1
|
Sheng N, He C, Jin X, Meng Q, Gu P, Ding S, Liu H, Xu Y. A comprehensive study of oxidative stress-related effects on the prognosis and drug therapy of cervical cancer. J Gene Med 2024; 26:e3581. [PMID: 37605936 DOI: 10.1002/jgm.3581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is a serious global disease with poor prognoses and a significant recurrence rate in patients with advanced disease. Oxidative stress (OS) greatly influences many types of human cancers, making it crucial to understand the functional mechanisms of OS-related genes in CC. METHODS The transcriptome and clinical data of three normal samples and 306 patients with CC were obtained from The Cancer Genome Atlas dataset. The GSE44001 dataset was acquired from the Gene Expression Omnibus database. OS-related subtypes in the cohort with CC were identified using unsupervised hierarchical clustering, univariate Cox analysis, gene set enrichment analysis (GSEA), and least absolute shrinkage and selection operator regression analysis. Additionally, molecular pathways that differ across subtypes were determined and OS-related genes linked to the prognosis of patients of CC were determined. Finally, a clinical prognostic gene signature was developed and validated. The relative infiltration level of immune cell subpopulations in different risk groups and subtypes was evaluated using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERPORT) algorithm and single-sample GSEA (ssGSEA) techniques. RESULTS The present study established two distinct OS subtypes (OS clusters A and B). Analysis using ssGSEA and CIBERSPORT revealed that OS cluster B exhibited a significant level of immune infiltration. A clinical prognostic gene signature was established using OS-related characteristic genes identified by examining the differentially expressed genes across both subtypes. Furthermore, patients with CC were grouped into high- and low-risk groups, with the low-risk group showing higher survival rates. Additionally, these individuals exhibited significant advantages in terms of survival and immunotherapy. Receiver operating characteristic curve analysis demonstrated the higher predictive value of the clinical prognostic gene signature. The outcomes of the validation group depicted congruence with those recorded in the training group. CONCLUSIONS A new model was constructed based on eight OS-related characteristic genes to aid the prediction of the survival rates of individuals with CC. The present study contributes to the existing literature on the mechanisms of OS genes in CC and offers a fresh perspective for future advancements in immunotherapy for such individuals.
Collapse
Affiliation(s)
- Nan Sheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenyun He
- Department of Gynecology Oncology, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xiaoxia Jin
- Department of Pathology, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qi Meng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Panyun Gu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu Ding
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunzhao Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
3
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
4
|
Non-coding RNA network associated with obesity and rheumatoid arthritis. Immunobiology 2022; 227:152281. [DOI: 10.1016/j.imbio.2022.152281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
|
5
|
LncRNA HOTTIP facilitates osteogenic differentiation in bone marrow mesenchymal stem cells and induces angiogenesis via interacting with TAF15 to stabilize DLX2. Exp Cell Res 2022; 417:113226. [DOI: 10.1016/j.yexcr.2022.113226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
6
|
Wnt antagonist as therapeutic targets in ovarian cancer. Int J Biochem Cell Biol 2022; 145:106191. [PMID: 35272015 DOI: 10.1016/j.biocel.2022.106191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022]
Abstract
Ovarian cancer is a fatal malignancy in women with a low survival rate that demands new therapeutic paradigms. Cancer cells acquire various exclusive alterations to proliferate, invade, metastasize, and escape cell death, acting independently of growth-inducing or growth-inhibiting signals. The nature of cellular signaling in tumorigenesis is interwoven. Wnt signaling is an evolutionarily conserved signaling cascade that has been shown to regulate ovarian cancer pathogenesis. The molecular mechanism of Wnt signaling underlying the development of ovarian cancer, drug resistance, and relapse is not completely understood. Extracellularly secreted Wnt signaling inhibitors are crucial regulators of ovarian cancer tumorigenesis and malignant properties of cancer stem cells. Wnt inhibitors arbitrated modifications affecting Wnt pathway proteins on the cell membranes, in the cytoplasm, and in the nucleus have been shown to span essential contributions in the initiation, progression, and chemoresistance of ovarian cancer. Although many extrinsic inhibitors developed targeting the downstream components of the Wnt signaling pathway, investigating the molecular mechanisms of endogenous secreted inhibitors might substantiate prognostic or therapeutic biomarkers development. Given the importance of Wnt signaling in ovarian cancer, more systematic studies combined with clinical studies are requisite to probe the precise mechanistic interactions of Wnt antagonists in ovarian cancer. This review outlines the latest progress on the Wnt antagonists and ovarian cancer-specific regulators such as micro-RNAs, small molecules, and drugs regulating these Wnt antagonists in ovarian tumourigenesis.
Collapse
|
7
|
Yin GN, Piao S, Liu Z, Wang L, Ock J, Kwon MH, Kim DK, Gho YS, Suh JK, Ryu JK. RNA-sequencing profiling analysis of pericyte-derived extracellular vesicle-mimetic nanovesicles-regulated genes in primary cultured fibroblasts from normal and Peyronie's disease penile tunica albuginea. BMC Urol 2021; 21:103. [PMID: 34362357 PMCID: PMC8344132 DOI: 10.1186/s12894-021-00872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peyronie's disease (PD) is a severe fibrotic disease of the tunica albuginea that causes penis curvature and leads to penile pain, deformity, and erectile dysfunction. The role of pericytes in the pathogenesis of fibrosis has recently been determined. Extracellular vesicle (EV)-mimetic nanovesicles (NVs) have attracted attention regarding intercellular communication between cells in the field of fibrosis. However, the global gene expression of pericyte-derived EV-mimetic NVs (PC-NVs) in regulating fibrosis remains unknown. Here, we used RNA-sequencing technology to investigate the potential target genes regulated by PC-NVs in primary fibroblasts derived from human PD plaque. METHODS Human primary fibroblasts derived from normal and PD patients was cultured and treated with cavernosum pericytes isolated extracellular vesicle (EV)-mimetic nanovesicles (NVs). A global gene expression RNA-sequencing assay was performed on normal fibroblasts, PD fibroblasts, and PD fibroblasts treated with PC-NVs. Reverse transcription polymerase chain reaction (RT-PCR) was used for sequencing data validation. RESULTS A total of 4135 genes showed significantly differential expression in the normal fibroblasts, PD fibroblasts, and PD fibroblasts treated with PC-NVs. However, only 91 contra-regulated genes were detected among the three libraries. Furthermore, 20 contra-regulated genes were selected and 11 showed consistent changes in the RNA-sequencing assay, which were validated by RT-PCR. CONCLUSION The gene expression profiling results suggested that these validated genes may be good targets for understanding potential mechanisms and conducting molecular studies into PD.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Shuguang Piao
- Department of Urology at Changhai Hospital Affiliated with the Naval Medicine University, Shanghai, 200433, People's Republic of China
| | - Zhiyong Liu
- Department of Urology at Changhai Hospital Affiliated with the Naval Medicine University, Shanghai, 200433, People's Republic of China
| | - Lei Wang
- Department of Urology at Changhai Hospital Affiliated with the Naval Medicine University, Shanghai, 200433, People's Republic of China
| | - Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, 54531, Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyeongsangbuk-do, 37673, Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea.
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea.
| |
Collapse
|
8
|
Zhang H, Chen R, Shao J. MicroRNA-96-5p Facilitates the Viability, Migration, and Invasion and Suppresses the Apoptosis of Cervical Cancer Cells byNegatively Modulating SFRP4. Technol Cancer Res Treat 2021; 19:1533033820934132. [PMID: 32527205 PMCID: PMC7294480 DOI: 10.1177/1533033820934132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The current study was intended to research the functional role and regulatory mechanism of microRNA-96-5p in the progression of cervical cancer. METHODS MicroRNA-96-5p expression in cervical cancer tissues was assessed by quantitative real-time polymerase chain reaction. The association between microRNA-96-5p expression and clinicopathological features of patients with cervical cancer was analyzed. MTT, flow cytometry, wound healing, and transwell assay were performed to evaluate the viability, apoptosis, migration, and invasion of Hela and SiHa cells. Targetscan, dual-luciferase reporter gene assay, and RNA pull-down analysis were constructed to evaluate the target relationship between microRNA-96-5p and secreted frizzled-related protein 4. RESULTS MicroRNA-96-5p was overexpressed in cervical cancer tissues, and microRNA-96-5p expression was markedly associated with the clinical stage and lymph node metastasis of patients with cervical cancer. Overexpressed microRNA-96-5p facilitated the viability, migration, invasion, and inhibited the apoptosis of Hela and SiHa cells, whereas suppression of microRNA-96-5p exerted the opposite trend. Secreted frizzled-related protein 4 was proved to be a target of microRNA-96-5p. Silencing of secreted frizzled-related protein 4 eliminated the anti-tumor effect of microRNA-96-5p on cervical cancer cells. CONCLUSIONS MicroRNA-96-5p facilitated the viability, migration, and invasion and inhibited the apoptosis of cervical cancer cells via negatively regulating secreted frizzled-related protein 4.
Collapse
Affiliation(s)
- Huiling Zhang
- Department of Clinical Laboratory, Huai'an Maternity and Child Health Hospital, Qingjiangpu District, Huaian City, Jiangsu Province, China
| | - Ruxin Chen
- Department of Obstetrics and Gynecology, Jinan Maternal and Child Health Hospital, Jinan City, Shandong Province, China
| | - Jinyan Shao
- Department of Obstetrics and Gynecology, Laishan Branch of Yantai Yuhuangding Hospital, Laishan District, Yantai City, Shandong Province, China
| |
Collapse
|
9
|
Guan H, Zhang J, Luan J, Xu H, Huang Z, Yu Q, Gou X, Xu L. Secreted Frizzled Related Proteins in Cardiovascular and Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:712217. [PMID: 34489867 PMCID: PMC8417734 DOI: 10.3389/fendo.2021.712217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormal gene expression and secreted protein levels are accompanied by extensive pathological changes. Secreted frizzled related protein (SFRP) family members are antagonistic inhibitors of the Wnt signaling pathway, and they were recently found to be involved in the pathogenesis of a variety of metabolic diseases, which has led to extensive interest in SFRPs. Previous reports highlighted the importance of SFRPs in lipid metabolism, obesity, type 2 diabetes mellitus and cardiovascular diseases. In this review, we provide a detailed introduction of SFRPs, including their structural characteristics, receptors, inhibitors, signaling pathways and metabolic disease impacts. In addition to summarizing the pathologies and potential molecular mechanisms associated with SFRPs, this review further suggests the potential future use of SFRPs as disease biomarkers therapeutic targets.
