1
|
Branine M, Schilling-Hazlett AK, Carvalho PHV, Stackhouse-Lawson KR, Martins EC, da Silva JT, Amundson L, Ashworth C, Socha M, Dridi S. Effects of Production System With or Without Growth-Promoting Technologies on Growth and Blood Expression of (Cyto)Chemokines and Heat Shock and Tight Junction Proteins in Bos taurus and indicus Breeds During Summer Season. Vet Sci 2025; 12:65. [PMID: 39852940 PMCID: PMC11769308 DOI: 10.3390/vetsci12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Heat stress (HS) induced by global warming is a real welfare, productivity, and economic burden of cattle production. However, some cattle breeds have superior physiological adaptive traits to others, yet the underlying molecular mechanisms are not fully defined. The present study aimed, therefore, to determine the expression profile of stress-related molecular signatures in the blood of thermosensitive Angus (Bos taurus) and thermotolerant Brahman (Bos indicus) cattle breeds managed without (CON) or with growth-promoting technology (TRT) during the summer (April-October, 2023) season in Colorado, US. Body weight (BW) was significantly increased from April to October, and the amplitude was greater for the Angus compared to the Brahman breed. The TRT system slightly increased BW, mainly in the Angus breed. Molecular analyses showed that all tested genes were expressed in beef cattle blood. When comparing production systems, the expression of HSP1A1 was significantly upregulated, and HSP90 was downregulated in CON compared to TRT cattle. The expression of IL6, CCL20, and OCLN was induced by the CON system only in the Angus and not in the Brahman breed. At the breed level, Angus cattle exhibited greater expression of IL10, CCL20, and CLDN1 compared to their Brahman counterparts. There was a significant period by production system as well as period by breed interactions. The expression of HSP1A1 increased in both breeds during October. The expression of IL10, CXCL14, CXCR2, and CLDN1 was affected by the production systems in a period-dependent manner. However, the expression of IL6, CXCL14, CCL5, and CXCR2 was upregulated in Angus cattle in a period-sensitive manner. In summary, HSPs, (chemo)cytokines, and tight junction proteins are expressed in the whole blood of beef cattle, and their expression is regulated in a breed-, period-, and/or production system-dependent manner. This could open new vistas for future research to identify molecular signatures for non-invasive stress monitoring and/or marker-assisted genetic selection for robustness and resilience to HS.
Collapse
Affiliation(s)
- Mark Branine
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Ashley K. Schilling-Hazlett
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Pedro H. V. Carvalho
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Kim R. Stackhouse-Lawson
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Edilane C. Martins
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Julia T. da Silva
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Laura Amundson
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Chris Ashworth
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Mike Socha
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Zhang Z, Wu X, Zou Z, Shen M, Liu Q, Zhangsun Z, Zhao H, Lei W, Wang Z, Dong Y, Yang Y. Heat stroke: Pathogenesis, diagnosis, and current treatment. Ageing Res Rev 2024; 100:102409. [PMID: 38986844 DOI: 10.1016/j.arr.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Recently, the incidence of heat-related illnesses has exhibited a steadily upward trend, which is closely associated with several environmental factors such as climate change and air pollution. The progression of heat-related illnesses is a continuous process and can progress to the terminal period when it transforms into heat stroke, the most severe form. Heat stroke is markedly by a core body temperature above 40°C and central nervous system dysfunction. Current knowledge suggests that the pathogenesis of heat stroke is complex and varied, including inflammatory response, oxidative stress, cell death, and coagulation dysfunction. This review consolidated recent research progress on the pathophysiology and pathogenesis of heat stroke, with a focus on the related molecular mechanisms. In addition, we reviewed common strategies and sorted out the drugs in various preclinical stages for heat stroke, aiming to offer a comprehensive research roadmap for more in-depth researches into the mechanisms of heat stroke and the reduction in the mortality of heat stroke in the future.
Collapse
Affiliation(s)
- Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Zou
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Hainan, 572013, China
| | - Qiong Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ziyin Zhangsun
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Yushu Dong
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
3
|
Yu Z, Cantet JM, Paz HA, Kaufman JD, Orellano MS, Ipharraguerre IR, Ríus AG. Heat stress-associated changes in the intestinal barrier, inflammatory signals, and microbiome communities in dairy calves. J Dairy Sci 2024; 107:1175-1196. [PMID: 37730180 DOI: 10.3168/jds.2023-23873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Recent studies indicate that heat stress pathophysiology is associated with intestinal barrier dysfunction, local and systemic inflammation, and gut dysbiosis. However, inconclusive results and a poor description of tissue-specific changes must be addressed to identify potential intervention targets against heat stress illness in growing calves. Therefore, the objective of this study was to evaluate components of the intestinal barrier, pro- and anti-inflammatory signals, and microbiota community composition in Holstein bull calves exposed to heat stress. Animals (mean age = 12 wk old; mean body weight = 122 kg) penned individually in temperature-controlled rooms were assigned to (1) thermoneutral conditions (constant room temperature at 19.5°C) and restricted offer of feed (TNR, n = 8), or (2) heat stress conditions (cycles of room temperatures ranging from 20 to 37.8°C) along with ad libitum offer of feed (HS, n = 8) for 7 d. Upon treatment completion, sections of the jejunum, ileum, and colon were collected and snap-frozen immediately to evaluate gene and protein expression, cytokine concentrations, and myeloperoxidase activity. Digesta aliquots of the ileum, colon, and rectum were collected to assess bacterial communities. Plasma was harvested on d 2, 5, and 7 to determine cytokine concentrations. Overall, results showed a section-specific effect of HS on intestinal integrity. Jejunal mRNA expression of TJP1 was decreased by 70.9% in HS relative to TNR calves. In agreement, jejunal expression of heat shock transcription factor-1 protein, a known tight junction protein expression regulator, decreased by 48% in HS calves. Jejunal analyses showed that HS decreased concentrations of IL-1α by 36.6% and tended to decrease the concentration of IL-17A. Conversely, HS elicited a 3.5-fold increase in jejunal concentration of anti-inflammatory IL-36 receptor antagonist. Plasma analysis of pro-inflammatory cytokines showed that IL-6 decreased by 51% in HS relative to TNR calves. Heat stress alteration of the large intestine bacterial communities was characterized by increased genus Butyrivibrio_3, a known butyrate-producing organism, and changes in bacteria metabolism of energy and AA. A strong positive correlation between the rectal temperature and pro-inflammatory Eggerthii spp. was detected in HS calves. In conclusion, this work indicates that HS impairs the intestinal barrier function of jejunum. The pro- and anti-inflammatory signal changes may be part of a broader response to restore intestinal homeostasis in jejunum. The changes in large intestine bacterial communities favoring butyrate-producing organisms (e.g., Butyrivibrio spp.) may be part of a successful response to maintain the integrity of the colonic mucosa of HS calves. The alteration of intestinal homeostasis should be the target for heat stress therapies to restore biological functions, and, thus highlights the relevance of this work.
Collapse
Affiliation(s)
- Z Yu
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - J M Cantet
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - H A Paz
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205; Arkansas Children's Nutrition Center, Little Rock, AR 72202
| | - J D Kaufman
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - M S Orellano
- Centro de Investigaciones y Transferencia de Villa María, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Villa María, Villa María, Córdoba 5900, Argentina
| | - I R Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel 24118, Germany
| | - A G Ríus
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996.
| |
Collapse
|
4
|
Collins CB, Nguyen TT, Leddy RS, Alula KM, Yeckes AR, Strassheim D, Aherne CM, Luck ME, Karoor V, Jedlicka P, Pierce A, de Zoeten EF. Heat shock factor 1 drives regulatory T-cell induction to limit murine intestinal inflammation. Mucosal Immunol 2024; 17:94-110. [PMID: 37944754 PMCID: PMC10953693 DOI: 10.1016/j.mucimm.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The heat shock response is a critical component of the inflammatory cascade that prevents misfolding of new proteins and regulates immune responses. Activation of clusters of differentiation (CD)4+ T cells causes an upregulation of heat shock transcription factor, heat shock factor 1 (HSF1). We hypothesized that HSF1 promotes a pro-regulatory phenotype during inflammation. To validate this hypothesis, we interrogated cell-specific HSF1 knockout mice and HSF1 transgenic mice using in vitro and in vivo techniques. We determined that while HSF1 expression was induced by anti-CD3 stimulation alone, the combination of anti-CD3 and transforming growth factor β, a vital cytokine for regulatory T cell (Treg) development, resulted in increased activating phosphorylation of HSF1, leading to increased nuclear translocation and binding to heat shock response elements. Using chromatin immunoprecipitation (ChIP), we demonstrate the direct binding of HSF1 to foxp3 in isolated murine CD4+ T cells, which in turn coincided with induction of FoxP3 expression. We defined that conditional knockout of HSF1 decreased development and function of Tregs and overexpression of HSF1 led to increased expression of FoxP3 along with enhanced Treg suppressive function. Adoptive transfer of CD45RBHigh CD4 colitogenic T cells along with HSF1 transgenic CD25+ Tregs prevented intestinal inflammation when wild-type Tregs did not. Finally, overexpression of HSF1 provided enhanced barrier function and protection from murine ileitis. This study demonstrates that HSF1 promotes Treg development and function and may represent both a crucial step in the development of induced regulatory T cells and an exciting target for the treatment of inflammatory diseases with a regulatory T-cell component. SIGNIFICANCE STATEMENT: The heat shock response (HSR) is a canonical stress response triggered by a multitude of stressors, including inflammation. Evidence supports the role of the HSR in regulating inflammation, yet there is a paucity of data on its influence in T cells specifically. Gut homeostasis reflects a balance between regulatory clusters of differentiation (CD)4+ T cells and pro-inflammatory T-helper (Th)17 cells. We show that upon activation within T cells, heat shock factor 1 (HSF1) translocates to the nucleus, and stimulates Treg-specific gene expression. HSF1 deficiency hinders Treg development and function and conversely, HSF1 overexpression enhances Treg development and function. While this work, focuses on HSF1 as a novel therapeutic target for intestinal inflammation, the findings have significance for a broad range of inflammatory conditions.
