1
|
Pohl S, Akamp T, Smeda M, Uderhardt S, Besold D, Krastl G, Galler KM, Buchalla W, Widbiller M. Understanding dental pulp inflammation: from signaling to structure. Front Immunol 2024; 15:1474466. [PMID: 39534600 PMCID: PMC11554472 DOI: 10.3389/fimmu.2024.1474466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
The pulp is a unique tissue within each tooth that is susceptible to painful inflammation, known as pulpitis, triggered by microbial invasion from carious lesions or trauma that affect many individuals. The host response involves complex immunological processes for pathogen defense and dentin apposition at the site of infection. The interplay of signaling between the immune and non-immune cells via cytokines, chemokines, neuropeptides, proteases, and reactive nitrogen and oxygen species leads to tissue reactions and structural changes in the pulp that escalate beyond a certain threshold to irreversible tissue damage. If left untreated, the inflammation, which is initially localized, can progress to pulpal necrosis, requiring root canal treatment and adversely affecting the prognosis of the tooth. To preserve pulp vitality and dental health, a deeper understanding of the molecular and cellular mechanisms of pulpitis is imperative. In particular, elucidating the links between signaling pathways, clinical symptoms, and spatiotemporal spread is essential to develop novel therapeutic strategies and push the boundaries of vital pulp therapy.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Akamp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Martyna Smeda
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Uderhardt
- Medical Department 3, Rheumatology and Immunology, University Hospital Erlangen, Erlangen, Germany
| | - David Besold
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, University Hospital Würzburg, Würzburg, Germany
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
3
|
Huang Z, Chen LJ, Huang D, Yi J, Chen Z, Lin P, Wang Y, Zheng J, Chen W. Preoperative Intravitreal Conbercept Injection Reduced Both Angiogenic and Inflammatory Cytokines in Patients With Proliferative Diabetic Retinopathy. J Diabetes Res 2024; 2024:2550367. [PMID: 39308630 PMCID: PMC11416173 DOI: 10.1155/2024/2550367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Aims: To investigate the impact of intravitreal injection of conbercept, a recombinant fusion protein with decoy receptors for the vascular endothelial growth factor (VEGF) family, on intraocular concentrations of angiogenic and inflammatory mediators in patients with proliferative diabetic retinopathy (PDR), analyzed its potential impact on surgical outcomes. Methods: Forty eyes from 40 patients with PDR were included in this prospective study. Patients received intravitreal injection of conbercept followed by vitrectomy or phacovitrectomy in 1 week. Aqueous humor samples were collected before and 1 week after the conbercept injection. The concentrations of angiogenic and inflammatory cytokines and chemokines were measured by flow cytometry. Follow-up clinical data were collected and analyzed. Results: Intravitreal conbercept injection significantly decreased aqueous concentrations of VEGF (325.5 (baseline) versus 22.3 pg/mL (postinjection), p < 0.0001), PlGF (39.5 versus 24.5 pg/mL, p < 0.0001), and PDGF-A (54.1 versus 47.0 pg/mL, p = 0.0016), while no impact on bFGF levels. For inflammatory mediators, the concentration of TNF-α (0.79 versus 0.45 pg/mL, p = 0.0004) and IL-8 (180.6 versus 86 pg/mL, p < 0.0001) were decreased, while IL-6 (184.1 versus 333.7 pg/mL, p = 0.0003) and IL-10 (1.1 versus 1.5 pg/mL, p = 0.0032) were increased. No significant changes in IFN-γ or MCP-1 were detected. Three months after surgery, the mean best-corrected visual acuity improved from a baseline of 1.8 ± 0.1 logMAR to 0.7 ± 0.1 logMAR (p < 0.0001), with 36 eyes (90%) achieving an improvement of visual function. Conclusions: Intravitreal conbercept injection presents dual effects of antiangiogenesis and anti-inflammation and can be served as an adjuvant treatment to vitrectomy for PDR patients.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual SciencesThe Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jingsheng Yi
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Zhiying Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Fifth Clinical InstituteShantou University Medical College, Shantou, Guangdong, China
