Renal Physiol 2017; 313:F291-F307. [PMID: 28424212 DOI: 10.1152/ajprenal.00666.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/28/2023] Open
Abstract
Increased expression of PDGF receptor-β (PDGFRβ) has been shown in renal proximal tubules in mice with diabetes. The core molecular network used by high glucose to induce proximal tubular epithelial cell collagen I (α2) expression is poorly understood. We hypothesized that activation of PDGFRβ by high glucose increases collagen I (α2) production via the Akt/mTORC1 signaling pathway in proximal tubular epithelial cells. Using biochemical and molecular biological techniques, we investigated this hypothesis. We show that high glucose increases activating phosphorylation of the PDGFRβ, resulting in phosphorylation of phosphatidylinositol 3-kinase. A specific inhibitor, JNJ-10198409, and small interfering RNAs targeting PDGFRβ blocked this phosphorylation without having any effect on MEK/Erk1/2 activation. We also found that PDGFRβ regulates high glucose-induced Akt activation, its targets tuberin and PRAS40 phosphorylation, and finally, mTORC1 activation. Furthermore, inhibition of PDGFRβ suppressed high glucose-induced expression of collagen I (α2) in proximal tubular cells. Importantly, expression of constitutively active Akt or mTORC1 reversed these processes. As a mechanism, we found that JNJ and PDGFRβ knockdown inhibited high glucose-stimulated Hif1α expression. Furthermore, overexpression of Hif1α restored expression of collagen I (α2) that was inhibited by PDGFRβ knockdown in high glucose-stimulated cells. Finally, we show increased phosphorylation of PDGFRβ and its association with Akt/mTORC1 activation, Hif1α expression, and elevated collagen I (α2) levels in the renal cortex of mice with diabetes. Our results identify PDGFRβ as a driver in activating Akt/mTORC1 nexus for high glucose-mediated expression of collagen I (α2) in proximal tubular epithelial cells, which contributes to tubulointerstitial fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balachandar Venkatesan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; .,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
36
|
Kaur A, Sharma S. Mammalian target of rapamycin (mTOR) as a potential therapeutic target in various diseases. Inflammopharmacology 2017; 25:293-312. [PMID: 28417246 DOI: 10.1007/s10787-017-0336-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/28/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that belongs to Phosphatidylinositol-3-kinase related kinase superfamily. The signaling pathways of mTOR are integrated through the protein complexes of mTORC1 and mTORC2. mTORC1 controls protein synthesis, cell growth, proliferation, autophagy, cell metabolism, and stress responses, whereas mTORC2 seems to regulate cell survival and polarity. Dysregulation of the mTOR pathway has been implicated in the pathophysiology of a number of disease conditions, including cancer, cardiovascular, neurodegenerative, and various renal diseases. The hyperactivation of the mTOR pathway leads to increase in cell growth and proliferation and also has been documented to stimulate tumor growth. Therefore, investigation of the involvement of mTOR and its downstream pathways in various diseases intensively preoccupied scientific community. The present review is focussed on recent advances in the understanding of the mTOR signaling pathway and its role in health and various diseases.
Collapse
Affiliation(s)
- Avileen Kaur
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Saurabh Sharma
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
37
|
Jesus TT, Oliveira PF, Sousa M, Cheng CY, Alves MG. Mammalian target of rapamycin (mTOR): a central regulator of male fertility? Crit Rev Biochem Mol Biol 2017; 52:235-253. [PMID: 28124577 DOI: 10.1080/10409238.2017.1279120] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.