Collapse
Affiliation(s)
- Colm B Collins
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Tom T Nguyen
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert S Leddy
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Kibrom M Alula
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Alyson R Yeckes
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Derek Strassheim
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carol M Aherne
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Marisa E Luck
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Vijaya Karoor
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Edwin F de Zoeten
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
González F, Cervantes M, Morales A, Valle JA, Camacho R, ngélica Morales-Becerra A, Bernal H, aría Mendoza SM, Htoo JK. Effect of supplementing a Bacillus subtilis-based probiotic on performance, intestinal integrity, and serum antioxidant capacity and metabolites concentrations of heat-stressed growing pigs. J Anim Sci 2024; 102:skae012. [PMID: 38219255 PMCID: PMC10825842 DOI: 10.1093/jas/skae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 01/16/2024] Open
Abstract
Exposing pigs to heat stress (HS) seems to modify the intestinal microbiota which may compromise the integrity of the small intestine epithelia. Probiotics, live microorganisms, can help pigs to maintain a healthy intestinal environment. Eighty pigs (21.6 ± 3.4 kg body weight) exposed to HS or thermal neutral (TN) conditions were used to evaluate the effect of a Bacillus subtilis-based probiotic on performance, body temperature, and intestinal integrity. Treatments were: TN pigs fed a control diet without (TN-C) or with 1 × 106 CFU probiotic/g of feed (TN-P), and HS pigs fed a control without (HS-C) or with probiotic (HS-P). The control diet was formulated with wheat, soybean meal, and free amino acids (AA). Feed and water were freely available during the 21-d study. At completion, samples from duodenum, jejunum, and ileum were collected to analyze epithelial histology and tight junction protein expression; antioxidant activity, and free AA and metabolites in serum. Relative abundance of Lactobacillus, Bifidobacterium, Escherichia coli, and Bacillus in ileal content was analyzed. Ambient temperature in the TN room ranged from 19 to 25 °C, and in HS room from 30 to 38.5 °C. Intestinal temperature in HS-P pigs was lower than in HS-C pigs. Weight gain and feed intake reduced, but feed:gain and respiration rate increased in HS compared to TN pigs, regardless of diet (P < 0.01). Probiotic increased weight gain and improved feed:gain (P < 0.05) in both TN and HS pigs, but feed intake did not differ. Heat stress decreased villi height in jejunum and villi height:crypt depth in duodenum and jejunum (P < 0.05). Probiotic increased villi height in duodenum and ileum, and villi height:crypt depth in all small intestine segments (P < 0.05). Relative abundance of Lactobacillus and Bifidobacterium tended to reduce, and E. coli tended to increase (P < 0.10) in ileal content of HS-C pigs. Ileal relative abundance of Bacillus was higher (P < 0.01) in HS-P pigs than in HS-C and TN-C pigs. Cystathionine, homocysteine, hydroxylysine, α-amino-adipic acid, citrulline, α-amino-n-butyric acid, P-Ser, and taurine were higher in HS than in TN pigs (P < 0.05). These data confirm the negative effect of HS on performance, body temperature, and intestinal integrity of pigs. These data suggest that supplementing 1 × 106 CFU probiotic/g of feed based on Bacillus subtilis DSM 32540 may help to counteract the negative effects of HS on the performance and intestinal integrity of pigs.
Collapse
Affiliation(s)
- Fernanda González
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Miguel Cervantes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Adriana Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - José Alan Valle
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Reyna Lucero Camacho
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | | | - Hugo Bernal
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | | | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| |
Collapse
|
7
|
Kim HW, Lee SY, Hur SJ, Kil DY, Kim JH. Effects of functional nutrients on chicken intestinal epithelial cells induced with oxidative stress. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1040-1052. [PMID: 37969347 PMCID: PMC10640939 DOI: 10.5187/jast.2023.e22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
The objective of this study was to investigate the protective effects of functional nutrients including various functional amino acids, vitamins, and minerals on chicken intestinal epithelial cells (cIECs) treated with oxidative stress. The cIECs were isolated from specific pathogen free eggs. Cells were exposed to 0 mM supplement (control), 20 mM threonine (Thr), 0.4 mM tryptophan (Trp), 1 mM glycine (Gly), 10 μM vitamin C (VC), 40 μM vitamin E (VE), 5 μM vitamin A (VA), 34 μM chromium (Cr), 0.42 μM selenium (Se), and 50 μM zinc (Zn) for 24 h with 6 replicates for each treatment. After 24 h, cells were further incubated with fresh culture medium (positive control, PC) or 1 mM H2O2 with different supplements (negative control, NC and each treatment). Oxidative stress was measured by cell proliferation, whereas tight junction barrier function was analyzed by fluorescein isothiocyanate (FITC)-dextran permeability and transepithelial electrical resistance (TEER). Results indicated that cell viability and TEER values were less (p < 0.05) in NC treatments with oxidative stress than in PC treatments. In addition, FITC-dextran values were greater (p < 0.05) in NC treatments with oxidative stress than in PC treatments. The supplementations of Thr, Trp, Gly, VC, and VE in cells treated with H2O2 showed greater (p < 0.05) cell viability than the supplementation of VA, Cr, Se, and Zn. The supplementations of Trp, Gly, VC, and Se in cells treated with H2O2 showed the least (p < 0.05) cellular permeability. In addition, the supplementation of Thr, VE, VA, Cr, and Zn in cells treated with H2O2 decreased (p < 0.05) cellular permeability. At 48 h, the supplementations of Thr, Trp, and Gly in cells treated with H2O2 showed the greatest (p < 0.05) TEER values among all treatments, and the supplementations of VC and VE in cells treated with H2O2 showed greater (p < 0.05) TEER values than the supplementations of VA, Cr, Se, and Zn in cells treated with H2O2. In conclusion, Thr, Trp, Gly, and VC supplements were effective in improving cell viability and intestinal barrier function of cIECs exposed to oxidative stress.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science (BK21 Four),
Institute of Agriculture Life Science, Gyeongsang National
University, Jinju 52725, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dong Yong Kil
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
8
|
Chen X, Liu W, Zhang J, Li H, Liu X. Selenium-enriched peptides identified from selenium-enriched soybean protein hydrolysate: protective effects against heat damage in Caco-2 cells. Food Funct 2023; 14:7882-7896. [PMID: 37489104 DOI: 10.1039/d3fo01103h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Our previous study evaluated the antioxidant and anti-inflammatory activities of selenium-enriched soybean peptides (SePPs) in vivo. In this study, we purified SePPs via gel filtration chromatography and obtained five fractions (F1, F2, F3, F4 and F5), among which F3 displayed the highest antioxidant and anti-inflammatory activities. Nineteen selenium-enriched peptides were identified in F3 by mass spectrometry. Two selenium-enriched peptides with sequences ESeCQIQKL (Sep-1) and SELRSPKSeC (Sep-2) were selected for synthesis based on their score and the number of hydrophobic amino acids, acidic and basic amino acids. Both Sep-1 and Sep-2 exhibited preventive effects on the heat stress-induced impairment of intestinal epithelial cell integrity, oxidative stress and inflammatory responses in a Caco-2 cell model. Pretreatment of the cells with Sep-1 or Sep-2 for 24 h reduced intracellular reactive oxygen species (ROS) generation, prevented the disruption of tight junction (TJ) proteins, and decreased paracellular permeability. Western blot results showed that Sep-1 and Sep-2 could improve the abnormal expressions of Nrf2, Keap1, NLRP3, caspase-1 and ASC/TMS1, thereby enhancing the glutathione (GSH) redox system and reducing IL-1β and IL-18 concentrations. Sep-1 activated the Nrf2-Keap1 signaling pathway significantly more than Sep-2. Molecular docking results indicated that Sep-1 and Sep-2 are both bound to Keap1 and NLRP3 in the form of hydrogen bonds, hydrophobic interactions and salt bridges, which interferes with Nrf2 and NLRP3 signaling. Molecular dynamics simulations suggested that more hydrogen bonds were formed during the resultant process of Sep-1 with Keap1, and the compactness and stability of the complex structure were better than those of Sep-2. These findings confirm the value of both Sep-1 and Sep-2 in the development of dietary supplements as potential alternatives for heat damage and related disease prevention.
Collapse
Affiliation(s)
- Xinwei Chen
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Wanlu Liu
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - He Li
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
9
|
Wu J, Li G, Guo H, Huang B, Li G, Dai S. Acute cold stress induces intestinal injury via CIRP-TLR4-IRE1 signaling pathway in pre-starter broilers. Mol Biol Rep 2023:10.1007/s11033-023-08487-1. [PMID: 37253919 DOI: 10.1007/s11033-023-08487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cold stress is a common environmental stress in broiler chicks. Cold-inducible RNA-binding protein (CIRP) is a conserved cold shock protein that can regulate inflammatory response through Toll-like receptor 4 (TLR4). The mechanism that how CIRP involves in the regulation of cold stress in broilers remains unclear. METHODS AND RESULTS In this study, 360 7-day-old healthy male SZ901 chicks were selected and randomly allocated to four groups, and then subjected to acute cold exposure at the ambient temperature of 12 ± 1 °C for 0 h, 4 h, 8 h, and 12 h, respectively. After cold exposure, abdominall skin temperature, gene expression of CIRP-TLR4-IRE1 signaling pathway in ileum mucosa, and small intestinal structure were measured. The results showed that cold exposure decreased abdominall skin temperature, upregulated the gene expression of endoplasmic reticulum stress (ERS) markers IRE1, inflammatory factors IL-1β, IL-6, IL-10, TNF-α, and tight junction proteins ZO-1 and Occludin in ileum of chicks compared with the control group with no (0 h) cold exposure. Compared with the control group, a long time cold exposure upregulated the gene expression of CIRP, TLR4, GRP78, NF-κB in ileum mucosa, and decreased the villus height and V/C of small intestine. CONCLUSIONS The above results suggest that acute cold stress induces endoplasmic reticulum stress via upregulating the gene expression of CIRP-TLR4-IRE1 signaling pathway, and results in the structural damage of chick intestine.
