1
|
Shrestha UM, Chae HD, Fang Q, Lee RJ, Packiasamy J, Huynh L, Blecha J, Huynh TL, VanBrocklin HF, Levi J, Seo Y. A Feasibility Study of [ 18F]F-AraG Positron Emission Tomography (PET) for Cardiac Imaging-Myocardial Viability in Ischemia-Reperfusion Injury Model. Mol Imaging Biol 2024; 26:869-878. [PMID: 39060882 DOI: 10.1007/s11307-024-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. PROCEDURE To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. RESULTS The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. CONCLUSIONS Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.
Collapse
Affiliation(s)
- Uttam M Shrestha
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA.
| | - Hee-Don Chae
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Qizhi Fang
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Juliet Packiasamy
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Lyna Huynh
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Jelena Levi
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| |
Collapse
|
2
|
Suliman S, Maison DP, Henrich TJ. The promise and reality of new immune profiling technologies. Nat Immunol 2024; 25:1765-1769. [PMID: 39242838 DOI: 10.1038/s41590-024-01948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Affiliation(s)
- Sara Suliman
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - David P Maison
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Vasquez JJ, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambhir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadk3295. [PMID: 38959327 PMCID: PMC11337933 DOI: 10.1126/scitranslmed.adk3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Dylan Ryder
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Robert Flavell
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Yingbing Wang
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Jelena Levi
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Sadie E. Munter
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Kofi A. Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Maya Aslam
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Walter Koch
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Gyula Szabo
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Uttam Shrestha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Joshua J. Vasquez
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Matthew S. Durstenfeld
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Nitasha Kumar
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Aruna Gambhir
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Henry F. VanBrocklin
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| |
Collapse
|
4
|
Levi J, Guglielmetti C, Henrich TJ, Yoon JC, Gokhale PC, Reardon DA, Packiasamy J, Huynh L, Cabrera H, Ruzevich M, Blecha J, Peluso MJ, Huynh TL, An SM, Dornan M, Belanger AP, Nguyen QD, Seo Y, Song H, Chaumeil MM, VanBrocklin HF, Chae HD. [ 18F]F-AraG imaging reveals association between neuroinflammation and brown- and bone marrow adipose tissue. Commun Biol 2024; 7:793. [PMID: 38951146 PMCID: PMC11217368 DOI: 10.1038/s42003-024-06494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, CA, USA.
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | | | | | | | - Lyna Huynh
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | - Hilda Cabrera
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | | | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Mark Dornan
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anthony P Belanger
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hong Song
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hee-Don Chae
- CellSight Technologies Incorporated, San Francisco, CA, USA
| |
Collapse
|
5
|
Stegnjaić G, Jevtić B, Lazarević M, Ignjatović Đ, Tomić M, Nikolovski N, Bjelobaba I, Momčilović M, Dimitrijević M, Miljković Đ, Stanisavljević S. Brain inflammation in experimental autoimmune encephalomyelitis induced in Dark Agouti rats with spinal cord homogenate. Immunol Lett 2024; 267:106852. [PMID: 38508497 DOI: 10.1016/j.imlet.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
We have recently characterized experimental autoimmune encephalomyelitis (EAE) induced in DA rats with spinal cord homogenate without complete Freund's adjuvant (CFA). The main advantage of this multiple sclerosis model is the lack of CFA-related confounding effects which represent the major obstacles in translating findings from EAE to multiple sclerosis. Here, antigen specificity of the cellular and humoral immune response directed against the central nervous system was explored. The reactivity of T and B cells to myelin basic protein, myelin oligodendrocyte glycoprotein, and β-synuclein was detected. Having in mind that reactivity against β-synuclein was previously associated with autoimmunity against the brain, the infiltration of immune cells into different brain compartments, i.e. pons, cerebellum, hippocampus, and cortex was determined. T cell infiltration was observed in all structures examined. This finding stimulated investigation of the effects of immunization on DA rat behavior using the elevated plus maze and the open field test. Rats recovered from EAE displayed increased anxiety-like behavior. These data support CFA-free EAE in DA rats as a useful model for multiple sclerosis research.
