1
|
Sándor ÁD, Czinege Z, Szabó A, Losoncz E, Tóth K, Mihály Z, Sótonyi P, Merkely B, Székely A. Cerebrovascular dysregulation and postoperative cognitive alterations after carotid endarterectomy. GeroScience 2024; 46:6301-6315. [PMID: 38877342 PMCID: PMC11493908 DOI: 10.1007/s11357-024-01237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024] Open
Abstract
There are controversial data about the effect of carotid endarterectomy regarding postoperative cognitive function. Our aim was to analyze the effect of cerebral tissue saturation monitored by near-infrared spectroscopy (NIRS) on cognitive function. Perioperative data of 103 asymptomatic patients undergoing elective carotid surgery under general anesthesia were analyzed. Preoperatively and 3 months after the operation, MMSE (Mini Mental State Examination) and MoCA (Montreal Cognitive Assessment) tests were conducted. For cerebral monitoring, NIRS was used, and the lowest rSO2 value and the degree of desaturation were calculated. Cognitive changes were defined as one standard deviation change from the preoperative test scores, defined as postoperative neurocognitive decline (PNCD) and cognitive improvement (POCI). PNCD was found in 37 patients (35.92%), and POCI was found in 18 patients (17.47%). Female gender, patients with diabetes, and the degree of desaturation were independently associated with PNCD. The degree of desaturation during the cross-clamp period negatively correlated with the change in the MoCA scores (R = - 0.707, p = 0.001). The 15.5% desaturation ratio had 86.5% sensitivity and 78.8% specificity for discrimination. For POCI, a desaturation of less than 12.65% had 72.2% sensitivity and 67.1% specificity. POCI was associated with lower preoperative MOCA scores and a lower degree of desaturation. We found a significant relation between the change of postoperative cognitive function proven by the MoCA test and cerebral tissue saturation during the clamping period in patients undergoing carotid endarterectomy.
Collapse
Affiliation(s)
- Ágnes Dóra Sándor
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Zsófia Czinege
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - András Szabó
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Losoncz
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztina Tóth
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Mihály
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Andrea Székely
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
3
|
Hammad AM, Alzaghari LF, Alfaraj M, Lux V, Sunoqrot S. Green Tea Polyphenol Nanoparticles Reduce Anxiety Caused by Tobacco Smoking Withdrawal in Rats by Suppressing Neuroinflammation. TOXICS 2024; 12:598. [PMID: 39195700 PMCID: PMC11360476 DOI: 10.3390/toxics12080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Repeated exposure to tobacco smoke causes neuroinflammation and neuroplasticity, which correlates with smoking withdrawal-induced anxiety. The purpose of this study was to investigate the anticipated involvement of antioxidant-rich nanoparticles (NPs) prepared by oxidation-triggered polymerization of green tea catechins in impacting these effects in a rat model of tobacco smoke exposure. Exposure to tobacco smoke was carried out for 2 h a day, 5 days a week, for a total of 36 days. Weekly behavioral tests were conducted prior to recommencing the exposure. Following a 20-day exposure period, rats were administered either distilled water or green tea (GT) NPs (20 mg/kg, orally) for an additional 16 days. Our findings revealed that tobacco smoke exposure induced anxiety-like behavior indicative of withdrawal, and this effect was alleviated by GT NPs. Tobacco smoke exposure caused a marked increase in the relative mRNA and protein expression of nuclear factor-kappa B (NF-κB) and reduced the relative mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and hypothalamus (HYP) brain subregions. The intervention of GT NPs effectively inhibited these effects. Our findings demonstrate the potent protective role of GT NPs in reducing withdrawal-induced anxiety-like behavior, neuroinflammation, and neuroplasticity triggered by tobacco smoke exposure.
Collapse
Affiliation(s)
- Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Lujain F. Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Malek Alfaraj
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Vanessa Lux
- Department of Genetic Psychology, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
4
|
Chen J, Li T, Zhao B, Chen H, Yuan C, Garden GA, Wu G, Zhu H. The interaction effects of age, APOE and common environmental risk factors on human brain structure. Cereb Cortex 2024; 34:bhad472. [PMID: 38112569 PMCID: PMC10793588 DOI: 10.1093/cercor/bhad472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
Mounting evidence suggests considerable diversity in brain aging trajectories, primarily arising from the complex interplay between age, genetic, and environmental risk factors, leading to distinct patterns of micro- and macro-cerebral aging. The underlying mechanisms of such effects still remain unclear. We conducted a comprehensive association analysis between cerebral structural measures and prevalent risk factors, using data from 36,969 UK Biobank subjects aged 44-81. Participants were assessed for brain volume, white matter diffusivity, Apolipoprotein E (APOE) genotypes, polygenic risk scores, lifestyles, and socioeconomic status. We examined genetic and environmental effects and their interactions with age and sex, and identified 726 signals, with education, alcohol, and smoking affecting most brain regions. Our analysis revealed negative age-APOE-ε4 and positive age-APOE-ε2 interaction effects, respectively, especially in females on the volume of amygdala, positive age-sex-APOE-ε4 interaction on the cerebellar volume, positive age-excessive-alcohol interaction effect on the mean diffusivity of the splenium of the corpus callosum, positive age-healthy-diet interaction effect on the paracentral volume, and negative APOE-ε4-moderate-alcohol interaction effects on the axial diffusivity of the superior fronto-occipital fasciculus. These findings highlight the need of considering age, sex, genetic, and environmental joint effects in elucidating normal or abnormal brain aging.
Collapse
Affiliation(s)
- Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill NC 27514, United States
| | - Tengfei Li
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, United States
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Bingxin Zhao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, 265 South 37th Street, 3rd & 4th Floors, Philadelphia, PA 19104-1686, United States
| | - Hui Chen
- School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Rd, Hangzhou 310058, China
- Department of Nutrition, Harvard T H Chan School of Public Health, 665 Huntington Avenue Boston, MA, 02115, United States
| | - Gwenn A Garden
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, 170 Manning Drive Chapel Hill, NC 27599-7025, United States
| | - Guorong Wu
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, United States
- Departments of Statistics and Operations Research, University of North Carolina at Chapel Hill, 318 E Cameron Ave #3260, Chapel Hill, NC 27599, United States
- Departments of Computer Science, University of North Carolina at Chapel Hill, 201 South Columbia Street, Chapel Hill, NC 27599, United States
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, 101 Renee Lynne Ct, Carrboro, NC 27510, United States
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill NC 27514, United States
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599, United States
- Departments of Statistics and Operations Research, University of North Carolina at Chapel Hill, 318 E Cameron Ave #3260, Chapel Hill, NC 27599, United States
- Departments of Computer Science, University of North Carolina at Chapel Hill, 201 South Columbia Street, Chapel Hill, NC 27599, United States
- Departments of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27514, United States
| |
Collapse
|
5
|
Ahn S, Ahn S, Jang H, Eom K, Kim YJ, Hwang JE, Chung JI, Park JY, Nam S, Choi YH, Joung H. Validation of resonance Raman spectroscopy-measured skin carotenoid status as a biomarker for fruit and vegetable intake in Korean adults. Br J Nutr 2023; 130:1993-2001. [PMID: 37184085 DOI: 10.1017/s0007114523001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Blood carotenoid concentration measurement is considered the gold standard for fruit and vegetable (F&V) intake estimation; however, this method is invasive and expensive. Recently, skin carotenoid status (SCS) measured by optical sensors has been evaluated as a promising parameter for F&V intake estimation. In this cross-sectional study, we aimed to validate the utility of resonance Raman spectroscopy (RRS)-assessed SCS as a biomarker of F&V intake in Korean adults. We used data from 108 participants aged 20-69 years who completed SCS measurements, blood collection and 3-d dietary recordings. Serum carotenoid concentrations were quantified using HPLC, and dietary carotenoid and F&V intakes were estimated via 3-d dietary records using a carotenoid database for common Korean foods. The correlations of the SCS with serum carotenoid concentrations, dietary carotenoid intake and F&V intake were examined to assess SCS validity. SCS was positively correlated with total serum carotenoid concentration (r = 0·52, 95 % CI = 0·36, 0·64, P < 0·001), serum β-carotene concentration (r = 0·60, 95 % CI = 0·47, 0·71, P < 0·001), total carotenoid intake (r = 0·20, 95 % CI = 0·01, 0·37, P = 0·04), β-carotene intake (r = 0·30, 95 % CI = 0·11, 0·46, P = 0·002) and F&V intake (r = 0·40, 95 % CI = 0·23, 0·55, P < 0·001). These results suggest that SCS can be a valid biomarker of F&V intake in Korean adults.
Collapse
Affiliation(s)
- Seoeun Ahn
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul08826, Republic of Korea
| | - Sungmo Ahn
- Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon16678, Republic of Korea
| | - Hyeongseok Jang
- Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon16678, Republic of Korea
| | - Kunsun Eom
- Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon16678, Republic of Korea
| | - Yoon Jae Kim
- Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon16678, Republic of Korea
| | - Jeong-Eun Hwang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul08826, Republic of Korea
- Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon16678, Republic of Korea
| | - Ji In Chung
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul06351, Republic of Korea
| | - Jin-Young Park
- Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon16678, Republic of Korea
| | - Sunghyun Nam
- Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon16678, Republic of Korea
| | - Yoon-Ho Choi
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul06351, Republic of Korea
| | - Hyojee Joung
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
6
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Nakayama J, Yamamoto Y. Cancer-prone Phenotypes and Gene Expression Heterogeneity at Single-cell Resolution in Cigarette-smoking Lungs. CANCER RESEARCH COMMUNICATIONS 2023; 3:2280-2291. [PMID: 37910161 PMCID: PMC10637260 DOI: 10.1158/2767-9764.crc-23-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies have been broadly utilized to reveal molecular mechanisms of respiratory pathology and physiology at single-cell resolution. Here, we established single-cell meta-analysis (scMeta-analysis) by integrating data from eight public datasets, including 104 lung scRNA-seq samples with clinicopathologic information and designated a cigarette-smoking lung atlas. The atlas revealed early carcinogenesis events and defined the alterations of single-cell transcriptomics, cell population, and fundamental properties of biological pathways induced by smoking. In addition, we developed two novel scMeta-analysis methods: VARIED (Visualized Algorithms of Relationships In Expressional Diversity) and AGED (Aging-related Gene Expressional Differences). VARIED analysis revealed expressional diversity associated with smoking carcinogenesis. AGED analysis revealed differences in gene expression related to both aging and smoking status. The scMeta-analysis paves the way to utilize publicly-available scRNA-seq data and provide new insights into the effects of smoking and into cellular diversity in human lungs, at single-cell resolution. SIGNIFICANCE The atlas revealed early carcinogenesis events and defined the alterations of single-cell transcriptomics, cell population, and fundamental properties of biological pathways induced by smoking.