Collapse
Affiliation(s)
- Hua Guan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Jin Zhang
- Department of Preventive Medicine, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Jing Luan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- Institution of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Zhenghao Huang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| | - Lixian Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| |
Collapse
|
10
|
Sun J, Huang X, Niu C, Wang X, Li W, Liu M, Wang Y, Huang S, Chen X, Li X, Wang Y, Jin L, Xiao J, Cong W. aFGF alleviates diabetic endothelial dysfunction by decreasing oxidative stress via Wnt/β-catenin-mediated upregulation of HXK2. Redox Biol 2020; 39:101811. [PMID: 33360774 PMCID: PMC7772795 DOI: 10.1016/j.redox.2020.101811] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Vascular complications of diabetes are a serious challenge in clinical practice, and effective treatments are an unmet clinical need. Acidic fibroblast growth factor (aFGF) has potent anti-oxidative properties and therefore has become a research focus for the treatment of diabetic vascular complications. However, the specific mechanisms by which aFGF regulates these processes remain unclear. The purpose of this study was to investigate whether aFGF alleviates diabetic endothelial dysfunction by suppressing mitochondrial oxidative stress. We found that aFGF markedly decreased mitochondrial superoxide generation in both db/db mice and endothelial cells incubated with high glucose (30 mM) plus palmitic acid (PA, 0.1 mM), and restored diabetes-impaired Wnt/β-catenin signaling. Pretreatment with the Wnt/β-catenin signaling inhibitors IWR-1-endo (IWR) and ICG-001 abolished aFGF-mediated attenuation of mitochondrial superoxide generation and endothelial protection. Furthermore, the effects of aFGF on endothelial protection under diabetic conditions were suppressed by c-Myc knockdown. Mechanistically, c-Myc knockdown triggered mitochondrial superoxide generation, which was related to decreased expression and subsequent impaired mitochondrial localization of hexokinase 2 (HXK2). The role of HXK2 in aFGF-mediated attenuation of mitochondrial superoxide levels and EC protection was further confirmed by si-Hxk2 and a cell-permeable form of hexokinase II VDAC binding domain (HXK2VBD) peptide, which inhibits mitochondrial localization of HXK2. Taken together, these findings suggest that the endothelial protective effect of aFGF under diabetic conditions could be partly attributed to its role in suppressing mitochondrial superoxide generation via HXK2, which is mediated by the Wnt/β-catenin/c-Myc axis.
Collapse
Affiliation(s)
- Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xuejiao Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqian Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Mengxue Liu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ying Wang
- Department of Pharmacy, Jinhua Women & Children Health Hospital, Jinhua, PR China
| | - Shuai Huang
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xixi Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
11
|
Zhang Y, Guan H, Fu Y, Wang X, Bai L, Zhao S, Liu E. Effects of SFRP4 overexpression on the production of adipokines in transgenic mice. Adipocyte 2020; 9:374-383. [PMID: 32657640 PMCID: PMC7469599 DOI: 10.1080/21623945.2020.1792614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Secreted frizzled-related protein (SFRP) 4 is an extracellular antagonist of Wnt signalling that regulates adipogenesis, and is highly in the visceral adipose tissue of obese individuals. However, it is still unclear how exactly SFRP4 regulates the secretion of adipokines in the adipose tissue in vivo, an event that is closely related to the pathogenesis of obesity and insulin resistance. In this study, we generated transgenic (Tg) mice overexpressing SFRP4 in the liver and investigated SFRP4 role in adipokine secretion in mice on a regular normal diet. In Tg mice, SFRP4 protein was overexpressed in the liver, as compared to wild-type littermates (non-Tg), and released into the blood. Moreover, the size of adipocytes was smaller in the visceral adipose tissue of Tg mice compared to controls. Additionally, SFRP4 overexpression affected the expression of genes related to adipocyte differentiation, causing the upregulation of adiponectin and glucose transporter 4, and the downregulation of CCAAT/enhancer-binding protein-β, in both visceral and subcutaneous adipose tissue. However, there was no difference in body weight or body composition between Tg and non-Tg mice. In summary, our data showed that SFRP4 overexpression altered adipocyte size and adipokine secretion, possibly affecting adipocyte differentiation, obesity, and glucose metabolism.
Collapse
Affiliation(s)
- Yali Zhang
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, ShaanXi, China
| | - Yu Fu
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Xin Wang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Liang Bai
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Roy A, Nethi SK, Suganya N, Raval M, Chatterjee S, Patra CR. Attenuation of cadmium-induced vascular toxicity by pro-angiogenic nanorods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111108. [DOI: 10.1016/j.msec.2020.111108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
|
13
|
Zhu J, Sun M, Wang Y, Bi H, Xue C. Gene expression profile analysis on different stages of hypertrophic scarring in a rabbit ear model. Exp Ther Med 2020; 20:1505-1513. [PMID: 32742383 PMCID: PMC7388309 DOI: 10.3892/etm.2020.8879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertrophic scarring (HS) is one of the most common skin disorders. The study aimed to investigate the gene expression profile at day 10 (Stage 1), 21 (Stage 2), and day 40 (Stage 3) post-wounding of HS using RNA-sequencing of a scar model from rabbit ears. A total of 17,386 unigenes were annotated using the eggNOG Functional Category database. The study identified significantly differentially expressed genes (DEGs) including 261, 141, and 247 upregulated ones as well as 253, 272, and 58 downregulated ones in three stages respectively. The DEGs varies among each stage measured by Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. DEGs were enriched in 'immune system process' and 'proteinaceous extracellular matrix' in Stage 1, 'anatomical structure development', 'cell differentiation', 'cell adhesion'and some other terms in Stage 2, 'cancers', 'proteinaceous extracellular matrix' and 'signal transduction' in Stage 3. Furthermore, the Wnt signaling pathway was found to play a pivotal role in regression of HS. In conclusion, we revealed comprehensively the gene expression profiles during HS formation providing probable targets in HS treatment.
Collapse
Affiliation(s)
- Ji Zhu
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Mengyan Sun
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hongda Bi
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
14
|
Fan C, Oduk Y, Zhao M, Lou X, Tang Y, Pretorius D, Valarmathi MT, Walcott GP, Yang J, Menasche P, Krishnamurthy P, Zhu W, Zhang J. Myocardial protection by nanomaterials formulated with CHIR99021 and FGF1. JCI Insight 2020; 5:132796. [PMID: 32453715 DOI: 10.1172/jci.insight.132796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
The mortality of patients suffering from acute myocardial infarction is linearly related to the infarct size. As regeneration of cardiomyocytes from cardiac progenitor cells is minimal in the mammalian adult heart, we have explored a new therapeutic approach, which leverages the capacity of nanomaterials to release chemicals over time to promote myocardial protection and infarct size reduction. Initial screening identified 2 chemicals, FGF1 and CHIR99021 (a Wnt1 agonist/GSK-3β antagonist), which synergistically enhance cardiomyocyte cell cycle in vitro. Poly-lactic-co-glycolic acid nanoparticles (NPs) formulated with CHIR99021 and FGF1 (CHIR + FGF1-NPs) provided an effective slow-release system for up to 4 weeks. Intramyocardial injection of CHIR + FGF1-NPs enabled myocardial protection via reducing infarct size by 20%-30% in mouse or pig models of postinfarction left ventricular (LV) remodeling. This LV structural improvement was accompanied by preservation of cardiac contractile function. Further investigation revealed that CHIR + FGF1-NPs resulted in a reduction of cardiomyocyte apoptosis and increase of angiogenesis. Thus, using a combination of chemicals and an NP-based prolonged-release system that works synergistically, this study demonstrates a potentially novel therapy for LV infarct size reduction in hearts with acute myocardial infarction.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yasin Oduk
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Zhao
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yawen Tang
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mani T Valarmathi
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Philippe Menasche
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cardiovascular Surgery, Université de Paris, PARCC, INSERM, F-75015 Paris, France
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Bicer M, Alarslan P, Guler A, Demir I, Aslanipour B, Calan M. Elevated circulating levels of secreted frizzled-related protein 4 in relation to insulin resistance and androgens in women with polycystic ovary syndrome. J Endocrinol Invest 2020; 43:305-313. [PMID: 31486991 DOI: 10.1007/s40618-019-01108-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/30/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE Secreted frizzled-related protein 4 (SFRP4) is an adipokine involving in apoptotic process during ovulation and energy metabolism. Polycystic ovary syndrome (PCOS) is a common reproductive and metabolic disorder associated with insulin resistance and impaired oocyte maturation as well as apoptotic dysfunctions through oocyte development. Our aim was to determine whether there was an alteration in levels of SFRP4 and if there was an association between metabolic or hormonal parameters and SFRP4 in women with PCOS. METHODS We enrolled 80 subjects with PCOS and 80 age- and body mass index (BMI)-matched subjects with normal menstrual cycle into current case-control study. Metabolic and hormonal parameters of enrolled subjects were determined. Circulating SFRP4 levels were measured with ELISA method. RESULTS We found that circulating SFRP4 levels were elevated in women with PCOS with respect to controls (5.87 ± 1.91 vs. 3.72 ± 1.29 ng/ml, P < 0.001). We also found a positive association between SFRP4 and insulin resistance, androgens, ovarian follicular number or ovarian volume in women with PCOS. Binary logistic regression analysis revealed that subjects with the highest tertile of SFPR4 levels displayed increased possibility of having PCOS risk compared to those subjects with the lowest tertile of SFRP4 levels. CONCLUSIONS Increased SFRP4 levels were not only associated with higher possibility of having PCOS but also related to insulin resistance, hyperandrogenism, ovarian follicular number and ovarian volume, suggesting that SFPR4 could be a player in different pathophysiologic pathways of PCOS.