Collapse
Affiliation(s)
- Goran Stegnjaić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
7
|
Shrestha U, Chae HD, Fang Q, Lee RJ, Packiasamy J, Huynh L, Blecha J, Huynh TL, VanBrocklin HF, Levi J, Seo Y. A feasibility study of [18F]F-AraG positron emission tomography (PET) for cardiac imaging - myocardial viability in ischemia-reperfusion injury model. RESEARCH SQUARE 2024:rs.3.rs-4244476. [PMID: 38746162 PMCID: PMC11092840 DOI: 10.21203/rs.3.rs-4244476/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Purpose Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. Procedure To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. Results The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. Conclusions Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyna Huynh
- UCSF: University of California San Francisco
| | | | | | | | - Jelena Levi
- UCSF: University of California San Francisco
| | - Youngho Seo
- UCSF: University of California San Francisco
| |
Collapse
|
8
|
Omidvari N, Levi J, Abdelhafez YG, Wang Y, Nardo L, Daly ME, Wang G, Cherry SR. Total-body Dynamic Imaging and Kinetic Modeling of 18F-AraG in Healthy Individuals and a Non-Small Cell Lung Cancer Patient Undergoing Anti-PD-1 Immunotherapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.22.23295860. [PMID: 37790461 PMCID: PMC10543042 DOI: 10.1101/2023.09.22.23295860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Immunotherapies, especially the checkpoint inhibitors such as anti-PD-1 antibodies, have transformed cancer treatment by enhancing immune system's capability to target and kill cancer cells. However, predicting immunotherapy response remains challenging. 18F-AraG is a molecular imaging tracer targeting activated T cells, which may facilitate therapy response assessment by non-invasive quantification of immune cell activity within tumor microenvironment and elsewhere in the body. The aim of this study was to obtain preliminary data on total-body pharmacokinetics of 18F-AraG, as a potential quantitative biomarker for immune response evaluation. Methods The study consisted of 90-min total-body dynamic scans of four healthy subjects and one non-small cell lung cancer (NSCLC) patient, scanned before and after anti-PD-1 immunotherapy. Compartmental modeling with Akaike information criterion model selection were employed to analyze tracer kinetics in various organs. Additionally, seven sub-regions of the primary lung tumor and four mediastinal lymph nodes were analyzed. Practical identifiability analysis was performed to assess reliability of kinetic parameter estimation. Correlations of SUVmean, SUVR (tissue-to-blood ratio), and Logan plot slope K L o g a n with total volume-of-distribution V T were calculated to identify potential surrogates for kinetic modeling. Results Strong correlations were observed between K L o g a n and SUVR values with V T , suggesting that they can be used as promising surrogates for V T , especially in organs with low blood-volume fraction. Moreover, the practical identifiability analysis suggests that the dynamic 18F-AraG PET scans could potentially be shortened to 60 minutes, while maintaining quantification accuracy for all organs-of-interest. The study suggests that although 18F-AraG SUV images can provide insights on immune cell distribution, kinetic modeling or graphical analysis methods may be required for accurate quantification of immune response post-therapy. While SUVmean showed variable changes in different sub-regions of the tumor post-therapy, the SUVR, K L o g a n , and V T showed consistent increasing trends in all analyzed sub-regions of the tumor with high practical identifiability. Conclusion Our findings highlight the promise of 18F-AraG dynamic imaging as a non-invasive biomarker for quantifying the immune response to immunotherapy in cancer patients. The promising total-body kinetic modeling results also suggest potentially wider applications of the tracer in investigating the role of T cells in the immunopathogenesis of diseases.