Collapse
Affiliation(s)
- Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
8
|
Decker ST, Matias AA, Cuadra AE, Bannon ST, Madden JP, Erol ME, Serviente C, Fenelon K, Layec G. Tissue-specific mitochondrial toxicity of cigarette smoke concentrate: consequence to oxidative phosphorylation. Am J Physiol Heart Circ Physiol 2023; 325:H1088-H1098. [PMID: 37712922 PMCID: PMC10907033 DOI: 10.1152/ajpheart.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Cigarette smoke exposure is a well-known risk factor for developing numerous chronic health conditions, including pulmonary disease and cardiometabolic disorders. However, the cellular mechanisms mediating the toxicity of cigarette smoke in extrapulmonary tissues are still poorly understood. Therefore, the purpose of this study was to characterize the acute dose-dependent toxicity of cigarette smoke on mitochondrial metabolism by determining the susceptibility and sensitivity of mitochondrial respiration from murine skeletal (gastrocnemius and soleus) and cardiac muscles, as well as the aorta to cigarette smoke concentrate (CSC). In all tissues, exposure to CSC inhibited tissue-specific respiration capacity, measured by high-resolution respirometry, according to a biphasic pattern. With a break point of 451 ± 235 μg/mL, the aorta was the least susceptible to CSC-induced mitochondrial respiration inhibition compared with the gastrocnemius (151 ± 109 μg/mL; P = 0.008, d = 2.3), soleus (211 ± 107 μg/mL; P = 0.112; d = 1.7), and heart (94 ± 51 μg/mL; P < 0.001; d = 2.6) suggesting an intrinsic resistance of the vascular smooth muscle mitochondria to cigarette smoke toxicity. In contrast, the cardiac muscle was the most susceptible and sensitive to the effects of CSC, demonstrating the greatest decline in tissue-specific respiration with increasing CSC concentration (P < 0.001, except the soleus). However, when normalized to citrate synthase activity to account for differences in mitochondrial content, cardiac fibers' sensitivity to cigarette smoke inhibition was no longer significantly different from both fast-twitch gastrocnemius and slow-twitch soleus muscle fibers, thus suggesting similar mitochondrial phenotypes. Collectively, these findings established the acute dose-dependent toxicity of cigarette smoke on oxidative phosphorylation in permeabilized tissues involved in the development of smoke-related cardiometabolic diseases.NEW & NOTEWORTHY Despite numerous investigations into the mechanisms underlying cigarette smoke-induced mitochondrial dysfunction, no studies have investigated the tissue-specific mitochondrial toxicity to cigarette smoke. We demonstrate that, while aorta is least sensitive and susceptible to cigarette smoke-induced toxicity, the degree of cigarette smoke-induced toxicity in striated muscle depends on the tissue-specific mitochondrial content. We conclude that while the mitochondrial content influences cigarette smoke-induced toxicity in striated muscles, aorta is intrinsically protected against cigarette smoke-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Alexs A Matias
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Adolfo E Cuadra
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Jack P Madden
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - M Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Corinna Serviente
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Karine Fenelon
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
9
|
Rinderknecht H, Mayer A, Histing T, Ehnert S, Nüssler A. Herbal Extracts of Ginseng and Maqui Berry Show Only Minimal Effects on an In Vitro Model of Early Fracture Repair of Smokers. Foods 2023; 12:2960. [PMID: 37569229 PMCID: PMC10419284 DOI: 10.3390/foods12152960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Smoking is a major risk factor for delayed fracture healing, affecting several aspects of early fracture repair, including inflammation, osteogenesis, and angiogenesis. Panax ginseng (GE) and maqui berry extract (MBE) were shown in our previous studies to reduce smoke-induced cellular damage in late bone-healing in vitro models. We aimed here to analyze their effects on the early fracture repair of smokers in a 3D co-culture model of fracture hematomas and endothelial cells. Both extracts did not alter the cellular viability at concentrations of up to 100 µg/mL. In early fracture repair in vitro, they were unable to reduce smoking-induced inflammation and induce osteo- or chondrogenicity. Regarding angiogenesis, smoking-induced stress in HUVECs could not be counteracted by both extracts. Furthermore, smoking-impaired tube formation was not restored by GE but was harmed by MBE. However, GE promoted angiogenesis initiation under smoking conditions via the Angpt/Tie2 axis. To summarize, cigarette smoking strikingly affected early fracture healing processes in vitro, but herbal extracts at the applied doses had only a limited effect. Since both extracts were shown before to be very effective in later stages of fracture healing, our data suggest that their early use immediately after fracture does not appear to negatively impact later beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Nüssler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.M.); (T.H.); (S.E.)
| |
Collapse
|
10
|
Tang D, Tran Y, Dawes P, Gopinath B. A Narrative Review of Lifestyle Risk Factors and the Role of Oxidative Stress in Age-Related Hearing Loss. Antioxidants (Basel) 2023; 12:antiox12040878. [PMID: 37107253 PMCID: PMC10135296 DOI: 10.3390/antiox12040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Age-related hearing loss affects a significant proportion of adults aged 60 years and above, with a prevalence of 65%. This condition has a negative impact on both physical and mental well-being, and while hearing interventions can help alleviate the effects of hearing loss, they cannot completely restore normal hearing or halt the progression of age-related hearing loss. Oxidative stress and inflammation have been identified as potential contributors to this condition. By addressing modifiable lifestyle risk factors that exacerbate oxidative stress, there may be an opportunity to prevent hearing loss. Therefore, this narrative review provides an overview of the major modifiable lifestyle risk factors associated with age-related hearing loss, that is, exposure to noise and ototoxic chemicals, smoking, diet, physical activity, and the presence of chronic lifestyle diseases, and offers an overview of the role of oxidative stress in the pathophysiology of this condition.
Collapse
Affiliation(s)
- Diana Tang
- Macquarie University Hearing, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yvonne Tran
- Macquarie University Hearing, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Piers Dawes
- Centre for Hearing Research, School of Health and Rehabilitation Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bamini Gopinath
- Macquarie University Hearing, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Zhou H, Zhao L. Correlation between smoking and serum lipoprotein-associated phospholipase A2 level in overweight and obese men. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:191-197. [PMID: 36999465 PMCID: PMC10930334 DOI: 10.11817/j.issn.1672-7347.2023.210457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 04/01/2023]
Abstract
OBJECTIVES Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a vaso-specific inflammatory marker that exacerbates atherosclerotic through inflammatory responses. It can be used to predict the occurrence of adverse cardiovascular events and to assess the residual risk of cardiovascular diseases. This study aims to investigate the correlation between smoking and serum Lp-PLA2 levels in overweight and obese men, and to provide evidence for preventing the cardiovascular diseases. METHODS Male subjects, who participated in health examination at the Health Management Center, Third Xiangya Hospital, Central South University from May 1, 2020 to April 30, 2021, were selected. The smoking status and other information were collected by the Self-test Scale of Physical Examination. According to the smoking status, they were divided into a never-smoking group, a current smoking group, a quit smoking group and a passive smoking group. According to the daily smoking amount, the current smoking subjects were divided into a <10 cigarettes group, a 10 to 20 cigarettes group, a 21 to 30 cigarettes group, and a >30 cigarettes group. According to the smoking years, the current smoking subjects were divided into a <5 years group, a 5 to 10 years group, a 11 to 20 years group, and a >20 years group.Serum Lp-PLA2 levels and other clinical indexes in different smoking groups were measured and compared, the correlation between smoking and serum Lp-PLA2 levels in overweight and obese men was analyzed by logistic regression analysis. RESULTS Serum Lp-PLA2 levels were significantly different between the never-smoking group and the current smoking group (P<0.05). Logistic regression analysis showed that, before adjusting other influencing factors and in terms of smoking status, the current smoking group (OR=1.81, 95% CI 1.27 to 2.58, P<0.01) and the quit smoking group (OR=2.09, 95% CI 1.12 to 3.90, P<0.05) were positively correlated with serum Lp-PLA2 levels compared with the never-smoking group, while the passive smoking group had no correlation with serum Lp-PLA2 levels (OR=1.27, 95% CI 0.59 to 2.73, P>0.05). In terms of daily smoking amount, the 10 to 20 cigarettes group (OR=2.09, 95% CI 1.40 to 3.12, P<0.001) and the 21 to 30 cigarettes group (OR=1.98, 95% CI 1.22 to 3.20, P<0.01) were positively correlated with serum Lp-PLA2 levels compared with the never-smoking group, while the <10 cigarettes group (OR=1.45, 95% CI 0.81 to 2.60, P>0.05) and the >30 cigarettes group (OR=1.17, 95% CI 0.60 to 2.28, P>0.05) had no correlation with serum Lp-PLA2 levels. In terms of smoking years, the 5 to 10 years group (OR=1.94, 95% CI 1.07 to 3.53, P<0.05), the 11 to 20 years group (OR=2.06, 95% CI 1.33 to 3.18, P<0.01), and the >20 years group (OR=1.66, 95% CI 1.11 to 2.47, P<0.05) were positively correlated with serum Lp-PLA2 levels compared with the never-smoking group, while the <5 years group had no correlation with serum Lp-PLA2 levels (OR=1.12, 95% CI 0.38 to 3.33, P>0.05). After adjusting for age and other indicators, the correlation between smoking years and serum Lp-PLA2 levels was the same as before adjustment among the above smoking groups, except that the correlation between the smoking 5 to 10 years group and serum Lp-PLA2 levels was not significant (OR=1.77, 95% CI 0.95 to 3.29, P>0.05). CONCLUSIONS Smoking is correlated with serum Lp-PLA2 levels in overweight and obese men.
Collapse
Affiliation(s)
- Hui Zhou
- Health Management Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Linlin Zhao
- Health Management Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
12
|
Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants (Basel) 2022; 11:1829. [PMID: 36139904 PMCID: PMC9495690 DOI: 10.3390/antiox11091829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cells constantly produce oxidizing species because of their metabolic activity, which is counteracted by the continuous production of antioxidant species to maintain the homeostasis of the redox balance. A deviation from the metabolic steady state leads to a condition of oxidative stress. The source of oxidative species can be endogenous or exogenous. A major exogenous source of these species is tobacco smoking. Oxidative damage can be induced in cells by chemical species contained in smoke through the generation of pro-inflammatory compounds and the modulation of intracellular pro-inflammatory pathways, resulting in a pathological condition. Cessation of smoking reduces the morbidity and mortality associated with cigarette use. Next-generation products (NGPs), as alternatives to combustible cigarettes, such as electronic cigarettes (e-cig) and tobacco heating products (THPs), have been proposed as a harm reduction strategy to reduce the deleterious impacts of cigarette smoking. In this review, we examine the impact of tobacco smoke and MRPs on oxidative stress in different pathologies, including respiratory and cardiovascular diseases and tumors. The impact of tobacco cigarette smoke on oxidative stress signaling in human health is well established, whereas the safety profile of MRPs seems to be higher than tobacco cigarettes, but further, well-conceived, studies are needed to better understand the oxidative effects of these products with long-term exposure.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Davide Campagna
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| |
Collapse
|
13
|
Atanasov P, Moneva-Sakelarieva M, Kobakova Y, Obreshkova D, Ivanov I, Chaneva M, Popova M, Petkova V, Ivanova S. Tobacco smokers as target group for complicated coronavirus infection. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e91095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of current study was to determine, retrospectively, possible correlations between smoking and the incidence, course severity, intubation rate, and mortality (by gender and age) in patients treated for complicated coronavirus infection in the internal medicine clinic at UMHATEM ”N. I. Pirogov” Sofia for the period 01.03.2020–31.12.2020. In a prospective study, the recovery period and immunogenesis in smokers and non-smokers within a one-year period after hospital discharge was investigated. The applied methods were: 1) computed tomography and blood gas analysis 2) chemiluminescent immunoassay for the qualitative determination of total IgM, IgA and IgG anti-SARS-CoV2 AB. Results showed that the part of non-smokers with a positive PCR test is significantly higher compared to the group of former and current smokers. The data obtained from the study confirmed that Covid infection is much more severe among smokers and former smokers with a higher levels of inflammatory markers noticed among the smoking group.