Collapse
Affiliation(s)
- Juanjuan Wu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Guiyao Li
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Haoneng Guo
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Bo Huang
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Guanhong Li
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China.
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, Jiangxi, China.
| |
Collapse
|
10
|
Chen X, Li Z, Pu J, Cai J, Zhao H, Jia G, Liu G, Tian G. Dietary Betaine improves the intestinal health and growth performance of heat-stressed growing rabbits in summer. J Anim Sci 2023; 101:skad363. [PMID: 37875147 PMCID: PMC10684048 DOI: 10.1093/jas/skad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
The main objective of this study is to explore how various amounts of Bet affect growth performance, nutritional digestibility, and intestinal health of growing rabbits under high-temperature environment in summer. A total of 150 healthy 35-d-old weaned QiXing meat rabbits (Germany White rabbit × Sichuan White rabbit) were individually assigned to five treatments, each with 30 replicates and one rabbit per replicate. The control group was fed with basal diet, while the experimental group received a basal diet supplemented with 0.75, 1.0, 1.5, and 2.0 g Bet/kg diet, respectively. During the whole experimental stage, all animals can eat and drink freely, and they were kept in the rabbit house with an average daily temperature of 30.11 ± 0.5 ℃ and a relative humidity of 71.02 ± 5.07%. The results showed that dietary supplementation with 1.5 g/kg Bet increased average daily gain and decreased feed to gain ratio from days 1 to 42 as compared to the control group (P < 0.05), adding 0.75, 1.0, 1.5, and 2.0 g/kg Bet increased average daily gain and average daily feed intake from days 22 to 42 (P < 0.05), and increased the nutritional digestibility of acid detergent fiber (P < 0.05). Furthermore, dietary supplementation with 1.0, 1.5, and 2.0 g/kg Bet reduced d-lactate content and diamine oxidase activity in the serum (P < 0.05). Compared to the control group, supplementation of 0.75 and 1.5 g/kg Bet improved glutathione peroxidase activities in the duodenum and ileum, adding 0.75, 1.0, 1.5, and 2.0 g/kg Bet decreased malonaldehyde content in the duodenum and jejunum (P < 0.05). Moreover, the supplement of 1.5 and 2.0 g/kg Bet upregulated JAM-2 and IL-10 levels in the jejunum (P < 0.05). In conclusion, supplementation with Bet in the diet improves the growth performance, nutrient digestibility, and intestinal health of growing rabbits under high-temperature environments, and the 1.5 g Bet/kg diet group has the best effect.
Collapse
Affiliation(s)
- Xiang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junning Pu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
11
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
12
|
Álvarez-Mercado AI, Plaza-Díaz J, de Almagro MC, Gil Á, Moreno-Muñoz JA, Fontana L. Bifidobacterium longum subsp. infantis CECT 7210 Reduces Inflammatory Cytokine Secretion in Caco-2 Cells Cultured in the Presence of Escherichia coli CECT 515. Int J Mol Sci 2022; 23:ijms231810813. [PMID: 36142723 PMCID: PMC9503999 DOI: 10.3390/ijms231810813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Previous works have described the activity of Bifidobacterium longum subsp. infantis CECT 7210 (also commercially named B. infantis IM-1®) against rotavirus in mice and intestinal pathogens in piglets, as well as its diarrhea-reducing effect on healthy term infants. In the present work, we focused on the intestinal immunomodulatory effects of B. infantis IM-1® and for this purpose we used the epithelial cell line isolated from colorectal adenocarcinoma Caco-2 and a co-culture system of human dendritic cells (DCs) from peripheral blood together with Caco-2 cells. Single Caco-2 cultures and Caco-2: DC co-cultures were incubated with B. infantis IM-1® or its supernatant either in the presence or absence of Escherichia coli CECT 515. The B. infantis IM-1® supernatant exerted a protective effect against the cytotoxicity caused by Escherichia coli CECT 515 on single cultures of Caco-2 cells as viability reached the values of untreated cells. B. infantis IM-1® and its supernatant also decreased the secretion of pro-inflammatory cytokines by Caco-2 cells and the co-cultures incubated in the presence of E. coli CECT 515, with the response being more modest in the latter, which suggests that DCs modulate the activity of Caco-2 cells. Overall, the results obtained point to the immunomodulatory activity of this probiotic strain, which might underlie its previously reported beneficial effects.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | | | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Instituto de Salud Carlos III, CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| | | | - Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Correspondence:
| |
Collapse
|
13
|
Miao W, Han Y, Yang Y, Hao Z, An N, Chen J, Zhang Z, Gao X, Storey KB, Chang H, Wang S. Dynamic Changes in Colonic Structure and Protein Expression Suggest Regulatory Mechanisms of Colonic Barrier Function in Torpor-Arousal Cycles of the Daurian Ground Squirrel. Int J Mol Sci 2022; 23:ijms23169026. [PMID: 36012293 PMCID: PMC9409258 DOI: 10.3390/ijms23169026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Both pathological conditions and hibernation can affect the barrier function of small intestine mucosa. However, the effect of hibernation on the barrier function of colonic mucosa remains unclear. Methods: We investigated morphological changes in colonic mucosa, the concentrations of specific proteins and molecules, and the enzymatic activity of diamine oxidase (DAO), in serum and colonic tissue; the expression of tight junction proteins and mucin, and the changes in inflammatory, farnesoid X receptor (FXR)–small heterodimer partner (SHP), and apoptosis-related molecules that could play a role in gut permeability changes in Daurian ground squirrels in summer active (SA), late torpor (LT), and interbout arousal (IBA) periods. Results: The results show that hibernation reduced the thickness of the colonic mucosa and the depth of the crypt, decreased the number of goblet cells (GCs), and damaged the structure of some microvilli. The concentrations of proteins and molecules, and the enzymatic activity of DAO, were all increased in the serum and colon, and the localization of tight junction proteins and mucin in the colonic mucosa were altered (compensatory response). Although the ground squirrels ate during the interbout arousal period, the changes remained similar to the response to torpor. Inflammation, apoptosis–anti-apoptosis, and FXR–SHP signaling may be involved in the possible changes in intestinal gut permeability during the torpor–arousal cycle in Daurian ground squirrels. In addition, periodic interbout arousal may play an inflammation-correcting role during the long hibernation season of Daurian ground squirrels.
Collapse
Affiliation(s)
- Weilan Miao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Yuting Han
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Yingyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwei Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ning An
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Jiayu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Xuli Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
- Correspondence: (H.C.); (S.W.); Tel.: +86-29-88303935 (H.C.)
| | - Shiwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
- Correspondence: (H.C.); (S.W.); Tel.: +86-29-88303935 (H.C.)
| |
Collapse
|
14
|
Tang S, Xie J, Fang W, Wen X, Yin C, Meng Q, Zhong R, Chen L, Zhang H. Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs. ANIMAL NUTRITION 2022; 11:228-241. [PMID: 36263409 PMCID: PMC9556788 DOI: 10.1016/j.aninu.2022.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
|
15
|
Horseman M, Panahi L, Udeani G, Tenpas AS, Verduzco Jr. R, Patel PH, Bazan DZ, Mora A, Samuel N, Mingle AC, Leon LR, Varon J, Surani S. Drug-Induced Hyperthermia Review. Cureus 2022; 14:e27278. [PMID: 36039261 PMCID: PMC9403255 DOI: 10.7759/cureus.27278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Humans maintain core body temperature via a complicated system of physiologic mechanisms that counteract heat/cold fluctuations from metabolism, exertion, and the environment. Overextension of these mechanisms or disruption of body temperature homeostasis leads to bodily dysfunction, culminating in a syndrome analogous to exertional heat stroke (EHS). The inability of this thermoregulatory process to maintain the body temperature is caused by either thermal stress or certain drugs. EHS is a syndrome characterized by hyperthermia and the activation of systemic inflammation. Several drug-induced hyperthermic syndromes may resemble EHS and share common mechanisms. The purpose of this article is to review the current literature and compare exertional heat stroke (EHS) to three of the most widely studied drug-induced hyperthermic syndromes: malignant hyperthermia (MH), neuroleptic malignant syndrome (NMS), and serotonin syndrome (SS). Drugs and drug classes that have been implicated in these conditions include amphetamines, diuretics, cocaine, antipsychotics, metoclopramide, selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and many more. Observations suggest that severe or fulminant cases of drug-induced hyperthermia may evolve into an inflammatory syndrome best described as heat stroke. Their underlying mechanisms, symptoms, and treatment approaches will be reviewed to assist in accurate diagnosis, which will impact the management of potentially life-threatening complications.
Collapse
|
16
|
Sun G, Song X, Zou Y, Teng T, Jiang L, Shi B. Dietary Glucose Ameliorates Impaired Intestinal Development and Immune Homeostasis Disorders Induced by Chronic Cold Stress in Pig Model. Int J Mol Sci 2022; 23:ijms23147730. [PMID: 35887078 PMCID: PMC9317271 DOI: 10.3390/ijms23147730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023] Open
Abstract
Endotherms are easily challenged by chronic cold stress. In this study, the development and injury of the small intestine in the Min pig model and Yorkshire pig model under chronic cold stress, and the molecular mechanisms by which glucose supplementation reduces small intestinal mucosal damage were investigated. The results showed that morphological structure lesions of the jejunal mucosa and ileal mucosa were visible in Yorkshire pigs under chronic cold stress. Meanwhile, the Occludin mRNA and protein expression in jejunal mucosa of Yorkshire pigs was decreased. Chronic cold stress enhanced the expression of Toll-like receptor 4 (TLR4), the myeloid differentiation main response 88 (MyD88), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3), cleaved caspase-1, mature-IL-1β, and high-mobility group box 1 (HMGB 1) mRNA and protein expression in jejunal mucosa of Yorkshire pigs, whereas the mRNA and protein of Bax was triggered in ileal mucosa. In Min pigs, no such deleterious consequences were observed. Dietary glucose supplementation ameliorates small intestinal mucosal injury, declined TLR4 and MyD88 expression in jejunal mucosa. In conclusion, chronic cold stress induced the small intestinal mucosa damage in Yorkshire pigs, whereas glucose supplementation mitigated the deleterious effects of chronic cold stress on the small intestine.
