1
|
van der Fels-Klerx HJ, van Asselt ED, van Leeuwen SPJ, Dorgelo FO, Hoek-van den Hil EF. Prioritization of chemical food safety hazards in the European feed supply chain. Compr Rev Food Sci Food Saf 2024; 23:e70025. [PMID: 39379291 DOI: 10.1111/1541-4337.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Extensive monitoring programs of chemical hazards in the animal feed chain are in place, both organized by public and private organizations. The objective of this review was to prioritize chemical hazards for monitoring in the European animal feed supply chain. A step-wise approach was designed for the prioritization, based on: historical occurrence of the chemicals in animal feed ingredients and animal feeds (in relation to European guidance values or maximum limits in feed); information on transfer of the chemical to edible animal products, and; the extent of human dietary intake of the products and possible adverse human health effects of the chemical. Possible prioritization outcomes were: high (H), medium (M), or low (L) priority for monitoring, or classification not possible (NC) because of limited available data on the transfer of the chemical to edible animal tissues. The selection of chemicals included (with results in parentheses): dioxins and polychlorinated biphenyls (H); brominated flame retardants (H); per- and polyfluorinated alkyl substances (H); the heavy metals arsenic (H) and cadmium (H) as well as lead (M) and mercury (M); aflatoxins (H), ochratoxin A (NC), and other mycotoxins (L); pyrrolizidine alkaloids (H) and other plant toxins (NC); organochlorine pesticides (H) and other pesticides (L); pharmaceutically active substances (M); hormones (NC); polycyclic aromatic hydrocarbons (L), heat-induced processing contaminants (NC), and mineral oils (NC). Results of this study can be used to support risk-based monitoring by food safety authorities and feed-producing companies in Europe.
Collapse
Affiliation(s)
| | - E D van Asselt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - F O Dorgelo
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | |
Collapse
|
2
|
Oltramare C, Zennegg M, Graille M, Lerch S, Berthet A, Vernez D. Polychlorinated dibenzo- p-dioxin and dibenzofuran contamination of free-range eggs: estimation of the laying hen's soil ingestion based on a toxicokinetic model, and human consumption recommendations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1302-1314. [PMID: 39133508 DOI: 10.1080/19440049.2024.2384416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are ubiquitous in the environment. The main route of human exposure is through food consumption. Soil contamination can be problematic for sanitary safety depending on the usage of the soil, such as farming. In case of environmental soil contamination with PCDD/Fs, hen's eggs may be contaminated due to soil ingestion by hens. For this reason, it is important to understand the parameters that influence eggs' contamination when hens are raised in contaminated areas. After the discovery of a contaminated area in Lausanne (Switzerland), we collected hens' eggs from ten domestic-produced eggs and one farm. Based on PCDD/F measurements of eggs and soil, and a toxicokinetic model, we estimated individual hen's soil intake levels and highlighted appropriate parameters to predict the dose ingested. Recommended weekly consumption for home-produced eggs was calculated based on the tolerable weekly intake proposed by EFSA in 2018. The most important parameter to assess the soil ingestion does not seem to be the soil coverage by vegetation but rather the hen's pecking behaviour, the latter being difficult to estimate objectively. For this reason, we recommend using a realistic soil ingestion interval to assess the distribution of egg PCDD/F concentration from free-range hens reared on contaminated soil. The addition of soil contamination in the toxicokinetic model can then be used to recommend to the general population weekly consumption of eggs. The consumption by adults of free-range eggs produced on land with soil containing >90 ng toxic-equivalent (TEQ)/kg dry soil should be avoided. Even with a low level of soil contamination (1-5 ng TEQ/kg dry soil), we would recommend consuming not more than 5 eggs per week for adults and no more than 2 eggs for children below 4 years old.
Collapse
Affiliation(s)
- Christelle Oltramare
- Department of Occupational Health and Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Switzerland
| | - Markus Zennegg
- EMPA, Laboratory for Advanced Analytical Technologies, Dübendorf, Switzerland
| | - Mélanie Graille
- Department of Occupational Health and Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Switzerland
| | - Sylvain Lerch
- Ruminant Nutrition and Emissions, Agroscope, Posieux, Switzerland
| | - Aurélie Berthet
- Department of Occupational Health and Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Switzerland
| | - David Vernez
- Department of Occupational Health and Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
3
|
George AJ, Birnbaum LS. Dioxins vs. PFAS: Science and Policy Challenges. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:85003. [PMID: 39133093 PMCID: PMC11318569 DOI: 10.1289/ehp14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Dioxin-like chemicals are a group of ubiquitous environmental toxicants that received intense attention in the last two decades of the 20th century. Through extensive mechanistic research and validation, the global community has agreed upon a regulatory strategy for these chemicals that centers on their common additive activation of a single receptor. Applying these regulations has led to decreased exposure in most populations studied. As dioxin-like chemicals moved out of the limelight, research and media attention has turned to other concerning contaminants, including per- and polyfluoroalkyl substances (PFAS). During the 20th century, PFAS were also being quietly emitted into the environment, but only in the last 20 years have we realized the serious threat they pose to health. There is active debate about how to appropriately classify and regulate the thousands of known PFAS and finding a solution for these "forever chemicals" is of the utmost urgency. OBJECTIVES Here, we compare important features of dioxin-like chemicals and PFAS, including the history, mechanism of action, and effective upstream regulatory strategies, with the objective of gleaning insight from the past to improve strategies for addressing PFAS. DISCUSSION The differences between these two chemical classes means that regulatory strategies for dioxin-like chemicals will not be appropriate for PFAS. PFAS exert toxicity by both receptor-based and nonreceptor-based mechanisms, which complicates mixtures evaluation and stymies efforts to develop inexpensive assays that accurately capture toxicity. Furthermore, dioxin-like chemicals were unwanted byproducts, but PFAS are useful and valuable, which has led to intense resistance against efforts to restrict their production. Nonetheless, useful lessons can be drawn from dioxin-like chemicals and applied to PFAS, including eliminating nonessential production of new PFAS and proactive investment in environmental remediation to address their extraordinarily long environmental persistence. https://doi.org/10.1289/EHP14449.
Collapse
Affiliation(s)
- Alex J. George
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Linda S. Birnbaum
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Nolte TM. Calculating toxic pressure for mixtures of endocrine disruptors. Heliyon 2024; 10:e34501. [PMID: 39149076 PMCID: PMC11325677 DOI: 10.1016/j.heliyon.2024.e34501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Incidence of autoimmune disorders, birth defects, and neurological diseases rose over the past 50 years due to increasing variety and quantity of pollutants. To date, there appear few methods capable to evaluate and predict mixture effects by endocrine disruptors (EDs). For the first time, we have developed calculus to determine mixture effects by all kinds of EDs. Our method uses the golden ratio ϕ and draws from bifurcation and chaos theory. Using also the concept of molecular mimicry, we developed the equation: e f f e c t = 100 % 1 + e 5 · ∑ K i C i - n i ϕ 3 . We successfully tested the equation using a range of cohort studies and biomarkers, and for different pollutants like heavy metals, thyroid hormone mimickants, chromate/chlorate, etc. The equation is simple enough to use with only minor prior knowledge and understanding of basic algebra. The method is universal and calculation is data 'light', requiring only pollutant concentrations [C], potencies K and an integer n for endocrinal involvement. This study offers a comprehensive framework to assess the health effects of pollutant exposure across diverse populations, envisioning far-reaching impact, and presenting practical examples and insights.
Collapse
Affiliation(s)
- Tom M Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500, GL Nijmegen, the Netherlands
| |
Collapse
|
5
|
Ianiri G, Settimo G, Avino P. Atmospheric bulk depositions: state-of-the-art and European legislative framework with focus on Italy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34338-y. [PMID: 39039371 DOI: 10.1007/s11356-024-34338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The determination of total atmospheric deposition (bulk) is an essential tool to assess the state of environmental contamination and the consequent exposure of the population to persistent organic pollutants (POPs) through the intake of contaminated food. Over the past 20 years, international authorities and the European Union through various pieces of legislation have emphasised the importance of conducting monitoring and studies on depositions to better understand their impact on the environment and human health without setting reference values. Despite the absence of such values, several European countries, through national laws, have adopted limit values and/or guideline values for the deposition fluxes of some organic (dioxins, furans, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) and inorganic persistent pollutants (metals). The aim of this review is both to summarise the present European legislation on depositions both to discuss the different legislations adopted by the various member states. Furthermore, a focus of this paper will be dedicated to the Italian legislation, where there is currently no specific guideline values for POPs in atmospheric deposition. In any case, some national authorities in Italy, such as the National Institute of Health (ISS) and the Regional Environmental Protection Agencies (ARPA), have conducted numerous monitoring activities on depositions, providing the scientific community and policymakers with numerous data on which to establish national reference values.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Environment and Health, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy.
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, 86100, Campobasso, Italy.
| | - Gaetano Settimo
- Department of Environment and Health, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, 86100, Campobasso, Italy
- Institute of Atmospheric Pollution Research (IIA), National Research Council (CNR), Rome Research Area-Montelibretti, 00015, Monterotondo Scalo, Italy
| |
Collapse
|
6
|
Pasetto R, Zona A, Marsili D, Buratti FM, Iavarone I, Soggiu ME, Testai E. Promotion of environmental public health and environmental justice in communities affected by large and long lasting industrial contamination: methods applied and lessons learned from the case study of Porto Torres (Italy). Front Public Health 2024; 12:1408127. [PMID: 39050598 PMCID: PMC11266294 DOI: 10.3389/fpubh.2024.1408127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Communities affected by large scale and long lasting industrial contamination are often keen to understand whether their health has been impaired by such contamination. This requires answers that integrate environmental public health and environmental justice perspectives. At these sites, exposure scenarios from environmental contamination over time by multiple chemicals, often involving different environmental matrices, are complex and challenging to reconstruct. Methods An approach for describing the health of such communities in association with environmental contamination is presented, with the methods applied across the three domains of environmental contamination, population exposure and toxicology, environmental and social epidemiology, and environmental public health communication. The approach is described with examples from its application to the case study of Porto Torres, a town with a substantial industrially conditioned evolution. Results Activities in the field of environmental contamination, population exposure and toxicology focus on the collection and systematization of available contamination data, the identification of priority pollutants based on their toxicological profiles, the qualitative assessment of the likelihood of exposure for the population to priority pollutants and their known health effects. Environmental and social epidemiology methods are applied to describe the health profiles and socioeconomic conditions of the local population, taking into account multiple health outcomes from local information systems and considering specific diseases based on exposure and toxicological assessments. The environmental public health communication methods are directed to produce a communication plan and for its implementation through interaction with local institutional and social actors. The interpretation of health profiles benefits from a transdisciplinary analysis of the results. Discussion The proposed approach combines the needs of environmental public health and environmental justice allowing the integration of multidisciplinary knowledge to define recommendations for reducing and/or preventing hazardous environmental exposures and adverse health effects, stimulating the interactions between stakeholders, and making the study results more accessible to citizens.