Collapse
|
14
|
Zhu L, Zhu C, Wang J, Yang R, Zhao X. The association between DNA methylation of 6p21.33 and AHRR in blood and coronary heart disease in Chinese population. BMC Cardiovasc Disord 2022; 22:370. [PMID: 35964014 PMCID: PMC9375073 DOI: 10.1186/s12872-022-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early detection could significantly improve the prognosis of coronary heart disease (CHD). In-invitro diagnostic technique may provide a solution when sufficient biomarkers could be identified. Pertinent associations between blood-based aberrant DNA methylation and smoking, the pathogenesis of atherosclerosis, and CHD have been robustly demonstrated and replicated, but that studies in Chinese populations are rare. The blood-based methylation of aryl-hydrocarbon receptor repressor (AHRR) cg05575921 and 6p21.33 cg06126421 has been associated with cardiovascular mortality in Caucasians. Here, we aim to investigate whether the AHRR and 6p21.33 methylation in the blood is associated with CHD in the Chinese population. METHODS In this case-control study, 180 CHD patients recruited at their first registration in our study center, and 184 controls randomly selected from the people who participated in the annual health examination were enrolled. Methylation intensities of 19 CpG sites, including AHRR cg05575921, 6p21.33 cg06126421, and their flanking CpG sites, were quantified by mass spectrometry. The association between methylation intensities and CHD was estimated by logistic regression analyses adjusted for covariant. RESULTS Compared to the controls, lower methylation of 6p21.33_CpG_4.5/cg06126421 was independently associated with increased odds of being a CHD patient (OR per - 10% methylation = 1.42 after adjustment for age, gender, and batch effect; p = 0.032 by multiple testing corrections). No association between blood-based AHRR methylation and CHD was found. CONCLUSIONS 6p21.33 methylation exhibits a significant association with CHD. The combination of 6p21.33 methylation and conventional risk factors might be an intermediate step towards the early detection of CHD.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Zhu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, West District, Beijing, 100050, China
| | - Jinxin Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaojing Zhao
- Military Translational Medicine Lab, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China. .,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
15
|
Williams PT. Quantile-specific heritability of 8-isoprostane and the modulating effects of smoking, alcohol, cardiovascular disease and diabetes on 8-isoprostane-gene interactions. Free Radic Biol Med 2022; 178:262-270. [PMID: 34883250 PMCID: PMC10101173 DOI: 10.1016/j.freeradbiomed.2021.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Urinary 8-isoprostane provides a significantly heritable measure of oxidative stress. Prior reports suggest that genetic variants may modulate oxidative stress due to smoking, other environmental factors, and disease. Alternatively, these apparent modulations may reflect a dependence of genetic effects on 8-isoprostane concentrations. METHOD To test whether genetic effects on 8-isoprostane concentrations are quantile-dependent, quantile-specific offspring-parent (βOP) and full-sib regression slopes (βFS) were estimated by applying quantile regression to the age- and sex-adjusted creatinine-standardized urinary 8-isoprostane concentrations of Framingham Heart Study families. Quantile-specific heritabilities were calculated as h2 = 2βOP/(1+rspouse) and h2 = {(1+8rspouseβFS)0.5-1}/(2rspouse)). RESULTS Spouse 8-isoprostane concentrations were weakly concordant (rspouse = 0.06). 8-isoprostane heritability (h2±SE) increased significantly with increasing percentiles of its distribution (Plinear trend = 0.0009, Pquadratic trend = 0.0007, Pcubic trend = 0.003) when estimated from βOP, and when estimated from βFS (Plinear trend = 0.005, Pquadratic trend = 0.09, Pcubic trend = 0.06). Compared to the 10th percentile, βOP-estimated h2 was over 22-fold greater at the 90th percentile (Pdifference = 9.2 × 10-5), and 5.3-fold greater when estimated from βFS (Pdifference = 0.004). Significantly higher 8-isoprostane heritability in smokers than nonsmokers (0.352 ± 0.147 vs. 0.061 ± 0.036, Pdifference = 0.01), and heavier than lighter drinkers (0.449 ± 0.216 vs. 0.078 ± 0.037, Pdifference = 0.01) were eliminated when corrected for the higher 8-isoprostane concentrations of the smokers and heavier drinkers. CONCLUSION Heritability of oxidative stress as measured by 8-isoprostane is quantile-dependent, which may contribute to the larger reported effects on oxidative stress by UCP2 -866G > A, IL6 -572C > G and LTA 252A > G polymorphisms in smokers than nonsmokers, by the UCP2 -866G > A polymorphism in coronary heart disease patients, by the ESRRG rs1890552 A > G polymorphism in type 2 diabetics, by the CYBA 242C > T polymorphism after exercise training, by the PLIN 11482G > A/14995A > T haplotype before weight loss, and by the CYBA -930A > G and GSTP1 I105V haplotypes in patients with pulmonary edema.
Collapse
Affiliation(s)
- Paul T Williams
- Lawrence Berkeley National Laboratory, Molecular Biophysics & Integrated Bioimaging Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
16
|
The Combination of Cigarette Smoking and Alcohol Consumption Synergistically Increases Reactive Carbonyl Species in Human Male Plasma. Int J Mol Sci 2021; 22:ijms22169043. [PMID: 34445749 PMCID: PMC8396601 DOI: 10.3390/ijms22169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Cigarette smoking and alcohol consumption are major risk factors for lifestyle-related diseases. Although it has been reported that the combination of these habits worsens risks, the underlying mechanism remains elusive. Reactive carbonyl species (RCS) cause chemical modifications of biological molecules, leading to alterations in cellular signaling pathways, and total RCS levels have been used as a lipid peroxidation marker linked to lifestyle-related diseases. In this study, at least 41 types of RCS were identified in the lipophilic fraction of plasma samples from 40 subjects using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Higher levels of 10 alkanals, 5 trans-2-alkenals, 1 cis-4-alkenal, and 3 alkadienals were detected in the smoking/drinking group (N = 10) as compared to those with either habit (N = 10 each) or without both habits (N = 10) in the analysis of covariances adjusted for age and BMI. The levels of 3 alkanals, 1 trans-2-alkenal, 1 alkadienal, and 1 4-hydroxy-2-alkenal in the smoking/drinking group were significantly higher than those in the no-smoking/drinking and no-smoking/no-drinking groups. These results strongly indicate that the combination of cigarette smoking and alcohol drinking synergistically increases the level and variety of RCS in the circulating blood, and may further jeopardize cellular function.
Collapse
|
17
|
The association between accelerated vascular aging and cyclothymic affective temperament in women. J Psychosom Res 2021; 145:110423. [PMID: 33773765 DOI: 10.1016/j.jpsychores.2021.110423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Affective temperaments (depressive, anxious, irritable, hyperthymic, cyclothymic) are regarded as the biologically stable core of personality. Accumulating data suggest their relationship with cardiovascular diseases. However, there are currently limited data on the association of affective temperaments and accelerated vascular aging. The aim of our study was to evaluate the relationship between affective temperaments and vascular age, as assessed by coronary artery calcium scoring (CACS). METHODS In our cross-sectional study, 209 consecutive patients referred to coronary computed tomography angiography (CCTA) due to suspected coronary artery disease (CAD) were included. All patients completed the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego Autoquestionnaire (TEMPS-A) and the Beck Depression Inventory (BDI). Vascular age was estimated using CACS and its difference from chronological age for each patient was calculated. Linear regression analysis was used to identify predictors of accelerated vascular aging in the entire cohort and in male and female sub-populations. RESULTS Besides traditional risk factors, cyclothymic temperament score proved to be an independent predictor of accelerated vascular aging in women (β = 0.89 [95%CI: 0.04-1.75]), while this association was absent in men. CONCLUSIONS Our results suggest that cyclothymic affective temperament is associated with accelerated vascular aging in women. Assessment of affective temperaments may potentiate more precise cardiovascular risk stratification of patients.
Collapse
|
18
|
Oxidative Dysregulation in Early Life Stress and Posttraumatic Stress Disorder: A Comprehensive Review. Brain Sci 2021; 11:brainsci11060723. [PMID: 34072322 PMCID: PMC8228973 DOI: 10.3390/brainsci11060723] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic stress may chronically affect master homeostatic systems at the crossroads of peripheral and central susceptibility pathways and lead to the biological embedment of trauma-related allostatic trajectories through neurobiological alterations even decades later. Lately, there has been an exponential knowledge growth concerning the effect of traumatic stress on oxidative components and redox-state homeostasis. This extensive review encompasses a detailed description of the oxidative cascade components along with their physiological and pathophysiological functions and a systematic presentation of both preclinical and clinical, genetic and epigenetic human findings on trauma-related oxidative stress (OXS), followed by a substantial synthesis of the involved oxidative cascades into specific and functional, trauma-related pathways. The bulk of the evidence suggests an imbalance of pro-/anti-oxidative mechanisms under conditions of traumatic stress, respectively leading to a systemic oxidative dysregulation accompanied by toxic oxidation byproducts. Yet, there is substantial heterogeneity in findings probably relative to confounding, trauma-related parameters, as well as to the equivocal directionality of not only the involved oxidative mechanisms but other homeostatic ones. Accordingly, we also discuss the trauma-related OXS findings within the broader spectrum of systemic interactions with other major influencing systems, such as inflammation, the hypothalamic-pituitary-adrenal axis, and the circadian system. We intend to demonstrate the inherent complexity of all the systems involved, but also put forth associated caveats in the implementation and interpretation of OXS findings in trauma-related research and promote their comprehension within a broader context.