Collapse
Affiliation(s)
- Tito T Jesus
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,b CICS-UBI - Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | - Pedro F Oliveira
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,c i3S - Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Mário Sousa
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,d Centre for Reproductive Genetics Prof. Alberto Barros , Porto , Portugal
| | - C Yan Cheng
- e The Mary M. Wohlford Laboratory for Male Contraceptive Research , Center for Biomedical Research, Population Council , New York , NY , USA
| | - Marco G Alves
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,b CICS-UBI - Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| |
Collapse
|
38
|
Kameshima S, Okada M, Yamawaki H. [Mechanisms of control of cardiovascular, tumorous and neuronal diseases by eEF2K/eEF2 signaling and suggestion of eEF2K/eEF2 as pharmacotherapeutic target]. Nihon Yakurigaku Zasshi 2017; 149:194-199. [PMID: 28484099 DOI: 10.1254/fpj.149.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
39
|
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) has only recently gained recognition for its physiological effects. It is synthesized widely in the mammalian tissues and regulates several biologic processes ranging from development, angiogenesis, neurotransmission to protein synthesis. Recent Advances: The aim of this review is to critically evaluate the evidence for a role for H2S in kidney function and disease. CRITICAL ISSUES H2S regulates fundamental kidney physiologic processes such as glomerular filtration and sodium reabsorption. In kidney disease states H2S appears to play a complex role in a context-dependent manner. In some disease states such as ischemia-reperfusion and diabetic kidney disease it can serve as an agent that ameliorates kidney injury. In other diseases such as cis-platinum-induced kidney disease it may mediate kidney injury although more investigation is needed. Recent studies have revealed that the actions of nitric oxide and H2S may be integrated in kidney cells. FUTURE DIRECTIONS Further studies are needed to understand the full impact of H2S on kidney physiology. As it is endowed with the properties of regulating blood flow, oxidative stress, and inflammation, H2S should be investigated for its role in inflammatory and toxic diseases of the kidney. Such in-depth exploration may identify specific kidney diseases in which H2S may constitute a unique target for therapeutic intervention. Antioxid. Redox Signal. 25, 720-731.
Collapse
Affiliation(s)
- Denis Feliers
- 1 Division of Nephrology, Department of Medicine, University of Texas Health Science Center , San Antonio, Texas
| | - Hak Joo Lee
- 1 Division of Nephrology, Department of Medicine, University of Texas Health Science Center , San Antonio, Texas.,2 South Texas Veterans Healthcare System , San Antonio, Texas
| | - Balakuntalam S Kasinath
- 1 Division of Nephrology, Department of Medicine, University of Texas Health Science Center , San Antonio, Texas.,2 South Texas Veterans Healthcare System , San Antonio, Texas
| |
Collapse
|
40
|
Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur J Pharmacol 2016; 791:8-24. [PMID: 27568833 DOI: 10.1016/j.ejphar.2016.08.022] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN), a chronic complication of diabetes, is charecterized by glomerular hypertrophy, proteinuria, decreased glomerular filtration, and renal fibrosis resulting in the loss of renal function. Although the exact cause of DN remains unclear, several mechanisms have been postulated, such as hyperglycemia-induced renal hyper filtration and renal injury, AGEs-induced increased oxidative stress, activated PKC-induced increased production of cytokines, chemokines, and different inflammatory and apoptotic signals. Among various factors, oxidative stress has been suggested to play a major role underlying the onset and propagation of DN. It triggers several signaling pathways involved in DN, like AGEs, PKC cascade, JAK/STAT signaling, MAPK, mTOR, and SMAD. Oxidative stress-induced activation of both inflammatory and apoptotic signals are two major problems in the pathogenesis of DN. The FDA approved pharmacotherapeutic agents affecting against polyol pathway principally include anti-oxidants, like α-lipoic acid, vitamin E, and vitamin C. Kremezin and benfotiamine are the FDA approved AGEs inhibitors, another therapeutic target against DN. Ruboxistaurin, telmizartan, rapamycin, fenofibrate, aliskiren, and manidipine are some FDA approved pharmacotherapeutics effective against DN via diverse mechanisms. Beside this, some therapeutic agents are still waiting for FDA approval and few drugs without FDA approval are also prescribed in some countries for the management of DN. Despite the medications available in the market to treat DN, the involvement of multiple mechanisms makes it difficult to choose an optimum therapeutic agent. Therefore, much research is required to find out new therapeutic agent/strategies for an adequate pharmacotherapy of DN.