Collapse
Affiliation(s)
- Roberto Pasetto
- Environmental and Social Epidemiology Unit, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
- WHO Collaborating Centre for Environmental Health in Contaminated Sites, Rome, Italy
| | - Amerigo Zona
- Environmental and Social Epidemiology Unit, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
- WHO Collaborating Centre for Environmental Health in Contaminated Sites, Rome, Italy
| | - Daniela Marsili
- Environmental and Social Epidemiology Unit, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
- WHO Collaborating Centre for Environmental Health in Contaminated Sites, Rome, Italy
| | - Franca M. Buratti
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ivano Iavarone
- Environmental and Social Epidemiology Unit, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
- WHO Collaborating Centre for Environmental Health in Contaminated Sites, Rome, Italy
| | - Maria Eleonora Soggiu
- Exposure to Air, Soil Contaminants and Lifestyle Unit, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Lerch S, Siegenthaler R, Numata J, Moenning JL, Dohme-Meier F, Zennegg M. Accumulation Rate, Depuration Kinetics, and Tissue Distribution of Polychlorinated Dibenzo- p-Dioxins and Dibenzofurans (PCDD/Fs) in Suckler Ewes ( Ovis aries). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14941-14955. [PMID: 38886165 PMCID: PMC11228998 DOI: 10.1021/acs.jafc.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Understanding the transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in farm animals is essential for ensuring food safety, but such information for suckler ewes (Ovis aries) has been lacking. This work quantifies the accumulation, tissue distribution, and depuration kinetics of PCDD/Fs in these animals. Six suckler ewes (EXP group) were exposed to PCDD/Fs through contaminated hay (2.3-12.7 ng toxic-equivalent kg-1 dry matter) and then allowed to depurate by switching to noncontaminated hay from 29 days of lactation. Four control ewes were fed continuously with noncontaminated hay. At different time points covering depuration, weaning and slaughter, PCDD/F analysis of milk (three time points), blood and sternal adipose tissue (five time points), Longissimus thoracis muscle, liver, and empty body homogenate at slaughter (188 days of depuration) was performed. A relevant PCDD/F bioaccumulation was observed from oral intake in milk and adipose tissue (biotransfer factors of 1.24 and 1.06 day kg-1 lipids for the sum toxic-equivalent, respectively) in the EXP ewes, especially for penta- and hexa-chlorinated congeners. The EXP ewes' adipose tissue started at 10-fold the EU maximum level (ML) and showed depuration below the ML after 130 days. Specific PCDD/F accumulation in the ewe liver was observed, especially for dibenzofurans. These toxicokinetic data can inform recommendations to ensure the chemical safety of sheep food products.
Collapse
Affiliation(s)
- Sylvain Lerch
- Ruminant Nutrition and Emissions, Agroscope, 1725 Posieux, Switzerland
| | | | - Jorge Numata
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Jan-Louis Moenning
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | | | - Markus Zennegg
- Laboratory for Advanced Analytical Technologies, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
8
|
More SJ, Benford D, Hougaard Bennekou S, Bampidis V, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Naska A, Poulsen M, Ranta J, Sand S, Wallace H, Bastaki M, Liem D, Smith A, Ververis E, Zamariola G, Younes M. Guidance on risk-benefit assessment of foods. EFSA J 2024; 22:e8875. [PMID: 39015302 PMCID: PMC11250173 DOI: 10.2903/j.efsa.2024.8875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The EFSA Scientific Committee has updated its 2010 Guidance on risk-benefit assessment (RBA) of foods. The update addresses methodological developments and regulatory needs. While it retains the stepwise RBA approach, it provides additional methods for complex assessments, such as multiple chemical hazards and all relevant health effects impacting different population subgroups. The updated guidance includes approaches for systematic identification, prioritisation and selection of hazardous and beneficial food components. It also offers updates relevant to characterising adverse and beneficial effects, such as measures of effect size and dose-response modelling. The guidance expands options for characterising risks and benefits, incorporating variability, uncertainty, severity categorisation and ranking of different (beneficial or adverse) effects. The impact of different types of health effects is assessed qualitatively or quantitatively, depending on the problem formulation, scope of the RBA question and data availability. The integration of risks and benefits often involves value-based judgements and should ideally be performed with the risk-benefit manager. Metrics such as Disability-Adjusted Life Years (DALYs) and Quality-Adjusted Life Years (QALYs) can be used. Additional approaches are presented, such as probability of all relevant effects and/or effects of given severities and their integration using severity weight functions. The update includes practical guidance on reporting results, interpreting outcomes and communicating the outcome of an RBA, considering consumer perspectives and responses to advice.
Collapse
|
9
|
Kou X, Becerra-Tomás N, Canals J, Bulló M, Arija V. Association between Prenatal Dietary Toxicants and Infant Neurodevelopment: The Role of Fish. TOXICS 2024; 12:338. [PMID: 38787117 PMCID: PMC11126097 DOI: 10.3390/toxics12050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
More research is needed to understand how the maternal consumption of fish and fish-borne toxicants impacts infant neurodevelopment. The present analysis was conducted over 460 mother-infant pairs within the ECLIPSES study. Dietary intake of metals and persistent organic pollutants from fish (including white fish, blue fish, and seafood) was estimated in pregnant women. The infants underwent cognitive, language, and motor function assessments using the Bayley Scales of Infant Development-III at the 40-day postpartum. Associations between dietary toxicants and outcomes were assessed using multivariable linear regression models. Estimated prenatal exposure to fish-borne toxicants, such as arsenic, inorganic arsenic, methylmercury, dioxin-like polychlorinated biphenyls (DL-PCBs), and non-DL-PCBs, was associated with poorer language functions in infants, whereas no significant associations were found with motor or cognitive functions. Maternal fish consumption exceeding the Spanish recommendation of no more than 71 g per day was linked to these adverse effects on language abilities without affecting motor or cognitive development. This highlights the importance of vigilant monitoring of environmental toxicants and the provision of dietary guidance for pregnant women, with potential implications for public health and child development.
Collapse
Affiliation(s)
- Xiruo Kou
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; (X.K.); (N.B.-T.); (J.C.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
| | - Nerea Becerra-Tomás
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; (X.K.); (N.B.-T.); (J.C.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; (X.K.); (N.B.-T.); (J.C.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- Centre de Recerca en Avaluació i Mesura de la Conducta (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT), Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Monica Bulló
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; (X.K.); (N.B.-T.); (J.C.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT), Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Collaborative Research Group on Lifestyles, Nutrition and Smoking (CENIT), Tarragona-Reus Research Support Unit, Jordi Gol Primary Care Research Institute, 43003 Tarragona, Spain
| |
Collapse
|
10
|
Amutova F, Delannoy M, Akhatzhanova A, Akhmetsadykov N, Konuspayeva G, Jurjanz S. Generic methodology to prevent food contamination by soil born legacy POPs in free range livestock. Heliyon 2024; 10:e28533. [PMID: 38590844 PMCID: PMC10999928 DOI: 10.1016/j.heliyon.2024.e28533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Government monitoring commonly includes regulating POPs in animal feed and products of animal origin, with many countries setting Maximum Residue Levels (MRLs) to ensure safe tolerable concentrations. However, these MRLs do not address the presence of most POP families in soil, where concentrations can be much higher due to the contaminants' strong affinity and persistence in comparison to other environmental matrices. Extensive damage to food and production systems during a pollution incident causing soil contamination by POPs lead to severe economic and social consequences for the affected area. To mitigate these effects, it is crucial to implement necessary measures for consumer protection while also focusing on rehabilitating conditions for food production, tailored to both commercial farms and private holders. In this context, the present work aims to develop and test a methodology for assessing the tolerable concentration of the most cancerogenic legacy POPs in soil for various livestock animals in diverse rearing systems ensuring the safety of food of animal origin. Therefore, we summarize existing knowledge about the risk of POP transfer in different livestock breeding systems via soil exposure, and modeling via a backward calculation from the MRLs the corresponding tolerable quantity of POPs that may be ingested by animals in the considered rearing system. Results of these simulations showed that soil ingestion is a predominant contamination pathway, which is a central factor in the risk assessment of POP exposure on livestock farms, especially in free-range systems. In field conditions of POP exposure, low productive animals may be more susceptible to uptake through soil than high-yielding animals, even if the feed respected MRLs. Results show that PCDD/Fs revealed the lowest security ratio for low productive dairy cows (1.5) compared to high productive ones (52). Laying hens with a productivity of 45% show also as a high sensitivity to POPs exposure via soil ingestion. Indeed, their security ratio for PCDD/Fs, lindane and DDT were 3, 2 and 1, respectively. In perspective, proposed methodology can be adapted for assessing the risk of industrial POPs newly listed in the Stockholm Convention. In practice, it could be useful for food producers to apprehend their own risk of chemical contamination.
Collapse
Affiliation(s)
- Farida Amutova
- URAFPA, University de Lorraine-INRAE, 54000, Nancy, France
- Antigen LLP, Scientific and Production Enterprise 040905, Almaty region, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
| | | | - Araylym Akhatzhanova
- Antigen LLP, Scientific and Production Enterprise 040905, Almaty region, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
| | - Nurlan Akhmetsadykov
- Antigen LLP, Scientific and Production Enterprise 040905, Almaty region, Kazakhstan
| | - Gaukhar Konuspayeva
- Antigen LLP, Scientific and Production Enterprise 040905, Almaty region, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan
| | - Stefan Jurjanz
- URAFPA, University de Lorraine-INRAE, 54000, Nancy, France
| |
Collapse
|
11
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Falandysz J, Hart A, Rose M, Anastassiadou M, Eskes C, Gergelova P, Innocenti M, Rovesti E, Whitty B, Nielsen E. Risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. EFSA J 2024; 22:e8640. [PMID: 38476320 PMCID: PMC10928787 DOI: 10.2903/j.efsa.2024.8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
EFSA was asked for a scientific opinion on the risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. The assessment focused on hexaCNs due to very limited data on other PCN congeners. For hexaCNs in feed, 217 analytical results were used to estimate dietary exposures for food-producing and non-food-producing animals; however, a risk characterisation could not be performed because none of the toxicological studies allowed identification of reference points. The oral repeated dose toxicity studies performed in rats with a hexaCN mixture containing all 10 hexaCNs indicated that the critical target was the haematological system. A BMDL20 of 0.05 mg/kg body weight (bw) per day was identified for a considerable decrease in the platelet count. For hexaCNs in food, 2317 analytical results were used to estimate dietary exposures across dietary surveys and age groups. The highest exposure ranged from 0.91 to 29.8 pg/kg bw per day in general population and from 220 to 559 pg/kg bw per day for breast-fed infants with the highest consumption of breast milk. Applying a margin of exposure (MOE) approach, the estimated MOEs for the high dietary exposures ranged from 1,700,000 to 55,000,000 for the general population and from 90,000 to 230,000 for breast-fed infants with the highest consumption of breast milk. These MOEs are far above the minimum MOE of 2000 that does not raise a health concern. Taking account of the uncertainties affecting the assessment, the Panel concluded with at least 99% certainty that dietary exposure to hexaCNs does not raise a health concern for any of the population groups considered. Due to major limitations in the available data, no assessment was possible for genotoxic effects or for health risks of PCNs other than hexaCNs.
Collapse
|
12
|
Zhang YJ, Sun J, Chen XJ, Cheng R, Liu ZT, Cao L, Feng YL. The residues and health risk assessment of polychlorinated biphenyls (PCBs) in Pheretima (an earthworm-derived traditional medicine) from southeastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17275-17288. [PMID: 38340303 DOI: 10.1007/s11356-024-32230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Minimal research exists on polychlorinated biphenyl (PCB) exposure from traditional Chinese medicines (TCMs), despite their significant contributions to domestic and international health protection. This study is the first to investigate the levels, profiles, and health risks of PCB residue in Pheretima, a typical TCM produced from earthworm. Seventy-seven Pheretima samples from different regions of China were analyzed for 45 PCB congeners. PCBs were found in all samples exhibiting species-dependent discrepancies. ∑45PCBs was ranging from 0.532 to 25.2 µg/kg (mean 4.46 µg/kg), with CB-11 being the most abundant congener contributing 71.8% ± 10.8% to ∑45PCBs, followed by CB-47, which were all non-Aroclor congeners called unintentionally produced PCBs (UP-PCBs). The average estimated daily intake of ∑45PCBs, ∑7ID-PCBs (indicative polychlorinated biphenyls), and CB-11 were 0.71, 0.04, and 0.51 ng/kg bw/d, respectively. The ∑HQ of PCBs in Pheretima samples was 2.97 × 10-4-2.46 × 10-2 (mean 2.77 × 10-3, 95th 4.21 × 10-3), while the ∑RQ ranged from 1.19 × 10-8 to 2.88 × 10-6 (mean 4.87 × 10-7, 95th 2.31 × 10-6). These findings indicate that Pheretima ingestion does not pose significant non-carcinogenic risks. However, certain individual samples exhibit an acceptable level of potential risks, particularly when considering that PCBs are recognized as endocrine disruptors and classified as probable carcinogens. These results contribute to the safety evaluation of traditional medicines and suggest the potential use of Pheretima as a bioindicator for PCB pollution. It is advisable to monitor UP-PCBs as indicator congeners and gather additional toxicological data.