| | - Peimin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yifan Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jianlong Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
4
|
Althaus O, ter Jung N, Stahlke S, Theiss C, Herzog-Niescery J, Vogelsang H, Weber T, Gude P, Matschke V. Region-specific protective effects of monomethyl fumarate in cerebellar and hippocampal organotypic slice cultures following oxygen-glucose deprivation. PLoS One 2024; 19:e0308635. [PMID: 39110748 PMCID: PMC11305562 DOI: 10.1371/journal.pone.0308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To date, apart from moderate hypothermia, there are almost no adequate interventions available for neuroprotection in cases of brain damage due to cardiac arrest. Affected persons often have severe limitations in their quality of life. The aim of this study was to investigate protective properties of the active compound of dimethyl fumarate, monomethyl fumarate (MMF), on distinct regions of the central nervous system after ischemic events. Dimethyl fumarate is an already established drug in neurology with known anti-inflammatory and antioxidant properties. In this study, we chose organotypic slice cultures of rat cerebellum and hippocampus as an ex vivo model. To simulate cardiac arrest and return of spontaneous circulation we performed oxygen-glucose-deprivation (OGD) followed by treatments with different concentrations of MMF (1-30 μM in cerebellum and 5-30 μM in hippocampus). Immunofluorescence staining with propidium iodide (PI) and 4',6-diamidine-2-phenylindole (DAPI) was performed to analyze PI/DAPI ratio after imaging with a spinning disc confocal microscope. In the statistical analysis, the relative cell death of the different groups was compared. In both, the cerebellum and hippocampus, the MMF-treated group showed a significantly lower PI/DAPI ratio compared to the non-treated group after OGD. Thus, we showed for the first time that both cerebellar and hippocampal slice cultures treated with MMF after OGD are significantly less affected by cell death.
Collapse
Affiliation(s)
- Oliver Althaus
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Nico ter Jung
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Heike Vogelsang
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Philipp Gude
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Bulondo F, Babensee JE. Optimization of Interleukin-10 incorporation for dendritic cells embedded in Poly(ethylene glycol) hydrogels. J Biomed Mater Res A 2024; 112:1317-1336. [PMID: 38562052 DOI: 10.1002/jbm.a.37714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Translational research in biomaterials and immunoengineering is leading to the development of novel advanced therapeutics to treat diseases such as cancer, autoimmunity, and viral infections. Dendritic cells (DCs) are at the center of these therapeutics given that they bridge innate and adaptive immunity. The biomaterial system developed herein uses a hydrogel carrier to deliver immunomodulatory DCs for amelioration of autoimmunity. This biomaterial vehicle is comprised of a poly (ethylene glycol)-4 arm maleimide (PEG-4MAL) hydrogels, conjugated with the immunosuppressive cytokine, interleukin-10, IL-10, and cross-linked with a collagenase-degradable peptide sequence for the injectable delivery of immunosuppressive DCs to an anatomical disease-relevant site of the cervical lymph nodes, for intended application to treat multiple sclerosis. The amount of IL-10 incorporated in the hydrogel was optimized to be 500 ng in vitro, based on immunological endpoints. At this concentration, DCs exhibited the best viability, most immunosuppressive phenotype, and protection against proinflammatory insult as compared with hydrogel-incorporated DCs with lower IL-10 loading amounts. Additionally, the effect of the degradability of the PEG-4MAL hydrogel on the release rate of incorporated IL-10 was assessed by varying the ratio of degradable peptides: VPM (degradable) and DTT (nondegradable) and measuring the IL-10 release rates. This IL-10-conjugated hydrogel delivery system for immunosuppressive DCs is set to be assessed for in vivo functionality as the immunosuppressive cytokine provides a tolerogenic environment that keeps DCs in their immature phenotype, which consequently enhances cell viability and optimizes the system's immunomodulatory functionality.