Collapse
Affiliation(s)
- M Bicer
- Department of Obstetrics and Gynecology, Medical Park Hospital, 35575, Izmir, Turkey
| | - P Alarslan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, 35170, Izmir, Turkey
| | - A Guler
- Department of Family Physician, Izmir Bozyaka Training and Research Hospital, Bozyaka, 35170, Izmir, Turkey
| | - I Demir
- Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, 35170, Izmir, Turkey
| | - B Aslanipour
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100, Izmir, Turkey
| | - M Calan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, 35170, Izmir, Turkey.
| |
Collapse
|
16
|
Huang A, Huang Y. Role of Sfrps in cardiovascular disease. Ther Adv Chronic Dis 2020; 11:2040622320901990. [PMID: 32064070 PMCID: PMC6987486 DOI: 10.1177/2040622320901990] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Secreted frizzled-related proteins (Sfrps) are a family of secreted proteins that
bind extracellularly to Wnt ligands and frizzled receptors. This binding
modulates the Wnt signaling cascade, and Sfrps interact with their corresponding
receptors. Sfrps are thought to play an important role in the pathological
mechanism of cardiac disease such as myocardial infarction, cardiac remodeling,
and heart failure. However, the overall role of Sfrps in cardiac disease is
unknown. Some members of the Sfrps family modulate cellular apoptosis,
angiogenesis, differentiation, the inflammatory process, and cardiac remodeling.
In this review, we summarize the evidence of Sfrps association with cardiac
disease. We also discuss how multiple mechanisms may underlie Sfrps being
involved in such diverse pathologies.
Collapse
Affiliation(s)
- Anqing Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazhi Road, Lunjiao Town, Shunde District, Foshan, Guangdong 528300, China The George Institute for Global Health, NSW 2042, Australia
| |
Collapse
|
17
|
Behera J, Nagarajan S, Saran U, Kumar R, Keshri GK, Suryakumar G, Chatterjee S. Nitric oxide restores peripheral blood mononuclear cell adhesion against hypoxia via NO-cGMP signalling. Cell Biochem Funct 2020; 38:319-329. [PMID: 31989682 DOI: 10.1002/cbf.3502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 12/12/2019] [Indexed: 11/10/2022]
Abstract
Hypoxia is the most detrimental threat to humans residing at high altitudes, affecting multifaceted cellular responses that are crucial for normal homeostasis. Inhalation of nitric oxide has been successfully implemented to combat the hypoxia effect in the high altitude patients. We hypothesize that nitric oxide (NO) restores the peripheral blood mononuclear cell-matrix deadhesion during hypoxia. In the present study, we investigate the cellular action of exogenous NO in the hypoxia-mediated diminution of cell-matrix adhesion of PBMNC and NO bioavailability in vitro. The result showed that NO level and cell-matrix adhesion of PBMNC were significantly reduced in hypoxia as compared with normoxia, as assessed by the DAF-FM and cell adhesion assay, respectively. In contrast, cellular oxidative damage response was indeed upregulated in hypoxic PBMNC. Further, gene expression analysis revealed that mRNA transcripts of cell adhesion molecules (Integrin α5 and β1) and eNOS expressions were significantly downregulated. The mechanistic study revealed that administration of NO and 8-Br-cGMP and overexpression of eNOS-GFP restored the basal NO level and recovers cell-matrix adhesion in PBMNC via cGMP-dependent protein kinase I (PKG I) signalling. In conclusion, NO-cGMP/PKG signalling may constitute a novel target to recover high altitude-afflicted cellular deadhesion. SIGNIFICANCE OF THIS STUDY: Cellular adhesion is a complex multistep process. The ability of cells to adhere to extracellular matrix is an essential physiological process for normal homeostasis and function. Hypoxia exposure in the PBMNC culture has been proposed to induce oxidative damage and cellular deadhesion and is generally believed to be the key factor in the reduction of NO bioavailability. In the present study, we demonstrated that NO donor or overexpression of eNOS-GFP has a protective effect against hypoxia-induced cellular deadhesion and greatly improves the redox balance by inhibiting the oxidative stress. Furthermore, this protective effect of NO is mediated by the NO-cGMP/PKG signal pathway, which may provide a potential strategy against hypoxia.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Shunmugam Nagarajan
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Uttara Saran
- Department of Biotechnology, Anna University, Chennai, India
| | - Ravi Kumar
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India.,Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
18
|
Nfonsam LE, Jandova J, Jecius HC, Omesiete PN, Nfonsam VN. SFRP4 expression correlates with epithelial mesenchymal transition-linked genes and poor overall survival in colon cancer patients. World J Gastrointest Oncol 2019; 11:589-598. [PMID: 31435461 PMCID: PMC6700031 DOI: 10.4251/wjgo.v11.i8.589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colon cancer is among the most commonly diagnosed cancers in the United States with an estimated 97220 new cases expected by the end of 2018. It affects 1.2 million people around the world and is responsible for about 0.6 million deaths every year. Despite decline in overall incidence and mortality over the past 30 years, there continues to be an alarming rise in early-onset colon cancer cases (< 50 years). Patients are often diagnosed at late stages of the disease and tend to have poor survival. We previously showed that the WNT “gatekeeper” gene, secreted frizzled-related protein 4 (SFRP4), is over-expressed in early-onset colon cancer. SFRP4 is speculated to play an essential role in cancer by inhibiting the epithelial mesenchymal transition (EMT).
AIM To investigate the correlation between SFRP4 expression and EMT-linked genes in colon cancer and how it affects patient survival.
METHODS SFRP4 expression relative to that of EMT-linked genes and survival analysis were performed using the University of California Santa Cruz Cancer Browser interface.
RESULTS SFRP4 was found to be co-expressed with the EMT-linked markers CDH2, FN1, VIM, TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, ZEB2, POSTN, MMP2, MMP7, MMP9, and COL1A1. SFRP4 expression negatively correlated with the EMT-linked suppressors CLDN4, CLDN7, TJP3, MUC1, and CDH1. The expression of SFRP4 and the EMT-linked markers was higher in mesenchymal-like samples compared to epithelial-like samples which potentially implicates SFRP4-EMT mechanism in colon cancer. Additionally, patients overexpressing SFRP4 presented with poor overall survival (P = 0.0293).
CONCLUSION Considering the implication of SFRP4 in early-onset colon cancer, particularly in the context of EMT, tumor metastasis, and invasion, and the effect of increased expression on colon cancer patient survival, SFRP4 might be a potential biomarker for early-onset colon cancer that could be targeted for diagnosis and/or disease therapy.
Collapse
Affiliation(s)
- Landry E Nfonsam
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Jana Jandova
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Hunter C Jecius
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Pamela N Omesiete
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Valentine N Nfonsam
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
19
|
Danieau G, Morice S, Rédini F, Verrecchia F, Royer BBL. New Insights about the Wnt/β-Catenin Signaling Pathway in Primary Bone Tumors and Their Microenvironment: A Promising Target to Develop Therapeutic Strategies? Int J Mol Sci 2019; 20:ijms20153751. [PMID: 31370265 PMCID: PMC6696068 DOI: 10.3390/ijms20153751] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy. Despite Ewing sarcoma being characterized by specific EWSR1-ETS gene fusions resulting in oncogenic transcription factors, currently, no targeted therapy could be implemented. It seems even more difficult to develop a targeted therapeutic strategy in osteosarcoma which is characterized by high complexity and heterogeneity in genomic alterations. Nevertheless, the common point between these different bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Therefore, targeting different actors of the bone tumor microenvironment has been hypothesized to develop new therapeutic strategies. In this context, it is well known that the Wnt/β-catenin signaling pathway plays a key role in cancer development, including osteosarcoma and Ewing sarcoma as well as in bone remodeling. Moreover, recent studies highlight the implication of the Wnt/β-catenin pathway in angiogenesis and immuno-surveillance, two key mechanisms involved in metastatic dissemination. This review focuses on the role played by this signaling pathway in the development of primary bone tumors and the modulation of their specific microenvironment.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Agents/therapeutic use
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/immunology
- Bone Neoplasms/mortality
- Bone and Bones
- Child
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis
- Molecular Targeted Therapy/methods
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/mortality
- Neovascularization, Pathologic/prevention & control
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/immunology
- Osteosarcoma/drug therapy
- Osteosarcoma/genetics
- Osteosarcoma/immunology
- Osteosarcoma/mortality
- Proto-Oncogene Proteins c-ets/antagonists & inhibitors
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/immunology
- RNA-Binding Protein EWS/antagonists & inhibitors
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/immunology
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/mortality
- Survival Analysis
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/drug effects
- Young Adult
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
- beta Catenin/immunology
Collapse
Affiliation(s)
- Geoffroy Danieau
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Sarah Morice
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Françoise Rédini
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Franck Verrecchia
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Bénédicte Brounais-Le Royer
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France.
| |
Collapse
|
20
|
Perumal V, Corica T, Dharmarajan AM, Sun Z, Dhaliwal SS, Dass CR, Dass J. Circulating Tumour Cells (CTC), Head and Neck Cancer and Radiotherapy; Future Perspectives. Cancers (Basel) 2019; 11:E367. [PMID: 30875950 PMCID: PMC6468366 DOI: 10.3390/cancers11030367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer is the seventh most common cancer in Australia and globally. Despite the current improved treatment modalities, there is still up to 50⁻60% local regional recurrence and or distant metastasis. High-resolution medical imaging technologies such as PET/CT and MRI do not currently detect the early spread of tumour cells, thus limiting the potential for effective minimal residual detection and early diagnosis. Circulating tumour cells (CTCs) are a rare subset of cells that escape from the primary tumour and enter into the bloodstream to form metastatic deposits or even re-establish themselves in the primary site of the cancer. These cells are more aggressive and accumulate gene alterations by somatic mutations that are the same or even greater than the primary tumour because of additional features acquired in the circulation. The potential application of CTC in clinical use is to acquire a liquid biopsy, by taking a reliable minimally invasive venous blood sample, for cell genotyping during radiotherapy treatment to monitor the decline in CTC detectability, and mutational changes in response to radiation resistance and radiation sensitivity. Currently, very little has been published on radiation therapy, CTC, and circulating cancer stem cells (CCSCs). The prognostic value of CTC in cancer management and personalised medicine for head and neck cancer radiotherapy patients requires a deeper understanding at the cellular level, along with other advanced technologies. With this goal, this review summarises the current research of head and neck cancer CTC, CCSC and the molecular targets for personalised radiotherapy response.