Collapse
Affiliation(s)
- Yun-Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutical Analysis, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China
| | - Jing Sun
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, People's Republic of China.
| | - Xiao-Jiang Chen
- Jiangsu Environmental Engineering Technology Co. Ltd., Nanjing, 210019, People's Republic of China
| | - Rui Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zhi-Tong Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ling Cao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, People's Republic of China
| | - You-Long Feng
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, People's Republic of China
| |
Collapse
|
13
|
Lim GS, Er JC, Bhaskaran K, Sin P, Shen P, Lee KM, Teo GS, Chua JMC, Chew PCF, Ang WM, Lee J, Wee S, Wu Y, Li A, Chan JSH, Aung KT. Singapore's Total Diet Study (2021-2023): Study Design, Methodology, and Relevance to Ensuring Food Safety. Foods 2024; 13:511. [PMID: 38397488 PMCID: PMC10887509 DOI: 10.3390/foods13040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
A total diet study is often used to evaluate a population's baseline dietary exposure to chemical hazards from across the diet. In 2021-2023, Singapore carried out a TDS, and this article presents an overview of the study design and methodological selections in Singapore's TDS, as well as its relevance to ensuring food safety. A food consumption survey was conducted on Singapore citizens and permanent residents, where food consumption patterns of the Singapore population were identified. The selection of chemical hazards and foods for inclusion in Singapore's TDS, as well as principal considerations on sampling, food preparation, and analytical testing are discussed. Commonly consumed foods by the Singapore population in food categories such as grain and grain-based products, meat and meat products, fish and seafood, vegetables, fruits, milk and dairy products were included in this study, and mean concentrations of chemicals tested in each food category were reported, with food categories possessing higher levels identified. Future work will include dietary exposure assessments for the population and analysis of the contributions by food and cooking method.
Collapse
Affiliation(s)
- Geraldine Songlen Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Jun Cheng Er
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Kalpana Bhaskaran
- School of Applied Science, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore (P.S.)
| | - Paul Sin
- School of Applied Science, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore (P.S.)
| | - Ping Shen
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Kah Meng Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Guat Shing Teo
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joachim Mun Choy Chua
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Peggy Chui Fong Chew
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Wei Min Ang
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joanna Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Sheena Wee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| |
Collapse
|
14
|
Reale E, Zare Jeddi M, Paini A, Connolly A, Duca R, Cubadda F, Benfenati E, Bessems J, S Galea K, Dirven H, Santonen T, M Koch H, Jones K, Sams C, Viegas S, Kyriaki M, Campisi L, David A, Antignac JP, B Hopf N. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 184:108474. [PMID: 38350256 DOI: 10.1016/j.envint.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.
Collapse
Affiliation(s)
- Elena Reale
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | | | - Alison Connolly
- UCD Centre for Safety & Health at Work, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, D04 V1W8, Dublin, Ireland for Climate and Air Pollution Studies, Physics, School of Natural Science and the Ryan Institute, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | - Radu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Hubert Dirven
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Craig Sams
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Machera Kyriaki
- Benaki Phytopathological Institute, 8, Stephanou Delta Street, 14561 Kifissia, Athens, Greece
| | - Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Flashpoint srl, Via Norvegia 56, 56021 Cascina (PI), Italy
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | | | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| |
Collapse
|
15
|
Casado N, Berenguer CV, Câmara JS, Pereira JAM. What Are We Eating? Surveying the Presence of Toxic Molecules in the Food Supply Chain Using Chromatographic Approaches. Molecules 2024; 29:579. [PMID: 38338324 PMCID: PMC10856495 DOI: 10.3390/molecules29030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Consumers in developed and Western European countries are becoming more aware of the impact of food on their health, and they demand clear, transparent, and reliable information from the food industry about the products they consume. They recognise that food safety risks are often due to the unexpected presence of contaminants throughout the food supply chain. Among these, mycotoxins produced by food-infecting fungi, endogenous toxins from certain plants and organisms, pesticides, and other drugs used excessively during farming and food production, which lead to their contamination and accumulation in foodstuffs, are the main causes of concern. In this context, the goals of this review are to provide a comprehensive overview of the presence of toxic molecules reported in foodstuffs since 2020 through the Rapid Alert System for Food and Feed (RASFF) portal and use chromatography to address this challenge. Overall, natural toxins, environmental pollutants, and food-processing contaminants are the most frequently reported toxic molecules, and liquid chromatography and gas chromatography are the most reliable approaches for their control. However, faster, simpler, and more powerful analytical procedures are necessary to cope with the growing pressures on the food chain supply.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.V.B.); (J.S.C.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.V.B.); (J.S.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.V.B.); (J.S.C.)
| |
Collapse
|
16
|
Lacomba I, Socas-Hernández C, López A, Pardo O, Yusà V, Beser MI, Marín S, Villalba P, Coscollà C. Levels, patterns and risk assessment of PCDD/Fs and dl-PCBs through dietary exposure in the Valencian Region (Spain). Food Res Int 2024; 176:113839. [PMID: 38163731 DOI: 10.1016/j.foodres.2023.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin like polychlorinated biphenyls (dl-PCBs) levels were measured in representative vegetable oils and animal origin foodstuffs collected in a Total Diet Study carried out in the Valencian Region (Spain). A total amount of 3,300 food samples were collected and grouped into 5 main food groups: vegetable oils, meat and meat products, eggs, milk and dairy products and fish and sea products. The samples were analysed using gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS). The food group which presented the highest concentration in wet weight (ww) for the sum of PCDD/Fs and dl-PCBs was fish and sea products (0.5 pg TEQ g-1 ww), whereas meat and meat products (0.6 pg TEQ g-1 lipid) showed the highest levels expressed in lipid terms. Occurrence data of PCDD/F and dl-PCBs were combined with consumption data to estimate the dietary exposure of adults (>15 years) and children (6-15 years). Finally, the estimated weekly intake (EWI) was calculated using a deterministic approach and considering the food consumption of the population, with fish and sea products being the main food group contributor. Likewise, considering the worst-case scenario (Upper Bound, UB), average EWI were 1.8 and 3.4 pg TEQ kg-1 body weight (bw) week-1 for adults and children, respectively. For children, the average EWI was almost twice above the tolerable weekly intake (TWI) of 2 pg TEQ kg-1 bw week-1 set by EFSA in 2018. In terms of risk characterisation, the overall obtained results showed that 19 % of adults and 43 % of children may exceed the TWI when using UB.
Collapse
Affiliation(s)
- Iñaki Lacomba
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| | - Cristina Socas-Hernández
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| | - Olga Pardo
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Spain.
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| | - María Isabel Beser
- Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020 Valencia, Spain
| | - Silvia Marín
- Public Health Directorate of Valencia, 21, Avenida Catalunya, 46020 Valencia, Spain
| | - Pilar Villalba
- Public Health Directorate of Valencia, 21, Avenida Catalunya, 46020 Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| |
Collapse
|
17
|
Abraham K. Prenatal and Early Postnatal Exposure to Persistent Organic Pollutants (POPs): What Is the Correlation between Dioxins and Long-Chain Per- and Polyfluorinated Alkyl Substances (PFAS)? ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107701. [PMID: 37815924 PMCID: PMC10564102 DOI: 10.1289/ehp13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Affiliation(s)
- Klaus Abraham
- German Federal Institute for Risk Assessment, Department Food Safety, Berlin, Germany
| |
Collapse
|
18
|
Krause T, Lamp J, Knappstein K, Walte HG, Moenning JL, Molkentin J, Ober F, Susenbeth A, Westreicher-Kristen E, Schwind KH, Dänicke S, Fürst P, Schenkel H, Pieper R, Numata J. Experimental Study on the Transfer of Polychlorinated Biphenyls (PCBs) and Polychlorinated Dibenzo- p-dioxins and Dibenzofurans (PCDD/Fs) into Milk of High-Yielding Cows during Negative and Positive Energy Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13495-13507. [PMID: 37652440 PMCID: PMC10510706 DOI: 10.1021/acs.jafc.3c02776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Dioxin-like polychlorinated biphenyls (dl-PCBs) as well as polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are a major concern for food safety, especially in fat-containing foods of animal origin, such as milk. Due to the lipophilic character of PCDD/Fs and PCBs, it is of special interest to explore whether the metabolic state of high-yielding cows influences the transfer rates into milk. Five German Holstein cows were orally exposed to a mixture of 17 PCDD/Fs, 12 dl-PCBs, and 6 non-dioxin-like PCBs (ndl-PCBs) for two dosing periods of 28 days each. The first period covered the negative energy balance (NEB) after calving, while the second period addressed the positive energy balance (PEB) in late lactation. Each dosing period was followed by a depuration period of around 100 days. During the NEB phase, the transfer rates of 14 PCDD/Fs and 7 dl-PCBs quantified were significantly (p ≤ 0.1) higher compared to the PEB phase, indicating an influence of the metabolic state on the transfer. Furthermore, the congener-specific transfer rates (0.3-39%) were in the range of the results from former studies. This indicates that the milk yield of the exposed cows is not the only determining factor for the transfer of these congeners into milk.
Collapse
Affiliation(s)
- Torsten Krause
- Department
of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Julika Lamp
- Department
of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Karin Knappstein
- Department
of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Hans-Georg Walte
- Department
of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Jan-Louis Moenning
- Department
Safety in the Food Chain, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Joachim Molkentin
- Department
of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Florian Ober
- Department
of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Andreas Susenbeth
- Institute
of Animal Nutrition and Physiology, Kiel
University (CAU), 24118 Kiel, Germany
| | | | - Karl-Heinz Schwind
- Department
of Quality and Safety of Meat, Max Rubner-Institut
(MRI), E.-C.-Baumann-Str. 20, 95326 Kulmbach, Germany
| | - Sven Dänicke
- Institute
of Animal Nutrition, German Federal Research Institute for Animal
Health, Friedrich-Loeffler-Institut (FLI), Bundesallee 37, 38116 Braunschweig, Germany
| | - Peter Fürst
- Institute
of Food Chemistry, University of Münster, Corrensstrasse 45, 48149 Münster, Germany
| | - Hans Schenkel
- Department
of Animal Nutrition, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
| | - Robert Pieper
- Department
Safety in the Food Chain, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jorge Numata
- Department
Safety in the Food Chain, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
19
|
Bolann BJ, Huber S, Averina M, Eggesbø M, Hokstad I, Brox J, Ørebech P, Bjørke-Monsen AL. Should we eat more fish - or less? TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2023; 143:23-0235. [PMID: 37589366 DOI: 10.4045/tidsskr.23.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
|
20
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
21
|
Wang Z, van der Fels-Klerx HJ, Oude Lansink AGJM. Designing optimal food safety monitoring schemes using Bayesian network and integer programming: The case of monitoring dioxins and DL-PCBs. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1400-1413. [PMID: 36128738 DOI: 10.1111/risa.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient food safety monitoring should achieve optimal resource allocation. In this article, a methodology is presented to optimize the use of resources for food safety monitoring aimed at identifying noncompliant samples and estimating background level of hazards in food products. A Bayesian network (BN) model and an optimization model were combined in a single framework. The framework was applied to monitoring dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) in primary animal-derived food products in the Netherlands. The BN model was built using a national dataset with monitoring results of dioxins and DL-PCBs in animal-derived food products over a 10-year period (2008-2017). These data were used to estimate the probability of detecting suspect samples with dioxins and DL-PCBs levels above preset thresholds, given certain sample conditions. The results of the BN model were then inserted into the optimization model to compute an optimal monitoring scheme. Model estimates showed that the probability of dioxins and DL-PCBs exceeding threshold limits was higher in laying hen eggs and sheep meat than in other animal-derived food (except deer meat). Compared with the monitoring scheme used in the Netherlands in 2018, the optimal monitoring scheme would save around 10,000 EUR per year. This could be obtained by reallocating monitoring resources from products with lower probability of dioxin and DL-PCBs exceeding threshold limits (e.g., pig meat) to products with higher probability (e.g., bovine animal meat), and by shifting sample collection from the last quarter of the year toward the first three quarters of the year.