Collapse
|
19
|
Hahad O, Arnold N, Prochaska JH, Panova-Noeva M, Schulz A, Lackner KJ, Pfeiffer N, Schmidtmann I, Michal M, Beutel M, Wild PS, Keaney JF, Daiber A, Münzel T. Cigarette Smoking Is Related to Endothelial Dysfunction of Resistance, but Not Conduit Arteries in the General Population-Results From the Gutenberg Health Study. Front Cardiovasc Med 2021; 8:674622. [PMID: 34095261 PMCID: PMC8169997 DOI: 10.3389/fcvm.2021.674622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Aims: Cigarette smoking is one of the most complex and least understood cardiovascular risk factors. Importantly, differences in the tobacco-related pathophysiology of endothelial dysfunction, an early event in atherogenesis, between circulatory beds remain elusive. Therefore, this study evaluated how smoking impacts endothelial function of conduit and resistance arteries in a large population-based cohort. Methods and results: 15,010 participants (aged 35–74 years) of the Gutenberg Health Study were examined at baseline from 2007 to 2012. Smoking status, pack-years of smoking, and years since quitting smoking were assessed by a computer-assisted interview. Endothelial function of conduit and resistance arteries was determined by flow-mediated dilation (FMD) of the brachial artery, reactive hyperemia index (RHI) using peripheral arterial tonometry, as well as by reflection index (RI) derived from digital photoplethysmography, respectively. Among all subjects, 45.8% had never smoked, 34.7% were former smokers, and 19.4% were current smokers. Mean cumulative smoking exposure was 22.1 ± 18.1 pack-years in current smokers and mean years since quitting was 18.9 ± 12.7 in former smokers. In multivariable linear regression models adjusted for typical confounders, smoking status, pack-years of smoking, and years since quitting smoking were independently associated with RHI and RI, while no association was found for FMD. Overall, no clear dose-dependent associations were observed between variables, whereby higher exposure tended to be associated with pronounced resistance artery endothelial dysfunction. Conclusions: Cigarette smoking is associated with altered endothelial function of resistance, but not conduit arteries. The present results suggest that smoking-induced endothelial dysfunction in different circulatory beds may exhibit a differential picture.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Natalie Arnold
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jürgen H Prochaska
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marina Panova-Noeva
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karl J Lackner
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology & Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Michal
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manfred Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp S Wild
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - John F Keaney
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Andreas Daiber
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
20
|
El-Mahdy MA, Mahgoup EM, Ewees MG, Eid MS, Abdelghany TM, Zweier JL. Long-term electronic cigarette exposure induces cardiovascular dysfunction similar to tobacco cigarettes: role of nicotine and exposure duration. Am J Physiol Heart Circ Physiol 2021; 320:H2112-H2129. [PMID: 33606584 DOI: 10.1152/ajpheart.00997.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electronic cigarette (e-cig) vaping (ECV) has been proposed as a safer alternative to tobacco cigarette smoking (TCS); however, this remains controversial due to a lack of long-term comparative studies. Therefore, we developed a chronic mouse exposure model that mimics human vaping and allows comparison with TCS. Longitudinal studies were performed to evaluate alterations in cardiovascular function with TCS and ECV exposure durations of up to 60 wk. For ECV, e-cig liquid with box-mod were used and for TCS, 3R4F-cigarettes. C57/BL6 male mice were exposed 2 h/day, 5 days/wk to TCS, ECV, or air control. The role of vape nicotine levels was evaluated using e-cig-liquids with 0, 6, or 24 mg/mL nicotine. Following 16-wk exposure, increased constriction to phenylephrine and impaired endothelium-dependent and endothelium-independent vasodilation were observed in aortic segents, paralleling the onset of systemic hypertension, with elevations in systemic vascular resistance. Following 32 wk, TCS and ECV induced cardiac hypertrophy. All of these abnormalities further increased out to 60 wk of exposure, with elevated heart weight and aortic thickness along with increased superoxide production in vessels and cardiac tissues of both ECV and TCS mice. While ECV-induced abnormalities were seen in the absence of nicotine, these occurred earlier and were more severe with higher nicotine exposure. Thus, long-term vaping of e-cig can induce cardiovascular disease similar to TCS, and the severity of this toxicity increases with exposure duration and vape nicotine content.NEW & NOTEWORTHY A chronic mouse exposure model that mimics human e-cigarette vaping and allows comparison with tobacco cigarette smoking was developed and utilized to perform longitudinal studies of alterations in cardiovascular function. E-cigarette exposure led to the onset of cardiovascular disease similar to that with tobacco cigarette smoking. Impaired endothelium-dependent and endothelium-independent vasodilation with increased adrenergic vasoconstriction were observed, paralleling the onset of systemic hypertension and subsequent cardiac hypertrophy. This cardiovascular toxicity was dependent on exposure duration and nicotine dose.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Elsayed M Mahgoup
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed G Ewees
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mahmoud S Eid
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Tamer M Abdelghany
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
Endogenous animal models of intracranial aneurysm development: a review. Neurosurg Rev 2021; 44:2545-2570. [PMID: 33501561 DOI: 10.1007/s10143-021-01481-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The pathogenesis and natural history of intracranial aneurysm (IA) remains poorly understood. To this end, animal models with induced cerebral vessel lesions mimicking human aneurysms have provided the ability to greatly expand our understanding. In this review, we comprehensively searched the published literature to identify studies that endogenously induced IA formation in animals. Studies that constructed aneurysms (i.e., by surgically creating a sac) were excluded. From the eligible studies, we reported information including the animal species, method for aneurysm induction, aneurysm definitions, evaluation methods, aneurysm characteristics, formation rate, rupture rate, and time course. Between 1960 and 2019, 174 articles reported endogenous animal models of IA. The majority used flow modification, hypertension, and vessel wall weakening (i.e., elastase treatment) to induce IAs, primarily in rats and mice. Most studies utilized subjective or qualitative descriptions to define experimental aneurysms and histology to study them. In general, experimental IAs resembled the pathobiology of the human disease in terms of internal elastic lamina loss, medial layer degradation, and inflammatory cell infiltration. After the early 2000s, many endogenous animal models of IA began to incorporate state-of-the-art technology, such as gene expression profiling and 9.4-T magnetic resonance imaging (MRI) in vivo imaging, to quantitatively analyze the biological mechanisms of IA. Future studies aimed at longitudinally assessing IA pathobiology in models that incorporate aneurysm growth will likely have the largest impact on our understanding of the disease. We believe this will be aided by high-resolution, small animal, survival imaging, in situ live-cell imaging, and next-generation omics technology.
Collapse
|
22
|
The Protective Role of Bioactive Quinones in Stress-induced Senescence Phenotype of Endothelial Cells Exposed to Cigarette Smoke Extract. Antioxidants (Basel) 2020; 9:antiox9101008. [PMID: 33081423 PMCID: PMC7602940 DOI: 10.3390/antiox9101008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial dysfunction represents the initial stage in atherosclerotic lesion development which occurs physiologically during aging, but external factors like diet, sedentary lifestyle, smoking accelerate it. Since cigarette smoking promotes oxidative stress and cell damage, we developed an in vitro model of endothelial dysfunction using vascular cells exposed to chemicals present in cigarette smoke, to help elucidate the protective effects of anti-inflammatory and antioxidant agents, such as ubiquinol and vitamin K, that play a fundamental role in vascular health. Treatment of both young and senescent Human Umbilical Vein Endothelial Cells (HUVECs) for 24 h with cigarette smoke extract (CSE) decreased cellular viability, induced apoptosis via reactive oxygen species (ROS) imbalance and mitochondrial dysfunction and promoted an inflammatory response. Moreover, the senescence marker SA-β-galactosidase was observed in both young CSE-exposed and in senescent HUVECs suggesting that CSE exposure accelerates aging in endothelial cells. Supplementation with 10 µM ubiquinol and menaquinone-7 (MK7) counteracted oxidative stress and inflammation, resulting in improved viability, decreased apoptosis and reduced SA-β-galactosidase, but were ineffective against CSE-induced mitochondrial permeability transition pore opening. Other K vitamins tested like menaquinone-4 (MK4) and menaquinone-1 (K1) were less protective. In conclusion, CSE exposure was able to promote a stress-induced senescent phenotype in young endothelial cells likely contributing to endothelial dysfunction in vivo. Furthermore, the molecular changes encountered could be offset by ubiquinol and menaquinone-7 supplementation, the latter resulting the most bioactive K vitamin in counteracting CSE-induced damage.
Collapse
|
23
|
Lucas JH, Muthumalage T, Wang Q, Friedman MR, Friedman AE, Rahman I. E-Liquid Containing a Mixture of Coconut, Vanilla, and Cookie Flavors Causes Cellular Senescence and Dysregulated Repair in Pulmonary Fibroblasts: Implications on Premature Aging. Front Physiol 2020; 11:924. [PMID: 33013432 PMCID: PMC7500211 DOI: 10.3389/fphys.2020.00924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Electronic cigarette (e-cig) usage has risen dramatically worldwide over the past decade. While they are touted as a safe alternative to cigarettes, recent studies indicate that high levels of nicotine and flavoring chemicals present in e-cigs may still cause adverse health effects. We hypothesized that an e-liquid containing a mixture of tobacco, coconut, vanilla, and cookie flavors would induce senescence and disrupt wound healing processes in pulmonary fibroblasts. To test this hypothesis, we exposed pulmonary fibroblasts (HFL-1) to e-liquid at varying doses and assessed cytotoxicity, inflammation, senescence, and myofibroblast differentiation. We found that e-liquid exposure caused cytotoxicity, which was accompanied by an increase in IL-8 release in the conditioned media. E-liquid exposure resulted in elevated senescence-associated beta-galactosidase (SA-β-gal) activity. Transforming growth factor-β1 (TGF-β1) induced myofibroblast differentiation was inhibited by e-liquid exposure, resulting in decreased α-smooth muscle actin and fibronectin protein levels. Together, our data suggest that an e-liquid containing a mixture of flavors induces inflammation, senescence and dysregulated wound healing responses.
Collapse
Affiliation(s)
- Joseph H Lucas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Michelle R Friedman
- Department of Chemistry & Biochemistry, The College of Brockport, The State University of New York, New York, NY, United States
| | - Alan E Friedman
- Department of Materials Design and Innovation, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
24
|
Wortmann M, Arshad M, Hakimi M, Böckler D, Dihlmann S. Deficiency in Aim2 affects viability and calcification of vascular smooth muscle cells from murine aortas and angiotensin-II induced aortic aneurysms. Mol Med 2020; 26:87. [PMID: 32933486 PMCID: PMC7493160 DOI: 10.1186/s10020-020-00212-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Phenotypic transformation of vascular smooth muscle cells is a key element in vascular remodeling and aortic aneurysm growth. Previously, deletion of several inflammasome components decreased formation of aortic aneurysm (AA) in the Angiotensin II (AngII) -induced mouse model. We hypothesized that the inflammasome sensor Absent in melanoma 2 (Aim2) might affect the phenotype of vascular smooth muscle cells (VSMC), thereby reducing AA formation. Methods Aim2−/− mice and wild-type (WT) C57Bl/6 J mice were used as an animal model. VSMC were isolated from 6 months old mice and grown in vitro. Young (passage 3–5) and senescent (passage 7–12) cells were analyzed in vitro for calcification in mineralization medium by Alizarin Red S staining. Expression of calcification and inflammatory markers were studied by real-time RT-PCR and Western blotting, release of cytokines was determined by ELISA. To induce AA, osmotic mini-pumps loaded with AngII (1500 ng/kg bodyweight/min) were implanted for 28 days in male mice at 6 months of age. Results Compared with VSMC from WT mice, VSMC isolated from Aim2−/− mice were larger, less viable, and underwent stronger calcification in mineralization medium, along with induction of Bmp4 and repression of Tnfsf11/Rankl gene expression. In addition, Aim2 deficiency was associated with reduced inflammasome gene expression and release of Interleukin-6. Using the mouse model of AngII induced AA, Aim2 deficiency reduced AA incidence to 48.4% (15/31) in Aim2−/− mice versus 76.5% (13/17) in WT mice. In contrast to Aim2−/− mice, AA from WT mice expressed significantly increased levels of alpha-smooth muscle actin/Acta2, indicating tissue remodeling. Reduced cell proliferation in Aim2−/− mice was indicated by significantly increased p16ink4a/Cdkn2a expression in untreated and AngII-infused aortas, and by significantly lower amounts of proliferating (Ki67 positive) VSMC in AngII-infused Aim2−/− mice. Conclusions Our results suggest a role for Aim2 in regulating VSMC proliferation and transition to an osteoblast-like or osteoclast-like phenotype, thereby modulating the response of VSMC in aortic remodeling and AA formation.