Collapse
Affiliation(s)
- Vanathi Perumal
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
- Radiation Oncology, Sir Charles Gairdner Hospital, Cancer Centre, Nedlands, Perth, WA 6009, Australia.
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Tammy Corica
- Radiation Oncology, Sir Charles Gairdner Hospital, Cancer Centre, Nedlands, Perth, WA 6009, Australia.
| | - Arun M Dharmarajan
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6102, Australia.
| | - Satvinder S Dhaliwal
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia.
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Joshua Dass
- Radiation Oncology, Sir Charles Gairdner Hospital, Cancer Centre, Nedlands, Perth, WA 6009, Australia.
| |
Collapse
|
21
|
Yuan XS, Zhang M, Wang HY, Jiang J, Yu B. Increased secreted frizzled-related protein 4 and ficolin-3 levels in gestational diabetes mellitus women. Endocr J 2018; 65:499-508. [PMID: 29491225 DOI: 10.1507/endocrj.ej17-0508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
By biochemical and epidemiological similarity with type 2 diabetes mellitus (T2DM), gestational diabetes mellitus (GDM) has some overlap between prediction markers and risk factors of T2DM. The present study aimed to establish that secreted frizzled-related protein 4 (SFRP4) and ficolin-3 levels, which have been linked to insulin resistance and the development of T2DM, are elevated in GDM women. A longitudinal prospective cohort study of 86 GDM and 273 normal glucose tolerant (NGT) pregnant women was performed. The clinical parameters, lipid profiles, and serum SFRP4 and ficolin-3 levels were tested during the early and late second-trimester and third-trimester of pregnancy. Both SFRP4 and ficolin-3 levels were significantly higher in GDM women as compared to the NGT participants at three test points (p < 0.01). Spearman's correlation analysis showed that serum SFRP4 levels were significantly positively correlated with ficolin-3 during the early and late second-trimester and third-trimester of pregnancy. The elevated SFRP4 and ficolin-3 concentrations at 16-18 weeks gestation significantly associated with GDM were conformed using binary logistic regression analysis after controlling for other variables [odds ratios (OR) with 95% confidence intervals (CI) for SFRP4: 2.84 (1.78-4.53), p < 0.01; for ficolin-3: 2.45 (1.55-3.88), p < 0.01]. In Conclusions, increased SFRP4 and ficolin-3 levels are significantly associated with GDM development and might be important risk factors for this pregnancy complication.
Collapse
Affiliation(s)
- Xiao-Song Yuan
- Department of Prenatal Diagnosis Laboratory, Changzhou Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Ming Zhang
- Department of Laboratory Medicine, Changzhou Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Hui-Yan Wang
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Jian Jiang
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Bin Yu
- Department of Prenatal Diagnosis Laboratory, Changzhou Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, China
| |
Collapse
|
22
|
Visweswaran M, Keane KN, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. The Influence of Breast Tumour-Derived Factors and Wnt Antagonism on the Transformation of Adipose-Derived Mesenchymal Stem Cells into Tumour-Associated Fibroblasts. CANCER MICROENVIRONMENT 2018; 11:71-84. [PMID: 29637435 DOI: 10.1007/s12307-018-0210-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
Abstract
Within the tumour stroma, a heterogeneous population of cell types reciprocally regulates cell proliferation, which considerably affects the progression of the disease. In this study, using tumour conditioned medium (TCM) derived from breast tumour cell lines - MCF7 and MDA MB 231, we have demonstrated the differentiation of adipose-derived mesenchymal stem cells (ADSCs) into tumour-associated fibroblasts (TAFs). Since the Wnt signalling pathway is a key signalling pathway driving breast tumour growth, the effect of the Wnt antagonist secreted frizzled-related protein 4 (sFRP4) was also examined. The response of ADSCs to TCM and sFRP4 treatments was determined by using cell viability assay to determine the changes in ADSC viability, immunofluorescence for mesenchymal markers, glucose uptake assay, and glycolysis stress test using the Seahorse Extracellular Flux analyser to determine the glycolytic activity of ADSCs. ADSCs have been shown to acquire a hyper-proliferative state, significantly increasing their number upon short-term and long-term exposure to TCM. Changes have also been observed in the expression of key mesenchymal markers as well as in the metabolic state of ADSCs. SFRP4 significantly inhibited the differentiation of ADSCs into TAFs by reducing cell growth as well as mesenchymal marker expression (cell line-dependent). However, sFRP4 did not induce further significant changes to the altered metabolic phenotype of ADSCs following TCM exposure. Altogether, this study suggests that the breast tumour milieu may transform ADSCs into a tumour-supportive phenotype, which can be altered by Wnt antagonism, but is independent of metabolic changes.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Kevin N Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Rodney J Dilley
- Ear Sciences Centre, University of Western Australia, Perth, Australia
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
23
|
Fitzgerald HC, Evans J, Johnson N, Infusini G, Webb A, Rombauts LJR, Vollenhoven BJ, Salamonsen LA, Edgell TA. Idiopathic infertility in women is associated with distinct changes in proliferative phase uterine fluid proteins†. Biol Reprod 2018; 98:752-764. [DOI: 10.1093/biolre/ioy063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Harriet C Fitzgerald
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Nicholas Johnson
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Giuseppe Infusini
- The Walter & Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Webb
- The Walter & Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Luk J R Rombauts
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- Monash IVF, Clayton, Victoria, Australia
- Monash Women's & Newborn Program, Monash Health, Victoria, Australia
| | - Beverley J Vollenhoven
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- Monash IVF, Clayton, Victoria, Australia
- Monash Women's & Newborn Program, Monash Health, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tracey A Edgell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Liu L, Zhi Q, Shen M, Gong FR, Zhou BP, Lian L, Shen B, Chen K, Duan W, Wu MY, Tao M, Li W. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis. Oncotarget 2018; 7:47145-47162. [PMID: 27323403 PMCID: PMC5216931 DOI: 10.18632/oncotarget.9975] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022] Open
Abstract
The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation.
Collapse
Affiliation(s)
- Lu Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Binhua P Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Departments of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Lian Lian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China.,Department of Pathology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China.,Institute of Medical Biotechnology, Soochow University, Suzhou, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Center for Systems Biology, Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China
| |
Collapse
|
25
|
Visweswaran M, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. The inhibitory influence of adipose tissue-derived mesenchymal stem cell environment and Wnt antagonism on breast tumour cell lines. Int J Biochem Cell Biol 2018; 95:63-72. [DOI: 10.1016/j.biocel.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
26
|
Nunez Lopez YO, Garufi G, Pasarica M, Seyhan AA. Elevated and Correlated Expressions of miR-24, miR-30d, miR-146a, and SFRP-4 in Human Abdominal Adipose Tissue Play a Role in Adiposity and Insulin Resistance. Int J Endocrinol 2018; 2018:7351902. [PMID: 29721017 PMCID: PMC5867542 DOI: 10.1155/2018/7351902] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/06/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE We explored the relationships among microRNAs (miRNAs) and SFRP4, as they relate to adipose tissue functions including lipolysis, glucose and glycerol turnover, and insulin sensitivity. METHODS Abdominal adipose tissue (AbdAT) levels of thirteen microRNAs (miRNAs), SFRP4, and VEGF in lean nondiabetic subjects (n = 7), subjects with obesity (n = 5), and subjects with obesity and type 2 diabetes (T2DM) (n = 5) were measured by qPCR. Insulin sensitivity was measured by the euglycemic-hyperinsulinemic clamp. Osmium fixation and Coulter counting were used for adipocyte sizing. Data were analyzed using generalized linear models that adjusted for age, gender, and ethnicity. RESULTS AbdAT miR-24, miR-30d, and miR-146a were elevated in subjects with obesity (P < 0.05) and T2DM (P < 0.1) and positively correlated with measures of percent body fat by DXA (rmiR.24 = 0.894, rmiR.146a = 0.883, P < 0.05), and AbdAT SFRP4 (rmiR.30 = 0.93, rmiR.146a = 0.88, P < 0.05). These three miRNAs additionally correlated among themselves (rmiR.24~miR.146a = 0.90, rmiR.30~miR.146a = 0.85, P < 0.01). CONCLUSIONS This study suggests a novel association between the elevated levels of miRNAs miR-24, miR-30d, and miR-146a (apparently coregulated) and the level of SFRP4 transcript in AbdAT of subjects with obesity and T2DM. These molecules might be part of a regulatory loop involved in AbdAT remodeling/adiposity and systemic insulin resistance. This trial is registered with NCT00704197.
Collapse
Affiliation(s)
- Yury O. Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Gabriella Garufi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | | | - Attila A. Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- The Chemical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Delivery of expression constructs of secreted frizzled-related protein 4 and its domains by chitosan-dextran sulfate nanoparticles enhances their expression and anti-cancer effects. Mol Cell Biochem 2017; 443:205-213. [PMID: 29185158 DOI: 10.1007/s11010-017-3225-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
In malignant mesothelioma (MM) cells, secreted frizzled-related protein 4 (SFRP4) expression is downregulated by promoter methylation. In this study, we evaluated the effect of encapsulated chitosan-dextran (CS-DS) nanoparticle formulations of SFRP4 and its cysteine-rich domain (CRD) and netrin-like domain (NLD) as means of SFRP4-GFP protein delivery and their effects in JU77 and ONE58 MM cell lines. CS-DS formulations of SFRP4, CRD, and NLD nanoparticles were prepared by a complex coacervation technique, and particle size ranged from 300 nm for empty particles to 337 nm for particles containing the proteins. Measurement of the zeta potential showed that all preparations were around 25 mV or above, suggesting stable formulation and good affinity for the DNA molecules. The CS-DS nanoparticle formulation maintained high integrity and entrapment efficiency. Gene delivery of SFRP4 and its domains showed enhanced biological effects in both JU77 and ONE58 cell lines when compared to the non-liposomal FUGENE® HD transfection reagent. In comparison to the CRD nanoparticles, both the SFRP4 and NLD nanoparticles significantly reduced the viability of MM cells, with the NLD showing the greatest effect. The CS-DS nanoparticle effects were observed at an earlier time point and with lower DNA concentrations. Morphological changes in MM cells were characterized by the formation of membrane-associated vesicles and green fluorescent protein expression specific to SFRP4 and the NLD. The findings from our proof-of-concept study provide a stepping stone for further investigations using in vivo models.