Collapse
Affiliation(s)
- Z Wang
- Business Economics, Wageningen University, Wageningen, The Netherlands
- College of Economics and Management, Huazhong Agricultural University, Wuhan, China
| | - H J van der Fels-Klerx
- Business Economics, Wageningen University, Wageningen, The Netherlands
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | |
Collapse
|
22
|
Mikołajczyk S, Warenik-Bany M, Pajurek M. Polychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin-like polychlorinated biphenyls in bivalve molluscs. Risk to Polish consumers? J Vet Res 2023; 67:267-273. [PMID: 38143832 PMCID: PMC10740329 DOI: 10.2478/jvetres-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Concentrations of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) were investigated in six species of bivalve mollusc purchased on the Polish retail market. The risk to consumers was calculated as a percentage of the tolerable weekly intake (TWI) (2 pg World Health Organization toxic equivalent (WHO-TEQ) kg-1 body weight (b.w.)). Material and Methods Altogether 32 samples were analysed using an isotope dilution technique with high resolution gas chromatography coupled with high resolution mass spectrometry. Results Low levels of all analysed compounds were found. The range of PCDD/Fs was 0.08-0.37 pg WHO-TEQ g-1 of wet weight (w.w.) and 0.04-0.41 pg WHO-TEQ g-1 w.w. for DL-PCBs. The highest concentrations of all analysed compounds were found in Pacific oysters, at 0.30 pg WHO-TEQ g-1 w.w. for the sum of PCDD/Fs and 0.19 pg WHO-TEQ g-1 for the sum of DL-PCBs. These concentrations were 2-4 times higher than those detected in the other analysed mollusc species. Different species-dependent congener profiles were observed for PCDD/F concentrations, while PCB congener concentration profiles were species independent. The risk to consumers was assessed relating theoretical intakes of PCDD/Fs and DL-PCBs per 25, 50 and 100 g of consumption of molluscs per week to the TWI. Conclusion Taking into account the low consumption of molluscs in Poland and low concentrations of analysed compounds, neither adults nor children are likely to exceed the TWI by ingestion of food in this category.
Collapse
Affiliation(s)
- Szczepan Mikołajczyk
- Radiobiology Department, National Veterinary Research Institute, 24-100, Puławy, Poland
| | | | - Marek Pajurek
- Radiobiology Department, National Veterinary Research Institute, 24-100, Puławy, Poland
| |
Collapse
|
23
|
Ruiz P, Lacomba I, López A, Yusà V, Coscollà C. Exposure and Risk Assessment to Airborne dl-PCBs and Dioxins in the Population Living in the Neighborhood of a Cement Plant: A Pilot Study in the Valencian Region of Spain. TOXICS 2023; 11:389. [PMID: 37112616 PMCID: PMC10143573 DOI: 10.3390/toxics11040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Emissions from cement manufacturing facilities may increase health risks in nearby populations. For this reason, dioxin-like PCB (dl-PCB), polychlorinated dibenzo-p-dioxin (PCDD), and polychlorinated dibenzofuran (PCDF) concentrations in PM10 samples were assessed in the vicinity of a cement manufacturing plant located in the Valencian Region (eastern Spain). The total concentrations of the sum of dl-PCBs, PCDDs, and PCDFs ranged between 1.85 and 42.53 fg TEQ/m3 at the assessed stations. The average daily inhalation dose (DID) for the sum in adults ranged from 8.93 · 10-4 to 3.75 · 10-3 pg WHO TEQ kg-1 b.w. d-1, and, for children, the DID ranged from 2.01 · 10-3 to 8.44 · 10-3 pg WHO TEQ kg-1 b.w. d-1. Risk assessment for adults and children was performed using both daily and chronic exposure. The hazard quotient (HQ) was calculated considering 0.025 pg WHO TEQ kg-1 b.w. d-1 to be the acceptable maximum permitted inhalation exposure. The HQ obtained was slightly higher than 1 for PCDD/Fs at one of the stations (Chiva), indicating a possible health risk for the population under study due to inhalation exposure. In the case of chronic exposure, cancer risk (>10-6) was observed for some samples in one of the assessed sampling sites (Chiva).
Collapse
Affiliation(s)
- Pablo Ruiz
- Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020 Valencia, Spain
| | - Iñaki Lacomba
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO—Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (I.L.); (V.Y.); (C.C.)
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO—Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (I.L.); (V.Y.); (C.C.)
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO—Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (I.L.); (V.Y.); (C.C.)
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO—Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (I.L.); (V.Y.); (C.C.)
| |
Collapse
|
24
|
Pajurek M, Mikolajczyk S, Warenik-Bany M. Engine oil from agricultural machinery as a source of PCDD/Fs and PCBs in free-range hens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29834-29843. [PMID: 36417073 PMCID: PMC9995527 DOI: 10.1007/s11356-022-24180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 04/16/2023]
Abstract
Free-range hens spend most of their lives outdoors, resulting in their heavy exposure to environmental pollutants such as polychlorinated dibenzo-p-dioxin, dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), and non-dioxin-like polychlorinated biphenyls (NDL-PCBs). We present a case of contamination of free-range eggs that is previously unreported in the literature. The aim of our study was a source investigation after finding a high level of PCDD/Fs in samples of eggs from one of the inspected farms. Samples of hens' eggs, muscles, and livers and the feeds and soils were analyzed. The results showed that the soil samples taken from the paddock contained high concentrations of PCDD/Fs and DL-PCBs expressed as toxic equivalents (TEQ) (72.9 ± 18.2 pg WHO-TEQ g-1 dry mas (d.m.)) and a high concentration of NDL-PCBs (207 ± 46.9 ng g-1 d.m.). The investigation found that the cause of the soil contamination was oil leaking from the farm's tractor engine. The oil contained very high concentrations of PCDD/F and DL-PCBs (1013 ± 253 pg WHO-TEQ g-1 oil) and 5644 ng g-1 of NDL-PCBs. The source of the contamination was confirmed by the similarity of the PCDD/F and PCB profiles in the hen eggs and the soil contaminated by engine oil. The dietary intake of toxins resulting from consumption of the eggs is provided. For children, the consumption of contaminated eggs would result in an intake of double the tolerable weekly intake (TWI), while for adults, it would be approx. 60-70% of TWI.
Collapse
Affiliation(s)
- Marek Pajurek
- Radiobiology Department, National Veterinary Research Institute, NRL for Halogenated POPs (PCDD/Fs, PCBs and PBDE) in Food and Feed, 57 Partyzantów Avenue, 24-100, Pulawy, Poland.
| | - Szczepan Mikolajczyk
- Radiobiology Department, National Veterinary Research Institute, NRL for Halogenated POPs (PCDD/Fs, PCBs and PBDE) in Food and Feed, 57 Partyzantów Avenue, 24-100, Pulawy, Poland
| | - Malgorzata Warenik-Bany
- Radiobiology Department, National Veterinary Research Institute, NRL for Halogenated POPs (PCDD/Fs, PCBs and PBDE) in Food and Feed, 57 Partyzantów Avenue, 24-100, Pulawy, Poland
| |
Collapse
|
25
|
Ma Y, Taxvig C, Rodríguez-Carrillo A, Mustieles V, Reiber L, Kiesow A, Löbl NM, Fernández MF, Hansen TVA, Valente MJ, Kolossa-Gehring M, David M, Vinggaard AM. Human risk associated with exposure to mixtures of antiandrogenic chemicals evaluated using in vitro hazard and human biomonitoring data. ENVIRONMENT INTERNATIONAL 2023; 173:107815. [PMID: 36822008 PMCID: PMC10030311 DOI: 10.1016/j.envint.2023.107815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Scientific evidence for underestimated toxicity from unintentional exposure to chemical mixtures is mounting. Yet, harmonized approaches on how to assess the actual risk of mixtures is lacking. As part of the European Joint programme 'Human Biomonitoring for Europe' we explored a novel methodology for mixture risk assessment of chemicals affecting male reproductive function. METHODOLOGY We explored a methodology for chemical mixture risk assessment based on human in vitro data combined with human exposure data, thereby circumventing the drawbacks of using hazard data from rodents and estimated exposure intake levels. Human androgen receptor (hAR) antagonism was selected as the most important molecular initiating event linked to adverse outcomes on male reproductive health. RESULTS Our work identified 231 chemicals able to interfere with hAR activity. Among these were 61 finally identified as having both reliable hAR antagonist and human biomonitoring data. Calculation of risk quotients indicated that PCBs (118, 138, 157), phthalates (BBP, DBP, DIBP), benzophenone-3, PFOS, methylparaben, triclosan, some pesticides (i.e cypermethrin, β-endosulfan, methylparathion, p,p-DDE), and a PAH metabolite (1-hydroxypyrene) contributed to the mixture effect. The major chemical mixture drivers were PCB 118, BBP, PFOS, DBP, and the UV filter benzophenone-3, together contributing with 75% of the total mixture effect that was primarily driven by high exposure values. CONCLUSIONS This viable way forward for mixture risk assessment of chemicals has the advantages of (1) being a more comprehensive mixture risk assessment also covering data-poor chemicals, and (2) including human data only. However, the approach is subjected to uncertainties in terms of in vitro to in vivo extrapolation, it is not ready for decision making, and needs further development. Still, the results indicate a concern for adverse effects on reproductive function in highly exposed boys, especially when considering additional exposure to data-poor chemicals and chemicals acting by other mechanisms of action.
Collapse
Affiliation(s)
- Yanying Ma
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | | | | | | | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | | | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Determinants of exposure to polychlorinated biphenyls in the Italian population in the last decades. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47012-47024. [PMID: 36735124 DOI: 10.1007/s11356-023-25590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are industrial products extensively used in the past. Because of their widespread presence and toxic effects, the international community adopted control measures to reduce their release into the environment. Currently, PCB concentrations are decreasing, but humans are still exposed. In this paper, we reported the results of a study concerning PCB concentrations in human serum samples collected in Italy over two decades. The aim of the study was to investigate the trend of major determinants of PCB human exposure, several decades after the end of their production. PCB concentrations ranged over three orders of magnitude (from 0.4 to 958 ng/g lipid), with a median value of 85 ng/g lipid. We identified age, sampling year, body mass index, sex, and living near hot spots or being occupationally exposed as relevant factors in determining body burden. Our results can give indications to refine regulatory policies on PCBs in Italy, with particular attention to the disposal of residue PCB-containing products. To improve control measures can further decrease the exposure of citizens to PCBs, limit health implications, and improve citizens' perception about chemical risk management.