Collapse
Affiliation(s)
- Negar Omidvari
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Jelena Levi
- CellSight Technologies Inc., San Francisco, CA, USA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
- Radiotherapy and Nuclear Medicine Department, South Egypt Cancer Institute, Assiut University, Egypt
| | - Yiran Wang
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Megan E Daly
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center School of Medicine, Sacramento, CA, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
9
|
Shah S, Turner ML, Chen X, Ances BM, Hammoud DA, Tucker EW. The Promise of Molecular Imaging: Focus on Central Nervous System Infections. J Infect Dis 2023; 228:S311-S321. [PMID: 37788502 PMCID: PMC11009511 DOI: 10.1093/infdis/jiad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Central nervous system (CNS) infections can lead to high mortality and severe morbidity. Diagnosis, monitoring, and assessing response to therapy of CNS infections is particularly challenging with traditional tools, such as microbiology, due to the dangers associated with invasive CNS procedures (ie, biopsy or surgical resection) to obtain tissues. Molecular imaging techniques like positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging have long been used to complement anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI), for in vivo evaluation of disease pathophysiology, progression, and treatment response. In this review, we detail the use of molecular imaging to delineate host-pathogen interactions, elucidate antimicrobial pharmacokinetics, and monitor treatment response. We also discuss the utility of pathogen-specific radiotracers to accurately diagnose CNS infections and strategies to develop radiotracers that would cross the blood-brain barrier.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Xueyi Chen
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Brier MR, Taha F. Measuring Pathology in Patients with Multiple Sclerosis Using Positron Emission Tomography. Curr Neurol Neurosci Rep 2023; 23:479-488. [PMID: 37418219 DOI: 10.1007/s11910-023-01285-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is characterized by a diverse and complex pathology. Clinical relapses, the hallmark of the disease, are accompanied by focal white matter lesions with intense inflammatory and demyelinating activity. Prevention of these relapses has been the major focus of pharmaceutical development, and it is now possible to dramatically reduce this inflammatory activity. Unfortunately, disability accumulation persists for many people living with multiple sclerosis owing to ongoing damage within existing lesions, pathology outside of discrete lesions, and other yet unknown factors. Understanding this complex pathological cascade will be critical to stopping progressive multiple sclerosis. Positron emission tomography uses biochemically specific radioligands to quantitatively measure pathological processes with molecular specificity. This review examines recent advances in the understanding of multiple sclerosis facilitated by positron emission tomography and identifies future avenues to expand understanding and treatment options. RECENT FINDINGS An increasing number of radiotracers allow for the quantitative measurement of inflammatory abnormalities, de- and re-myelination, and metabolic disruption associated with multiple sclerosis. The studies have identified contributions of ongoing, smoldering inflammation to accumulating tissue injury and clinical worsening. Myelin studies have quantified the dynamics of myelin loss and recovery. Lastly, metabolic changes have been found to contribute to symptom worsening. The molecular specificity facilitated by positron emission tomography in people living with multiple sclerosis will critically inform efforts to modulate the pathology leading to progressive disability accumulation. Existing studies show the power of this approach applied to multiple sclerosis. This armamentarium of radioligands allows for new understanding of how the brain and spinal cord of people is impacted by multiple sclerosis.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, John L Trotter MS Center, Washington University in St. Louis, St. Louis, USA.
| | - Farris Taha
- Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
11
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to 2 Years Following COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.27.23293177. [PMID: 37577714 PMCID: PMC10418298 DOI: 10.1101/2023.07.27.23293177] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role. We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection. We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms. We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Dylan Ryder
- Division of Experimental Medicine, University of California San Francisco
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Yingbing Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California San Francisco
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco
| | - Kofi A. Asare
- Division of Experimental Medicine, University of California San Francisco
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Wally Koch
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Gyula Szabo
- Department of Pathology, University of California San Francisco
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Uttam Shrestha
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | | | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Nitasha Kumar