Collapse
|
28
|
Olsen JJ, Pohl SÖG, Deshmukh A, Visweswaran M, Ward NC, Arfuso F, Agostino M, Dharmarajan A. The Role of Wnt Signalling in Angiogenesis. Clin Biochem Rev 2017; 38:131-142. [PMID: 29332977 PMCID: PMC5759160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Angiogenesis is a normal biological process wherein new blood vessels form from the growth of pre-existing blood vessels. Preventing angiogenesis in solid tumours by targeting pro-angiogenic factors including vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), basic fibroblast growth factor (bFGF), hepatocyte growth factor, and platelet-derived growth factor (PDGF) is currently under investigation for cancer treatment. Concurrently targeting the cell signalling pathways involved in the transcriptional and post-translational regulation of these factors may provide positive therapeutic results. One such pathway is the Wnt signalling pathway. Wnt was first discovered in mice infected with mouse mammary tumour virus, and has been crucial in improving our understanding of oncogenesis and development. In this review, we summarise molecular and cellular aspects of the importance of Wnt signalling to angiogenesis, including β-catenin-dependent mechanisms of angiogenic promotion, as well as the study of Wnt antagonists, such as the secreted frizzled-related protein family (SFRPs) which have been shown to inhibit angiogenesis. The growing understanding of the underlying complexity of the biochemical pathways mediating angiogenesis is critical to the identification of new molecular targets for therapeutic applications.
Collapse
Affiliation(s)
- Jun Jun Olsen
- The School of Human Sciences, The University of Western Australia, Nedlands, WA
| | - Sebastian Öther-Gee Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| | - Abhijeet Deshmukh
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| | - Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| | - Natalie C Ward
- School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, WA
- Medical School, University of Western Australia, Crawley, WA
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| | - Mark Agostino
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
- Curtin Institute for Computation, Curtin University, Bentley, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| |
Collapse
|
29
|
Ji Q, Zhang J, Du Y, Zhu E, Wang Z, Que B, Miao H, Shi S, Qin X, Zhao Y, Zhou Y, Huang F, Nie S. Human epicardial adipose tissue-derived and circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with coronary artery disease. Cardiovasc Diabetol 2017; 16:133. [PMID: 29037197 PMCID: PMC5644066 DOI: 10.1186/s12933-017-0612-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023] Open
Abstract
Background Previous studies have demonstrated that secreted frizzled-related protein 4 (SFRP4) is associated with impaired glucose and triglyceride metabolism in patients with stable coronary artery disease. In the present study, we investigated human epicardial adipose tissue (EAT)-derived and circulating SFRP4 levels in patients with coronary artery disease (CAD). Methods Plasma samples and adipose biopsies from EAT and subcutaneous adipose tissue (SAT) were collected from patients with CAD (n = 40) and without CAD (non-CAD, n = 30) during elective cardiac surgery. The presence of CAD was identified by coronary angiography. SFRP4 mRNA and protein expression levels in adipose tissue were detected by quantitative real-time PCR and immunohistochemistry, respectively. Plasma SFRP4 concentrations were measured by an enzyme-linked immunosorbent assay (ELISA). Correlation analysis and multivariate linear regression analysis were used to determine the association of SFRP4 expression with atherosclerosis as well as clinical risk factors. Results SFRP4 mRNA and protein expression levels were significantly lower in EAT than in paired SAT in patients with and without CAD (all P < 0.05). Compared to non-CAD patients, CAD patients had higher SFRP4 expression levels in EAT (both mRNA and protein levels) and in plasma. Multivariate linear regression analysis showed that CAD was an independent predictor of SFRP4 expression levels in EAT (beta = 0.442, 95% CI 0.030–0.814; P = 0.036) and in plasma (beta = 0.300, 95% CI 0.056–0.545; P = 0.017). SAT-derived SFRP4 mRNA levels were independently associated with fasting insulin levels (beta = 0.382, 95% CI 0.008–0.756; P = 0.045). In addition, plasma SFRP4 levels were positively correlated with BMI (r = 0.259, P = 0.030), fasting insulin levels (r = 0.306, P = 0.010) and homeostasis model assessment of insulin resistance (HOMA-IR) values (r = 0.331, P = 0.005). Conclusions EAT-derived and circulating SFRP4 expression levels were increased in patients with CAD. EAT SFRP4 mRNA levels and plasma SFRP4 concentrations were independently associated with the presence of CAD.
Collapse
Affiliation(s)
- Qingwei Ji
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Yu Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Enjun Zhu
- Department of Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Bin Que
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Huangtai Miao
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Shutian Shi
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Xiuchuan Qin
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Fangjun Huang
- Department of Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China. .,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
30
|
Delaney MA, Wan YW, Kim GE, Creighton CJ, Taylor MG, Masand R, Park A, Valdes C, Gibbons W, Liu Z, Anderson ML. A Role for Progesterone-Regulated sFRP4 Expression in Uterine Leiomyomas. J Clin Endocrinol Metab 2017; 102. [PMID: 28637297 PMCID: PMC5587057 DOI: 10.1210/jc.2016-4014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CONTEXT Despite progesterone's key role in uterine smooth muscle tumorigenesis, the mechanisms by which it promotes the growth of uterine leiomyomas remain poorly understood. OBJECTIVE The aim of this study was to identify gene products mediating the effects of progesterone in uterine leiomyomas. DESIGN Gene expression profiling was used to identify putative progesterone-regulated genes differentially expressed in uterine leiomyomas, which were then studied in vitro. METHODS Gene expression was comprehensively profiled with the Illumina WG BeadChip (version 2.6) and analyzed with a bioinformatic algorithm that integrates known protein-protein interactions. Genomic binding sites for progesterone receptor (PR) were interrogated by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR). Small interfering RNA was used to study gene function in primary cell lines. RESULTS Our analyses identified secreted Frizzled-related protein 4 (sFRP4) as a key gene product functionally linked to PR activation whose expression was 2.6 times higher in leiomyomas than myometrium (n = 26, P < 0.01) and 2.5 times higher during the proliferative phase of the menstrual cycle (n = 26, P < 0.01). Direct binding between PR and sFRP4 promoter was observed by ChIP-qPCR. Robust overexpression of sFRP4 was also observed in primary cultures derived from leiomyoma. Progesterone preferentially inhibited sFRP4 expression and secretion in leiomyoma cultures in a dose-dependent manner sensitized by estradiol. Knockdown of sFRP4 inhibited proliferation and apoptosis in primary cultures of both myometrium and leiomyoma. CONCLUSIONS Overexpression of sFRP4 is a robust, progesterone-regulated feature of leiomyomas that increases smooth muscle proliferation. More work is needed to elucidate how progesterone's ability to modulate sFRP4 expression contributes to uterine smooth muscle tumorigenesis.
Collapse
Affiliation(s)
- Meaghan A. Delaney
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Ying-Wooi Wan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Gyoung-Eun Kim
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Margaret G. Taylor
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Ramya Masand
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Andrew Park
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Cecilia Valdes
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - William Gibbons
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Zhandong Liu
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Matthew L. Anderson
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
31
|
Nunez Lopez YO, Garufi G, Seyhan AA. Altered levels of circulating cytokines and microRNAs in lean and obese individuals with prediabetes and type 2 diabetes. MOLECULAR BIOSYSTEMS 2017; 13:106-121. [PMID: 27869909 DOI: 10.1039/c6mb00596a] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Today obesity and type 2 diabetes (T2D) have both reached epidemic proportions. However, our current understanding of the primary mechanisms leading to these diseases is still limited due to the complex multifactorial nature of the underlying phenomena. We hypothesize that the levels of specific cytokines and miRNAs vary across the diabetes spectrum and unique signatures associated with them may serve as early biomarkers of the disease and provide insights into respective pathogenetic mechanisms. In this study, we measured the circulating levels of cytokines and microRNAs (miRNAs) in lean and obese humans with prediabetes (n = 21), T2D (n = 17), and healthy controls (n = 20) (ORIGINS trial, NCT02226640). Data were analyzed by fitting linear models adjusted for confounding variables (BMI, age, and gender in the diabetes context and age, gender, and diabetes status in the obesity context) and implementing nonparametric randomization-based tests for statistical inference. Group differences and correlations (r > 0.3) between variables with P < 0.05 were considered significant. False discovery rates (FDR) correcting for multiple testing were calculated using the Benjamini-Hochberg correction. We found a number of circulating cytokines and miRNAs deregulated in subjects with obesity, prediabetes, and T2D. Specifically, cytokines IL-6, IL-8, IL-10, IL-12, and SFRP4, as well as miRNAs miR-21, miR-24.1, miR-27a, miR-28-3p, miR-29b, miR-30d, miR-34a, miR-93, miR-126, miR-146a, miR-148, miR-150, miR-155, and miR-223, significantly changed across the diabetes spectrum, and were associated with measures of pancreatic islet β cell function and glycemic control, among others. Notably, SFRP4 was the only studied cytokine that was significantly associated with obesity, prediabetes, and T2D, which underscores the important role of this molecule during disease development and progression. Our data suggest that changes in circulating miRNAs and cytokines may have clinical utility as biomarkers of prediabetes.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA.
| | - Gabriella Garufi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA.
| | - Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA. and Sanford
- Burnham Medical Research Institute, Orlando, FL, USA and Massachusetts Institute of Technology, Chemical Engineering Department Cambridge, MA, USA
| |
Collapse
|
32
|
Bucher F, Zhang D, Aguilar E, Sakimoto S, Diaz-Aguilar S, Rosenfeld M, Zha Z, Zhang H, Friedlander M, Yea K. Antibody-Mediated Inhibition of Tspan12 Ameliorates Vasoproliferative Retinopathy Through Suppression of β-Catenin Signaling. Circulation 2017; 136:180-195. [DOI: 10.1161/circulationaha.116.025604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
Background:
Anti-angiogenic biologicals represent an important concept for the treatment of vasoproliferative diseases. However, the need for continued treatment, the presence of nonresponders, and the risk of long-term side effects limit the success of existing therapeutic agents. Although Tspan12 has been shown to regulate retinal vascular development, nothing is known about its involvement in neovascular disease and its potential as a novel therapeutic target for the treatment of vasoproliferative diseases.