Collapse
Affiliation(s)
- Fredrick Bulondo
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Biomedical Sciences and Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Julia E Babensee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Wang S, He H, Mao Y, Zhang Y, Gu N. Advances in Atherosclerosis Theranostics Harnessing Iron Oxide-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308298. [PMID: 38368274 PMCID: PMC11077671 DOI: 10.1002/advs.202308298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Atherosclerosis, a multifaceted chronic inflammatory disease, has a profound impact on cardiovascular health. However, the critical limitations of atherosclerosis management include the delayed detection of advanced stages, the intricate assessment of plaque stability, and the absence of efficacious therapeutic strategies. Nanotheranostic based on nanotechnology offers a novel paradigm for addressing these challenges by amalgamating advanced imaging capabilities with targeted therapeutic interventions. Meanwhile, iron oxide nanoparticles have emerged as compelling candidates for theranostic applications in atherosclerosis due to their magnetic resonance imaging capability and biosafety. This review delineates the current state and prospects of iron oxide nanoparticle-based nanotheranostics in the realm of atherosclerosis, including pivotal aspects of atherosclerosis development, the pertinent targeting strategies involved in disease pathogenesis, and the diagnostic and therapeutic roles of iron oxide nanoparticles. Furthermore, this review provides a comprehensive overview of theranostic nanomedicine approaches employing iron oxide nanoparticles, encompassing chemical therapy, physical stimulation therapy, and biological therapy. Finally, this review proposes and discusses the challenges and prospects associated with translating these innovative strategies into clinically viable anti-atherosclerosis interventions. In conclusion, this review offers new insights into the future of atherosclerosis theranostic, showcasing the remarkable potential of iron oxide-based nanoparticles as versatile tools in the battle against atherosclerosis.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Hongliang He
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Yu Mao
- School of MedicineNanjing UniversityNanjing210093P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Ning Gu
- School of MedicineNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
7
|
Aundhia C, Parmar G, Talele C, Sadhu P, Sen AK, Rana P. Potential of Natural Products as Therapeutic Agents for Inflammatory Diseases. Antiinflamm Antiallergy Agents Med Chem 2024; 23:149-163. [PMID: 38984571 DOI: 10.2174/0118715230307969240614102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the antiinflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Piyushkumar Sadhu
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ashim Kumar Sen
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Pramojeeta Rana
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| |
Collapse
|
8
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
9
|
Seyiti Z, Yang L, Kasimujiang A, Dejite T, Shan XF, Gao XM. Predictive value of serum creatinine and total bilirubin for long-term death in patients with ischemic heart disease: A cohort study. PLoS One 2023; 18:e0294335. [PMID: 37971981 PMCID: PMC10653523 DOI: 10.1371/journal.pone.0294335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Ischemic heart disease (IHD) has a high mortality in the population. Although serum creatinine (Cr) and serum total bilirubin (TBil) are rapid and readily available biomarkers in routine blood tests, there is a lack of literature on the prognostic value of combined Cr and TBil tests for IHD. This study aimed to evaluate a combined equation based on Cr and TBil to predict the long-term risk of death in IHD and to find indicators sensitive to the prognosis of IHD patients. METHOD In this study, 2625 patients with IHD were included, and the combined value and combined equations of Cr and TBil were obtained by logistic regression analysis based on Cr and TBil collected at the time of admission. Patients were divided into four groups according to the quartiles of the combined value. COX proportional hazard regression model was used to analyze the risk factors for long-term death in IHD patients. Receiver operating characteristic (ROC) curves were used to evaluate the prognostic effect of Cr, TBil and combined value on long-term death events. RESULTS Logistic regression analysis was performed for long-term death events with Cr and TBil as independent variables, and the logit regression model was Logit(P) = 0.0129×TBil+0.007×Cr-0.417. Multifactorial Cox regression analysis showed that high values of the equation were independent risk factors for long-term death events (all-cause death: HR 1.457, 95% CI 1.256-1.689, P<0.001; cardiovascular death: HR 1.452, 95% CI 1.244-1.695, P<0.001). Combined Cr and TBil value are more valuable in predicting long-term death (AUC: 0.609, 95% CI 0.587-0.630, P<0.001). CONCLUSION Combined Cr and TBil assay is superior to single biomarkers for predicting long-term death in patients with IHD. High values of the equation are independent predictors of long-term death and can be used to identify patients at high risk for IHD.