Collapse
|
17
|
Identification of stress-related genes by co-expression network analysis based on the improved turbot genome. Sci Data 2022; 9:374. [PMID: 35768602 PMCID: PMC9243025 DOI: 10.1038/s41597-022-01458-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Turbot (Scophthalmus maximus), commercially important flatfish species, is widely cultivated in Europe and China. With the continuous expansion of the intensive breeding scale, turbot is exposed to various stresses, which greatly impedes the healthy development of turbot industry. Here, we present an improved high-quality chromosome-scale genome assembly of turbot using a combination of PacBio long-read and Illumina short-read sequencing technologies. The genome assembly spans 538.22 Mb comprising 27 contigs with a contig N50 size of 25.76 Mb. Annotation of the genome assembly identified 104.45 Mb repetitive sequences, 22,442 protein-coding genes and 3,345 ncRNAs. Moreover, a total of 345 stress responsive candidate genes were identified by gene co-expression network analysis based on 14 published stress-related RNA-seq datasets consisting of 165 samples. Significantly improved genome assembly and stress-related candidate gene pool will provide valuable resources for further research on turbot functional genome and stress response mechanism, as well as theoretical support for the development of molecular breeding technology for resistant turbot varieties. Measurement(s) | whole genome sequencing | Technology Type(s) | PacBio long-read and Illumina short-read sequencing technologies |
Collapse
|
18
|
Wang Z, Shao D, Kang K, Wu S, Zhong G, Song Z, Shi S. Low protein with high amino acid diets improves the growth performance of yellow feather broilers by improving intestinal health under cyclic heat stress. J Therm Biol 2022; 105:103219. [DOI: 10.1016/j.jtherbio.2022.103219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
|
19
|
Liu HY, Gu F, Zhu C, Yuan L, Zhu C, Zhu M, Yao J, Hu P, Zhang Y, Dicksved J, Bao W, Cai D. Epithelial Heat Shock Proteins Mediate the Protective Effects of Limosilactobacillus reuteri in Dextran Sulfate Sodium-Induced Colitis. Front Immunol 2022; 13:865982. [PMID: 35320932 PMCID: PMC8934773 DOI: 10.3389/fimmu.2022.865982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Defects in gut barrier function are implicated in gastrointestinal (GI) disorders like inflammatory bowel disease (IBD), as well as in systemic inflammation. With the increasing incidence of IBD worldwide, more attention should be paid to dietary interventions and therapeutics with the potential to boost the natural defense mechanisms of gut epithelial cells. The current study aimed to investigate the protective effects of Limosilactobacillus reuteri ATCC PTA 4659 in a colitis mouse model and delineate the mechanisms behind it. Wild-type mice were allocated to the control group; or given 3% dextran sulfate sodium (DSS) in drinking water for 7 days to induce colitis; or administered L. reuteri for 7 days as pretreatment; or for 14 days starting 7 days before subjecting to the DSS. Peroral treatment with L. reuteri improved colitis severity clinically and morphologically and reduced the colonic levels of Tumor necrosis factor-α (TNF-α) (Tnf), Interleukin 1-β (Il1β), and nterferon-γ (Ifng), the crucial pro-inflammatory cytokines in colitis onset. It also prevented the CD11b+Ly6G+ neutrophil recruitment and the skewed immune responses in mesenteric lymph nodes (MLNs) of CD11b+CD11c+ dendritic cell (DC) expansion and Foxp3+CD4+ T-cell reduction. Using 16S rRNA gene amplicon sequencing and RT-qPCR, we demonstrated a colitis-driven bacterial translocation to MLNs and gut microbiota dysbiosis that were in part counterbalanced by L. reuteri treatment. Moreover, the expression of barrier-preserving tight junction (TJ) proteins and cytoprotective heat shock protein (HSP) 70 and HSP25 was reduced by colitis but boosted by L. reuteri treatment. A shift in expression pattern was also observed with HSP70 in response to the pretreatment and with HSP25 in response to L. reuteri-DSS. In addition, the changes of HSPs were found to be correlated to bacterial load and epithelial cell proliferation. In conclusion, our results demonstrate that the human-derived L. reuteri strain 4659 confers protection in experimental colitis in young mice, while intestinal HSPs may mediate the probiotic effects by providing a supportive protein–protein network for the epithelium in health and colitis.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Demin Cai, ; Wenbin Bao,
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Demin Cai, ; Wenbin Bao,
| |
Collapse
|
20
|
Calik A, Emami NK, Schyns G, White MB, Walsh MC, Romero LF, Dalloul RA. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part II: Oxidative stress, immune response, gut integrity, and intestinal microbiota. Poult Sci 2022; 101:101858. [PMID: 35468426 PMCID: PMC9059080 DOI: 10.1016/j.psj.2022.101858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 01/22/2023] Open
Abstract
This study evaluated the effects of vitamin E (Vit E) and selenium (Se) supplementation on mRNA abundance of antioxidant, immune response, and tight junction genes, as well as taxonomic and functional profiles of ileal microbiota of broilers exposed to daily 4-h elevated temperature during d 28 to 35. A total of 640-day-old Cobb male broiler chicks were randomly allocated to 32 floor pens in a 2 × 2 factorial arrangement that included ambient temperature (thermoneutral [TN] or heat stress [HS]) and dietary treatments (basal diet or Vit E + Se). Vit E and organic Se were added to the basal diet at the rate of 250 mg/kg and 1 mg/kg, respectively. Liver and jejunum tissue samples were taken on d 27 (1 bird/pen), d 28 and d 35 (2 birds/pen) from birds for qPCR analysis. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP. Ileal contents were taken on d 27 and d 35 for microbial profiling. Microbiota data were analyzed in QIIME 2 and significance between treatments identified linear discriminant analysis effect size (LEfSe, P < 0.05). Dietary Vit E/Se significantly downregulated the mRNA levels of HSPs in liver and jejunal tissues of the HS-challenged birds both on d 28 and d 35. Moreover, mRNA abundance of TLR2, TNFα, IFNγ, IL-1β, IL-10, and iNOS in the liver were significantly downregulated in birds fed the Vit E/Se diet on d 35. However, dietary treatment had no significant impact on oxidative stress, immunity, and gut integrity related genes analyzed in jejunal tissues on d 28 and d 35, except downregulation of IFNγ on d 35 (P = 0.052). LEfSe analysis revealed that Lachnospiraceae FE2018 and Ruminococcaceae NK4A214 groups was enriched in the Vit E/Se birds on d 35. Moreover, PICRUSt analysis predicted significant functional differences among the treatment groups. In conclusion, dietary supplementation of Vit E/Se mitigated the negative effects of HS potentially via improving antioxidant status, regulating cytokine responses and modifying ileal microbiota and its function.
Collapse
|
21
|
Mikhael M, Pasha B, Chela H, Tahan V, Daglilar E. Immunological and Metabolic Alterations in Esophageal Cancer. Endocr Metab Immune Disord Drug Targets 2022; 22:579-589. [PMID: 35086463 DOI: 10.2174/1871530322666220127113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022]
Abstract
Esophageal cancer is one of the most common types of gastrointestinal malignancies that is encountered. It has a global distribution and affects males and females and is linked to significant morbidity and mortality. The mechanisms underlying pathophysiology are multifactorial and involve the interaction of genetic and environmental factors. This review article describes the immunological and metabolic changes that occur in malignancy of the esophagus.