Collapse
Affiliation(s)
- Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Sujata Barma
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Nandita Konwar
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India.
| |
Collapse
|
41
|
Sataranatarajan K, Ikeno Y, Bokov A, Feliers D, Yalamanchili H, Lee HJ, Mariappan MM, Tabatabai-Mir H, Diaz V, Prasad S, Javors MA, Ghosh Choudhury G, Hubbard GB, Barnes JL, Richardson A, Kasinath BS. Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes. J Gerontol A Biol Sci Med Sci 2016; 71:850-7. [PMID: 26442901 PMCID: PMC4906320 DOI: 10.1093/gerona/glv170] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
We examined the effect of rapamycin on the life span of a mouse model of type 2 diabetes, db/db mice. At 4 months of age, male and female C57BLKSJ-lepr (db/db) mice (db/db) were placed on either a control diet, lacking rapamycin or a diet containing rapamycin and maintained on these diets over their life span. Rapamycin was found to reduce the life span of the db/db mice. The median survival of male db/db mice fed the control and rapamycin diets was 349 and 302 days, respectively, and the median survival of female db/db mice fed the control and rapamycin diets was 487 and 411 days, respectively. Adjusting for gender differences, rapamycin increased the mortality risk 1.7-fold in both male and female db/db mice. End-of-life pathological data showed that suppurative inflammation was the main cause of death in the db/db mice, which is enhanced slightly by rapamycin treatment.
Collapse
Affiliation(s)
| | - Yuji Ikeno
- Department of Pathology, and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center, San Antonio. Research Service and Geriatric Research and Education Center, Audie L. Murphy VA Hospital South Texas Veterans Health Care System, San Antonio
| | | | | | | | | | | | | | - Vivian Diaz
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center, San Antonio
| | | | | | - Goutam Ghosh Choudhury
- Department of Medicine, Research Service and Geriatric Research and Education Center, Audie L. Murphy VA Hospital South Texas Veterans Health Care System, San Antonio
| | - Gene B Hubbard
- Department of Pathology, and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center, San Antonio
| | | | - Arlan Richardson
- ROCA/Department of Geriatric Medicine, University of Oklahoma Health Science Center and the Oklahoma City VA Medical Center.
| | - Balakuntalam S Kasinath
- Department of Medicine, The Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center, San Antonio. Research Service and
| |
Collapse
|
42
|
Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F, Kanwar YS. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Curr Med Chem 2016; 22:2858-70. [PMID: 26119175 DOI: 10.2174/0929867322666150625095407] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
Diabetic Nephropathy (DN) is believed to be a major microvascular complication of diabetes. The hallmark of DN includes deposition of Extracellular Matrix (ECM) proteins, such as, collagen, laminin and fibronectin in the mesangium and renal tubulo-interstitium of the glomerulus and basement membranes. Such an increased expression of ECM leads to glomerular and tubular basement membranes thickening and increase of mesangial matrix, ultimately resulting in glomerulosclerosis and tubulointerstitial fibrosis. The characteristic morphologic glomerular mesangial lesion has been described as Kimmelstiel-Wilson nodule, and the process at times is referred to as diabetic nodular glomerulosclerosis. Thus, the accumulation of ECM proteins plays a critical role in the development of DN. The relevant mechanism(s) involved in the increased ECM expression and their regulation in the kidney in diabetic state has been extensively investigated and documented in the literature. Nevertheless, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules including, Notch, Wnt, mTOR, TLRs and small GTPase may play a pivotal role in the modulation of ECM regulation and expression in DN. Such modulation could be operational for instance Notch through Notch1/Jagged1 signaling, Wnt by Wnt/β- catenin pathway and mTOR via PI3-K/Akt/mTOR signaling pathways. All these pathways may be critical in the modulation of ECM expression and tubulo-interstitial fibrosis. In addition, TLRs, mainly the TLR2 and TLR4, by TLR2- dependent and TGF-β-dependent conduits, may modulate ECM expression and generate a fibrogenic response. Small GTPase like Rho, Ras and Rab family by targeting relevant genes may also influence the accumulation of ECM proteins and renal fibrosis in hyperglycemic states. This review summarizes the recent information about the role and mechanisms by which these molecules and signaling pathways regulate ECM synthesis and its expression in high glucose ambience in vitro and in vivo states. The understanding of such signaling pathways and the molecules that influence expression, secretion and amassing of ECM may aid in developing strategies for the amelioration of diabetic nephropathy.