Collapse
Affiliation(s)
- Zulihuma Seyiti
- College of Pediatrics, Xinjiang Medical University, Urumqi, China
| | - Long Yang
- College of Pediatrics, Xinjiang Medical University, Urumqi, China
| | | | | | - Xue-Feng Shan
- Pediatric Cardiothoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
- Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Yu Z, Fidler TP, Ruan Y, Vlasschaert C, Nakao T, Uddin MM, Mack T, Niroula A, Heimlich JB, Zekavat SM, Gibson CJ, Griffin GK, Wang Y, Peloso GM, Heard-Costa N, Levy D, Vasan RS, Aguet F, Ardlie KG, Taylor KD, Rich SS, Rotter JI, Libby P, Jaiswal S, Ebert BL, Bick AG, Tall AR, Natarajan P. Genetic modification of inflammation- and clonal hematopoiesis-associated cardiovascular risk. J Clin Invest 2023; 133:e168597. [PMID: 37498674 PMCID: PMC10503804 DOI: 10.1172/jci168597] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with an increased risk of cardiovascular diseases (CVDs), putatively via inflammasome activation. We pursued an inflammatory gene modifier scan for CHIP-associated CVD risk among 424,651 UK Biobank participants. We identified CHIP using whole-exome sequencing data of blood DNA and modeled as a composite, considering all driver genes together, as well as separately for common drivers (DNMT3A, TET2, ASXL1, and JAK2). We developed predicted gene expression scores for 26 inflammasome-related genes and assessed how they modify CHIP-associated CVD risk. We identified IL1RAP as a potential key molecule for CHIP-associated CVD risk across genes and increased AIM2 gene expression leading to heightened JAK2- and ASXL1-associated CVD risk. We show that CRISPR-induced Asxl1-mutated murine macrophages had a particularly heightened inflammatory response to AIM2 agonism, associated with an increased DNA damage response, as well as increased IL-10 secretion, mirroring a CVD-protective effect of IL10 expression in ASXL1 CHIP. Our study supports the role of inflammasomes in CHIP-associated CVD and provides evidence to support gene-specific strategies to address CHIP-associated CVD risk.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Yunfeng Ruan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Tetsushi Nakao
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - J. Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seyedeh M. Zekavat
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Institute, Boston, Massachusetts, USA
| | - Christopher J. Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gabriel K. Griffin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Nancy Heard-Costa
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts, USA
- Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Ramachandran S. Vasan
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Siddhartha Jaiswal
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin L. Ebert
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander G. Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Li F, Rong Z, Chen T, Wang P, Di X, Ni L, Liu C. Glycosylation-Engineered Platelet Membrane-Coated Interleukin 10 Nanoparticles for Targeted Inhibition of Vascular Restenosis. Int J Nanomedicine 2023; 18:5011-5030. [PMID: 37693888 PMCID: PMC10492561 DOI: 10.2147/ijn.s423186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose The purpose of this study was to improve the immune compatibility and targeting abilities of IL10 nanoparticles coated with platelet membrane (IL10-PNPs) by glycosylation engineering in order to effectively reduce restenosis after vascular injury. Materials and Methods In this study, we removed sialic acids and added α (1,2)-fucose and α (1,3)-fucose to platelet membrane glycoprotein, thus engineering the glycosylation of IL10-PNPs (IL10-GE-PNPs). In vitro and in vivo experiments were conducted to evaluate the targeting and regulatory effects of IL10-GE-PNPs on macrophage polarization, as well as the influence of IL10-GE-PNPs on the phenotypic transformation, proliferation, and migration of smooth muscle cells, and its potential in promoting the repair function of endothelial cells within an inflammatory environment. In order to assess the distribution of IL10-GE-PNP in different organs, in vivo imaging experiments were conducted. Results IL10-GE-PNPs were successfully constructed and demonstrated to effectively target and regulate macrophage polarization in both in vitro and in vivo settings. This regulation resulted in reduced proliferation and migration of smooth muscle cells and promoted the repair of endothelial cells in an inflammatory environment. Consequently, restenosis after vascular injury was reduced. Furthermore, the deposition of IL10-GE-PNPs in the liver and spleen was significantly reduced compared to IL10-PNPs. Conclusion IL10-GE-PNPs emerged as a promising candidate for targeting vascular injury and exhibited potential as an innovative drug delivery system for suppressing vascular restenosis. The engineered glycosylation of IL10-PNPs improved their immune compatibility and targeting abilities, making them an excellent therapeutic option.