Collapse
|
27
|
Giannico OV, Baldacci S, Basile FC, Pellegrino A, Desiante F, Franco E, Diletti G, Conversano M. PCDD/Fs and PCBs in hen eggs from a contaminated area in Italy: a 9 years spatio-temporal monitoring study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:294-304. [PMID: 36602427 DOI: 10.1080/19440049.2022.2157051] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eggs can represent a food susceptible to contamination, with bioaccumulation potential for POPs. The Province of Taranto, Southern Italy, is of particular relevance in this context because of the presence of industrial sources of PCDD/Fs and PCBs. The aim of this study was to analyze and report the levels of these contaminants in hen eggs sampled in farms located within a radius of 20 km from the industrial area of Taranto. Between 2013 and 2021, 227 hen eggs were collected, according to a special monitoring plan of the Prevention Department. Samples were analyzed by the National Reference Laboratory for Halogenated POPs in Feed and Food. Median (IQR) values were: 0.28 (0.59) pg WHO-TEQ/g fat for PCDD/Fs, 0.89 (1.70) pg WHO-TEQ/g fat for PCDD/Fs + DL-PCBs, 0.57 (1.16) pg WHO-TEQ/g fat for DL-PCBs, 2.24 (5.51) ng/g fat for NDL-PCBs. Samples not-compliant (Reg. 1881/2006/EC and amendments) for at least one contaminant were 17 (7.5%). No contaminants values or exceedances showed a statistically significant correlation with distance from industrial area (p > 0.05). Higher PCDD/Fs values were observed in first and second quarters (p < 0.05). All contaminants' values pairwise combinations showed significant (p < 0.0001) strong (ρ > 0.7) correlation. According to our epidemiological investigations, the exceedances are to be attributed to factors mainly related to farmers' wrong habits. These results confirmed the importance of the monitoring of contaminants' levels in the matrices at risk as well as to focus on enhancing good management practices on eggs-producing farms.
Collapse
Affiliation(s)
| | - Simona Baldacci
- Prevention Department, Local Health Authority of Taranto, Taranto, Italy
| | | | - Angelo Pellegrino
- Prevention Department, Local Health Authority of Taranto, Taranto, Italy
| | - Francesco Desiante
- Prevention Department, Local Health Authority of Taranto, Taranto, Italy
| | - Ettore Franco
- Prevention Department, Local Health Authority of Taranto, Taranto, Italy
| | - Gianfranco Diletti
- National Reference Laboratory for Halogenated POPs in Feed and Food, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Michele Conversano
- Prevention Department, Local Health Authority of Taranto, Taranto, Italy
| |
Collapse
|
28
|
Cattaneo I, Kalian AD, Di Nicola MR, Dujardin B, Levorato S, Mohimont L, Nathanail AV, Carnessechi E, Astuto MC, Tarazona JV, Kass GEN, Liem AKD, Robinson T, Manini P, Hogstrand C, Price PS, Dorne JLCM. Risk Assessment of Combined Exposure to Multiple Chemicals at the European Food Safety Authority: Principles, Guidance Documents, Applications and Future Challenges. Toxins (Basel) 2023; 15:40. [PMID: 36668860 PMCID: PMC9861867 DOI: 10.3390/toxins15010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Human health and animal health risk assessment of combined exposure to multiple chemicals use the same steps as single-substance risk assessment, namely problem formulation, exposure assessment, hazard assessment and risk characterisation. The main unique feature of combined RA is the assessment of combined exposure, toxicity and risk. Recently, the Scientific Committee of the European Food Safety Authority (EFSA) published two relevant guidance documents. The first one "Harmonised methodologies for the human health, animal health and ecological risk assessment of combined exposure to multiple chemicals" provides principles and explores methodologies for all steps of risk assessment together with a reporting table. This guidance supports also the default assumption that dose addition is applied for combined toxicity of the chemicals unless evidence for response addition or interactions (antagonism or synergism) is available. The second guidance document provides an account of the scientific criteria to group chemicals in assessment groups using hazard-driven criteria and prioritisation methods, i.e., exposure-driven and risk-based approaches. This manuscript describes such principles, provides a brief description of EFSA's guidance documents, examples of applications in the human health and animal health area and concludes with a discussion on future challenges in this field.
Collapse
Affiliation(s)
- Irene Cattaneo
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Alexander D. Kalian
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Matteo R. Di Nicola
- Unit of Dermatology, IRCCS San Raffaele Hospital, Via Olgettin 60, 20132 Milan, Italy
| | - Bruno Dujardin
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Sara Levorato
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Luc Mohimont
- Plant Health and Pesticide Residues Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Alexis V. Nathanail
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Edoardo Carnessechi
- iDATA Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Maria Chiara Astuto
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Jose V. Tarazona
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - George E. N. Kass
- Chief Scientist Office, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Antoine K. Djien Liem
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Tobin Robinson
- Plant Health and Pesticide Residues Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Paola Manini
- Feed and Contaminants Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| | - Christer Hogstrand
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Paul S. Price
- Retired United States Environmental Protection Agency (US EPA), 6408 Hoover Trail Road S.W., Cedar Rapids, IA 52404, USA
| | - Jean Lou C. M. Dorne
- Methodology and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43216 Parma, Italy
| |
Collapse
|
29
|
Bellavia A, Zou R, Björvang RD, Roos K, Sjunnesson Y, Hallberg I, Holte J, Pikki A, Lenters V, Portengen L, Koekkoek J, Lamoree M, Van Duursen M, Vermeulen R, Salumets A, Velthut-Meikas A, Damdimopoulou P. Association between chemical mixtures and female fertility in women undergoing assisted reproduction in Sweden and Estonia. ENVIRONMENTAL RESEARCH 2023; 216:114447. [PMID: 36181890 PMCID: PMC9729501 DOI: 10.1016/j.envres.2022.114447] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 05/07/2023]
Abstract
OBJECTIVE Women of reproductive age are exposed to ubiquitous chemicals such as phthalates, parabens, and per- and polyfluoroalkyl substances (PFAS), which have potential endocrine disrupting properties and might affect fertility. Our objective was to investigate associations between potential endocrine-disrupting chemicals (EDCs) and female fertility in two cohorts of women attending fertility clinics. METHODS In a total population of 333 women in Sweden and Estonia, we studied the associations between chemicals and female fertility, evaluating ovarian sensitivity index (OSI) as an indicator of ovarian response, as well as clinical pregnancy and live birth from fresh and frozen embryo transfers. We measured 59 chemicals in follicular fluid samples and detected 3 phthalate metabolites, di-2-ethylhexyl phthalate (DEHP) metabolites, 1 paraben, and 6 PFAS in >90% of the women. Associations were evaluated using multivariable-adjusted linear or logistic regression, categorizing EDCs into quartiles of their distributions, as well as with Bayesian Kernel Machine Regression. RESULTS We observed statistically significant lower OSI at higher concentrations of the sum of DEHP metabolites in the Swedish cohort (Q4 vs Q1, β = -0.21, 95% CI: -0.38, -0.05) and methylparaben in the Estonian cohort (Q3 vs Q1, β = -0.22, 95% CI: -0.44, -0.01). Signals of potential associations were also observed at higher concentrations of PFUnDA in both the combined population (Q2 vs. Q1, β = -0.16, 95% CI -0.31, -0.02) and the Estonian population (Q2 vs. Q1, β = -0.27, 95% CI -0.45, -0.08), and for PFOA in the Estonian population (Q4 vs. Q1, β = -0.31, 95% CI -0.61, -0.01). Associations of chemicals with clinical pregnancy and live birth presented wide confidence intervals. CONCLUSIONS Within a large chemical mixture, we observed significant inverse associations levels of DEHP metabolites and methylparaben, and possibly PFUnDA and PFOA, with OSI, suggesting that these chemicals may contribute to altered ovarian function and infertility in women.
Collapse
Affiliation(s)
- Andrea Bellavia
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Runyu Zou
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Richelle D Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Nova Vita Clinic AS, Tallinn, Estonia
| | - Ylva Sjunnesson
- Department of Clinical Sciences, Division of Reproduction, The Center for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Hallberg
- Department of Clinical Sciences, Division of Reproduction, The Center for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Holte
- Carl von Linnékliniken, Uppsala, Sweden; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anne Pikki
- Carl von Linnékliniken, Uppsala, Sweden; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Virissa Lenters
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marja Lamoree
- Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Majorie Van Duursen
- Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Competence Center on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Abraham K. Comment on "Maternal Exposure to Per- and Polyfluoroalkyl Substances (PFAS) and Male Reproductive Function in Young Adulthood: Combined Exposure to Seven PFAS". ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:18003. [PMID: 36719215 PMCID: PMC9888239 DOI: 10.1289/ehp12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Klaus Abraham
- German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
31
|
Venegas-Calerón M, Napier JA. New alternative sources of omega-3 fish oil. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516467 DOI: 10.1016/bs.afnr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acids play an important role in brain growth and development, as well as in the health of the body. These fatty acids are traditionally found in seafood, such as fish, fish oils, and algae. They can also be added to food or consumed through dietary supplements. Due to a lack of supply to meet current demand and the potential for adverse effects from excessive consumption of fish and seafood, new alternatives are being sought to achieve the recommended levels in a safe and sustainable manner. New sources have been studied and new production mechanisms have been developed. These new proposals, as well as the importance of these fatty acids, are discussed in this paper.
Collapse
|
32
|
Kossack ME, Manz KE, Martin NR, Pennell KD, Plavicki J. Environmentally relevant uptake, elimination, and metabolic changes following early embryonic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. CHEMOSPHERE 2023; 310:136723. [PMID: 36241106 PMCID: PMC9835613 DOI: 10.1016/j.chemosphere.2022.136723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
Dioxin and dioxin-like compounds are ubiquitous environmental contaminants that induce toxicity by binding to the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The zebrafish model has been used to define the developmental toxicity observed following exposure to exogenous AHR ligands such as the potent agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin, TCDD). While the model has successfully identified cellular targets of TCDD and molecular mechanisms mediating TCDD-induced phenotypes, fundamental information such as the body burden produced by standard exposure models is still unknown. We performed targeted gas chromatography (GC) high-resolution mass spectrometry (HRMS) in tandem with non-targeted liquid chromatography (LC) HRMS to quantify TCDD uptake, model the elimination dynamics of TCDD, and determine how TCDD exposure affects the zebrafish metabolome. We found that 50 ppt, 10 ppb, and 1 ppb waterborne exposures to TCDD during early embryogenesis produced environmentally relevant body burdens: 38 ± 4.34, 26.6 ± 1.2, and 8.53 ± 0.341 pg/embryo, respectively, at 24 hours post fertilization. TCDD exposure was associated with the dysregulation of metabolic pathways that are associated with the AHR signaling pathway as well as pathways shown to be affected in mammals following TCDD exposure. In addition, we discovered that TCDD exposure affected several metabolic pathways that are critical for brain development and function including glutamate metabolism, chondroitin sulfate biosynthesis, and tyrosine metabolism. Together, these data demonstrate that existing exposure methods produce environmentally relevant body burdens of TCDD in zebrafish and provide insight into the biochemical pathways impacted by toxicant-induced AHR activation.
Collapse
Affiliation(s)
- Michelle E Kossack
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Katherine E Manz
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Jessica Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
33
|
Sana S, Qadir A, Evans NP, Mumtaz M, Javaid A, Khan A, Kashif SUR, Rehman HU, Hashmi MZ. Human health risk surveillance of polychlorinated biphenyls in bovine milk from alluvial plain of Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12965-12978. [PMID: 36121631 DOI: 10.1007/s11356-022-22942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Punjab is the leading province of Pakistan in the production of bovine milk and its consumption. Rapid industrialization, high energy demand, and the production of waste have increased the risk of polychlorinated biphenyls (PCBs) toxicity in the environment. This research work was designed to assess human dietary exposure of ∑PCBs17 congeners through ingestion of buffalo and cow's milk from eight main districts of Punjab, Pakistan. The average concentrations of ∑DL-PCBs (8.74 ng g-1 and 14.60 ng g-1) and ∑I-PCBs (11.54 ng g-1 and 18.68 ng g-1) in buffalo and cow milk samples were analyzed, respectively. The PCB-156 was predominantly high congener found in both buffalo (2.84 ng g-1) and cow milk (2.86 ng g-1). It was found that the highest PCBs in bovine milk samples were observed in close vicinities of urban and industrial areas. The estimated daily consumptions of DL-PCBs and I-PCBs, from buffalo and cow milk, were below the acceptable daily intake for both adults and children. Moreover, hazard quotients (HQ) of the ∑PCBs17 congener value were less than 1.0 in adults and greater in the case of children reflecting the high chances of cancer. Furthermore, comprehensive monitoring for childhood cancer is recommended to establish the relationship in future studies.