Methods:
Rodent models of retinal neovascular disease, including the mouse model of oxygen-induced retinopathy and the very low density lipoprotein receptor knockout mouse model were analyzed for Tspan/β-catenin regulation. Screening of a phage display of a human combinatorial antibody (Ab) library was used for the development of a high-affinity Ab against Tspan12. Therapeutic effects of the newly developed Ab on vascular endothelial cells were tested in vitro and in vivo in the oxygen-induced retinopathy and very low density lipoprotein receptor knockout mouse model.
Results:
The newly developed anti-Tspan12 Ab exhibited potent inhibitory effects on endothelial cell migration and tube formation. Mechanistic studies confirmed that the Ab inhibited the interaction between Tspan12 and Frizzled-4 and effectively modulates β-catenin levels and target genes in vascular endothelial cells. Tspan12/β-catenin signaling was activated in response to acute and chronic stress in the oxygen-induced retinopathy and very low density lipoprotein receptor mouse model of proliferative retinopathy. Intravitreal application of the Ab showed significant therapeutic effects in both models without inducing negative side effects on retina function. Moreover, combined intravitreal injection of the Ab with a known vascular endothelial growth factor inhibitor, Aflibercept, resulted in significant enhancement of the therapeutic efficacy of each monotherapy. Combination therapy with the Tspan12 blocking antibody can be used to reduce anti-vascular endothelial growth factor doses, thus decreasing the risk of long-term off-target effects.
Conclusions:
Tspan12/β-catenin signaling is critical for the progression of vasoproliferative disease. The newly developed anti-Tspan12 antibody has therapeutic effects in vasoproliferative retinopathy and can enhance the potency of existing anti- vascular endothelial growth factor agents.
Collapse
Affiliation(s)
- Felicitas Bucher
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Ding Zhang
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Edith Aguilar
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Susumu Sakimoto
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Sophia Diaz-Aguilar
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Mauricio Rosenfeld
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Zhao Zha
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Hongkai Zhang
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Martin Friedlander
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Kyungmoo Yea
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| |
Collapse
|
33
|
Mu J, Hui T, Shao B, Li L, Du Z, Lu L, Ye L, Li S, Li Q, Xiao Q, Qiu Z, Zhang Y, Fan J, Ren G, Tao Q, Xiang T. Dickkopf-related protein 2 induces G0/G1 arrest and apoptosis through suppressing Wnt/β-catenin signaling and is frequently methylated in breast cancer. Oncotarget 2017; 8:39443-39459. [PMID: 28467796 PMCID: PMC5503624 DOI: 10.18632/oncotarget.17055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/05/2022] Open
Abstract
Dickkopf-related protein 2 (DKK2) is one of the antagonists of Wnt/β-catenin signaling, with its downregulation reported in multiple cancers. However, how DKK2 contributes to breast tumorigenesis remains unclear. We examined its expression and promoter methylation in 10 breast tumor cell lines, 98 primary tumors, and 21 normal breast tissues. Compared with normal tissues, DKK2 was frequently silenced in breast cell lines (7/8). DKK2 promoter methylation was detected in 77.8% of cell lines and 86.7% of breast tumors; while rarely detected in normal breast tissues (19%), indicating common DKK2 methylation in breast cancer. Ectopic expression of DKK2 changed breast tumor cell morphology, inhibited cell proliferation and colony formation by inducing G0/G1 cell cycle arrest and apoptosis, and suppressed tumor cell migration by reversing epithelial-mesenchymal transition (EMT) and downregulating stem cell markers. Moreover, restored expression of DKK2 in MCF7 cells disrupted the microtube formation of human umbilical vein endothelial cells on Matrigel®. In vivo, the growth of MDA-MB-231 cells in nude mice was markedly decreased after stable expression of DKK2. DKK2 suppressed canonical Wnt/β-catenin signaling by inhibiting β-catenin activity with decreased active β-catenin protein. Thus, our findings demonstrate that DKK2 functions as a tumor suppressor through inhibiting cell proliferation and inducing apoptosis via regulating Wnt signaling during breast tumorigenesis.
Collapse
Affiliation(s)
- Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Hui
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bianfei Shao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Zhenfang Du
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Li Lu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Lin Ye
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuman Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianqian Li
- Chinese Medicine Hospital of Linyi City, Shandong, China
| | - Qian Xiao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Katsel P, Roussos P, Pletnikov M, Haroutunian V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia - angiogenesis connection. Neurosci Biobehav Rev 2017; 77:327-339. [PMID: 28396239 PMCID: PMC5497758 DOI: 10.1016/j.neubiorev.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder with unknown etiology and elusive neuropathological and neurobiological features have been a focus of many theoretical hypotheses and empirical studies. Current genetic and neurobiology information relevant to SZ implicates neuronal developmental and synaptic plasticity abnormalities, and neurotransmitter, microglial and oligodendrocytes dysfunction. Several recent theories have highlighted the neurovascular unit as a potential contributor to the pathophysiology of SZ. We explored the biological plausibility of a link between SZ and the neurovascular system by examining insights gained from genetic, neuroimaging and postmortem studies, which include gene expression and neuropathology analyses. We also reviewed information from animal models of cerebral angiogenesis in order to understand better the complex interplay between angiogenic and neurotrophic factors in development, vascular endothelium/blood brain barrier remodeling and maintenance, all of which contribute to sustaining adequate regional blood flow and safeguarding normal brain function. Microvascular and hemodynamic alterations in SZ highlight the importance of further research and reveal the neurovascular unit as a potential therapeutic target in SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Mikhail Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
35
|
Katsel P, Roussos P, Pletnikov M, Haroutunian V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia - angiogenesis connection. Neurosci Biobehav Rev 2017. [PMID: 28396239 DOI: 10.1016/j.neubiorev.2017.04.003)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder with unknown etiology and elusive neuropathological and neurobiological features have been a focus of many theoretical hypotheses and empirical studies. Current genetic and neurobiology information relevant to SZ implicates neuronal developmental and synaptic plasticity abnormalities, and neurotransmitter, microglial and oligodendrocytes dysfunction. Several recent theories have highlighted the neurovascular unit as a potential contributor to the pathophysiology of SZ. We explored the biological plausibility of a link between SZ and the neurovascular system by examining insights gained from genetic, neuroimaging and postmortem studies, which include gene expression and neuropathology analyses. We also reviewed information from animal models of cerebral angiogenesis in order to understand better the complex interplay between angiogenic and neurotrophic factors in development, vascular endothelium/blood brain barrier remodeling and maintenance, all of which contribute to sustaining adequate regional blood flow and safeguarding normal brain function. Microvascular and hemodynamic alterations in SZ highlight the importance of further research and reveal the neurovascular unit as a potential therapeutic target in SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Mikhail Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
36
|
Agostino M, Pohl SÖG, Dharmarajan A. Structure-based prediction of Wnt binding affinities for Frizzled-type cysteine-rich domains. J Biol Chem 2017; 292:11218-11229. [PMID: 28533339 DOI: 10.1074/jbc.m117.786269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling pathways are of significant interest in development and oncogenesis. The first step in these pathways typically involves the binding of a Wnt protein to the cysteine-rich domain (CRD) of a Frizzled receptor. Wnt-Frizzled interactions can be antagonized by secreted Frizzled-related proteins (SFRPs), which also contain a Frizzled-like CRD. The large number of Wnts, Frizzleds, and SFRPs, as well as the hydrophobic nature of Wnt, poses challenges to laboratory-based investigations of interactions involving Wnt. Here, utilizing structural knowledge of a representative Wnt-Frizzled CRD interaction, as well as experimentally determined binding affinities for a selection of Wnt-Frizzled CRD interactions, we generated homology models of Wnt-Frizzled CRD interactions and developed a quantitative structure-activity relationship for predicting their binding affinities. The derived model incorporates a small selection of terms derived from scoring functions used in protein-protein docking, as well as an energetic term considering the contribution made by the lipid of Wnt to the Wnt-Frizzled binding affinity. Validation with an external test set suggests that the model can accurately predict binding affinity for 75% of cases and that the error associated with the predictions is comparable with the experimental error. The model was applied to predict the binding affinities of the full range of mouse and human Wnt-Frizzled and Wnt-SFRP interactions, indicating trends in Wnt binding affinity for Frizzled and SFRP CRDs. The comprehensive predictions made in this study provide the basis for laboratory-based studies of previously unexplored Wnt-Frizzled and Wnt-SFRP interactions, which, in turn, may reveal further Wnt signaling pathways.
Collapse
Affiliation(s)
- Mark Agostino
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and .,Curtin Institute of Computation, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia
| | - Sebastian Öther-Gee Pohl
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and
| | - Arun Dharmarajan
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and
| |
Collapse
|
37
|
Perumal V, Dharmarajan AM, Fox SA. The Wnt regulator SFRP4 inhibits mesothelioma cell proliferation, migration, and antagonizes Wnt3a via its netrin-like domain. Int J Oncol 2017; 51:362-368. [PMID: 28534940 DOI: 10.3892/ijo.2017.4011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/26/2017] [Indexed: 11/06/2022] Open
Abstract
Secreted frizzled related proteins (SFRPs) are a family of Wnt regulators which are frequently downregulated in cancers. In malignant mesothelioma (MM), downregulation of SFRP4 has been reported as a mechanism which contributes to aberrant activation of oncogenic Wnt signaling. Here we investigated the biological consequences of SFRP4 in two mesothelioma cell models where this protein is downregulated. We used recombinant SFRP4 and transient overexpression to study changes in proliferation, migration and downstream signaling. We found that recombinant SFRP4 inhibited both proliferation and migration of MM cells as well as abrogating the stimulatory effect of recombinant Wnt3a. Morphologically SFRP4 induced a cytotoxic effect distinct from apoptosis and consistent with mitotic catastrophe. Overexpression of SFRP4 in these cell lines displayed similar effects as endogenous protein on cell viability, migration and nuclear morphology. We also used expression constructs to examine the role of the SFRP4 cysteine rich domain (CRD) and a netrin-like domain (NLD) in these effects. Interestingly, we found it was the NLD which mediated the biological effects of SFRP4 in these cells. Our results indicate that SFRP4 inhibits mesothelioma proliferation, migration and activates alternative cell death pathways. The finding that the NLD is responsible for these has broader implications for this protein family. Overall this study suggests that the Wnt pathway may prove a promising target for therapy in mesothelioma.