Collapse
Affiliation(s)
- Markus Wortmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Muhammad Arshad
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Maani Hakimi
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Present Address: Department of Vascular Surgery, Luzerner Kantonsspital, Spitalstrasse, 6000, Luzern 16, Switzerland
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Susanne Dihlmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
25
|
Kelesidis T, Tran E, Arastoo S, Lakhani K, Heymans R, Gornbein J, Middlekauff HR. Elevated Cellular Oxidative Stress in Circulating Immune Cells in Otherwise Healthy Young People Who Use Electronic Cigarettes in a Cross-Sectional Single-Center Study: Implications for Future Cardiovascular Risk. J Am Heart Assoc 2020; 9:e016983. [PMID: 32896211 PMCID: PMC7726977 DOI: 10.1161/jaha.120.016983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Tobacco cigarettes (TCs) increase oxidative stress and inflammation, both instigators of atherosclerotic cardiac disease. It is unknown if electronic cigarettes (ECs) also increase immune cell oxidative stress. We hypothesized an ordered, “dose‐response” relationship, with tobacco‐product type as “dose” (lowest in nonsmokers, intermediate in EC vapers, and highest in TC smokers), and the “response” being cellular oxidative stress (COS) in immune cell subtypes, in otherwise, healthy young people. Methods and Results Using flow cytometry and fluorescent probes, COS was determined in immune cell subtypes in 33 otherwise healthy young people: nonsmokers (n=12), EC vapers (n=12), and TC smokers (n=9). Study groups had similar baseline characteristics, including age, sex, race, and education level. A dose‐response increase in proinflammatory monocytes and lymphocytes, and their COS content among the 3 study groups was found: lowest in nonsmokers, intermediate in EC vapers, and highest in TC smokers. These findings were most striking in CD14dimCD16+ and CD14++CD16+ proinflammatory monocytes and were reproduced with 2 independent fluorescent probes of COS. Conclusions These findings portend the development of premature cardiovascular disease in otherwise healthy young people who chronically vape ECs. On the other hand, that the COS is lower in EC vapers compared with TC smokers warrants additional investigation to determine if switching to ECs may form part of a harm‐reduction strategy. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03823885.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Disease Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Elizabeth Tran
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Sara Arastoo
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Karishma Lakhani
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Rachel Heymans
- Division of Infectious Disease Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Jeffrey Gornbein
- Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA.,Department of Computational Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Holly R Middlekauff
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| |
Collapse
|
26
|
Guo Y, Yan B, Gui Y, Tang Z, Tai S, Zhou S, Zheng XL. Physiology and role of PCSK9 in vascular disease: Potential impact of localized PCSK9 in vascular wall. J Cell Physiol 2020; 236:2333-2351. [PMID: 32875580 DOI: 10.1002/jcp.30025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low-density lipoprotein (LDL)-cholesterol levels by binding to the LDL-receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain-of-function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR-dependent or -independent mechanisms. More recently, several clinical trials have confirmed that anti-PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all-cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR-related proteins, cluster of differentiation family members, epithelial Na+ channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid-lowering therapy and disease prevention.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Binjie Yan
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yu Gui
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Zhihan Tang
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Zhang S, Zhou C, Liu D, Piao Y, Zhang F, Hu J, Ma Z, Wei Z, Zhu W, Lv M. Is smoking a risk factor for bleeding in adult men with cerebral arteriovenous malformations? A single-center regression study from China. J Stroke Cerebrovasc Dis 2020; 29:105084. [PMID: 32807480 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 06/21/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To assess whether smoking increases the risk of bleeding in patients with cerebral arteriovenous malformations (CAVM). MATERIAL AND METHODS According to our research plan, 385 CAVM patients admitted to Beijing Tiantan Hospital from December 2015 to January 2018 were included in this study, including 210 bleeding patients and 175 non-bleeding patients. We divided patients into three subgroups of current smokers, ex-smokers (those who quit smoking for one year or more) and non-smokers. The relationship between smoking and the risk of CAVM rupture was assessed by univariate and multivariate regression analysis. RESULTS Multivariate regression analysis showed that there was a statistically significant difference between current smoker and non-smoker (OR = 1.87, p = 0.019). Among the covariates of the multivariate regression analysis, the location, combined with blood flow-related intracranial aneurysms and size were related to the risk of CAVM bleeding. CONCLUSION Current smoking may increase the risk of CAVM bleeding; however, there was no significant correlation between ex-smoking and CAVM bleeding.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, Beijing Jingmei Group General Hospital, Beijing 102300, PR China
| | - Chenguang Zhou
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Dong Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China
| | - Yongjun Piao
- Department of Neurosurgery, Beijing Jingmei Group General Hospital, Beijing 102300, PR China
| | - Fuqiang Zhang
- Department of Neurosurgery, Beijing Jingmei Group General Hospital, Beijing 102300, PR China
| | - Jie Hu
- Department of Neurosurgery, Beijing Jingmei Group General Hospital, Beijing 102300, PR China
| | - Zongqian Ma
- Department of Neurosurgery, Beijing Jingmei Group General Hospital, Beijing 102300, PR China
| | - Zhanyang Wei
- Department of Neurosurgery, Beijing Jingmei Group General Hospital, Beijing 102300, PR China
| | - Weisheng Zhu
- Department of Neurosurgery, Beijing Jingmei Group General Hospital, Beijing 102300, PR China.
| | - Ming Lv
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, PR China.
| |
Collapse
|
28
|
Haptonstall KP, Choroomi Y, Moheimani R, Nguyen K, Tran E, Lakhani K, Ruedisueli I, Gornbein J, Middlekauff HR. Differential effects of tobacco cigarettes and electronic cigarettes on endothelial function in healthy young people. Am J Physiol Heart Circ Physiol 2020; 319:H547-H556. [PMID: 32734819 DOI: 10.1152/ajpheart.00307.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tobacco cigarette (TC) smoking has never been lower in the United States, but electronic cigarette (EC) vaping has reached epidemic proportions among our youth. Endothelial dysfunction, as measured by flow-mediated vasodilation (FMD) is a predictor of future atherosclerosis and adverse cardiovascular events and is impaired in young TC smokers, but whether FMD is also reduced in young EC vapers is uncertain. The aim of this study in otherwise healthy young people was to compare the effects of acute and chronic tobacco cigarette (TC) smoking and electronic cigarette (EC) vaping on FMD. FMD was compared in 47 nonsmokers (NS), 49 chronic EC vapers, and 40 chronic TC smokers at baseline and then after EC vapers (n = 31) and nonsmokers (n = 47) acutely used an EC with nicotine (ECN), EC without nicotine (EC0), and nicotine inhaler (NI) at ~4-wk intervals and after TC smokers (n = 33) acutely smoked a TC, compared with sham control. Mean age (NS, 26.3 ± 5.2 vs. EC, 27.4 ± 5.45 vs. TC, 27.1 ± 5.51 yr, P = 0.53) was similar among the groups, but there were more female nonsmokers. Baseline FMD was not different among the groups (NS, 7.7 ± 4.5 vs. EC:6.6 ± 3.6 vs. TC, 7.9 ± 3.7%∆, P = 0.35), even when compared by group and sex. Acute TC smoking versus control impaired FMD (FMD pre-/postsmoking, -2.52 ± 0.92 vs. 0.65 ± 0.93%∆, P = 0.02). Although the increase in plasma nicotine was similar after EC vapers used the ECN versus TC smokers smoked the TC (5.75 ± 0.74 vs. 5.88 ± 0.69 ng/mL, P = 0.47), acute EC vaping did not impair FMD. In otherwise healthy young people who regularly smoke TCs or ECs, impaired FMD compared with that in nonsmokers was not present at baseline. However, FMD was significantly impaired after smoking one TC, but not after vaping an equivalent "dose" (estimated by change in plasma nicotine) of an EC, consistent with the notion that non-nicotine constituents in TC smoke mediate the impairment. Although it is reassuring that acute EC vaping did not acutely impair FMD, it would be dangerous and premature to conclude that ECs do not lead to atherosclerosis.NEW & NOTEWORTHY In our study of otherwise healthy young people, baseline flow-mediated dilation (FMD), a predictor of atherosclerosis and increased cardiovascular risk, was not different among tobacco cigarette (TC) smokers or electronic cigarette (EC) vapers who had refrained from smoking, compared with nonsmokers. However, acutely smoking one TC impaired FMD in smokers, whereas vaping a similar EC "dose" (as estimated by change in plasma nicotine levels) did not. Finally, although it is reassuring that acute EC vaping did not acutely impair FMD, it would be premature and dangerous to conclude that ECs do not lead to atherosclerosis or increase cardiovascular risk.
Collapse
Affiliation(s)
- Kacey P Haptonstall
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Yasmine Choroomi
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Roya Moheimani
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Kevin Nguyen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Elizabeth Tran
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Karishma Lakhani
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Isabella Ruedisueli
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Jeffrey Gornbein
- Departments of Medicine and Computational Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Holly R Middlekauff
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| |
Collapse
|
29
|
Tracy E, Rowe G, LeBlanc AJ. Cardiac tissue remodeling in healthy aging: the road to pathology. Am J Physiol Cell Physiol 2020; 319:C166-C182. [PMID: 32432929 DOI: 10.1152/ajpcell.00021.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review aims to highlight the normal physiological remodeling that occurs in healthy aging hearts, including changes that occur in contractility, conduction, valve function, large and small coronary vessels, and the extracellular matrix. These "normal" age-related changes serve as the foundation that supports decreased plasticity and limited ability for tissue remodeling during pathophysiological states such as myocardial ischemia and heart failure. This review will identify populations at greater risk for poor tissue remodeling in advanced age along with present and future therapeutic strategies that may ameliorate dysfunctional tissue remodeling in aging hearts.