Collapse
Affiliation(s)
- Saman Sana
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Neil P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Ambreena Javaid
- Department of Geography, Kinnaird College for Women University, Lahore, Pakistan
| | - Amjad Khan
- Lahore Garrison University, Lahore, Pakistan
| | - Saif-Ur-Rehman Kashif
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Habib Ur Rehman
- Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | |
Collapse
|
34
|
Langdal A, Eilertsen KE, Kjellevold M, Heimstad ES, Jensen IJ, Elvevoll EO. Climate Performance, Environmental Toxins and Nutrient Density of the Underutilized Norwegian Orange-Footed Sea Cucumber ( Cucumaria frondosa). Foods 2022; 12:114. [PMID: 36613330 PMCID: PMC9818526 DOI: 10.3390/foods12010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Low trophic species are often mentioned as additional food sources to achieve broader and more sustainable utilisation of the ocean. The aim of this study was to map the food potential of Norwegian orange-footed sea cucumber (Cucumaria frondosa). C. frondosa contained 7% protein, 1% lipids with a high proportion of polyunsaturated fatty acids, and a variety of micronutrients. The nutrient density scores (NDS) of C. frondosa were above average compared towards daily recommended intakes (DRI) for men and women (age 31-60) but below when capped at 100% of DRI. The concentrations of persistent organic pollutants and trace elements were in general low, except for inorganic arsenic (iAs) (0.73 mg per kg) which exceeded the limits deemed safe by food authorities. However, the small number of samples analysed for iAs lowers the ability to draw a firm conclusion. The carbon footprint from a value chain with a dredge fishery, processing in Norway and retail in Asia was assessed to 8 kg carbon dioxide equivalent (CO2eq.) per kg C. frondosa, the fishery causing 90%. Although, C. frondosa has some nutritional benefits, the carbon footprint or possible content of iAs may restrict the consumption.
Collapse
Affiliation(s)
- Andreas Langdal
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Karl-Erik Eilertsen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Marian Kjellevold
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Eldbjørg S. Heimstad
- NILU—Norwegian Institute for Air Research, The Fram Centre, N-9296 Tromsø, Norway
| | - Ida-Johanne Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Edel O. Elvevoll
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
35
|
Persistent Organic Pollutants and Fatty Acid Profile in a Typical Cheese from Extensive Farms: First Assessment of Human Exposure by Dietary Intake. Animals (Basel) 2022; 12:ani12243476. [PMID: 36552395 PMCID: PMC9774984 DOI: 10.3390/ani12243476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Dairy products represent an important source of beneficial substances for humans. At the same time, they can expose the consumers to environmental contaminants ingested by animals through their diet, influencing their health negatively. This experiment aims to evaluate the risk and benefits related to the consumption of typical stretched cheeses, considering their fatty acid (FA) profile and persistent organic pollutants (POPs) content. Six representative farms, two of them organic, raising Cinisara cattle were selected, considering the typical extensive management systems, based on feeding of natural pasture integrated with concentrate and hay depending on the availability of forage on pastures. A total of 18 cheeses produced in winter, spring and summer with bulk milk of each farm were sampled and analyzed. The chemical composition of cheeses was influenced by farm management, and the FA profile mainly by the season. In particular, cheeses made in spring showed a healthier FA profile with the content of polyunsaturated fatty acids (PUFA), of omega3-PUFA and omega6/omega3 ratio pair to 7.29%, 1.44% and 1.32, respectively, while in winter 5.44%, 0.98% and 2.55, respectively, and in summer 4.77% 0.49% and 3.04, respectively. Due to high levels of feeding integration, cheese made in winter presented unhealthier characteristics compared to the cheeses made in spring and summer, showing high levels of saturated FA (66.2%, 64.2% and 65.5%, respectively), and large contents of polycyclic aromatic hydrocarbons (PAH) (57.07 ng/g fat, 36.25 ng/g fat and 10.22 ng/g fat, respectively) and polychlorinated biphenyls (PCBs) (36.19 ng/g fat, 4.68 ng/g fat and 3.73 ng/g fat, respectively), mainly in those from non-organic farms. Levels of PCBs considered to be hazardous to human health were found in nine samples.
Collapse
|
36
|
Elvevoll EO, James D, Toppe J, Gamarro EG, Jensen IJ. Food Safety Risks Posed by Heavy Metals and Persistent Organic Pollutants (POPs) related to Consumption of Sea Cucumbers. Foods 2022; 11:3992. [PMID: 36553734 PMCID: PMC9778379 DOI: 10.3390/foods11243992] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The global production of sea cucumbers was 245 thousand tons in 2020. Sea cucumbers are important food items in Asian and Pacific cuisines, the highest proportion being consumed in China as "bêche-de-mer" dried, gutted, boiled and salted body wall. However, consumption of sea cucumbers is expanding in China and globally, and the high demand has led to decline in populations of sea cucumbers, due to overexploitation. Aquaculture, together with novel fisheries on new species in new regions is easing the demand. Thus, an assessment of food safety is warranted. A literature search on food hazards was performed. A high proportion of the selected papers concerned heavy metals and metalloid hazards, such as mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As). No specific maximum limits (MLs) have been set for contents of these in sea cucumbers. Thus, the contents were compared with maximum limits set for aquatic animals in general or bivalve molluscs if available. With regard to Hg and Cd levels, none of the samples exceeded limits set by the European Commission or the National Standard of China, while for Pb, samples from highly industrialised areas exceeded the limits. Surprisingly, data on contaminants such as POPs, including dioxins and dl-PCB, PAH and PFAS as well as microbial hazards were scarce. The availability of fresh sea cucumber has increased due to aquaculture. To preserve the original flavour some consumers are reported to prefer to eat raw sea cucumber products, sashimi and sushi, which inevitably causes challenges from the microbial food safety perspective. Altogether, this paper highlights specific needs for knowledge, in particular when harvesting new species of sea cucumbers or in industrialized regions. Systematic monitoring activities, appropriate guidelines and regulations are highly warranted to guide the utilization of sea cucumbers.
Collapse
Affiliation(s)
- Edel Oddny Elvevoll
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, N-9037 Tromsoe, Norway
| | - David James
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Jogeir Toppe
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Esther Garrido Gamarro
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Ida-Johanne Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, N-9037 Tromsoe, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| |
Collapse
|
37
|
Stadion M, Hackethal C, Blume K, Wobst B, Abraham K, Fechner C, Lindtner O, Sarvan I. The first German total diet study (BfR MEAL Study) confirms highest levels of dioxins and dioxin-like polychlorinated biphenyls in foods of animal origin. Food Chem X 2022; 16:100459. [PMID: 36185103 PMCID: PMC9523095 DOI: 10.1016/j.fochx.2022.100459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Presentation of PCDD/F and dl-PCB data in 300 foods prepared as consumed in Germany. By wet weight, highest levels in fish products, fatty fish, sheep liver, and butter. By fat weight, highest levels in game, dairy products, and sheep meat. MEAL foods did not exceed EU maximum levels. Evaluation of the impact of regions and type of production.
The first German Total Diet Study, called the BfR MEAL Study, generated a comprehensive dataset of polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in foods representative for the consumption habits in households in Germany. PCDD/Fs and dl-PCBs are persistent organic pollutants. Dietary intake is considered to be the most relevant exposure pathway for humans. Levels were examined in 300 foods that were prepared as typically consumed by the population in Germany. Highest PCDD/F and dl-PCB levels were detected in animal-based foods such as fish, butter, dairy products, liver, and meat. The comparison of conventionally and organically produced foods revealed a trend to slightly higher contents in organically produced foods. Sampling discriminated by region and season showed no major differences. Analysed occurrence data will improve future dietary exposure and food safety assessments in Germany.
Collapse
|
38
|
Chlorinated Persistent Organic Pollutants (PCDD/Fs and PCBs) in Loggerhead Sea Turtles Stranded along the Central Adriatic Coast. Animals (Basel) 2022; 12:ani12223177. [PMID: 36428404 PMCID: PMC9686616 DOI: 10.3390/ani12223177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Persistent organic pollutants are widespread in the marine environment. They can bioaccumulate and biomagnify in marine organisms through the food web with a potentially toxic effect on living organisms. The sea turtle Caretta caretta is a carnivorous animal with opportunistic feeding behavior. These turtles tend to bioaccumulate pollutants through food, and hence they can be considered an indicator of chemical pollutants in the marine ecosystem. In this study, 44 loggerhead sea turtles were considered, and liver and fat tissue were sampled from each of them to investigate the levels of dioxins (PCDD/Fs) and polychlorinated biphenyls (PCBs) in sea turtles and their potential correlation with sex and size in terms of curved carapace length (CCL). Results suggested that these contaminants were easily bioaccumulated, and PCBs were predominant compared to dioxins in both liver and fat tissue. The congener patterns were similar to those found in sea fish. Moreover, there were no differences in the contamination levels between females and males, nor was there a correlation with the size. There is a need to harmonize the methodological approaches to better evaluate the results and trends over time and to monitor the species and indirectly the health status of the marine environment.
Collapse
|
39
|
Liu X, Cao W, Liu X, Zhou Y, Wen S. Associations between Maternal Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Serum Concentrations and Pulse Pressure in Early Pregnancy: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13785. [PMID: 36360663 PMCID: PMC9654335 DOI: 10.3390/ijerph192113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pulse pressure (PP) is the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP), and an independent predictor of cardiovascular risk. Previous research suggests, with different conclusions, that exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) could affect blood pressure (BP). We conducted a cross-sectional study to determine the association of dioxin exposure with PP in early pregnancy. A total of 305 pregnant women in early pregnancy in Yingcheng, China, recruited from May 2018 to February 2021, were included in this study. We measured 17 congeners of PCDD/Fs in maternal serum via high-resolution gas chromatography tandem high-resolution mass spectrometry. A generalized linear regression model was used to analyze the influencing factors of dioxin exposure and their relationships with PP. The levels of total PCDD/Fs (∑PCDD/Fs) ranged from 163.52 pg/g lipid to 1,513,949.52 pg/g lipid, with a mean of 10,474.22 pg/g lipid. The mean toxicity equivalent (TEQ) of total PCDD/Fs (∑TEQ-PCDD/Fs) was 42.03 pg/g lipid. The ratio of tetrachlorinated to octa-chlorinated congeners in maternal serum was enriched with an increasing number of chlorines. Pregnant women with college and above education had higher concentrations of ∑PCDD/Fs than those with education levels of junior high school and below (β = 0.34, 95% CI: 0.01, 0.67). The adjusted model for ∑TEQ-PCDD/Fs was significantly and negatively associated with PP (β = -1.79, 95% CI: -2.91, -0.68). High levels of dioxins were found in this area, and exposure to dioxins may affect the PP of women in early pregnancy, with health risks.