Collapse
Affiliation(s)
- Vanathi Perumal
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Arun M Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Simon A Fox
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
38
|
Nayeem SB, Arfuso F, Dharmarajan A, Keelan JA. Role of Wnt signalling in early pregnancy. Reprod Fertil Dev 2017; 28:525-44. [PMID: 25190280 DOI: 10.1071/rd14079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
The integration of a complex network of signalling molecules promotes implantation of the blastocyst and development of the placenta. These processes are crucial for a successful pregnancy and fetal growth and development. The signalling network involves both cell-cell and cell-extracellular matrix communication. The family of secreted glycoprotein ligands, the Wnts, plays a major role in regulating a wide range of biological processes, including embryonic development, cell fate, proliferation, migration, stem cell maintenance, tumour suppression, oncogenesis and tissue homeostasis. Recent studies have provided evidence that Wnt signalling pathways play an important role in reproductive tissues and in early pregnancy events. The focus of this review is to summarise our present knowledge of expression, regulation and function of the Wnt signalling pathways in early pregnancy events of human and other model systems, and its association with pathological conditions. Despite our recent progress, much remains to be learned about Wnt signalling in human reproduction. The advancement of knowledge in this area has applications in the reduction of infertility and the incidence and morbidity of gestational diseases.
Collapse
Affiliation(s)
- Sarmah B Nayeem
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| | - Frank Arfuso
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Arun Dharmarajan
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jeffrey A Keelan
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| |
Collapse
|
39
|
Bhuvanalakshmi G, Basappa, Rangappa KS, Dharmarajan A, Sethi G, Kumar AP, Warrier S. Breast Cancer Stem-Like Cells Are Inhibited by Diosgenin, a Steroidal Saponin, by the Attenuation of the Wnt β-Catenin Signaling via the Wnt Antagonist Secreted Frizzled Related Protein-4. Front Pharmacol 2017; 8:124. [PMID: 28373842 PMCID: PMC5357646 DOI: 10.3389/fphar.2017.00124] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Identification of breast cancer stem cells as the chemo-resistant and tumor-initiating population represents an important milestone in approaching anticancer therapies. Targeting this minor subpopulation of chemo- and radio-resistant stem-like cells, termed as the cancer stem cells (CSCs) and their eradication could significantly enhance clinical outcomes. Most of the presently administered chemotherapeutics target the tumor bulk but are ineffective against the CSCs. We report here that diosgenin (DG), a naturally occurring steroidal saponin, could effectively inhibit CSCs from three breast cancer cell lines, MCF7, T47D and MDA-MB-231, by inducing apoptosis and inhibiting the CSC associated phenotypes. Methods: CSCs were enriched in these cells lines, characterized for CSC traits by immunocytochemistry and flow cytometry. Proliferation and apoptosis assays were performed in these breast CSCs in the presence of DG to obtain the inhibitory concentration. Apoptosis was confirmed with gene expression analysis, Western blotting and propidium iodide staining. TCF-LEF reporter assay, sFRP overexpression and RNAi silencing studies were performed to study regulation of the Wnt pathway. Statistical significance was evaluated by a two-sided Student’s t-test. Results: Using the TCF-LEF reporter system, we show the effect of DG on CSCs is predominantly through the network regulating CSC self renewal, the Wnt β-catenin pathway. Specifically, the Wnt antagonist, the secreted frizzled related protein 4, (sFRP4), had a defining role in the action of DG. Gain-of-function of sFRP4 in CSCs could improve the response to DG wherein CSC mediators were inhibited, β-catenin was down regulated and the effectors of epithelial to mesenchymal transition and pro-invasive markers were repressed. Conversely, the loss-of-function of sFRP4 had a reverse effect on the CSC population which therein became enriched, their response to DG treatment was modest, β-catenin levels increased, GSK3β expression decreased and the expression of epithelial markers of CSC was completely abrogated. Conclusion: These findings demonstrate the effect of DG on inhibiting the resilient breast CSCs which could provide a benchmark for the development of DG-based therapies in breast cancer treatment.
Collapse
Affiliation(s)
- G Bhuvanalakshmi
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal School of Regenerative Medicine, Manipal University Bangalore, India
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University Bangalore, India
| | | | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| | - Gautam Sethi
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore; Cancer Science Institute of Singapore, National University of SingaporeSingapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, PerthWA, Australia; National University Cancer Institute, National University Health SystemSingapore, Singapore; Department of Biological Sciences, University of North Texas, DentonTX, USA; Manipal School of Regenerative Medicine, Manipal UniversityBangalore, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal School of Regenerative Medicine, Manipal UniversityBangalore, India; Curtin Medical School, Faculty of Health Sciences, Curtin University, PerthWA, Australia; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| |
Collapse
|
40
|
Saran U, Mani KP, Balaguru UM, Swaminathan A, Nagarajan S, Dharmarajan AM, Chatterjee S. sFRP4 signalling of apoptosis and angiostasis uses nitric oxide-cGMP-permeability axis of endothelium. Nitric Oxide 2017; 66:30-42. [PMID: 28267592 DOI: 10.1016/j.niox.2017.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
Nitric oxide (NO) plays a critical role in endothelial functions such as cellular migration, vascular permeability and angiogenesis. Angiogenesis, the formation of new blood vessels from "pre-existing" ones is a carefully regulated process and essential during reproduction, development and wound healing. Previously our lab group reported that Secreted Frizzled-Related Protein 4 (sFRP4) could inhibit angiogenesis in both in vitro and in vivo conditions. sFRP4 belongs to a family of secreted glycoproteins that function as antagonists of the canonical Wnt signalling pathway. Although the pro-apoptotic role of sFRP4 is well discussed in literature, little is known in regards to its anti-angiogenic property. The objective of this study was to elucidate sFRP4 implications in NO biology of the endothelium. Results demonstrate that sFRP4 causes endothelial dysfunction by suppressing NO-cGMP signaling and elevating corresponding ROS levels. The imbalance between NO and ROS levels results in apoptosis and subsequent leakiness of endothelium as confirmed in vivo (Texas red/Annxin - CAM assay) and in vitro (Monolayer permeability assay) conditions. Furthermore utilizing peptides synthesized from the CRD domain of sFRP4, our results showed that while these peptides were able to cause endothelial dysfunctions, they did not cause apoptosis of the endothelial cells. Thereby confirming that sFRP4 can mediate its anti-angiogenic effect independent of its pro-apoptotic property. In conclusion, the current study reports that sFRP4-mediated anti-angiogenesis occurs as a result of impaired NO-cGMP signaling which in turn allow for elevation of redox levels and promotion of apoptosis of endothelial cells.
Collapse
Affiliation(s)
- Uttara Saran
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai 600044, India
| | - Krishna Priya Mani
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai 600044, India
| | | | - Akila Swaminathan
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai 600044, India
| | - Shunmugam Nagarajan
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai 600044, India
| | - Arun M Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai 600044, India; Department of Biotechnology, Anna University, Chennai 600044, India.
| |
Collapse
|
41
|
Elçin AE, Parmaksiz M, Dogan A, Seker S, Durkut S, Dalva K, Elçin YM. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4. Exp Cell Res 2017; 352:207-217. [DOI: 10.1016/j.yexcr.2017.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/18/2022]
|
42
|
sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer’s disease. Int J Biochem Cell Biol 2016; 75:104-11. [DOI: 10.1016/j.biocel.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023]
|
43
|
Toda K, Hayashi Y, Ono M, Saibara T. Characterization of Ovarian Responses to Equine Chorionic Gonadotropin of Aromatase-Deficient Mice With or Without 17β-Estradiol Supplementation. Endocrinology 2016; 157:2093-103. [PMID: 26919384 DOI: 10.1210/en.2015-1701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aromatase is an enzyme catalyzing the final step of 17β-estradiol (E2) biosynthesis. Aromatase-deficient (ArKO) mice displayed vital roles of E2 at various tissue sites, including ovary. Here, we report attenuated responses of ArKO ovary to equine chorionic gonadotropin (eCG), an alternative to FSH. Ovarian contents of cAMP and anti-Müllerian hormone (AMH), putative factors reducing sensitivity to gonadotropins, were significantly elevated in ArKO mice compared with those in wild type (WT) mice in the basal state. Accordingly, eCG-induced ovarian alterations in cAMP contents, phosphorylation levels of signaling molecules, and mRNA expression of eCG-targeted genes were blunted in ArKO mice compared with those in WT mice. Treatment of ArKO mice with E2 decreased ovarian cAMP and AMH contents to the WT levels but did not restore the sensitivity. Microarray analysis coupled with quantitative RT-PCR analysis identified 7 genes of which the mRNA expression levels in ArKO ovaries were significantly different from those in the WT ovaries in the basal state and were not normalized by E2 supplementation, indicating possible involvement of these gene products in the determination of ovarian sensitivity to eCG. Thus, present analyses revealed that estrogen deficiency attenuates sensitivity of the ovary to gonadotropin, which might be associated with alterations in the ovarian contents of multiple molecules including cAMP and AMH. Given the importance of the ovarian responses to gonadotropins in reproductive function, detailed knowledge about the underlying mechanisms of abnormalities in the ArKO ovary might help to develop potential targets for infertility treatments.