Collapse
Affiliation(s)
- Fengshi Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Zhihua Rong
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Tianqi Chen
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Peng Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
12
|
Upadhaya P, Lamenza FF, Shrestha S, Roth P, Jagadeesha S, Pracha H, Horn NA, Oghumu S. Berry Extracts and Their Bioactive Compounds Mitigate LPS and DNFB-Mediated Dendritic Cell Activation and Induction of Antigen Specific T-Cell Effector Responses. Antioxidants (Basel) 2023; 12:1667. [PMID: 37759970 PMCID: PMC10525528 DOI: 10.3390/antiox12091667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Berries have gained widespread recognition for their abundant natural antioxidant, anti-inflammatory, and immunomodulatory properties. However, there has been limited research conducted thus far to investigate the role of the active constituents of berries in alleviating contact hypersensitivity (CHS), the most prevalent occupational dermatological disease. Our study involved an ex vivo investigation aimed at evaluating the impact of black raspberry extract (BRB-E) and various natural compounds found in berries, such as protocatechuic acid (PCA), proanthocyanidins (PANT), ellagic acid (EA), and kaempferol (KMP), on mitigating the pathogenicity of CHS. We examined the efficacy of these natural compounds on the activation of dendritic cells (DCs) triggered by 2,4-dinitrofluorobenzene (DNFB) and lipopolysaccharide (LPS). Specifically, we measured the expression of activation markers CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines, including Interleukin (IL)-12, IL-6, TNF-α, and IL-10, to gain further insights. Potential mechanisms through which these phytochemicals could alleviate CHS were also investigated by investigating the role of phospho-ERK. Subsequently, DCs were co-cultured with T-cells specific to the OVA323-339 peptide to examine the specific T-cell effector responses resulting from these interactions. Our findings demonstrated that BRB-E, PCA, PANT, and EA, but not KMP, inhibited phosphorylation of ERK in LPS-activated DCs. At higher doses, EA significantly reduced expression of all the activation markers studied in DNFB- and LPS-stimulated DCs. All compounds tested reduced the level of IL-6 in DNFB-stimulated DCs in Flt3L as well as in GM-CSF-derived DCs. However, levels of IL-12 were reduced by all the tested compounds in LPS-stimulated Flt3L-derived BMDCs. PCA, PANT, EA, and KMP inhibited the activated DC-mediated Interferon (IFN)-γ and IL-17 production by T-cells. Interestingly, PANT, EA, and KMP significantly reduced T-cell proliferation and the associated IL-2 production. Our study provides evidence for differential effects of berry extracts and natural compounds on DNFB and LPS-activated DCs revealing potential novel approaches for mitigating CHS.
Collapse
Affiliation(s)
- Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Natalie A. Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| |
Collapse
|
13
|
Wu J, Li WH, Wang WR, Jin XQ, Liu EQ. Proteomics Analysis of Lipid Metabolism and Inflammatory Response in the Liver of Rabbits fed on a High Cholesterol Diet. Cell Biochem Biophys 2023:10.1007/s12013-023-01139-y. [PMID: 37160861 DOI: 10.1007/s12013-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/16/2023] [Indexed: 05/11/2023]
Abstract
In this study, we aimed to analyze the proteomics of the liver in rabbits on a high cholesterol diet (HCD). We randomly divided New Zealand white rabbits into the normal diet group and the HCD group. We established the atherosclerosis model and measured plasma cholesterol and triglycerides. The model was successfully established using ultrasound examination and histopathological staining of the intima of aorta and liver of the two groups of rabbits. The differential proteins in the rabbit liver were analyzed using Tandem Mass Tags proteomic analysis technology. Finally, we used western blot to verify the reliability of proteomics. The results showed that compared with the control group, the serum lipid levels of rats in the HCD group was significantly increased, and the pathological sections showed the formation of atherosclerotic plaques in the aorta, inflammation, and adipose lesions in the liver. Proteomic analysis of the liver revealed 149 differences in HCD-expressed protein, which is mainly involved in inflammation and regulation of lipid and sugar metabolism. In addition, we verified differentially expressed liver proteins in the HCD group using western blot. We found that HCD caused lipid accumulation, abnormal glucose metabolism, and inflammatory response in the liver.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Department of Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750001, China
| | - Wei-Hua Li
- Department of Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750001, China
| | - Wei-Rong Wang
- Department of Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Department of Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xue-Qin Jin
- Department of Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750001, China
| | - En-Qi Liu
- Department of Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Department of Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China.