Collapse
Affiliation(s)
- Evan Tracy
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
30
|
Sabi SH, Khabour OF, Alzoubi KH, Cobb CO, Eissenberg T. Changes at global and site-specific DNA methylation of MLH1 gene promoter induced by waterpipe smoking in blood lymphocytes and oral epithelial cells. Inhal Toxicol 2020; 32:124-130. [PMID: 32319830 DOI: 10.1080/08958378.2020.1754972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: Cigarette tobacco smoking has been shown to cause cancer through different mechanisms that include epigenetic modulation of tumor-suppressor genes. In the present study, the association between global and MLH1 gene promoter methylation and waterpipe tobacco smoking was investigated. Materials and Methods: Blood lymphocytes and oral epithelium were sampled from 150 pure waterpipe smokers and 150 never-smokers from Jordan. Methylation assessment was performed using the methylation-specific PCR technique for MLH1 gene and ELISA for global DNA methylation. Results: Significant increases were shown in global DNA methylation as measured in blood lymphocytes (p < 0.01). In addition, increases in MLH1 gene promoter methylation among waterpipe smokers compared to nonsmokers (p < 0.001) in both oral epithelium and blood lymphocytes was also observed. In addition, strong correlation was found between LWDS-10J dependence score and magnitude of promoter specific methylation of MLH1 (r2 = 0.74-0.78, p < 0.001). Moreover, the percentage of methylated MLH1 promoter was not affected by age or gender (p > 0.05). Discussion and Conclusion: Collectively, the results indicate that waterpipe tobacco use is associated with epigenetic changes that might predispose users to lung and blood cancers. The results highlight the need for actions to discourage waterpipe smoking and can be used in cessation interventions that target this type of smoking.
Collapse
Affiliation(s)
- Salsabeel H Sabi
- Department of Applied Biology, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Caroline O Cobb
- Department of Psychology and Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas Eissenberg
- Department of Psychology and Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
Wen X, Xia Y, Guo M, Zhao L, Zhou L. Association Between Serum Cotinine and Severe Abdominal Aortic Calcification in US Adults. Angiology 2020; 71:333-339. [PMID: 31955606 DOI: 10.1177/0003319719899847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aims to explore the association between serum cotinine and severe abdominal aortic calcification (AAC) in the US adults. We examined 2840 participants with a weighted mean age of 57.4 years from the National Health and Nutrition Examination Survey 2013-2014. Serum cotinine was analyzed as the main exposure both continuously and categorically (tertiles). Abdominal aortic calcification detected with dual-energy X-ray absorptiometry was quantified using the Kauppila score system. Severe AAC was detected in 252 (8.9%) participants. The multivariable-adjusted odds ratios and 95% confidence intervals (CIs) of the middle and top cotinine categories were 1.14 (0.79-1.64) and 1.80 (1.21-2.68), respectively, P for trend = .004. Per unit increase in log-transformed serum cotinine was associated with 10% (95% CI: 6%-15%) higher odds of severe AAC when serum cotinine was analyzed as a continuous variable. The association was consistent across sex and ethnic groups. In conclusion, elevated serum cotinine level was associated with higher odds for severe AAC in a representative sample of US adults.
Collapse
Affiliation(s)
- Xiaoxiao Wen
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjie Xia
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Guo
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liancheng Zhao
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Long Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
32
|
Breitbach ME, Greenspan S, Resnick NM, Perera S, Gurkar AU, Absher D, Levine AS. Exonic Variants in Aging-Related Genes Are Predictive of Phenotypic Aging Status. Front Genet 2019; 10:1277. [PMID: 31921313 PMCID: PMC6931058 DOI: 10.3389/fgene.2019.01277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/19/2019] [Indexed: 01/31/2023] Open
Abstract
Background: Recent studies investigating longevity have revealed very few convincing genetic associations with increased lifespan. This is, in part, due to the complexity of biological aging, as well as the limited power of genome-wide association studies, which assay common single nucleotide polymorphisms (SNPs) and require several thousand subjects to achieve statistical significance. To overcome such barriers, we performed comprehensive DNA sequencing of a panel of 20 genes previously associated with phenotypic aging in a cohort of 200 individuals, half of whom were clinically defined by an "early aging" phenotype, and half of whom were clinically defined by a "late aging" phenotype based on age (65-75 years) and the ability to walk up a flight of stairs or walk for 15 min without resting. A validation cohort of 511 late agers was used to verify our results. Results: We found early agers were not enriched for more total variants in these 20 aging-related genes than late agers. Using machine learning methods, we identified the most predictive model of aging status, both in our discovery and validation cohorts, to be a random forest model incorporating damaging exon variants [Combined Annotation-Dependent Depletion (CADD) > 15]. The most heavily weighted variants in the model were within poly(ADP-ribose) polymerase 1 (PARP1) and excision repair cross complementation group 5 (ERCC5), both of which are involved in a canonical aging pathway, DNA damage repair. Conclusion: Overall, this study implemented a framework to apply machine learning to identify sequencing variants associated with complex phenotypes such as aging. While the small sample size making up our cohort inhibits our ability to make definitive conclusions about the ability of these genes to accurately predict aging, this study offers a unique method for exploring polygenic associations with complex phenotypes.
Collapse
Affiliation(s)
- Megan E. Breitbach
- HudsonAlpha Institute for Biotechnology, Hunstville, AL, United States
- Department of Biotechnology Science and Engineering, University of Alabama in Huntsville, Hunstville, AL, United States
| | - Susan Greenspan
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Neil M. Resnick
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute on Aging of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Subashan Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute on Aging of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Hunstville, AL, United States
| | - Arthur S. Levine
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Lipecz A, Miller L, Kovacs I, Czakó C, Csipo T, Baffi J, Csiszar A, Tarantini S, Ungvari Z, Yabluchanskiy A, Conley S. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. GeroScience 2019; 41:813-845. [PMID: 31797238 PMCID: PMC6925092 DOI: 10.1007/s11357-019-00138-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Aging of the microcirculatory network plays a central role in the pathogenesis of a wide range of age-related diseases, from heart failure to Alzheimer's disease. In the eye, changes in the choroid and choroidal microcirculation (choriocapillaris) also occur with age, and these changes can play a critical role in the pathogenesis of age-related macular degeneration (AMD). In order to develop novel treatments for amelioration of choriocapillaris aging and prevention of AMD, it is essential to understand the cellular and functional changes that occur in the choroid and choriocapillaris during aging. In this review, recent advances in in vivo analysis of choroidal structure and function in AMD patients and patients at risk for AMD are discussed. The pathophysiological roles of fundamental cellular and molecular mechanisms of aging including oxidative stress, mitochondrial dysfunction, and impaired resistance to molecular stressors in the choriocapillaris are also considered in terms of their contribution to the pathogenesis of AMD. The pathogenic roles of cardiovascular risk factors that exacerbate microvascular aging processes, such as smoking, hypertension, and obesity as they relate to AMD and choroid and choriocapillaris changes in patients with these cardiovascular risk factors, are also discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay AMD by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lauren Miller
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA
| | - Illes Kovacs
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA
| | - Cecília Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Baffi
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
34
|
Delgado GE, Krämer BK, Siekmeier R, Yazdani B, März W, Leipe J, Kleber ME. Influence of smoking and smoking cessation on biomarkers of endothelial function and their association with mortality. Atherosclerosis 2019; 292:52-59. [PMID: 31783198 DOI: 10.1016/j.atherosclerosis.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Endothelial dysfunction precedes atherosclerosis and smoking is a well-known risk factor for the development of endothelial dysfunction. The aim of our study was to analyse the effect of smoking on circulating markers of endothelial function and to investigate whether such effects have an influence on the potential use of these markers to estimate cardiovascular risk. METHODS Stratified for smoking, levels of sE-/sP-/sL-selectin, von Willebrand (vWF), sICAM-1 and sVCAM-1, their association with mortality using Cox regression, and their accuracy of risk prediction using area-under-the-ROC-curve and net-reclassification-index were analysed in 1926 participants from the Ludwigshafen Risk and Cardiovascular Health (LURIC) - a prospective case-control study in patients who underwent coronary angiography with a median mortality follow-up of 10.6 years. RESULTS In smokers, higher concentrations of sICAM-1, sE-selectin sP-selectin, but lower concentrations of sL-selectin and sVCAM-1, were detected compared to never-smokers. A direct association with mortality was found for levels of sICAM-1, sVCAM-1 and vWF regardless of smoking. Low sL-selectin levels were inversely associated with mortality in heavy and light smokers, with hazard ratios of 0.72 and 0.67 per 1-SD increase, adjusted for cardiovascular risk factors. Adding sL-selectin to a model based on traditional risk factors significantly improved AUC from 0.725 to 0.752 (p = 0.034) with an NRI of 43% (16.9%-62.3%). CONCLUSIONS Smoking alters the concentration of circulating markers of endothelial function. sL-selectin is decreased in smokers, inversely associated with risk, and could be a useful marker to improve risk prediction.
Collapse
Affiliation(s)
- Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; European Center for Angioscience ECAS, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
| | - Rüdiger Siekmeier
- Drug Regulatory Affairs, Pharmaceutical Institute, Bonn University, Bonn, Germany
| | - Babak Yazdani
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria; SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg and Mannheim, Germany
| | - Jan Leipe
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, 80336 Munich, Germany.
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; European Center for Angioscience ECAS, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
| |
Collapse
|
35
|
Inhibition of Galectin-3 Alleviates Cigarette Smoke Extract-Induced Autophagy and Dysfunction in Endothelial Progenitor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7252943. [PMID: 31737173 PMCID: PMC6815545 DOI: 10.1155/2019/7252943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
Endothelial progenitor cells (EPCs) have the potential to repair damaged blood vessels and promote angiogenesis. Smoking, an important risk factor for cardiovascular diseases, is associated with impaired functions of EPCs. However, the underlying mechanisms remain unclear. The aim of the study was to investigate the effects of cigarette smoke extract (CSE) on autophagy and dysfunction of EPCs and the involvement of galectin-3 in its effects. EPCs were treated with 8% CSE for 24 h (without affecting cell viability). EPC functions were assessed by tube formation and migration capacity and intracellular ROS and eNOS expression. Autophagy was assessed by autophagic protein expression by Western blotting and immunofluorescence microscopy and autophagosome accumulation by transmission electron microscopy. Galectin-3 expression was measured by real-time PCR, Western blotting, and immunofluorescence microscopy, while phospho-AMPK and phospho-mTOR were measured by Western blotting. EPCs were transfected by shRNA-Gal-3 or shRNA-NC before treatment with CSE to examine the effects of galectin-3 on CSE-induced autophagy and dysfunction of EPCs. CSE-treated EPCs showed decreased tube formation and migration ability and eNOS expression but increased oxidative stress. CSE also induced autophagy which was characterized by a decrease in p62 protein, an increase in LC3B-II/I ratio, and accumulation of autophagosomes. CSE upregulated galectin-3 expression on EPCs. Inhibition of galectin-3 abrogated CSE-induced autophagy and dysfunction of EPCs. CSE activated phospho-AMPK and inhibited phospho-mTOR, and inhibition of galectin-3 abolished CSE's effect on activating phospho-AMPK and inhibiting phospho-mTOR. In conclusion, our results suggest that galectin-3 mediates CSE-induced EPC autophagy and dysfunction, likely via the AMPK/mTOR signaling pathway.