Collapse
Affiliation(s)
| | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xu Y, Zhou Q, Xin W, Li Z, Chen L, Wan Q. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro. PeerJ 2016; 4:e1888. [PMID: 27077005 PMCID: PMC4830256 DOI: 10.7717/peerj.1888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/13/2016] [Indexed: 12/30/2022] Open
Abstract
It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN). Here we used shRNA transfection to knockdown the insulin receptor (IR) gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.
Collapse
Affiliation(s)
- Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qi Zhou
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Xin
- Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhaoping Li
- School of Public Health, Shandong University, Jinan, Shandong, China
| | - Liyong Chen
- Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong Hospital, Jinan, Shandong, China
| | - Qiang Wan
- Department of Nephrology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
44
|
Das F, Ghosh-Choudhury N, Mariappan MM, Kasinath BS, Choudhury GG. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy. Am J Physiol Cell Physiol 2016; 310:C583-96. [PMID: 26739493 DOI: 10.1152/ajpcell.00266.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
Abstract
PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas; Departments of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Meenalakshmi M Mariappan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas; Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
45
|
Abstract
Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.
Collapse
|
46
|
Yuan YL, Guo CR, Cui LL, Ruan SX, Zhang CF, Ji D, Yang ZL, Li F. Timosaponin B-II ameliorates diabetic nephropathy via TXNIP, mTOR, and NF-κB signaling pathways in alloxan-induced mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6247-58. [PMID: 26664046 PMCID: PMC4669930 DOI: 10.2147/dddt.s96435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Many synthesized drugs with clinical severe side effects have been used for diabetic nephropathy (DN) treatment. Therefore, it is urgent and necessary to identify natural and safe agents to remedy DN. Timosaponin B-II (TB-II), a major steroidal saponin constituent in Anemarrhena asphodeloides Bunge, exhibits various activities, including anti-inflammatory and hypoglycemic functions. However, the anti-DN effects and potential mechanism(s) of TB-II have not been previously reported. Purpose To investigate the effect of TB-II on DN in alloxan-induced diabetic mice. Methods TB-II was isolated and purified from A. asphodeloides Bunge using macroporous adsorption resin and preparative high-performance liquid chromatography. The effect of TB-II on DN was evaluated in alloxan-induced diabetic mice using an assay kit and immunohistochemical determination in vivo. The expression of mammalian target of rapamycin (mTOR), thioredoxin-interacting protein (TXNIP), and nuclear transcription factor-κB (NF-κB) signaling pathways was also measured using Western blot analysis. Results TB-II significantly decreased the blood glucose levels and ameliorated renal histopathological injury in alloxan-induced diabetic mice. In addition, TB-II remarkably decreased the levels of renal function biochemical factors, such as kidney index, blood urea nitrogen, serum creatinine, urinary uric acid, urine creatinine, and urine protein, and it reduced lipid metabolism levels of total cholesterol and triglycerides and the levels of inflammatory cytokines interleukin-6 and tumor necrosis factor-α in alloxan-induced mice. Furthermore, TB-II inhibited the expression of mTOR, TXNIP, and NF-κB. Conclusion The results revealed that TB-II plays an important role in DN via TXNIP, mTOR, and NF-κB signaling pathways. Overall, TB-II exhibited a prominently ameliorative effect on alloxan-induced DN.