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | - Ma Somsouk
- Division of Gastroenterology, University of California San Francisco
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | | | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco
| |
Collapse
|
12
|
Campbell E, Jordan C, Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem Soc Rev 2023; 52:3599-3626. [PMID: 37171037 PMCID: PMC10243284 DOI: 10.1039/d3cs00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/13/2023]
Abstract
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[18F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Emma Campbell
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Christina Jordan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
13
|
Marenna S, Rossi E, Huang SC, Castoldi V, Comi G, Leocani L. Visual evoked potentials waveform analysis to measure intracortical damage in a preclinical model of multiple sclerosis. Front Cell Neurosci 2023; 17:1186110. [PMID: 37323584 PMCID: PMC10264580 DOI: 10.3389/fncel.2023.1186110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Visual evoked potentials (VEPs) are a non-invasive technique routinely used in clinical and preclinical practice. Discussion about inclusion of VEPs in McDonald criteria, used for Multiple Sclerosis (MS) diagnosis, increased the importance of VEP in MS preclinical models. While the interpretation of the N1 peak is recognized, less is known about the first and second positive VEP peaks, P1 and P2, and the implicit time of the different segments. Our hypothesis is that P2 latency delay describes intracortical neurophysiological dysfunction from the visual cortex to the other cortical areas. Methods In this work, we analyzed VEP traces that were included in our two recently published papers on Experimental Autoimmune Encephalomyelitis (EAE) mouse model. Compared with these previous publications other VEP peaks, P1 and P2, and the implicit time of components P1-N1, N1-P2 and P1-P2, were analyzed in blind. Results Latencies of P2, P1-P2, P1-N1 and N1-P2 were increased in all EAE mice, including group without N1 latency change delay at early time points. In particular, at 7 dpi the P2 latency delay change was significantly higher compared with N1 latency change delay. Moreover, new analysis of these VEP components under the influence of neurostimulation revealed a decrease in P2 delay in stimulated animals. Discussion P2 latency delay, P1-P2, P1-N1, and N1-P2 latency changes which reflect intracortical dysfunction, were consistently detected across all EAE groups before N1 change. Results underline the importance of analyzing all VEP components for a complete overview of the neurophysiological visual pathway dysfunction and treatment efficacy.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Elena Rossi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE)–IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
14
|
Levi J, Song H. The other immuno-PET: Metabolic tracers in evaluation of immune responses to immune checkpoint inhibitor therapy for solid tumors. Front Immunol 2023; 13:1113924. [PMID: 36700226 PMCID: PMC9868703 DOI: 10.3389/fimmu.2022.1113924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Unique patterns of response to immune checkpoint inhibitor therapy, discernable in the earliest clinical trials, demanded a reconsideration of the standard methods of radiological treatment assessment. Immunomonitoring, that characterizes immune responses, offers several significant advantages over the tumor-centric approach currently used in the clinical practice: 1) better understanding of the drugs' mechanism of action and treatment resistance, 2) earlier assessment of response to therapy, 3) patient/therapy selection, 4) evaluation of toxicity and 5) more accurate end-point in clinical trials. PET imaging in combination with the right agent offers non-invasive tracking of immune processes on a whole-body level and thus represents a method uniquely well-suited for immunomonitoring. Small molecule metabolic tracers, largely neglected in the immuno-PET discourse, offer a way to monitor immune responses by assessing cellular metabolism known to be intricately linked with immune cell function. In this review, we highlight the use of small molecule metabolic tracers in imaging immune responses, provide a view of their value in the clinic and discuss the importance of image analysis in the context of tracking a moving target.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, CA, United States,*Correspondence: Jelena Levi,
| | - Hong Song
- Department of Radiology, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
15
|
Holt DP, Dannals RF. An improved radiosynthesis of [ 18 F]FAraG, a PET radiotracer for imaging T-cell activation. J Labelled Comp Radiopharm 2022; 65:302-308. [PMID: 36000273 PMCID: PMC9826029 DOI: 10.1002/jlcr.3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
In this concise practitioner protocol, the radiochemical synthesis of 2'-deoxy-2'-[18 F]fluoro-9-β-d-arabinofuranosylguanine ([18 F]FAraG) suitable for human positron emission tomography (PET) studies is described and the results from validation productions are presented. The high specific activity (sometimes referred to as molar activity) radiotracer product is prepared as a sterile, apyrogenic solution that conforms to current Good Manufacturing Practice (cGMP) requirements established by the U.S. Food and Drug Administration.