Collapse
Affiliation(s)
- Katsumi Toda
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Yoshihiro Hayashi
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Masafumi Ono
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
44
|
Perumal V, Pohl S, Keane KN, Arfuso F, Newsholme P, Fox S, Dharmarajan A. Therapeutic approach to target mesothelioma cancer cells using the Wnt antagonist, secreted frizzled-related protein 4: Metabolic state of cancer cells. Exp Cell Res 2016; 341:218-24. [PMID: 26868304 DOI: 10.1016/j.yexcr.2016.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive cancer, characterized by rapid progression, along with late metastasis and poor patient prognosis. It is resistant to many forms of standard anti-cancer treatment. In this study, we determined the effect of secreted frizzled-related protein 4 (sFRP4), a Wnt pathway inhibitor, on cancer cell proliferation and metabolism using the JU77 mesothelioma cell line. Treatment with sFRP4 (250 pg/ml) resulted in a significant reduction of cell proliferation. The addition of the Wnt activator Wnt3a (250 pg/ml) or sFRP4 had no significant effect on ATP production and glucose utilisation in JU77 cells at both the 24 and 48 h time points examined. We also examined their effect on Akt and Glycogen synthase kinase-3 beta (GSK3β) phosphorylation, which are both important components of Wnt signalling and glucose metabolism. We found that protein phosphorylation of Akt and GSK3β varied over the 24h and 48 h time points, with constitutive phosphorylation of Akt at serine 473 (pAkt) decreasing to its most significant level when treated with Wnt3a+sFRP4 at the 24h time point. A significant reduction in the level of Cytochrome c oxidase was observed at the 48 h time point, when sFRP4 and Wnt3a were added in combination. We conclude that sFRP4 may function, in part, to reduce/alter cancer cell metabolism, which may lead to sensitisation of cancer cells to chemotherapeutics, or even cell death.
Collapse
Affiliation(s)
- Vanathi Perumal
- Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Kevin N Keane
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Simon Fox
- Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
45
|
Mastaitis J, Eckersdorff M, Min S, Xin Y, Cavino K, Aglione J, Okamoto H, Na E, Stitt T, Dominguez MG, Schmahl JP, Lin C, Gale NW, Valenzuela DM, Murphy AJ, Yancopoulos GD, Gromada J. Loss of SFRP4 Alters Body Size, Food Intake, and Energy Expenditure in Diet-Induced Obese Male Mice. Endocrinology 2015; 156:4502-10. [PMID: 26406932 DOI: 10.1210/en.2015-1257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Secreted frizzled-related protein 4 (SFRP4) is an extracellular regulator of the wingless-type mouse mammary tumor virus integration site family (WNT) pathway. SFRP4 has been implicated in adipocyte dysfunction, obesity, insulin resistance, and impaired insulin secretion in patients with type 2 diabetes. However, the exact role of SFRP4 in regulating whole-body metabolism and glucose homeostasis is unknown. We show here that male Sfrp4(-/-) mice have increased spine length and gain more weight when fed a high-fat diet. The body composition and body mass per spine length of diet-induced obese Sfrp4(-/-) mice is similar to wild-type littermates, suggesting that the increase in body weight can be accounted for by their longer body size. The diet-induced obese Sfrp4(-/-) mice have reduced energy expenditure, food intake, and bone mineral density. Sfrp4(-/-) mice have normal glucose and insulin tolerance and β-cell mass. Diet-induced obese Sfrp4(-/-) and control mice show similar impairments of glucose tolerance and a 5-fold compensatory expansion of their β-cell mass. In summary, our data suggest that loss of SFRP4 alters body length and bone mineral density as well as energy expenditure and food intake. However, SFRP4 does not control glucose homeostasis and β-cell mass in mice.
Collapse
Affiliation(s)
| | | | - Soo Min
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Katie Cavino
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Erqian Na
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Trevor Stitt
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | | | - Calvin Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | | | | | | | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| |
Collapse
|
46
|
Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S, Dharmarajan A. Multi-lineage differentiation of mesenchymal stem cells - To Wnt, or not Wnt. Int J Biochem Cell Biol 2015; 68:139-47. [PMID: 26410622 DOI: 10.1016/j.biocel.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rodney Dilley
- Ear Sciences Centre, University of Western Australia and Ear Science Institute Australia, Perth, Western Australia 6008, Australia
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
47
|
Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties. PLoS One 2015; 10:e0127517. [PMID: 26030909 PMCID: PMC4452329 DOI: 10.1371/journal.pone.0127517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/15/2015] [Indexed: 01/06/2023] Open
Abstract
The Wnt pathway is integrally involved in regulating self-renewal, proliferation, and maintenance of cancer stem cells (CSCs). We explored the effect of the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), in modulating epithelial to mesenchymal transition (EMT) in CSCs from human glioblastoma cells lines, U87 and U373. sFRP4 chemo-sensitized CSC-enriched cells to the most commonly used anti-glioblastoma drug, temozolomide (TMZ), by the reversal of EMT. Cell movement, colony formation, and invasion in vitro were suppressed by sFRP4+TMZ treatment, which correlated with the switch of expression of markers from mesenchymal (Twist, Snail, N-cadherin) to epithelial (E-cadherin). sFRP4 treatment elicited activation of the Wnt-Ca2+ pathway, which antagonizes the Wnt/ß-catenin pathway. Significantly, the chemo-sensitization effect of sFRP4 was correlated with the reduction in the expression of drug resistance markers ABCG2, ABCC2, and ABCC4. The efficacy of sFRP4+TMZ treatment was demonstrated in vivo using nude mice, which showed minimum tumor engraftment using CSCs pretreated with sFRP4+TMZ. These studies indicate that sFRP4 treatment would help to improve response to commonly used chemotherapeutics in gliomas by modulating EMT via the Wnt/ß-catenin pathway. These findings could be exploited for designing better targeted strategies to improve chemo-response and eventually eliminate glioblastoma CSCs.
Collapse
|
48
|
Visweswaran M, Schiefer L, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. Wnt antagonist secreted frizzled-related protein 4 upregulates adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells. PLoS One 2015; 10:e0118005. [PMID: 25714610 PMCID: PMC4340908 DOI: 10.1371/journal.pone.0118005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/05/2015] [Indexed: 01/19/2023] Open
Abstract
With more than 1.4 billion overweight or obese adults worldwide, obesity and progression of the metabolic syndrome are major health and economic challenges. To address mechanisms of obesity, adipose tissue-derived mesenchymal stem cells (ADSCs) are being studied to detail the molecular mechanisms involved in adipogenic differentiation. Activation of the Wnt signalling pathway has inhibited adipogenesis from precursor cells. In our study, we examined this anti-adipogenic effect in further detail stimulating Wnt with lithium chloride (LiCl) and 6-bromo indirubin 3'oxime (BIO). We also examined the effect of Wnt inhibition using secreted frizzled-related protein 4 (sFRP4), which we have previously shown to be pro-apoptotic, anti-angiogenic, and anti-tumorigenic. Wnt stimulation in LiCl and BIO-treated ADSCs resulted in a significant reduction (2.7-fold and 12-fold respectively) in lipid accumulation as measured by Oil red O staining while Wnt inhibition with sFRP4 induced a 1.5-fold increase in lipid accumulation. Furthermore, there was significant 1.2-fold increase in peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα), and 1.3-fold increase in acetyl CoA carboxylase protein levels. In contrast, the expression of adipogenic proteins (PPARγ, C/EBPα, and acetyl CoA carboxylase) were decreased significantly with LiCl (by 1.6, 2.6, and 1.9-fold respectively) and BIO (by 7, 17, and 5.6-fold respectively) treatments. These investigations demonstrate interplay between Wnt antagonism and Wnt activation during adipogenesis and indicate pathways for therapeutic intervention to control this process.
Collapse
Affiliation(s)
- Malini Visweswaran
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Luca Schiefer
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- University of Lübeck, Lübeck, Germany
| | - Frank Arfuso
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rodney J. Dilley
- Ear Sciences Centre, University of Western Australia and Ear Science Institute Australia, Perth, Western Australia, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Arun Dharmarajan
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
49
|
Garufi G, Seyhan AA, Pasarica M. Elevated secreted frizzled-related protein 4 in obesity: a potential role in adipose tissue dysfunction. Obesity (Silver Spring) 2015; 23:24-7. [PMID: 25322919 DOI: 10.1002/oby.20915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Rarefaction and inflammation of adipose tissue contributes to insulin resistance in obesity. It was hypothesized that angiostatic secreted frizzled-related protein 4 (SFRP4) causes adipose tissue rarefaction and leads to inflammation and ultimately insulin resistance in obese patients. METHODS Abdominal subcutaneous adipose tissue (AbdAT), gluteal subcutaneous adipose tissue (GlutAT), and blood from 15 lean and obese subjects were collected. Circulating-SFRP4 was measured by ELISA. Body composition was measured by DEXA and insulin sensitivity by the euglycemic hyperinsulinemic clamp. Adipose tissue was analyzed using qRT-PCR for mRNA gene expression, Luminex system for tissue cytokine release, immunohistochemistry for labeling adipose capillaries, and osmium fixation and Coulter counting for adipocyte sizing. RESULTS Circulating-SFRP4 was higher in obese vs. lean subjects (137.8 ± 33.6 ng ml(-1) vs. 64.1 ± 23.8 ng ml(-1) , P < 0.05). Circulating-SFRP4 significantly (P < 0.05) correlated with body fat percentage (R = 0.07), body mass index (R = 0.07), insulin sensitivity (R = -0.66). Circulating-SFRP4 correlated with AbdAT-VEGF (R = -0.67, P < 0.05), AbdAT-capillary density (R = -0.65, P < 0.05), secreted-MIP1α (R = 0.74), and AbdAT-SFRP4 mRNA (R = 0.60). AbdAT-SFRP4 mRNA significantly correlated with AbdAT-capillary density (R = 0.71, P < 0.05), but not with AbdAT mean adipocyte size. There was no difference between AbdAT-SFRP4 and GlutAT-SFRP4 mRNA. Interestingly, GlutAT-SFRP4 correlated with AbdAT mean adipocyte size (P < 0.05). CONCLUSIONS The results suggested that AbdAT is a major contributor for circulating-SFRP4 and that SFRP4 has an important role in obese adipose tissue pathophysiology.
Collapse
Affiliation(s)
- Gabriella Garufi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA; Sanford Burnham Medical Research Institute, Orlando, Florida, USA
| | | | | |
Collapse
|
50
|
Pohl S, Scott R, Arfuso F, Perumal V, Dharmarajan A. Secreted frizzled-related protein 4 and its implications in cancer and apoptosis. Tumour Biol 2014; 36:143-52. [DOI: 10.1007/s13277-014-2956-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022] Open
|