| |
Collapse
|
14
|
Cutolo M, Smith V, Paolino S, Gotelli E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol 2023; 19:265-287. [PMID: 36977791 PMCID: PMC10043872 DOI: 10.1038/s41584-023-00944-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/30/2023]
Abstract
Evidence supporting the extra-skeletal role of vitamin D in modulating immune responses is centred on the effects of its final metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, also known as calcitriol), which is regarded as a true steroid hormone. 1,25(OH)2D3, the active form of vitamin D, can modulate the innate immune system in response to invading pathogens, downregulate inflammatory responses and support the adaptive arm of the immune system. Serum concentrations of its inactive precursor 25-hydroxyvitamin D3 (25(OH)D3, also known as calcidiol) fluctuate seasonally (being lowest in winter) and correlate negatively with the activation of the immune system as well as with the incidence and severity of autoimmune rheumatic diseases such as rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. Thus, a low serum concentration of 25(OH)D3 is considered to be a risk factor for autoimmune rheumatic diseases and vitamin D3 supplementation seems to improve the prognosis; moreover, long-term vitamin D3 supplementation seems to reduce their incidence (i.e. rheumatoid arthritis). In the setting of COVID-19, 1,25(OH)2D3 seems to downregulate the early viral phase (SARS-CoV-2 infection), by enhancing innate antiviral effector mechanisms, as well as the later cytokine-mediated hyperinflammatory phase. This Review provides an update of the latest scientific and clinical evidence concerning vitamin D and immune response in autoimmune rheumatic diseases and COVID-19, which justify the need for monitoring of serum 25(OH)D3 concentrations and for appropriate supplementation following clinical trial-based approaches.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DiMI), University of Genova-IRCCS San Martino Polyclinic Hospital, Genoa, Italy.
| | - Vanessa Smith
- Department of Internal Medicine, Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DiMI), University of Genova-IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DiMI), University of Genova-IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
15
|
Coelho KF, Neves JCF, Ibiapina HNS, Magalhães-Gama F, Barbosa FBA, Silva FS, Wellmann IAM, Sachett JAG, Tarragô AM, Ferreira LCL, Malheiro A, Monteiro WM, Costa AG. Exploring the Profile of Cell Populations and Soluble Immunological Mediators in Bothrops atrox Envenomations. Toxins (Basel) 2023; 15:196. [PMID: 36977086 PMCID: PMC10051854 DOI: 10.3390/toxins15030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Bothrops atrox envenomations are common in the Brazilian Amazon. The venom of B. atrox is highly inflammatory, which results in severe local complications, including the formation of blisters. Moreover, there is little information on the immune mechanisms associated with this condition. Thus, a longitudinal study was carried out to characterize the profile of the cell populations and soluble immunological mediators in the peripheral blood and blisters in B. atrox patients s according to their clinical manifestations (mild and severe). A similar response in both B. atrox patient groups (MILD and SEV) was observed, with an increase in inflammatory monocytes, NKT, and T and B cells, as well as CCL2, CCL5, CXCL9, CXCL10, IL-1β and IL-10, when compared with the group of healthy blood donors. After the administration of antivenom, the participation of patrolling monocytes and IL-10 in the MILD group was observed. In the SEV group, the participation of B cells was observed, with high levels of CCL2 and IL-6. In the blister exudate, a hyperinflammatory profile was observed. In conclusion, we revealed the involvement of cell populations and soluble mediators in the immune response to B. atrox envenomation at the local and peripheral level, which is related to the onset and extent of the inflammation/clinical manifestation.
Collapse
Affiliation(s)
- Kerolaine Fonseca Coelho
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Juliana Costa Ferreira Neves
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Hiochelson Najibe Santos Ibiapina
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Fábio Magalhães-Gama
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou-Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte 30190-002, MG, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
| | - Fabiane Bianca Albuquerque Barbosa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Flavio Souza Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Irmgardt Alicia María Wellmann
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
- Departamento de Ensino e Pesquisa, Fundação Alfredo da Matta (FUAM), Manaus 69065-130, AM, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69050-001, AM, Brazil
| | - Luiz Carlos Lima Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69050-001, AM, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus 69040-000, AM, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69050-001, AM, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus 69057-070, AM, Brazil
| |
Collapse
|
16
|
Yang C, Rybchyn MS, De Silva WGM, Matthews J, Dixon KM, Holland AJA, Conigrave AD, Mason RS. The CaSR Modulator NPS-2143 Reduced UV-Induced DNA Damage in Skh:hr1 Hairless Mice but Minimally Inhibited Skin Tumours. Int J Mol Sci 2023; 24:ijms24054921. [PMID: 36902353 PMCID: PMC10002576 DOI: 10.3390/ijms24054921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator, NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development. We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage, immune suppression, or skin tumour development in mice. In this study, topical application of NPS-2143 (228 or 2280 pmol/cm2) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the known photoprotective agent 1,25(OH)2 vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photocarcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks (p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D, which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result, together with the failure to reduce UV-induced immunosuppression, may explain why the reduction in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation.