Collapse
Affiliation(s)
- Daniel P. Holt
- Division of Nuclear Medicine, Department of RadiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Robert F. Dannals
- Division of Nuclear Medicine, Department of RadiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
16
|
Biodistribution of a Mitochondrial Metabolic Tracer, [ 18F]F-AraG, in Healthy Volunteers. Mol Imaging 2022; 2022:3667417. [PMID: 36072652 PMCID: PMC9400547 DOI: 10.1155/2022/3667417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose [18F]F-AraG is a radiolabeled nucleoside analog that shows relative specificity for activated T cells. The aim of this study was to investigate the biodistribution of [18F]F-AraG in healthy volunteers and assess the preliminary safety and radiation dosimetry. Methods Six healthy subjects (three female and three male) between the ages of 24 and 60 participated in the study. Each subject received a bolus venous injection of [18F]F-AraG (dose range: 244.2-329.3 MBq) prior to four consecutive PET/MR whole-body scans. Blood samples were collected at regular intervals and vital signs monitored before and after tracer administration. Regions of interest were delineated for multiple organs, and the area under the time-activity curves was calculated for each organ and used to derive time-integrated activity coefficient (TIAC). TIACs were input for absorbed dose and effective dose calculations using OLINDA. Results PET/MR examination was well tolerated, and no adverse effects to the administration of [18F]F-AraG were noted by the study participants. The biodistribution was generally reflective of the expression and activity profiles of the enzymes involved in [18F]F-AraG's cellular accumulation, mitochondrial kinase dGK, and SAMHD1. The highest uptake was observed in the kidneys and liver, while the brain, lung, bone marrow, and muscle showed low tracer uptake. The estimated effective dose for [18F]F-AraG was 0.0162 mSv/MBq (0.0167 mSv/MBq for females and 0.0157 mSv/MBq for males). Conclusion Biodistribution of [18F]F-AraG in healthy volunteers was consistent with its association with mitochondrial metabolism. PET/MR [18F]F-AraG imaging was well tolerated, with a radiation dosimetry profile similar to other commonly used [18F]-labeled tracers. [18F]F-AraG's connection with mitochondrial biogenesis and favorable biodistribution characteristics make it an attractive tracer with a variety of potential applications.
Collapse
|
17
|
Chan P, Spudich S. HIV Compartmentalization in the CNS and Its Impact in Treatment Outcomes and Cure Strategies. Curr HIV/AIDS Rep 2022; 19:207-216. [PMID: 35536438 PMCID: PMC10590959 DOI: 10.1007/s11904-022-00605-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the cerebrospinal fluid (CSF) findings in connection to the central nervous system (CNS) reservoir in treatment-naïve and virally suppressed PLWH, followed by the findings in CSF HIV-1 escape and analytical treatment interruption studies. RECENT FINDINGS Compared to chronic infection, initiating antiretroviral therapy (ART) during acute HIV-1 infection results in more homogeneous longitudinal benefits in the CNS. Viral variants in CSF HIV-1 escape are independently linked to infected cells from the systemic reservoir and in the CNS, highlighting the phenomenon as a consequence of different mechanisms. HIV-infected cells persist in CSF in nearly half of the individuals on stable ART and are associated with worse neurocognitive performance. Future studies should probe into the origin of the HIV-infected cells in the CSF. Examining the capacity for viral replication would provide new insight into the CNS reservoir and identify strategies to eradicate it or compensate for the insufficiency of ART.
Collapse
Affiliation(s)
- Phillip Chan
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Serena Spudich
- Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research, Yale University, New Haven, CT, USA.
| |
Collapse
|
18
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|
19
|
Högnäsbacka AA, Cortés González MA, Halldin C, Schou M. Simplified and accessible [ 18 F]F-AraG synthesis procedure for preclinical PET. J Labelled Comp Radiopharm 2022; 65:288-291. [PMID: 35980801 PMCID: PMC9804570 DOI: 10.1002/jlcr.3997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023]
Abstract
The PET tracer [18 F]F-AraG, an arabinosyl guanine analog, has shown promise for visualizing activated T cells in multiple diseases. Herein, a practitioner's protocol is described, in which the PET tracer is prepared using minimal equipment and manual actions, making it widely accessible for preclinical applications.
Collapse
Affiliation(s)
- Antonia A. Högnäsbacka
- Department of Clinical Neuroscience, Centre for Psychiatry ResearchKarolinska Institutet and Stockholm County CouncilStockholmSweden
| | - Miguel A. Cortés González
- Department of Clinical Neuroscience, Centre for Psychiatry ResearchKarolinska Institutet and Stockholm County CouncilStockholmSweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry ResearchKarolinska Institutet and Stockholm County CouncilStockholmSweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Centre for Psychiatry ResearchKarolinska Institutet and Stockholm County CouncilStockholmSweden,PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZenecaKarolinska InstitutetStockholmSweden
| |
Collapse
|