Collapse
|
36
|
Abstract
Aging of the vasculature plays a central role in morbidity and mortality of older people. To develop novel treatments for amelioration of unsuccessful vascular aging and prevention of age-related vascular pathologies, it is essential to understand the cellular and functional changes that occur in the vasculature during aging. In this review, the pathophysiological roles of fundamental cellular and molecular mechanisms of aging, including oxidative stress, mitochondrial dysfunction, impaired resistance to molecular stressors, chronic low-grade inflammation, genomic instability, cellular senescence, epigenetic alterations, loss of protein homeostasis, deregulated nutrient sensing, and stem cell dysfunction in the vascular system are considered in terms of their contribution to the pathogenesis of both microvascular and macrovascular diseases associated with old age. The importance of progeronic and antigeronic circulating factors in relation to development of vascular aging phenotypes are discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Zoltan Ungvari
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
- Department of Pulmonology, Semmelweis University of Medicine, Budapest, Hungary (Z.U.)
| | - Stefano Tarantini
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City (A.J.D.)
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, UT (A.J.D.)
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies (V.G.), University of Texas Health Science Center at San Antonio
- Department of Physiology (V.G.), University of Texas Health Science Center at San Antonio
| | - Anna Csiszar
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
| |
Collapse
|
37
|
An Updated Overview of Metabolomic Profile Changes in Chronic Obstructive Pulmonary Disease. Metabolites 2019; 9:metabo9060111. [PMID: 31185592 PMCID: PMC6631716 DOI: 10.3390/metabo9060111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a common and heterogeneous respiratory disease, is characterized by persistent and incompletely reversible airflow limitation. Metabolomics is applied to analyze the difference of metabolic profile based on the low-molecular-weight metabolites (<1 kDa). Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of COPD. This review aims to summarize the alteration of metabolites in blood/serum/plasma, urine, exhaled breath condensate, lung tissue samples, etc. from COPD individuals, thereby uncovering the potential pathogenesis of COPD according to the perturbed metabolic pathways. Metabolomic researches have indicated that the dysfunctions of amino acid metabolism, lipid metabolism, energy production pathways, and the imbalance of oxidations and antioxidations might lead to local and systematic inflammation by activating the Nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway and releasing inflammatory cytokines, like interleutin-6 (IL-6), tumor necrosis factor-α, and IL-8. In addition, they might cause protein malnutrition and oxidative stress and contribute to the development and exacerbation of COPD.
Collapse
|
38
|
Shapouri-Moghaddam A, Saeed Modaghegh MH, Rahimi HR, Ehteshamfar SM, Tavakol Afshari J. Molecular mechanisms regulating immune responses in thromboangiitis obliterans: A comprehensive review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:215-224. [PMID: 31156780 PMCID: PMC6528722 DOI: 10.22038/ijbms.2019.31119.7513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thromboangiitis obliterans (TAO) is a thrombotic-occlusive as well as an inflammatory peripheral vascular disease with unknown etiology. Recent evidence has supported the immunopathogenesis of the disease, however, the factors contributing to the altered immune function and vascular tissue inflammation are still unclear. This review was intended to collate the more current knowledge on the regulatory molecules involved in TAO from an immunoreactive perspective. The homeostasis of the immune system as well as a variety of progenitor cell populations appear to be affected during TAO and these alterations are associated with intrinsic signaling defects that are directing to an improved understanding of the crosstalk between angiogenesis and the immune system, as well as the potential of new co-targeting strategies applying both immunotherapy and angiogenic therapy.
Collapse
Affiliation(s)
- Abbas Shapouri-Moghaddam
- Immunology Research Group, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Reza Rahimi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed-Morteza Ehteshamfar
- Immunology Research Group, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Group, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Uddin MS, Kabir MT, Jakaria M, Mamun AA, Niaz K, Amran MS, Barreto GE, Ashraf GM. Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stress and ROCK. Neurotox Res 2019; 36:583-601. [PMID: 31055770 DOI: 10.1007/s12640-019-00047-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Aging plays a significant role in the progression of vascular diseases and vascular dysfunction. Activation of the ADP-ribosylation factor 6 and small GTPases by inflammatory signals may cause vascular permeability and endothelial leakage. Pro-inflammatory molecules have a significant effect on smooth muscle cells (SMC). The migration and proliferation of SMC can be promoted by tumor necrosis factor alpha (TNF-α). TNF-α can also increase oxidative stress in SMCs, which has been identified to persuade DNA damage resulting in apoptosis and cellular senescence. Peroxisome proliferator-activated receptor (PPAR) acts as a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. They play key roles in a wide range of biological processes, including cell differentiation and proliferation, bone formation, cell metabolism, tissue remodeling, insulin sensitivity, and eicosanoid signaling. The PPARγ activation regulates inflammatory responses, which can exert protective effects in the vasculature. In addition, loss of function of PPARγ enhances cardiovascular events and atherosclerosis in the vascular endothelium. This appraisal, therefore, discusses the critical linkage of PPARγ in the inflammatory process and highlights a crucial defensive role for endothelial PPARγ in vascular dysfunction and disease, as well as therapy for vascular aging.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
| | | | - Md Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Md Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
40
|
Cigarette Smoking Blunts Exercise-Induced Heart Rate Response among Young Adult Male Smokers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16061032. [PMID: 30901920 PMCID: PMC6466384 DOI: 10.3390/ijerph16061032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 01/02/2023]
Abstract
This study aimed to examine the exercise-induced heart rate response (HRR) and heart rate variability (HRV) in subjects caused by inhaling smoke from tobacco cigarettes (TC) and aerosolized vapor from electronic nicotine dispensing systems (ENDS) (commonly referred to as e-cigarettes (EC)). A randomized crossover study recruited 24 young adult male smokers with an average age of 23 years and with a smoking habit of at least two years. Heart rate response was recorded after a maximal multistage shuttle 20 m run test (MMST) under three different levels of nicotine: Control 0 mg nicotine of EC (C), 3 mg nicotine of EC (3EC), and 3 mg nicotine of TC (3TC). HRV was evaluated based on the beat-to-beat time interval during the running test. The results showed no statistically significant differences in the run time to exhaustion under the three conditions (C: 398 ± 151 s; 3EC: 399 ± 160 s; 3TC: 381 ± 150 s). Exercise-induced HRR was significantly attenuated under the TC condition (p < 0.05). Intriguingly, the HRV standard deviation of normal-to-normal intervals (SDNN) during exercise significantly increased under 3EC and 3TC. The results showed that a significant acute autonomic cardiac modulation during exercise is induced by an acute episode of EC and TC smoking.
Collapse
|
41
|
Wu S, Li X, Meng S, Fung T, Chan AT, Liang G, Giovannucci E, De Vivo I, Lee JH, Nan H. Fruit and vegetable consumption, cigarette smoke, and leukocyte mitochondrial DNA copy number. Am J Clin Nutr 2019; 109:424-432. [PMID: 30721920 PMCID: PMC6367969 DOI: 10.1093/ajcn/nqy286] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial dysfunction is an important component of the aging process and has been implicated in the development of many human diseases. Mitochondrial DNA copy number (mtDNAcn), an indirect biomarker of mitochondrial function, is sensitive to oxidative damage. Few population-based studies have investigated the impact of fruit and vegetable consumption and cigarette smoke (2 major sources of exogenous antioxidants and oxidants) on leukocyte mtDNAcn. Objectives We investigated the association between fruit and vegetable consumption, cigarette smoke, and leukocyte mtDNAcn based on data from the Nurses' Health Study (NHS). Methods Data from 2769 disease-free women in the NHS were used to examine the cross-sectional associations between dietary sources of antioxidants, cigarette smoke, and leukocyte mtDNAcn. In vitro cell-based experiments were conducted to support the findings from the population-based study. Results In the multivariable-adjusted model, both whole-fruit consumption and intake of flavanones (a group of antioxidants abundant in fruit) were positively associated with leukocyte mtDNAcn (P-trend = 0.005 and 0.02, respectively), whereas pack-years of smoking and smoking duration were inversely associated with leukocyte mtDNAcn (P-trend = 0.01 and 0.007, respectively). These findings are supported by in vitro cell-based experiments showing that the administration of naringin, a major flavanone in fruit, led to a substantial increase in mtDNAcn in human leukocytes, whereas exposure to nicotine-derived nitrosamine ketone, a key carcinogenic ingredient of cigarette smoke, resulted in a significant decrease in mtDNAcn of cells (all P < 0.05). Further in vitro studies showed that alterations in leukocyte mtDNAcn were functionally linked to the modulation of mitochondrial biogenesis and function. Conclusions Fruit consumption and intake of dietary flavanones were associated with increased leukocyte mtDNAcn, whereas cigarette smoking was associated with decreased leukocyte mtDNAcn, which is a promising biomarker for oxidative stress-related health outcomes.
Collapse
Affiliation(s)
- Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xin Li
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN
| | | | - Teresa Fung
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA
- Department of Nutrition, Simmons College, Boston, MA
| | - Andrew T Chan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Edward Giovannucci
- Departments of Epidemiology
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Immaculata De Vivo
- Departments of Epidemiology
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jin Hyup Lee
- Department of Food and Biotechnology
- Institutes of Natural Sciences, Korea University, Sejong, Republic of Korea
| | - Hongmei Nan
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN
| |
Collapse
|
42
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Zoltan V Varga
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - George Hasko
- 2 Department of Surgery, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Pal Pacher
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
43
|
Oxidized low density lipoproteins: The bridge between atherosclerosis and autoimmunity. Possible implications in accelerated atherosclerosis and for immune intervention in autoimmune rheumatic disorders. Autoimmun Rev 2018; 17:366-375. [DOI: 10.1016/j.autrev.2017.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
|
44
|
Cui M, Cui R, Liu K, Dong JY, Imano H, Hayama-Terada M, Muraki I, Kiyama M, Okada T, Kitamura A, Umesawa M, Yamagishi K, Ohira T, Iso H. Associations of Tobacco Smoking with Impaired Endothelial Function: The Circulatory Risk in Communities Study (CIRCS). J Atheroscler Thromb 2018; 25:836-845. [PMID: 29415955 PMCID: PMC6143782 DOI: 10.5551/jat.42150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aims: Smoking impairs endothelial function as an acute effect. However, few population-based studies have examined the association between smoking status and endothelial function or the dose-response and duration- response association of smoking with endothelial function. We examined whether smoking habits were associated with impaired endothelial function depending on smoking dose and duration. Methods: We conducted a cross-sectional study of 910 men and women aged 30–79 years from 2013 to 2016. Statistical analyses of the data were conducted between 2016 and 2017. Endothelial function was assessed by brachial artery flow-mediated dilation (FMD) measurement. Low FMD was defined in two ways as the cutoff point based on the lowest quartile of %FMD (< 5.1%) and median of %FMD (< 6.8%), regarding as impaired endothelial function. We investigated the smoking status in terms of cigarettes consumed per day and the duration of smoking. Results: Heavy and chronic smokers were associated with a high prevalence of impaired endothelial function. Those associations did not change substantially after adjustment for other cardiovascular risk factors. Among all participants, the multivariable-adjusted ORs (95% CIs) of low FMD (< 5.1%) with reference to never smokers were 2.23 (1.00–5.14) for current heavy smokers of ≥ 30 cigarettes per day, 1.83 (1.04–3.20) for heavy smokers of ≥ 40 pack-years, and 2.16 (1.15–4.06) for chronic smokers of ≥ 40 years. For low FMD (< 6.8%) those values was 2.17 (1.01–5.05), 1.70 (1.01–2.86), and 1.98 (1.07–3.69), respectively. Conclusions: Similar associations were observed among only men. Heavy or long-term tobacco smoking may induce impaired endothelial function.