Collapse
Affiliation(s)
- Mary Mikhael
- University of Missouri Department of Internal Medicine, Columbia, Missouri, USA
| | - Bilal Pasha
- University of Missouri Department of Internal Medicine, Columbia, Missouri, USA
| | - Harleen Chela
- Division of Gastroenterology and Hepatology,2 Columbia, Missouri, USA
| | - Veysel Tahan
- Division of Gastroenterology and Hepatology,2 Columbia, Missouri, USA
| | - Ebubekir Daglilar
- Division of Gastroenterology and Hepatology,2 Columbia, Missouri, USA
| |
Collapse
|
22
|
McKenna ZJ, Gorini Pereira F, Gillum TL, Amorim FT, Deyhle MR, Mermier CM. High altitude exposures and intestinal barrier dysfunction. Am J Physiol Regul Integr Comp Physiol 2022; 322:R192-R203. [PMID: 35043679 DOI: 10.1152/ajpregu.00270.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrointestinal complaints are often reported during ascents to high altitude (> 2500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction, and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggests that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Felipe Gorini Pereira
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, United States
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
23
|
Xiong Y, Cao S, Xiao H, Wu Q, Yi H, Jiang Z, Wang L. Alterations in intestinal microbiota composition coincide with impaired intestinal morphology and dysfunctional ileal immune response in growing-finishing pigs under constant chronic heat stress. J Anim Sci Biotechnol 2022; 13:1. [PMID: 34983683 PMCID: PMC8728975 DOI: 10.1186/s40104-021-00651-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background Previous studies had shown that short-term acute heat stress (HS) affected the host’s metabolism and intestinal microbiota independent of feed intake (FI) reduction, and long-term calorie restriction caused intestinal morphological injuries and gut microbial alterations. However, research on the effects of constant chronic HS on intestinal microbial composition and the roles of FI reduction played in is limited. This study aimed to investigate the effects of 7-day constant chronic HS on the composition of intestinal microbes in growing-finishing pigs, and its relationship with pigs’ performance, intestinal morphology, and ileal immune response. Twenty-four growing-finishing pigs (Duroc × Large White × Landrace, 30 ± 1 kg body weight) were randomly assigned to three treatments (n = 8), 1) thermal neutral (TN) conditions (25 ± 1 °C) with ad libitum FI, 2) HS conditions (35 ± 1 °C) with ad libitum FI, 3) pair-fed (PF) with HS under TN conditions to discriminate the confounding effects of dissimilar FI, and the FI was the previous day’s average FI of HS. The small intestinal segments (duodenum, jejunum, and ileum) and feces were collected on d 8. Results Results indicated that HS drastically declined (P < 0.05) average daily gain (ADG) and average daily feed intake (ADFI) (about 61%) in comparison with TN, and caused hyperpyrexia, meanwhile PF caused hypothermia. Morphological observation by light and electron microscopes showed that both HS and PF treatment decreased (P < 0.05) the villus and microvillus height compared with TN. Additionally, HS increased (P < 0.05) protein expression of heat shock protein 70 in the duodenum, jejunum, and ileum. Furthermore, the expression of tight junction protein zonula occluden-1 (ZO-1) in the duodenum and ileum, and Occludin in the ileum were enhanced (P < 0.05) compared with TN and PF. Moreover, HS significantly enhanced (P < 0.05) the mRNA relative expression of inflammatory cytokines (TLR-2, TLR-4, and tumor necrosis factor-α (TNF-α), IL-6, IL-8, PG1–5, β-defensin 2 (pBD-2)), mucins (mucin-1 and mucin-2) and P65 protein level in the ileal mucosa tissue. Intestinal microbiota analysis by 16S rRNA sequencing showed lower (P < 0.10) α diversity in both HS and PF, and a separated cluster of β diversity among groups. Compared with TN, HS but not PF mainly reduced (FDR < 0.05) Bacteroidetes (phylum), Bacteroidia (class) and elevated the proportions of Proteobacteria (phylum, FDR < 0.05), Bacillales (order, FDR < 0.05), Planococcaceae (family, FDR < 0.05), Kurthia (genus, FDR < 0.05), Streptococcaceae (family, FDR < 0.10) and Streptococcus (genus, FDR < 0.10). Notably, Lactobacillales (order) was decreased (FDR < 0.05) by PF alone. Furthermore, the Spearman correlation analysis indicated that the microbes prevalent in HS were positively (P < 0.05) associated with intestinal morphological injuries indicators and ileal immune response parameters, and the microbes reduced in HS were negatively (P < 0.05) with the performance data. Conclusions Intestinal morphological injuries and ileal immune response caused by constant chronic HS independent of FI showed close connections with alterations in intestinal microbiota in growing-finishing pigs.
Collapse
Affiliation(s)
- Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
24
|
Yong Y, Li J, Gong D, Yu T, Wu L, Hu C, Liu X, Yu Z, Ma X, Gooneratne R, El-Aty AMA, Chen J, Ju X. ERK1/2 mitogen-activated protein kinase mediates downregulation of intestinal tight junction proteins in heat stress-induced IBD model in pig. J Therm Biol 2021; 101:103103. [PMID: 34879918 DOI: 10.1016/j.jtherbio.2021.103103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023]
Abstract
In many mammalian species, including pigs, heat stress (HS) detrimentally leads to epithelium damage and increases intestinal permeability. However, the underlying molecular mechanisms are not thoroughly investigated yet. This study aimed to examine the RIP1/RIP3-ERK1/2 signaling pathway that regulates the expression of tight junction proteins in HS-treated pigs. In in vitro cultured intestinal porcine epithelial cells (IPEC-J2), HS induced the expression of tight junction proteins, ZO-1, claudin-1, and claudin-4, that are regulated by the ERK1/2-MAPK signaling pathway. Further, high expression of HSP70 in IPEC-J2 cells induced a significant decrease in receptor-interacting protein 1/3 (RIP1/3), phosphorylated ERK, and tight junction protein claudin-1 (P < 0.05). Necrostatin-1 (A selective inhibitor of RIPK1) suppressed the upregulation of phosphorylated ERK1/2 induced by HS, indicating that the RIP1/RIP3 regulates ERK1/2 phosphorylation in IPEC-J2 under heat stress. In addition, HS significantly damaged the intestinal morphology characterized by reduction of villus length and crypt depth in in vivo porcine model. Moreover, the expression of tight junction, ZO-1, and claudin-4 were downregulated, whereas phosphorylated p38 and ERK1/2 were upregulated in the duodenum of heat-stressed pigs. Interestingly, a decrease in ZO-1 and claudin-1 was observed in the colon, where phosphorylated ERK1/2 was similar to that in the duodenum. Our results demonstrate that RIP1/RIP3-ERK1/2 signaling pathway regulates the expression of tight junction proteins in HS-pigs. This finding further advances the intestinal barrier function's underlying mechanisms associated with signaling regulation.
Collapse
Affiliation(s)
- Yanhong Yong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junyu Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongliang Gong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Tianyue Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lianyun Wu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Canying Hu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhichao Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingbin Ma
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Jinjun Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xianghong Ju
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
25
|
Cantet JM, Yu Z, Ríus AG. Heat Stress-Mediated Activation of Immune-Inflammatory Pathways. Antibiotics (Basel) 2021; 10:antibiotics10111285. [PMID: 34827223 PMCID: PMC8615052 DOI: 10.3390/antibiotics10111285] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Physiological changes in animals exposed to elevated ambient temperature are characterized by the redistribution of blood toward the periphery to dissipate heat, with a consequent decline in blood flow and oxygen and nutrient supply to splanchnic tissues. Metabolic adaptations and gut dysfunction lead to oxidative stress, translocation of lumen contents, and release of proinflammatory mediators, activating a systemic inflammatory response. This review discusses the activation and development of the inflammatory response in heat-stressed models.
Collapse
|
26
|
Pardo Z, Seiquer I. Supplemental Zinc exerts a positive effect against the heat stress damage in intestinal epithelial cells: Assays in a Caco-2 model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
King MA, Rollo I, Baker LB. Nutritional considerations to counteract gastrointestinal permeability during exertional heat stress. J Appl Physiol (1985) 2021; 130:1754-1765. [PMID: 33955260 DOI: 10.1152/japplphysiol.00072.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal barrier integrity and function are compromised during exertional heat stress (EHS) potentially leading to consequences that range from minor gastrointestinal (GI) disturbances to fatal outcomes in exertional heat stroke or septic shock. This mini-review provides a concise discussion of nutritional interventions that may protect against intestinal permeability during EHS and suggests physiological mechanisms responsible for this protection. Although diverse nutritional interventions have been suggested to be protective against EHS-induced GI permeability, the ingestion of certain amino acids, carbohydrates, and fluid per se is potentially effective strategy, whereas evidence for various polyphenols and pre/probiotics is developing. Plausible physiological mechanisms of protection include increased blood flow, epithelial cell proliferation, upregulation of intracellular heat shock proteins, modulation of inflammatory signaling, alteration of the GI microbiota, and increased expression of tight junction (TJ) proteins. Further clinical research is needed to propose specific nutritional candidates and recommendations for their application to prevent intestinal barrier disruption and elucidate mechanisms during EHS.
Collapse
Affiliation(s)
- Michelle A King
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, Illinois
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Leicestershire, United Kingdom
| | - Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, Illinois
| |
Collapse
|
28
|
Zhou HJ, Kong LL, Zhu LX, Hu XY, Busye J, Song ZG. Effects of cold stress on growth performance, serum biochemistry, intestinal barrier molecules, and adenosine monophosphate-activated protein kinase in broilers. Animal 2020; 15:100138. [PMID: 33573943 DOI: 10.1016/j.animal.2020.100138] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
The homeostasis dysfunctions caused by cold stress remain a threat to intestinal health, particularly for young broiler chickens. We hypothesized that adenosine monophosphate-activated protein kinase (AMPK) was involved in the regulation of cold stress on intestinal health. This study aimed to examine the effect of cold stress for 72 h on growth performance, serum biochemistry, intestinal barrier molecules, and AMPK in broilers. A total of 144 10-day-old male Arbor Acres broilers were subjected to temperature treatments (control 28 ± 1 °C vs cold stress 16 ± 1 °C) for 72 h. Growth performance was monitored, serum was collected for the analysis of physiological parameters, and jejunal mucosa was sampled for the determination of tight junction (TJ) proteins, heat shock proteins, and AMPK signaling molecules. Results showed that 72 h cold treatment reduced average BW gain and increased the feed conversion ratio of the broilers (P < 0.05). Cold stress for 72 h increased blood endotoxin, aspartate aminotransferase, glucose, and low-density lipoprotein cholesterol levels (P < 0.05). Moreover, 72 h cold treatment up-regulated jejunal Occludin, zonula occludin 1, inducible nitric oxide synthase, heat shock factor 1, and AMPKα1 gene expression (P < 0.05) but had no obvious effect on total AMPK protein expression (P > 0.05). In conclusion, cold stress significantly reduced the growth performance of broiler chickens. The intestinal barrier function might be impaired, and enhanced bacterial translocation might occur. The unregulated gene expression of TJ proteins implied the remodeling of intestinal barrier. The change of AMPK suggested the possible relationship between intestinal energy metabolism and barrier function under cold stress.