Collapse
Affiliation(s)
| | | | | | - Yan Zhou
- Correspondence: (Y.Z.); (S.W.); Tel.: +86-027-8765-5221 (Y.Z.)
| | - Sheng Wen
- Correspondence: (Y.Z.); (S.W.); Tel.: +86-027-8765-5221 (Y.Z.)
| |
Collapse
|
40
|
Zhang X, Wang L, Liu X, Liu X, Cao W, He J, Fan J, Wen S, Zhou Y. Distribution and bioaccumulation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the tissues of Yorkshire pig. J Food Sci 2022; 87:5142-5152. [PMID: 36226778 DOI: 10.1111/1750-3841.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in various foods continuously concern the public. Pork and its byproducts, especially from Yorkshire pigs, are the largest meat food consumed by the general population in China. This study aims to investigate the distribution of PCDD/Fs in different tissues of Yorkshire pigs to understand their bioaccumulation. Yorkshire pigs were fed a known amount of PCDD/Fs through fly ash. PCDD/Fs were determined by isotope dilution method with a gas chromatography-high resolution mass spectrometer. The liver had the highest concentration levels (2041.33 pg/g lipid) and toxic equivalents values (69.14 pg/g lipid), followed by the spleen and lung, and the lowest ones in the brain. The liver also had the highest bioaccumulation of PCDD/Fs, and this level was considerably higher than that of other tissues. This study showed a strong accumulation capacity of the liver for polychlorinated dibenzo-p-dioxins and dibenzofurans under short-term exposure conditions, suggesting that the liver is a more sensitive tissue for monitoring PCDD/Fs in food safety risk monitoring. PRACTICAL APPLICATION: This paper may help the consumer in making food choices to minimize the exposure risk to Polychlorinated dibenzo-p-dioxins and dibenzofurans.
Collapse
Affiliation(s)
- Xuli Zhang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.,College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaofang Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jingyi He
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jingli Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.,College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| |
Collapse
|
41
|
Ermler S, Kortenkamp A. Systematic review of associations of polychlorinated biphenyl (PCB) exposure with declining semen quality in support of the derivation of reference doses for mixture risk assessments. Environ Health 2022; 21:94. [PMID: 36217156 PMCID: PMC9552438 DOI: 10.1186/s12940-022-00904-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mixture risk assessments require reference doses for common health endpoints of all the chemicals to be considered together. In support of a mixture risk assessment for male reproductive health, we conducted a systematic review of the literature on associations between exposures to Polychlorinated Biphenyls (PCBs) and declines in semen quality. PCBs can act as Aryl-hydrocarbon Receptor (AhR)-agonists and Androgen Receptor (AR)-antagonists, both mechanisms which can affect sperm parameters. PCBs and other AR-antagonists can produce additive combination effects. Based on these observations our objective was to systematically gather data from animal and human studies to derive a reference dose for declines in semen quality for individual PCB. METHODS We systematically reviewed and evaluated the evidence in human epidemiological and experimental animal studies on associations between PCBs and deteriorations in semen quality. Human data and findings from animal studies with PCB mixtures were considered as supporting evidence. Information for individual congeners from animal studies was required for inclusion in mixture risk assessment. Using a robust confidence rating approach, we identified suitable studies to derive reference doses for individual PCB congeners. RESULTS Evaluation of human epidemiological studies revealed several reports of adverse effects on sperm parameters linked to PCB exposures, although some studies reported improved semen quality. Our review of experimental animal studies found that treatments with PCBs affected semen quality, in most cases adversely. We found robust evidence that PCB-118 and -169 were linked to declines in semen quality. Evidence for adverse effects of PCB-126, -132, -149, and -153 was moderate, whereas for PCB-77 it was slight and for PCB-180 indeterminate. Using widely accepted risk assessment procedures, we estimated reference dose values of 0.0029 µg/kg/day for PCB-118 and 0.00533 µg/kg/day for PCB-169. In addition, we derived values for PCB-126: 0.000073 µg/kg/day, PCB-132: 0.0228 µg/kg/day, PCB-149: 0.656 µg/kg/day, and PCB-153: 0.0058 µg/kg/day. CONCLUSIONS We found robust evidence for links between PCB exposure and deteriorations in semen quality, and derived reference doses for a set of congeners. We intend to use these values in combination with congener-specific exposure data in a mixture risk assessment for declines in semen quality, involving several other antiandrogenic chemicals.
Collapse
Affiliation(s)
- Sibylle Ermler
- College of Health, Medicine and Life Sciences, Centre for Pollution Research and Policy, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Andreas Kortenkamp
- College of Health, Medicine and Life Sciences, Centre for Pollution Research and Policy, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
42
|
Battisti S, Scaramozzino P, Boselli C, Busico F, Berretta S, Sala M, Neri B. A retrospective study on dioxins and dioxin-like polychlorinated biphenyls in milk and dairy products from the Latium region (Italy) over a 7-year study period (2011-2017). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69424-69438. [PMID: 35567680 PMCID: PMC9512717 DOI: 10.1007/s11356-022-20644-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
This study reports the data of polychlorinated dibenzo-p-dioxins (PCDDs), -furans (PCDFs), and polychlorinated biphenyls dioxin-like (dl PCBs) measured in a total of 260 samples of the dairy supply chain collected over a period of 7 years (2011-2017) in the Latium region (Italy). Levels and average profiles of congeners were reported for each group of the analyzed dairy matrices, and any differences between different sampling strategies were considered (around likely pollutant sources or casual sampling). Of the samples, 95.4% resulted compliant with the regulated levels; only samples belonging to the "sheep bulk milk" matrix were found to be above either the action levels or the maximum levels (tot. 12 samples). Raw milk of the sheep species showed the highest averages (PCDD/F 0.248 and dl PCB 0.966 WHO TEQ pg/g of fat) compared to the milk of other species. The buffalo milk showed a content of dl PCB significantly lower (dl PCB: 0.371 WHO TEQ pg/g of fat) than the sheep milk (p<0.05). Dioxins were found to be superior to furans in almost all dairy products, except in the noncompliant samples where furans were higher. The OCDD was found to be the most abundant congener in almost all dairy products. This study provides a first list of reference values for background contamination of the dairy supply chain in the Latium region. These pre-existing values will be useful in all cases of environmental pollution to identify critical situations.
Collapse
Affiliation(s)
- Sabrina Battisti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', Roma, Italy.
| | - Paola Scaramozzino
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', Roma, Italy
| | - Carlo Boselli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', Roma, Italy
| | - Fabio Busico
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', Roma, Italy
| | - Sesto Berretta
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', Roma, Italy
| | - Marcello Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', Roma, Italy
| | - Bruno Neri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', Roma, Italy
| |
Collapse
|
43
|
Fechner C, Frantzen S, Lindtner O, Mathisen GH, Lillegaard ITL. Human dietary exposure to dioxins and dioxin-like PCBs through the consumption of Atlantic herring from fishing areas in the Norwegian Sea and Baltic Sea. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
Abstract
AbstractThe concentrations of dioxins [polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)], and dioxin-like polychlorinated biphenyls (DL-PCBs) in Atlantic herring depend on the fishing area. These substances originate from various anthropogenic sources and accumulate in the environment and in food. The influence of country-specific contaminant concentrations on human dietary exposure was studied exemplary for herring to show the influence of fish origin. PCDD/F and DL-PCB concentrations in herring from the Norwegian Sea and the Baltic Sea were combined with country-specific herring consumption. Herring concentrations showed geographical variation. For herring consumers, the 50th percentile dietary exposure to the total sum of PCDD/Fs and DL-PCBs amounted to 1.2 and 8.9 pg WHO-2005-TEQ/kg BW/week for Norway and Germany, respectively. The different exposure was mainly related to higher concentrations in herring from the Baltic Sea, rather than in herring from the Norwegian Sea. If contaminant concentrations are influenced by geographical origin, this should be integrated into the dietary exposure assessments. For herring, relevant fishing areas should be integrated into the sampling strategy to generate concentration data. The usage of country-specific data could refine exposure assessments.
Collapse
|
44
|
Akuamoa F, Hoogenboom RLAP, Weide Y, van der Weg G, Rietjens IMCM, Bovee TFH. Presence and risks of polycyclic aromatic hydrocarbons, dioxins and dioxin-like PCBs in dietary plant supplements as elucidated by a combined DR CALUX ® bioassay and GC-HRMS based approach. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1576-1590. [PMID: 35904509 DOI: 10.1080/19440049.2022.2094473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Plant-based dietary supplements may contain undesirable contaminants such as polycyclic aromatic hydrocarbons, dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) due to the sources of raw materials or processing methods used. The presence of these contaminants in a series of herbal supplements sold on the Ghanaian market for improving sexual performance was examined using the DR CALUX® bioassay in combination with GC-HRMS analysis. Overall, cell responses at 4 and 48 h exposure to extracts prepared without an acid-silica clean-up were relatively higher than the responses obtained from extracts prepared with an acid-silica clean-up. This indicated that the 40 supplements contained only low levels of stable aryl hydrocarbon receptor (AhR) agonists like polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dl-PCBs, while some contained substantial amounts of less stable AhR-agonists. Ten supplements selected for confirmation with GC-HRMS analysis contained PCDD/Fs and dl-PCBs at levels ranging from 0.01 to 0.19 pg toxic equivalent (TEQ)/g only, while the level of the sum of 4 polycyclic aromatic hydrocarbons (Σ4PAHs) representing less stable AhR agonists, ranged from not detected (ND) to 25.5 ng/g. These concentrations were in line with the responses observed in the DR CALUX® bioassay. The concentration of PCDD/Fs and dl-PCBs corresponded to estimated daily intakes (EDIs) ranging from 0.01 to 1.20 pg TEQ/day, or 0.001 to 0.12 pg TEQ/kg bw/week for a 70 kg bw consumer, which was below the established tolerable weekly intake (TWI) of 2 pg TEQ/kg bw/week, thus indicating low concern for consumers' health. Similarly, the EDIs based on the detected Σ4PAHs in supplements ranged from 7.2 to 111 ng/day, or 0.1 to 1.6 ng/kg bw/day, which corresponded to MOE values above 10,000, indicating a low health concern.
Collapse
Affiliation(s)
- Felicia Akuamoa
- Wageningen Food Safety Research, Wageningen, The Netherlands.,Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.,Applied Radiation Biology Centre, Ghana Atomic Energy Commission, Accra, Ghana
| | | | - Yoran Weide
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen, The Netherlands
| |
Collapse
|
45
|
Love DC, Thorne-Lyman AL, Conrad Z, Gephart JA, Asche F, Godo-Solo D, McDowell A, Nussbaumer EM, Bloem MW. Affordability influences nutritional quality of seafood consumption among income and race/ethnicity groups in the United States. Am J Clin Nutr 2022; 116:415-425. [PMID: 35691612 PMCID: PMC9348982 DOI: 10.1093/ajcn/nqac099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The 2020 US Dietary Guidelines for Americans recommend that the US population consume more seafood. Most analyses of seafood consumption ignore heterogeneity in consumption patterns by species, nutritional content, production methods, and price, which have implications for applying recommendations. OBJECTIVES We assessed seafood intake among adults by socioeconomic and demographic groups, as well as the cost of seafood at retail to identify affordable and nutritious options. METHODS NHANES 2011-2018 dietary data (n = 17,559 total, n = 3285 eating seafood) were used to assess adult (≥20 y) intake of seafood in relation to income and race/ethnicity. Multivariable linear regression assessed the association between seafood consumption and income, adjusted for age, sex, and race/ethnicity, and the association between nutrients and seafood price, using Nielsen 2017-2019 retail sales data, adjusted for sales volume. RESULTS Low-income groups consume slightly less seafood than high-income groups [low income: mean 120.2 (95% CI: 103.5, 137.2) g/wk; high income: 141.8 (119.1, 164.1) g/wk] but substantially less seafood that is high in long-chain n-3 (ω-3) PUFAs [lower income: 21.3 (17.3, 25.5) g/wk; higher income: 46.8 (35.4, 57.8) g/wk]. Intake rates, species, and production method choices varied by race/ethnicity groups and within race/ethnicity groups by income. Retail seafood as a whole costs more than other protein foods (e.g., meat, poultry, eggs, beans), and fresh seafood high in n-3 PUFAs costs more (P < 0.002) than fresh seafood low in n-3 PUFAs. Retail seafood is available in a wide range of price points and product forms, and some lower-cost fish and shellfish were high in n-3 PUFAs, calcium, iron, selenium, and vitamins B-12 and D. CONCLUSIONS New insights into the relation between seafood affordability and consumption patterns among income and ethnicity groups suggest that specific policies and interventions may be needed to enhance the consumption of seafood by different groups.