Collapse
Affiliation(s)
- Meishan Cui
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | - Renzhe Cui
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | - Keyang Liu
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | - Jia-Yi Dong
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | - Hironori Imano
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | | | - Isao Muraki
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | - Masahiko Kiyama
- Osaka Center for Cancer and Cardiovascular Disease Prevention
| | - Takeo Okada
- Osaka Center for Cancer and Cardiovascular Disease Prevention
| | - Akihiko Kitamura
- Osaka Center for Cancer and Cardiovascular Disease Prevention.,Tokyo Metropolitan Institute of Gerontology
| | - Mitsumasa Umesawa
- Department of Public Health, Dokkyo Medical University, School of Medicine.,Department of Public Health Medicine, Faculty of Medicine, University of Tsukuba
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, University of Tsukuba
| | - Tetsuya Ohira
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | | |
Collapse
|
45
|
Reynolds LM, Lohman K, Pittman GS, Barr RG, Chi GC, Kaufman J, Wan M, Bell DA, Blaha MJ, Rodriguez CJ, Liu Y. Tobacco exposure-related alterations in DNA methylation and gene expression in human monocytes: the Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 2018; 12:1092-1100. [PMID: 29166816 PMCID: PMC5810757 DOI: 10.1080/15592294.2017.1403692] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (P value<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression of P2RY6 (Beta ± standard error = 0.078 ± 0.008, P = 1.99 × 10−22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- a Division of Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC 27157
| | - Kurt Lohman
- a Division of Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC 27157
| | - Gary S Pittman
- b Immunity, Inflammation and Disease Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC 27709
| | - R Graham Barr
- c Departments of Medicine and Epidemiology , Columbia University Medical Center , New York , NY 10032
| | - Gloria C Chi
- d Department of Epidemiology, School of Public Health , University of Washington , Seattle , WA 98105
| | - Joel Kaufman
- d Department of Epidemiology, School of Public Health , University of Washington , Seattle , WA 98105
| | - Ma Wan
- b Immunity, Inflammation and Disease Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC 27709
| | - Douglas A Bell
- b Immunity, Inflammation and Disease Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC 27709
| | - Michael J Blaha
- e Johns Hopkins Ciccarone Center for the Prevention of Heart Disease , Baltimore , MD 21287
| | - Carlos J Rodriguez
- a Division of Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC 27157
| | - Yongmei Liu
- a Division of Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC 27157
| |
Collapse
|
46
|
Abstract
BACKGROUND Spinal fusion surgery is performed about half a million times per year in the United States and millions more worldwide. It is an effective method for reducing pain, increasing stability, and correcting deformity in patients with various spinal conditions. In addition to being a well-established risk factor for a variety of medical conditions, smoking has deleterious effects on the bone healing of spinal fusions. This review aims to specifically analyze the ways in which smoking affects the outcomes of spinal fusion and to explore ways in which these negative consequences can be avoided. PURPOSE This article provides a complete understanding of the ways smoking affects spinal fusion from a biochemical and clinical perspective. Recommendations are also provided for ways in which surgeons can limit patient exposure to the most serious negative outcomes associated with cigarette smoking. STUDY DESIGN/SETTING This study was a retrospective literature review done using the NCBI database. The research was compiled at NYU Hospital for Joint Diseases and the NYU Center for Musculoskeletal Care. METHODS A comprehensive literature review was done spanning research on a variety of subjects related to smoking and spinal fusion surgery. The biochemistry of smoking and fusion healing were examined in great detail. In addition, both in vivo animal studies and human clinical studies were evaluated to explore fusion success related to the effects of smoking and its biochemical factors on spinal fusion surgery. RESULTS Smoking significantly increases the risk of pseudoarthrosis for patients undergoing both lumbar and cervical fusions. In addition to nonunion, smoking also increases the risk of other perioperative complications such as infection, adjacent-segment pathology, and dysphagia. Treatment options are available that can be explored to reduce the risk of smoking-related morbidity, such as nicotine replacement therapy and use of bone morphogenetic proteins (BMPs). CONCLUSIONS It has been clearly demonstrated from both a biochemical and clinical perspective that smoking increases the rate of perioperative complications for patients undergoing spinal fusion surgery, particularly pseudoarthosis. It has also been shown that there are certain approaches that can reduce the risk of morbidity. The most important recommendation is smoking cessation for four weeks after surgery. In addition, patients may be treated with certain surgical techniques, including the use of BMPs, to reduce the risk of pseudoarthrosis. Lastly, nicotine replacement therapy is an area of continued interest in relation to spinal fusion outcomes and more research needs to be done to determine its efficacy moving forward.
Collapse
Affiliation(s)
| | | | - John Bendo
- NYU Hospital for Joint Diseases, Manhattan, NY
| | | |
Collapse
|
47
|
Chien C, Chang FC, Huang HC, Tsai JY, Chung CP. Characteristics and Outcomes of Vertebrobasilar Artery Dissection with Accompanied Atherosclerosis. Cerebrovasc Dis Extra 2017; 7:165-172. [PMID: 29040971 PMCID: PMC5731180 DOI: 10.1159/000480523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Background With the popularity of MRI use, vertebrobasilar artery dissection (VBD) has been found more frequently in patients with posterior circulation ischemic stroke (PCS). The relationship between VBD and atherosclerosis is unknown. The present study aimed to prove the hypothesis that PCS with pure VBD (p-VBD) and with VBD and accompanied cervical or cerebral artery atherosclerosis (a-VBD) have distinct manifestations. Methods Patients with VBD-related PCS who were prospectively enrolled in the Taipei Veterans General Hospital Stroke Registry between January 1, 2010 and August 31, 2014 were recruited for the present study. Patients who had (1) atherosclerotic plaques with or without stenotic flow in cervical arteries on Duplex ultrasonography or (2) focal >30% stenosis in cerebral arteries other than the dissecting region (usually in arterial bifurcations which are prone to atheroma formation) on brain MRA were defined as a-VBD. Results There were 91 patients (67 [73.6%] males, mean age 65.5 years [SD = 15.2, range, 21–91]) with VBD-related PCS recruited for the present study; 31 were a-VBD and 60 were p-VBD. The results showed that there were significant differences in onset age, frequency of cigarette smoking, dissecting vascular involvement, and infarct locations between the 2 groups. In addition, compared with p-VBD, the a-VBD group had poorer functional recovery at 3 months and 1 year, respectively, which was independent of age, sex, vascular risk factors, stroke severity at admission, and treatment options. Conclusion VBD-related PCS with and without accompanied atherosclerosis had different manifestations and should be regarded as distinct arterial diseases.
Collapse
Affiliation(s)
- Chun Chien
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang Ming University, Taipei, Taiwan
| | - Feng-Chi Chang
- National Yang Ming University, Taipei, Taiwan.,Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chi Huang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jui-Yao Tsai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Ping Chung
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
48
|
Timucin AC, Basaga H. Pro-apoptotic effects of lipid oxidation products: HNE at the crossroads of NF-κB pathway and anti-apoptotic Bcl-2. Free Radic Biol Med 2017; 111:209-218. [PMID: 27840321 DOI: 10.1016/j.freeradbiomed.2016.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
Abstract
The axis between lipid oxidation products and cell death is explicitly linked. 4-Hydroxynonenal (HNE), as well as other lipid oxidation products was also established to induce apoptosis in various experimental settings. Yet, the decision leading to apoptotic execution not only includes upregulation of pro-apoptotic signals but also involves a downregulation of anti-apoptotic signals. Within the frames of this paradigm, HNE acts significantly different from other lipid oxidation products in the regulation of two widely known anti-apoptotic elements, Nuclear Factor-κB (NF-κB) transcription factors and its target anti-apoptotic B-Cell Lymphoma-2 (Bcl-2) protein. Even so, a review inclusively linking these anti-apoptotic factors and their crosstalk upon HNE exposure is still at demand. In order to elucidate presence of such crosstalk, reports on the link between HNE and NF-κB pathway, on the link between HNE and anti-apoptotic Bcl-2 and on the crossroad of these links during HNE exposure were summarized and discussed. IKK, the upstream kinase of NF-κB, has been shown to regulate HNE mediated phosphorylation and inactivation of Bcl-2 by our group. Based on this observation and other studies reporting on HNE-NF-κB pathway interaction, IKK was proposed to mediate the crosstalk of NF-κB pathway and anti-apoptotic Bcl-2 protein, when HNE is present. These reports further suggested that HNE based inhibition of NF-κB pathway is highly likely. Besides, evidence on the HNE-anti-apoptotic Bcl-2 axis supported the deduction of HNE mediated NF-κB pathway inhibition and IKK mediated Bcl-2 inactivation. In conclusion, through combining all evidences, three possible scenarios intervening the HNE mediated crosstalk between NF-κB pathway and anti-apoptotic Bcl-2 protein, was extrapolated.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey.
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey.
| |
Collapse
|
49
|
Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP. Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol 2017; 5:827-838. [PMID: 28546096 DOI: 10.1016/s2213-8587(17)30134-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 12/24/2022]
Abstract
Type 1 and type 2 diabetes are generally accepted to be associated with increased bone fracture risk. However, the pathophysiological mechanisms of diabetic bone disease are poorly understood, and whether the associated increased skeletal fragility is a comorbidity or a complication of diabetes remains under debate. Although there is some indication of a direct deleterious effect of microangiopathy on bone, the evidence is open to question, and whether diabetic osteopathy can be classified as a chronic, microvascular complication of diabetes remains uncertain. Here, we review the current knowledge of potential contributory factors to diabetic bone disease, particularly the association between diabetic microangiopathy and bone mineral density, bone structure, and bone turnover. Additionally, we discuss and propose a pathophysiological model of the effects of diabetic microvascular disease on bone, and examine the progression of bone disease alongside the evolution of diabetes.
Collapse
Affiliation(s)
| | - Stinus Hansen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Kim Brixen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Anne P Hermann
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
50
|
Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Age-related Impairment of Vascular Structure and Functions. Aging Dis 2017; 8:590-610. [PMID: 28966804 PMCID: PMC5614324 DOI: 10.14336/ad.2017.0430] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/30/2017] [Indexed: 12/12/2022] Open
Abstract
Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.
Collapse
Affiliation(s)
- Xianglai Xu
- 1Zhongshan Hospital, Fudan University, Shanghai 200032, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Brian Wang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Changhong Ren
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.,4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | | - Tianxiang Chen
- 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Xie
- 3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| |
Collapse
|