Collapse
Affiliation(s)
- H J Zhou
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - L L Kong
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - L X Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - X Y Hu
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - J Busye
- Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Z G Song
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
29
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
30
|
Rawat M, Nighot M, Al-Sadi R, Gupta Y, Viszwapriya D, Yochum G, Koltun W, Ma TY. IL1B Increases Intestinal Tight Junction Permeability by Up-regulation of MIR200C-3p, Which Degrades Occludin mRNA. Gastroenterology 2020; 159:1375-1389. [PMID: 32569770 PMCID: PMC11752806 DOI: 10.1053/j.gastro.2020.06.038] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Defects in the epithelial tight junction (TJ) barrier contribute to development of intestinal inflammation associated with diseases. Interleukin 1 beta (IL1B) increases intestinal permeability in mice. We investigated microRNAs that are regulated by IL1B and their effects on expression of TJ proteins and intestinal permeability. METHODS We used Targetscan to identify microRNAs that would bind the 3' untranslated region (3'UTR) of occludin mRNA; regions that interacted with microRNAs were predicted using the V-fold server and Assemble2, and 3-dimensional models were created using UCSF Chimera linked with Assemble2. Caco-2 cells were transfected with vectors that express microRNAs, analyzed by immunoblots and real-time polymerase chain reaction (PCR), and grown as monolayers; permeability in response to IL1B was assessed with the marker inulin. Male C57BL/6 mice were given intraperitoneal injections of IL1B and intestinal recycling perfusion was measured; some mice were given dextran sodium sulfate to induce colitis and/or gavage with an antagonist to MIR200C-3p (antagomiR-200C) or the nonspecific antagomiR (control). Intestinal tissues were collected from mice and analyzed by histology and real-time PCR; enterocytes were isolated by laser capture microdissection. We also analyzed colon tissues and organoids from patients with and without ulcerative colitis. RESULTS Incubation of Caco-2 monolayers with IL1B increased TJ permeability and reduced levels of occludin protein and mRNA without affecting the expression of other transmembrane TJ proteins. Targetscan identified MIR122, MIR200B-3p, and MIR200C-3p, as miRNAs that might bind to the occludin 3'UTR. MIR200C-3p was rapidly increased in Caco-2 cells incubated with IL1B; the antagomiR-200c prevented the IL1B-induced decrease in occludin mRNA and protein and reduced TJ permeability. Administration of IL1B to mice increased small intestinal TJ permeability, compared with mice given vehicle; enterocytes isolated from mice given IL1B had increased expression of MIR200C-3p and decreased levels of occludin messenger RNA (mRNA) and protein. Intestinal tissues from mice with colitis had increased levels of IL1B mRNA and MIR200C-3p and decreased levels of occludin mRNA; gavage of mice with antagomiR-200C reduced levels of MIR200C-3p and prevented the decrease in occludin mRNA and the increase in colonic permeability. Colon tissues and organoids from patients with ulcerative colitis had increased levels of IL1B mRNA and MIR200C-3p compared with healthy controls. Using 3-dimensional molecular modeling and mutational analyses, we identified the nucleotide bases in the occluding mRNA 3'UTR that interact with MIR200C-3p. CONCLUSIONS Intestine tissues from patients with ulcerative colitis and mice with colitis have increased levels of IL1B mRNA and MIR200C-3p, which reduces expression of occludin by enterocytes and thereby increases TJ permeability. Three-dimensional modeling of the interaction between MIR200C-3p and the occludin mRNA 3'UTR identified sites of interaction. The antagomiR-200C prevents the decrease in occludin in enterocytes and intestine tissues of mice with colitis, maintaining the TJ barrier.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Meghali Nighot
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Rana Al-Sadi
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Yash Gupta
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | | | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Thomas Y Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico; Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
31
|
Eslamizad M, Albrecht D, Kuhla B. The effect of chronic, mild heat stress on metabolic changes of nutrition and adaptations in rumen papillae of lactating dairy cows. J Dairy Sci 2020; 103:8601-8614. [PMID: 32600758 DOI: 10.3168/jds.2020-18417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
Global warming and accompanying high ambient temperatures reduce feed intake of dairy cows and shift the blood flow from the core of the body to the periphery. As a result, hypoxia may occur in the digestive tract accompanied by disruption of the intestinal barrier, local endotoxemia and inflammation, and altered nutrient absorption. However, whether the barrier of the rumen, like the intestine, is affected by ambient heat has not been studied so far. Lactating Holstein dairy cows were subjected to heat stress at 28°C (temperature-humidity index = 76; n = 5) with ad libitum feed intake or to thermoneutral conditions at 15°C (temperature-humidity index = 60; n = 5) and pair-feeding to heat-stressed animals for a total of 4 d. Gas exchange and feed intake behavior were measured in a respiration chamber, and rumen epithelia were taken after slaughter. Heat stress significantly reduced meal size and whole-body fat oxidation but increased meal frequency and carbohydrate oxidation. The mRNA expression of toll-like receptor 4 (TLR4) and tight junction proteins and the phosphorylation of TLR4 downstream targets (interleukin-1 receptor-associated kinase 4, stress-activated protein kinase, p38 mitogen-activated protein kinase, and nuclear factor k-B) in the rumen epithelium were not affected by heat. The proteomics approach revealed increased expression of rumen epithelium proteins involved in the AMP-activated protein kinase (AMPK) and insulin signaling pathways in heat-stressed cows. Also, proteins involved in chaperone-mediated folding of proteins were upregulated, whereas those involved in antioxidant defense system were downregulated. Further, we found evidence for increased carbohydrate phosphorylation accompanied with an increased flux of carbohydrates through the hexosamine biosynthetic pathway, providing substrates for protein glycosylation. In conclusion, the mild heat stress did not induce barrier dysfunction or inflammatory responses in the rumen epithelium of dairy cows, probably because of adaptations in feed intake behavior and defense mechanisms at the tissue level.
Collapse
Affiliation(s)
- Mehdi Eslamizad
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Straße 8, 17487 Greifswald, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
32
|
Nighot P, Ma T. Endocytosis of Intestinal Tight Junction Proteins: In Time and Space. Inflamm Bowel Dis 2020; 27:283-290. [PMID: 32497180 PMCID: PMC7813749 DOI: 10.1093/ibd/izaa141] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells take up macromolecules and particles from the surrounding milieu and also internalize membrane proteins via a precise process of endocytosis. The role of endocytosis in diverse physiological processes such as cell adhesion, cell signaling, tissue remodeling, and healing is well recognized. The epithelial tight junctions (TJs), present at the apical lateral membrane, play a key role in cell adhesion and regulation of paracellular pathway. These vital functions of the TJ are achieved through the dynamic regulation of the presence of pore and barrier-forming proteins within the TJ complex on the plasma membrane. In response to various intracellular and extracellular clues, the TJ complexes are actively regulated by intracellular trafficking. The intracellular trafficking consists of endocytosis and recycling cargos to the plasma membrane or targeting them to the lysosomes for degradation. Increased intestinal TJ permeability is a pathological factor in inflammatory bowel disease (IBD), and the TJ permeability could be increased due to the altered endocytosis or recycling of TJ proteins. This review discusses the current information on endocytosis of intestinal epithelial TJ proteins. The knowledge of the endocytic regulation of the epithelial TJ barrier will provide further understanding of pathogenesis and potential targets for IBD and a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA,Address correspondence to: Prashant Nighot, Department of Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Room C5814B, Hershey, PA, 17033, USA. E-mail:
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
33
|
Ribeiro Hudson AS, Nascimento Soares AD, Coelho Horta NA, Fuscaldi LL, Machado-Moreira CA, Soares DD, Coimbra CC, de Oliveira Poletini M, Cardoso VN, Wanner SP. The magnitude of physical exercise-induced hyperthermia is associated with changes in the intestinal permeability and expression of tight junction genes in rats. J Therm Biol 2020; 91:102610. [PMID: 32716860 DOI: 10.1016/j.jtherbio.2020.102610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
We investigated whether the magnitude of exercise-induced hyperthermia influences intestinal permeability and tight junction gene expression. Twenty-nine male Wistar rats were divided into four groups: rest at 24 °C and exercise at 13 °C, 24 °C or 31 °C. The exercise consisted of a 90-min treadmill run at 15 m/min, and different ambient temperatures were used to produce distinct levels of exercise-induced hyperthermia. Before the experimental trials, the rats were treated by gavage with diethylenetriaminepentaacetic acid labeled with technetium-99 metastable as a radioactive probe. The rats' core body temperature (TCORE) was measured by telemetry. Immediately after the trials, the rats were euthanized, and the intestinal permeability was assessed by measuring the radioactivity of blood samples. The mRNA levels of occludin and zonula occludens-1 (ZO-1) genes were determined in duodenum samples. Exercise at 24 °C increased TCORE to values close to 39 °C, without changing permeability compared with the resting trial at the same environment. Meanwhile, rats' TCORE exceeded 40 °C during exercise at 31 °C, leading to greater permeability relative to those observed after exercise in the other ambient temperatures (e.g., 0.0037%/g at 31 °C vs. 0.0005%/g at 13 °C; data expressed as medians; p < 0.05). Likewise, the rats exercised at 31 °C exhibited higher mRNA levels of ZO-1 and occludin genes than the rats exercised at 24 °C or 13 °C. The changes in permeability and gene expression were positively and significantly associated with the magnitude of hyperthermia. We conclude that marked hyperthermia caused by exercise in the warmer environment increases intestinal permeability and mRNA levels of tight junction genes.