Collapse
Affiliation(s)
- Yong-Liang Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chang-Run Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ling-Ling Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shi-Xia Ruan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chun-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zhong-Lin Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
47
|
Lu Q, Zuo WZ, Ji XJ, Zhou YX, Liu YQ, Yao XQ, Zhou XY, Liu YW, Zhang F, Yin XX. Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1071-1078. [PMID: 26547529 DOI: 10.1016/j.phymed.2015.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Recently, extract of Ginkgo biloba leaves (GbE) have become widely known phytomedicines and have shown various pharmacological activities, including improvement of blood circulation, protection of oxidative cell damage, prevention of Alzheimer's disease, treatment of cardiovascular disease and diabetes complications. This study was designed to investigate the effects of an ethanolic GbE on renal fibrosis in diabetic nephropathy (DN) and to clarify the possible mechanism by which GbE prevents renal fibrosis. STUDY DESIGN We investigated the protective effects of GbE on renal fibrosis in STZ-induced diabetic rats. Rats were randomized into six groups termed normal control, diabetes mellitus, low dose of GbE (50 mg/kg/d), intermediate dose of GbE (100 mg/kg/d), high dose of GbE (200 mg/kg/d) and rapamycin (1 mg/kg/d). METHODS After 12 weeks, the rats were sacrificed and then fasting blood glucose (FBG), creatinine (Cr), blood urea nitrogen (BUN), urine protein, relative kidney weight, glycogen and collagen accumulation, and collagen IV and laminin expression were measured by different methods. The amounts of E-cadherin, α-SMA and snail, as well as the phosphorylation of Akt, mTOR and p70S6K in the renal cortex of rats, were examined by western blotting. RESULTS Compared with diabetic rats, the levels of Cr, BUN, urine protein, relative kidney weight, accumulation of glycogen and collagen, and expression of collagen IV and laminin in the renal cortex were all decreased in GbE treated rats. In addition, GbE reduced the expression of E-cadherin, α-SMA, snail and the phosphorylation of Akt, mTOR and p70S6K in diabetic renal cortex. CONCLUSION GbE can prevent renal fibrosis in rats with diabetic nephropathy, which is most likely to be associated with its abilities to inhibit the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Wen-Zi Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiao-Jun Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yue-Xian Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yu-Qing Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiao-Qin Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xue-Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Fan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
48
|
Comparative Genome of GK and Wistar Rats Reveals Genetic Basis of Type 2 Diabetes. PLoS One 2015; 10:e0141859. [PMID: 26529237 PMCID: PMC4631338 DOI: 10.1371/journal.pone.0141859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022] Open
Abstract
The Goto-Kakizaki (GK) rat, which has been developed by repeated inbreeding of glucose-intolerant Wistar rats, is the most widely studied rat model for Type 2 diabetes (T2D). However, the detailed genetic background of T2D phenotype in GK rats is still largely unknown. We report a survey of T2D susceptible variations based on high-quality whole genome sequencing of GK and Wistar rats, which have generated a list of GK-specific variations (228 structural variations, 2660 CNV amplification and 2834 CNV deletion, 1796 protein affecting SNVs or indels) by comparative genome analysis and identified 192 potential T2D-associated genes. The genes with variants are further refined with prior knowledge and public resource including variant polymorphism of rat strains, protein-protein interactions and differential gene expression. Finally we have identified 15 genetic mutant genes which include seven known T2D related genes (Tnfrsf1b, Scg5, Fgb, Sell, Dpp4, Icam1, and Pkd2l1) and eight high-confidence new candidate genes (Ldlr, Ccl2, Erbb3, Akr1b1, Pik3c2a, Cd5, Eef2k, and Cpd). Our result reveals that the T2D phenotype may be caused by the accumulation of multiple variations in GK rat, and that the mutated genes may affect biological functions including adipocytokine signaling, glycerolipid metabolism, PPAR signaling, T cell receptor signaling and insulin signaling pathways. We present the genomic difference between two closely related rat strains (GK and Wistar) and narrow down the scope of susceptible loci. It also requires further experimental study to understand and validate the relationship between our candidate variants and T2D phenotype. Our findings highlight the importance of sequenced-based comparative genomics for investigating disease susceptibility loci in inbreeding animal models.