Collapse
Affiliation(s)
| | - Andrew L Thorne-Lyman
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA,Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zach Conrad
- Department of Kinesiology, William & Mary, Williamsburg, VA, USA,Global Research Institute, William & Mary, Williamsburg, VA, USA
| | - Jessica A Gephart
- Department of Environmental Science, American University, Washington, DC, USA
| | - Frank Asche
- School of Forest, Fisheries and Geomatics Sciences and Food Systems Institute, University of Florida, Gainesville, FL, USA,Department of Safety, Economics and Planning, University of Stavanger, Stavanger, Norway
| | - Dakoury Godo-Solo
- Department of Environmental Science, American University, Washington, DC, USA
| | - Acree McDowell
- Department of Kinesiology, William & Mary, Williamsburg, VA, USA,Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Elizabeth M Nussbaumer
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Martin W Bloem
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
46
|
Fiolet T, Casagrande C, Nicolas G, Horvath Z, Frenoy P, Weiderpass E, Katzke V, Kaaks R, Rodriguez-Barranco M, Panico S, Sacerdote C, Manjer J, Sonestedt E, Grioni S, Agudo A, Rylander C, Haugdahl Nøst T, Skeie G, Tjønneland A, Raaschou-Nielsen O, Ardanaz E, Amiano P, Dolores Chirlaque López M, Schulze MB, Wennberg M, Harlid S, Cairat M, Kvaskoff M, Huybrechts I, Romana Mancini F. Dietary intakes of dioxins and polychlorobiphenyls (PCBs) and breast cancer risk in 9 European countries. ENVIRONMENT INTERNATIONAL 2022; 163:107213. [PMID: 35364416 DOI: 10.1016/j.envint.2022.107213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Dioxins and polychlorobiphenyls (PCBs) are persistent organic pollutants that have demonstrated endocrine disrupting properties. Several of these chemicals are carcinogenic and positive associations have been suggested with breast cancer risk. In general population, diet represents the main source of exposure. METHODS Associations between dietary intake of 17 dioxins and 35 PCBs and breast cancer were evaluated in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort from nine European countries using multivariable Cox regressions. The present study included 318,607 women (mean ± SD age: 50.7 ± 9.7) with 13,241 incident invasive breast cancers and a median follow-up of 14.9 years (IQR = 13.5-16.4). Dietary intake of dioxins and PCBs was assessed combining EPIC food consumption data with food contamination data provided by the European Food Safety Authority. RESULTS Exposure to dioxins, dioxins + Dioxin-Like-PCBs, Dioxin-Like-PCBs (DL-PCBs), and Non-Dioxin-Like-PCBs (NDL-PCBs) estimated from reported dietary intakes were not associated with breast cancer incidence, with the following hazard ratios (HRs) and 95% confidence intervals for an increment of 1 SD: HRdioxins = 1.00 (0.98 to 1.02), HRdioxins+DL-PCB = 1.01 (0.98 to 1.03), HRDL-PCB = 1.01 (0.98 to 1.03), and HRNDL-PCB = 1.01 (0.99 to 1.03). Results remained unchanged when analyzing intakes as quintile groups, as well as when analyses were run separately per country, or separating breast cancer cases based on estrogen receptor status or after further adjustments on main contributing food groups to PCBs and dioxins intake and nutritional factors. CONCLUSIONS This large European prospective study does not support the hypothesis of an association between dietary intake of dioxins and PCBs and breast cancer risk.
Collapse
Affiliation(s)
- Thibault Fiolet
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805 Villejuif, France
| | - Corinne Casagrande
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372 Lyon, France
| | - Geneviève Nicolas
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372 Lyon, France
| | - Zsuzsanna Horvath
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Pauline Frenoy
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805 Villejuif, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372 Lyon, France
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Salvatore Panico
- Dipartimento di medicina clinica e chirurgia Federico II University, Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Via Santena 7, 10126 Turin, Italy
| | - Jonas Manjer
- Dept Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian, 1, 20133 Milano, Italy
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain. Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Charlotta Rylander
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Denmark
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Eva Ardanaz
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Pilar Amiano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, Biodonostia Health Research Institute, Group of Epidemiology of Chronic and Communicable Diseases, San Sebastián, Spain
| | - María Dolores Chirlaque López
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Matthias B Schulze
- Department of Molecular Epidemiology, Germen Institute of Human Nutrition, Potsdam-Rehruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Manon Cairat
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805 Villejuif, France; Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372 Lyon, France
| | - Marina Kvaskoff
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805 Villejuif, France
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372 Lyon, France
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805 Villejuif, France.
| |
Collapse
|
47
|
Bernard A. Dermal Exposure to Hazardous Chemicals in Baby Diapers: A Re-Evaluation of the Quantitative Health Risk Assessment Conducted by The French Agency for Food, Environmental and Occupational Health and Safety (ANSES). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4159. [PMID: 35409842 PMCID: PMC8998495 DOI: 10.3390/ijerph19074159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 02/04/2023]
Abstract
In January 2019, the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) published an opinion on risks related to the presence of hazardous chemicals in infant diapers. ANSES found that health reference values were largely exceeded for polycyclic aromatic hydrocarbons (PAHs), dioxins (PCCD/Fs) and dioxin-like polychlorobiphenyls (DL-PCBs). The levels of formaldehyde and some fragrances were also considered potentially unsafe. Therefore, ANSES concluded that actions have to be taken to restrict levels of these contaminants in diapers. Under the exposure scenario deemed the most reliable by ANSES, estimates of cancer risks of the most potent PAHs detected in diapers exceeded 10-3 and hazard quotients for neurobehavioral effects attained values up to 66. Regarding dioxins and DL-PCBs, ANSES derived a hazard quotient of 12 for the risk of decreased sperm count at adult age. The aim of this study was to examine whether the exposure and risk assessment conducted by ANSES contained potential flaws that could explain such a high exceedance of health reference values. This study also put into perspective the exposure from diapers with that from breast milk whose benefits for children's health are undisputable despite contamination by PAHs, dioxins and DL-PCBS.
Collapse
Affiliation(s)
- Alfred Bernard
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
48
|
Standardised Sampling Approach for Investigating Pathogens or Environmental Chemicals in Wild Game at Community Hunts. Animals (Basel) 2022; 12:ani12070888. [PMID: 35405877 PMCID: PMC8996972 DOI: 10.3390/ani12070888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Wild game can host pathogens capable of infecting humans, livestock, and companion animals or accumulate environmental chemicals that may be transferred via food of animal origin. For food safety research, as well as for various other scientific purposes, the provision of a sufficient number of samples without unnecessary disturbance or killing of animals is a major limitation. With the presented approach, it was possible to obtain samples from game animals killed as part of standard ungulate management practice. Examples of organs, tissues, and other matrices that have been used in wild ungulate studies in Europe and that may be obtained through this approach are summarised as well. The basis of this approach was a framework agreement with the BImA, whereby federal forest officials carried out sampling with the help of hunters at drive hunts from 2017/18 to 2020/21 in Brandenburg, Germany. Numerous samples from four ungulate species were obtained. The number of sampled animals per hunt differed between hunting districts and hunting seasons. Districts with higher hunting bags also promise higher sampling success. This approach can serve as the basis for long-term monitoring of animal and public health threats associated with wildlife and is adaptable to other regions. Abstract Wildlife may host pathogens and chemicals of veterinary and public health relevance, as well as pathogens with significant economic relevance for domestic livestock. In conducting research on the occurrence and distribution of these agents in wildlife, a major challenge is the acquisition of a sufficient number of samples coupled with efficient use of manpower and time. The aim of this article is to present the methodology and output of a sampling approach for game animals, which was implemented from 2017/18 to 2020/21 at drive hunts in Brandenburg, Germany. The central element was a framework agreement with the BImA, whereby federal forest officials and other hunters collected most of the samples during field dressing. Further samples of game carcasses were obtained by scientists during subsequent gathering at a collection point. Altogether, 3185 samples from 938 wild ungulates of four species were obtained for various studies analysing—in this case—food-borne agents in game animals. Sampling was representative and reflected the proportional distribution of ungulate species hunted in Brandenburg. Hunting district and hunting season strongly influenced hunting bag and hence sampling success. This sampling approach was demonstrated to be a suitable basis for monitoring programs, that can be adapted to other regions.
Collapse
|
49
|
Makarov DA, Ovcharenko VV, Nebera EA, Kozhushkevich AI, Shelepchikov AA, Turbabina KА, Kalantaenko AM, Bardyugov NS, Gergel MA. Geographical distribution of dioxins, cadmium, and mercury concentrations in reindeer liver, kidneys, and muscle in the Russian Far North. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12176-12187. [PMID: 34564810 DOI: 10.1007/s11356-021-16310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Reindeer herding is a vitally important agricultural sector in the Russian Far North. It is believed that Northern ecosystems readily accumulate persistent pollutants because of trophic chains and climate features peculiar to the region. Reindeers graze on vast areas, and their seasonal migrations to distances of up to hundreds of kilometers in the North-South direction increase the likelihood of crossing a locally polluted area. Here, we present the results of a large-scale nationwide study of reindeer liver, kidneys, and muscle pollution by dioxins, cadmium, and mercury. Samples were taken in 2015-2020 from 41 locations in 8 reindeer-herding regions of Russia. Dioxins were determined in 383 samples of liver and 13 of muscle, and cadmium and mercury-in 505 samples of liver, 315 of kidneys, and 22 of muscle. Dioxin pollution has shown a clear geographical trend, i.e., liver concentrations of dioxins steadily decrease from the Western to the Eastern parts on the Russian Far North, with the highest concentration of 76.5 pg/g of fat WHO-TEQ. The discovered trend may be explained by the pattern of chemical plants' localization and by the density of reindeer population (as known from the literature sources). The highest concentrations of metals were found in kidneys (7.3 mg/kg of cadmium and 1.1 mg/kg of mercury). The contribution of local sources to cadmium and mercury pollution was found to be less than expected. We also suggest that reindeer liver may serve as a good additional indicator of environmental pollution by dioxins and heavy metals.
Collapse
Affiliation(s)
- Dmitry A Makarov
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation.
| | - Vladimir V Ovcharenko
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation
| | - Elena A Nebera
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation
| | - Aleksandr I Kozhushkevich
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation
| | - Andrey A Shelepchikov
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation
| | - Kseniya А Turbabina
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation
| | - Anastasia M Kalantaenko
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation
| | - Nikita S Bardyugov
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation
| | - Maria A Gergel
- Federal State Budgetary Institution, The Russian State Center for Animal Feed and Drug Standardization and Quality, Zvenigorodskoe shosse, 5, Moscow, Russian Federation
| |
Collapse
|
50
|
Montano L, Maugeri A, Volpe MG, Micali S, Mirone V, Mantovani A, Navarra M, Piscopo M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int J Mol Sci 2022; 23:ijms23031568. [PMID: 35163492 PMCID: PMC8836239 DOI: 10.3390/ijms23031568] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The role of environmental factors in influencing health status is well documented. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s entire defense system. Therefore, together with public health measures, evidence-based individual resilience measures are necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction and non-communicable diseases; this is especially relevant for workers occupationally exposed to pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is characterized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this review, we collected evidence from pre-clinical and clinical studies showing that the impairment of male fertility and gonadal development, as well as cancers of reproductive system, due to the exposure of organic and inorganic pollutants, may be counteracted by flavonoids.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL), 84124 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maria Grazia Volpe
- Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;
| | - Salvatore Micali
- Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Vincenzo Mirone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80126 Naples, Italy;
| | - Alberto Mantovani
- Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute, 00161 Roma, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence:
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|