Collapse
Affiliation(s)
- Alexandre Sérvulo Ribeiro Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anne Danieli Nascimento Soares
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nayara Abreu Coelho Horta
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Lima Fuscaldi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christiano Antônio Machado-Moreira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maristela de Oliveira Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
34
|
Tabler TW, Greene ES, Orlowski SK, Hiltz JZ, Anthony NB, Dridi S. Intestinal Barrier Integrity in Heat-Stressed Modern Broilers and Their Ancestor Wild Jungle Fowl. Front Vet Sci 2020; 7:249. [PMID: 32457922 PMCID: PMC7220999 DOI: 10.3389/fvets.2020.00249] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 01/27/2023] Open
Abstract
High environmental temperature has strong adverse effects on poultry production, welfare, and sustainability and, thereby, constitutes one of the most challenging stressors. Although colossal information has been published on the effects of heat stress on poultry productivity and gut health, the fundamemntal mechanisms associated with heat stress responses and intestinal barrier function are still not well defined. The aim of the present study was, therefore, to determine the effects of acute (2 h) heat stress on growth performance, gut integrity, and intestinal expression of heat shock and tight junction proteins in slow- (broilers of the 1950's, ACRB), moderate- (broilers of 1990's, 95RAN), rapid-(modern broilers, MRB) growing birds, and their ancestor wild jungle fowl (JF). Heat stress exposure significantly increased the core body temperature of 95RAN and MRB chickens by ~0.5–1°C, but not that of JF and ACRB compared to their counterparts maintained at thermoneutral conditions. Heat stress also depressed feed intake and increased serum fluorescein isothiocyanate-dextran (FITC-D) levels (P < 0.05) in modern broilers (95RAN and MRB) but not in JF and ACRB, indicating potential leaky gut syndrome. Molecular analyses showed that heat stress exposure significantly up regulated the duodenal expression of occludin (OCLN) and lipocalin (LCN2) in ACRB, zonula occludens (ZO-2), villin1 (VIL1), and calprotectin (CALPR) in 95 RAN, and only CALPR in MRB compared to their TN counterparts. In the jejunum however, heat stress down regulated the expression of PALS1-associated tight junction protein (PATJ) in ACRB, 95RAN, and MRB, and that of cadherin1 (CDH1) in MRB. In the ileum, heat stress significantly down regulated the expression of OCLN in 95 RAN, ZO-1 in MRB, gap junction protein alpha1 (GJA1) in JF, and VIL1 in ACRB compared to their TN counterparts. In summary, this is the first report, to our knowledge, showing that tight junction protein expression is environmental-, genotype-, and intestinal segment-dependent and identifying molecular signatures, such as CDH1, CALPR, and ZO-1, potentially involved in leaky gut syndrome-induced by heat stress in MRB.
Collapse
Affiliation(s)
- Travis W Tabler
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara K Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Joseph Z Hiltz
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nicholas B Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
35
|
Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020; 12:nu12030734. [PMID: 32168808 PMCID: PMC7146479 DOI: 10.3390/nu12030734] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.
Collapse
|
36
|
Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD. The Gastrointestinal Exertional Heat Stroke Paradigm: Pathophysiology, Assessment, Severity, Aetiology and Nutritional Countermeasures. Nutrients 2020; 12:E537. [PMID: 32093001 PMCID: PMC7071449 DOI: 10.3390/nu12020537] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.
Collapse
Affiliation(s)
- Henry B. Ogden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Robert B. Child
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2QU, UK;
| | | | - Simon K. Delves
- Institute of Naval Medicine, Alverstoke PO12 2DW, UK; (J.L.F.); (S.K.D.)
| | - Caroline S. Westwood
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Joseph D. Layden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| |
Collapse
|
37
|
Transcriptome Analysis of Yamame ( Oncorhynchus masou) in Normal Conditions after Heat Stress. BIOLOGY 2019; 8:biology8020021. [PMID: 30934851 PMCID: PMC6628215 DOI: 10.3390/biology8020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Understanding the mechanism of high-temperature tolerance in cold-freshwater fish is crucial for predicting how certain species will cope with global warming. In this study, we investigated temperature tolerance in masu salmon (Oncorhynchus masou, known in Japan as ‘yamame’), an important aquaculture species. By selective breeding, we developed a group of yamame (F2) with high-temperature tolerance. This group was subjected to a high-temperature tolerance test and divided into two groups: High-temperature tolerant (HT) and non-high-temperature tolerant (NT). RNA was extracted from the gill and adipose fin tissues of each group, and the mRNA expression profiles were analyzed using RNA sequencing. A total of 2893 differentially expressed genes (DEGs) from the gill and 836 from the adipose fin were identified by comparing the HT and NT groups. Functional analyses were then performed to identify associated gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The HT group showed a high expression of heat shock protein 70 (HSP70) gene and enriched gene expression in the extracellular matrix (ECM), cell junction, and adhesion pathways in gill tissues compared to the NT group. The HT group also exhibited highly expressed genes in glycolysis and showed lower expression of the genes in the p53 signaling pathway in adipose fin tissues. Taken together, the difference of expression of some genes in the normal condition may be responsible for the difference in heat tolerance between the HT and NT yamame in the heat stress condition.
Collapse
|
38
|
Uerlings J, Song ZG, Hu XY, Wang SK, Lin H, Buyse J, Everaert N. Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks. Poult Sci 2018; 97:3681-3690. [PMID: 29901744 DOI: 10.3382/ps/pey229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/21/2018] [Indexed: 12/26/2022] Open
Abstract
Dysfunction of the intestinal epithelial barrier under elevated temperatures is assumed to prompt pathological conditions and to eventually impede chickens' growth, resulting in massive economic losses in broiler industries. The aims of this research were to determine the impact of acute heat stress on the intestinal tight junction network of broiler chicks (Gallus domesticus L.) and to elucidate whether adenosine monophosphate-activated protein kinase (AMPK) was involved in the integrated response of the broiler's gastrointestinal tract to heat stress. A total of 80 9-day-old Arbor Acres chicks were subjected to temperature treatment (thermoneutral versus heat stress) and AMPK inhibition treatment (5 mg/kg body weight intraperitoneal injection of compound C vs. sham treatment) for 72 h. In addition to monitoring growth performance, the mRNA and protein levels of key tight junction proteins, target components of the AMPK pathway, and biomarkers of intestinal inflammation and oxidative stress were assessed in the jejunum under both stressors at 24 and 72 h. An increase of the major tight junction proteins, claudin-1 and zonula occludens-1, was implemented in response to an exacerbated expression of the AMP-activated protein kinase. Heat stress did not affect zootechnical performance but was confirmed by an increased gene expression of heat shock proteins 70 and 90 as well as heat shock factor-1. In addition, hyperthermia induced significant effects on tight junction proteins, although it was independent of AMPK.
Collapse
Affiliation(s)
- J Uerlings
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, P. R. China.,Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, University of Liege, Gembloux 5030, Belgium
| | - Z G Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - X Y Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - S K Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - H Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Johan Buyse
- Laboratory of Livestock Physiology, Division of Animal and Human Health, KU Leuven, Heverlee 3001, Belgium
| | - N Everaert
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, University of Liege, Gembloux 5030, Belgium
| |
Collapse
|
39
|
Kobayashi K, Tsugami Y, Matsunaga K, Suzuki T, Nishimura T. Moderate High Temperature Condition Induces the Lactation Capacity of Mammary Epithelial Cells Through Control of STAT3 and STAT5 Signaling. J Mammary Gland Biol Neoplasia 2018; 23:75-88. [PMID: 29633073 DOI: 10.1007/s10911-018-9393-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
In lactating mammary glands, alveolar mammary epithelial cells (MECs) synthesize and secrete milk components. MECs also form less permeable tight junctions (TJs) to prevent the leakage of milk components. During lactation, MECs are exposed to temperature changes by metabolic heat production and air ambient temperature. In this study, we investigated whether temperature changes influence milk production ability and TJ barriers in MECs by using two lactating culture models. The results showed that 39 °C treatment activated milk production and enhanced the formation of less-permeable TJs. In contrast, 41 °C treatment caused adverse effects on the TJ barrier and cell viability, although the milk production ability of MECs was temporarily up-regulated. MECs cultured at 37 °C showed relatively low milk production ability and high proliferation activity. Furthermore, we investigated three kinds of transcription factors relating to lactogenesis, signal transducer and activator of transcription 5 (STAT5), STAT3 and glucocorticoid receptor (GR). STAT5 signaling was activated at 39 and 41 °C by an increase in total STAT5. However, long-term treatment led to a decrease in total STAT5. STAT3 signaling was inactivated by high temperature treatment through a decrease in total STAT3 and inhibited phosphorylation of STAT3. GR signaling was continuously activated regardless of temperature. These results indicate that a moderate high temperature condition at 39 °C induces a high lactation capacity of MECs through control of STAT5 and STAT3 signaling. In contrast, long-term exposure at 41 °C leads to a decline in milk production capacity by inactivation of STAT5 and a decrease in the total number of MECs.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| | - Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Kota Matsunaga
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takahiro Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| |
Collapse
|
40
|
Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2018; 19:ijms19030661. [PMID: 29495431 PMCID: PMC5877522 DOI: 10.3390/ijms19030661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
The identification and development of new agents with a therapeutic potential as well as novel drug combinations are gaining the attention of scientists and clinicians as a plausible approach to improve therapeutic regimens for chemoresistant tumors. We have recently reported that the flavonoid fisetin (FIS), at physiologically attainable concentrations, acts synergistically with clinically achievable doses of paclitaxel (PTX) to produce growth inhibitory and pro-death effects on A549 human non-small cell lung cancer (NSCLC) cells. To further investigate a potential therapeutic efficacy of the combination of fisetin with paclitaxel, we decided to assess its impact on metastatic capability of A549 cells as well as its toxicity toward normal human lung fibroblast. Cell viability, cell migration, and invasion were measured by thiazolyl blue tetrazolium bromide (MTT) assay, wound healing assay, and Transwell chamber assay, respectively. The expression of metastasis-related genes was assessed with quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR). Actin and vimentin filaments were examined under the fluorescence microscope. The combination of FIS and PTX significantly reduced cancer cell migration and invasion, at least partially, through a marked rearrangement of actin and vimentin cytoskeleton and the modulation of metastasis-related genes. Most of these effects of the combination treatment were significantly greater than those of individual agents. Paclitaxel alone was even more toxic to normal cells than the combination of this drug with the flavonoid, suggesting that FIS may provide some protection against PTX-mediated cytotoxicity. The combination of FIS and PTX is expected to have a synergistic anticancer efficacy and a significant potential for the treatment of NSCLC, however, further in vitro and in vivo studies are required to confirm this preliminary evidence.