Collapse
|
49
|
Xu Y, Liu L, Xin W, Zhao X, Chen L, Zhen J, Wan Q. The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy. J Diabetes Complications 2015; 29:976-83. [PMID: 26297217 DOI: 10.1016/j.jdiacomp.2015.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/07/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022]
Abstract
With intensive investigations recently, autophagy is hoped to be a potential therapeutic target to prevent or alleviate diabetic nephropathy (DN). Our previous study revealed that lipotoxicity participated in epithelial-to-mesenchymal transition (EMT) of proximal tubular epithelial cells (PTECs) under diabetic conditions. Based on evidences that autophagy and lipid metabolism are closely related, we investigated autophagy under diabetic conditions and how it contributed in the lipotoxicity and EMT. In high-glucose-cultured PTECs, we found that Beclin1 and LC3-II were elevated, while p62 was decreased. These results indicate that autophagy activity was elevated under diabetic conditions. Autophagy deficiency induced by autophagy inhibitors, chloroquine diphosphate (CQ) and 3-Methyladenine (3-MA), and by Atg5 siRNA transfection exacerbated lipid accumulation and EMT. This supports that the elevated autophagy activity acts as a renoprotective response under diabetic conditions. Treatment of rapamycin, which is a mammalian target of rapamycin (mTOR) receptor-specific inhibitor and a known autophagy activator, attenuated high-glucose-induced lipid accumulation and EMT. The Atg5 silence counteracted the protective effect of rapamycin. The present study deepens our understanding of the role of autophagy in DN, suggesting a complex interplay of autophagy, metabolic pathways, lipotoxicity and EMT.
Collapse
Affiliation(s)
- Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Liu
- School of Medicine, Shandong University, Jinan, China
| | - Wei Xin
- Center Lab of Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xu Zhao
- School of Medicine, Shandong University, Jinan, China
| | - Liyong Chen
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiang Wan
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
50
|
Dey N, Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. High glucose enhances microRNA-26a to activate mTORC1 for mesangial cell hypertrophy and matrix protein expression. Cell Signal 2015; 27:1276-85. [PMID: 25797045 PMCID: PMC4437875 DOI: 10.1016/j.cellsig.2015.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
High glucose milieu inhibits PTEN expression to activate Akt kinase and induces glomerular mesangial cell hypertrophy and matrix protein expression in diabetic nephropathy. Specific mechanism by which high glucose inhibits PTEN expression is not clear. We found that high glucose increased the expression of the microRNA-26a (miR-26a) in mesangial cells. Using a sensor plasmid with 3'UTR-driven luciferase, we showed PTEN as a target of miR-26a in response to high glucose. Overexpression of miR-26a reduced the PTEN protein levels resulting in increased Akt kinase activity similar to high glucose treatment. In contrast, anti-miR-26a reversed high glucose-induced suppression of PTEN with concomitant inhibition of Akt kinase activity. Akt-mediated phosphorylation of tuberin and PRAS40 regulates mTORC1, which is necessary for mesangial cell hypertrophy and matrix protein expression. Inhibition of high glucose-induced miR-26a blocked phosphorylation of tuberin and PRAS40, which lead to suppression of phosphorylation of S6 kinase and 4EBP-1, two substrates of mTORC1. Furthermore, we show that expression of miR-26a induced mesangial cell hypertrophy and increased fibronectin and collagen I (α2) expression similar to that observed with the cells incubated with high glucose. Anti-miR-26a inhibited these phenomena in response to high glucose. Together our results provide the first evidence for the involvement of miR-26a in high glucose-induced mesangial cell hypertrophy and matrix protein expression. These data indicate the potential therapeutic utility of anti-miR-26a for the complications of diabetic kidney disease.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Nandini Ghosh-Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|