Collapse
|
41
|
Maghsudlu M, Farashahi Yazd E. Heat-induced inflammation and its role in esophageal cancer. J Dig Dis 2017; 18:431-444. [PMID: 28749599 DOI: 10.1111/1751-2980.12511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Esophageal cancer, the sixth most common cause of death from cancer worldwide, consists of different histological types and displays various patterns of incidence. Esophageal adenocarcinoma and esophageal squamous cell carcinoma are the most prevalent types. As epidemiological studies report that ingesting hot substances is one major risk factor for squamous cell carcinoma, evaluating the effect of this external stress on esophagus cells seems desirable. This specific kind of stress brings about cellular changes and stabilizes them by affecting different cellular features such as genetic stability, membrane integrity and the regulation of signaling pathways. It also causes tissue injury by affecting the extracellular matrix and cell viability. Thus, one of the main consequences of thermal injury is the activation of the immune system, which can result in chronic inflammation. The genetic alteration that has occurred during thermal injury and the consequent reduction in the function of repair systems is further strengthened by chronic inflammation, thereby increasing the probability that mutated cell lines may appear. The molecules that present in this circumstance, such as heat shock proteins, cytokines, chemokines and other inflammatory factors, affect intercellular signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells, signal transducer activator of transcription-3 and hypoxia-inducible factor 1α in supporting the survival and emergence of mutant phenotypes and the consequent malignant progression in altered cell lines. This investigation of these effective factors and their probable role in the tumorigenic path may improve current understanding.
Collapse
Affiliation(s)
- Mohaddese Maghsudlu
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
42
|
Schneider SM. Heat acclimation: Gold mines and genes. Temperature (Austin) 2016; 3:527-538. [PMID: 28090556 DOI: 10.1080/23328940.2016.1240749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022] Open
Abstract
The underground gold mines of South Africa offer a unique historical setting to study heat acclimation. The early heat stress research was conducted and described by a young medical officer, Dr. Aldo Dreosti. He developed practical and specific protocols to first assess the heat tolerance of thousands of new mining recruits, and then used the screening results as the basis for assigning a heat acclimation protocol. The mines provide an interesting paradigm where the prevention of heat stroke evolved from genetic selection, where only Black natives were recruited due to a false assumption of their intrinsic tolerance to heat, to our current appreciation of the epigenetic and other molecular adaptations that occur with exposure to heat.
Collapse
Affiliation(s)
- Suzanne M Schneider
- University of New Mexico, Department of Exercise Sciences , Albuquerque, NM, USA
| |
Collapse
|
43
|
Cervantes M, Cota M, Arce N, Castillo G, Avelar E, Espinoza S, Morales A. Effect of heat stress on performance and expression of selected amino acid and glucose transporters, HSP90, leptin and ghrelin in growing pigs. J Therm Biol 2016; 59:69-76. [DOI: 10.1016/j.jtherbio.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/05/2015] [Accepted: 04/17/2016] [Indexed: 10/21/2022]
|
44
|
Dokladny K, Zuhl MN, Moseley PL. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol (1985) 2016; 120:692-701. [PMID: 26359485 PMCID: PMC4868372 DOI: 10.1152/japplphysiol.00536.2015] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise.
Collapse
Affiliation(s)
- Karol Dokladny
- Department of Internal Medicine, Health Sciences Center, Health Exercise & Sports Science of University of New Mexico, Albuquerque, New Mexico;
| | - Micah N Zuhl
- School of Health Sciences, Central Michigan University, Mount Pleasant, Michigan; and
| | - Pope L Moseley
- Department of Internal Medicine, Health Sciences Center, Health Exercise & Sports Science of University of New Mexico, Albuquerque, New Mexico; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
45
|
He S, Liu F, Xu L, Yin P, Li D, Mei C, Jiang L, Ma Y, Xu J. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo. PLoS One 2016; 11:e0145236. [PMID: 26894689 PMCID: PMC4760716 DOI: 10.1371/journal.pone.0145236] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022] Open
Abstract
Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague–Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Shasha He
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, P. R. China
| | - Fenghua Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, P. R. China
| | - Lei Xu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, P. R. China
| | - Peng Yin
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, P. R. China
| | - Deyin Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, P. R. China
| | - Chen Mei
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, P. R. China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, P. R. China
- * E-mail: (LJ); (YM); (JX)
| | - Yunfei Ma
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, P. R. China
- * E-mail: (LJ); (YM); (JX)
| | - Jianqin Xu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing, P. R. China
- * E-mail: (LJ); (YM); (JX)
| |
Collapse
|
46
|
Arnal ME, Lallès JP. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota. Nutr Rev 2016; 74:181-97. [PMID: 26883882 DOI: 10.1093/nutrit/nuv104] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components.
Collapse
Affiliation(s)
- Marie-Edith Arnal
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| | - Jean-Paul Lallès
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France.
| |
Collapse
|
47
|
Abstract
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.
Collapse
Key Words
- AKT, v-akt murine thymoma viral oncogene homolog 1
- AMPK, adenosine monophosphate-activated protein kinase
- ATG, autophagy-related
- BECN1, Beclin 1, autophagy related
- EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- HSF1, heat shock transcription factor 1
- HSP, heat shock protein
- HSP70
- HSPA8/HSC70, heat shock 70kDa protein 8
- IL, interleukin
- LC3, MAP1LC3, microtubule-associated protein 1 light chain 3
- MTMR14/hJumpy, myotubularin related protein 14
- MTOR, mechanistic target of rapamycin
- NR1D1/Rev-Erb-α, nuclear receptor subfamily 1, group D, member 1
- PBMC, peripheral blood mononuclear cell
- PPARGC1A/PGC-1α, peroxisome proliferator-activated receptor, gamma, coactivator 1 α
- RHEB, Ras homolog enriched in brain
- SOD, superoxide dismutase
- SQSTM1/p62, sequestosome 1
- TPR, translocated promoter region, nuclear basket protein
- TSC, tuberous sclerosis complex
- ULK1, unc-51 like autophagy activating kinase 1
- autophagy
- exercise
- heat shock response
- humans
- protein breakdown
- protein synthesis
Collapse
Affiliation(s)
- Karol Dokladny
- a Department of Internal Medicine; Health Sciences Center; Health, Exercise & Sports Science of University of New Mexico ; Albuquerque , NM USA
| | | | | |
Collapse
|
48
|
Varasteh S, Braber S, Garssen J, Fink-Gremmels J. Galacto-oligosaccharides exert a protective effect against heat stress in a Caco-2 cell model. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
49
|
Gabler NK, Pearce SC. The impact of heat stress on intestinal function and productivity in grow-finish pigs. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an15280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heat stress is a physiological condition when animals can no longer regulate their internal euthermic temperature. When livestock such as pigs are subjected to this environmental stress, it can be detrimental to performance, health and well-being, and if severe enough even death. Growing pigs are particularly susceptible to heat stress and one of the major organs first affected by heat stress is the gastrointestinal tract. As a result, reductions in appetite, intestinal function and integrity and increased risk of endotoxemia can modify post-absorptive metabolism and tissue accretion. These changes in intestinal integrity may be a result of altered expression of tight junction proteins, increased circulating endotoxin concentrations and markers of cellular stress (heat shock and hypoxia response), which is evident as early on as 2 h after heat-stress onset. Due to restricted blood flow, the ileum is more severely affected compared with the colon. Interestingly, many of the negative effects of heat stress on intestinal integrity appear to be similar to those observed with pigs reared under reduced nutrient and caloric intakes. Altogether, these depress pig performance and health, and extend days to market. Despite this impact on the gastrointestinal tract, under heat-stress conditions, intestinal glucose transport pathways are upregulated. This review discussed how heat stress (directly and indirectly via reduced feed intake) affects intestinal integrity and how heat stress contributes to decreased growth performance in growing pigs.
Collapse
|
50
|
Zuhl M, Dokladny K, Mermier C, Schneider S, Salgado R, Moseley P. The effects of acute oral glutamine supplementation on exercise-induced gastrointestinal permeability and heat shock protein expression in peripheral blood mononuclear cells. Cell Stress Chaperones 2015; 20:85-93. [PMID: 25062931 PMCID: PMC4255255 DOI: 10.1007/s12192-014-0528-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 02/04/2023] Open
Abstract
Chronic glutamine supplementation reduces exercise-induced intestinal permeability and inhibits the NF-κB pro-inflammatory pathway in human peripheral blood mononuclear cells. These effects were correlated with activation of HSP70. The purpose of this paper is to test if an acute dose of oral glutamine prior to exercise reduces intestinal permeability along with activation of the heat shock response leading to inhibition of pro-inflammatory markers. Physically active subjects (N = 7) completed baseline and exercise intestinal permeability tests, determined by the percent ratio of urinary lactulose (5 g) to rhamnose (2 g). Exercise included two 60-min treadmill runs at 70 % of VO2max at 30 °C after ingestion of glutamine (Gln) or placebo (Pla). Plasma levels of endotoxin and TNF-α, along with peripheral blood mononuclear cell (PBMC) protein expression of HSP70 and IκBα, were measured pre- and post-exercise and 2 and 4 h post-exercise. Permeability increased in the Pla trial compared to that at rest (0.06 ± 0.01 vs. 0.02 ± 0.018) and did not increase in the Gln trial. Plasma endotoxin was lower at the 4-h time point in the Gln vs. 4 h in the Pla (6.715 ± 0.046 pg/ml vs. 7.952 ± 1.11 pg/ml). TNF-α was lower 4 h post-exercise in the Gln vs. Pla (1.64 ± 0.09 pg/ml vs. 1.87 ± 0.12 pg/ml). PBMC expression of IkBα was higher 4 h post-exercise in the Gln vs. 4 h in the Pla (1.29 ± 0.43 vs. 0.8892 ± 0.040). HSP70 was higher pre-exercise and 2 h post-exercise in the Gln vs. Pla (1.35 ± 0.21 vs. 1.000 ± 0.000 and 1.65 ± 0.21 vs. 1.27 ± 0.40). Acute oral glutamine supplementation prevents an exercise-induced rise in intestinal permeability and suppresses NF-κB activation in peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Micah Zuhl
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM, 87131, USA,
| | | | | | | | | | | |
Collapse
|