Collapse
Affiliation(s)
- Chen Yang
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2033, Australia
| | | | - Jim Matthews
- Sydney Informatics Hub, University of Sydney, Sydney, NSW 2008, Australia
| | - Katie Marie Dixon
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J. A. Holland
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
| | - Arthur David Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
17
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
18
|
Walker RR, Rentia Z, Chiappinelli KB. Epigenetically programmed resistance to chemo- and immuno-therapies. Adv Cancer Res 2023; 158:41-71. [PMID: 36990538 PMCID: PMC10184181 DOI: 10.1016/bs.acr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Collapse
Affiliation(s)
- Reddick R Walker
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Zainab Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, United States
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
19
|
Neves JCF, Ibiapina HNS, Magalhães-Gama F, Sachett JAG, Silva IM, Coelho KF, Alves EC, Tarragô AM, de Lima Ferreira LC, Malheiro A, Monteiro WM, Costa AG. CCL-2 and CXCL-8: Potential Prognostic Biomarkers of Acute Kidney Injury after a Bothrops atrox Snakebite. Mediators Inflamm 2022; 2022:8285084. [PMID: 36117588 PMCID: PMC9473908 DOI: 10.1155/2022/8285084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
In the Brazilian Amazon, the snake Bothrops atrox is the primary cause of snakebites. B. atrox (BaV) venom can cause systemic pathophysiological changes such as acute kidney injury (AKI), which leads to the production of chemokines and cytokines in response to the envenomation. These soluble immunological molecules act by modulating the inflammatory response; however, the mechanisms associated with the development of AKI are still poorly understood. Here, we characterize the profile of these soluble immunological molecules as possible predictive biomarkers of the development of AKI. The study involved 34 patients who had been victims of snakebites by Bothrops sp. These were categorized into two groups according to the development of AKI (AKI(-)/AKI(+)), using healthy donors as the control (HD). Peripheral blood samples were collected at three-time points: before antivenom administration (T0) and at 24 and 48 hours after antivenom (T1 and T2, respectively). The soluble immunological molecules (CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A) were quantified using cytometric bead array. Our results demonstrated an increase in CXCL-9, CXCL-10, IL-6, IL-2, IL-10, and IL-17A molecules in the groups of patients who suffered Bothrops snakebites (AKI(-) and AKI(+)) before antivenom administration, when compared to HD. In the AKI(+) group, levels of CXCL-8 and CCL-2 molecules were elevated on admission and progressively decreased during the clinical evolution of patients after antivenom administration. In addition, in the signature analysis, these were produced exclusively by the group AKI(+) at T0. Thus, these chemokines may be related to the initiation and extension of AKI after envenomation by Bothrops and present themselves as two potential biomarkers of AKI at T0.
Collapse
Affiliation(s)
- Juliana Costa Ferreira Neves
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Hiochelson Najibe Santos Ibiapina
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Fábio Magalhães-Gama
- Post-Graduate Program in Basic and Applied Immunology, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Post-Graduate Program in Health Sciences, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-Minas), Minas Gerais, Belo Horizonte, Brazil
- Directorate of Teaching and Research, Hematology and Hemotherapy Foundation of Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Department of Education and Research, Alfredo da Matta Foundation (FUAM), Manaus, AM, Brazil
| | - Iran Mendonça Silva
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Kerolaine Fonseca Coelho
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Eliane Campos Alves
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Andréa Monteiro Tarragô
- Post-Graduate Program in Basic and Applied Immunology, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Directorate of Teaching and Research, Hematology and Hemotherapy Foundation of Amazonas (HEMOAM), Manaus, AM, Brazil
- Post-Graduate Program in Sciences Applied to Hematology, UEA, Manaus, AM, Brazil
| | - Luiz Carlos de Lima Ferreira
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Adriana Malheiro
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Directorate of Teaching and Research, Hematology and Hemotherapy Foundation of Amazonas (HEMOAM), Manaus, AM, Brazil
- Post-Graduate Program in Sciences Applied to Hematology, UEA, Manaus, AM, Brazil
| | - Wuelton Marcelo Monteiro
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Post-Graduate Program in Health Sciences, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-Minas), Minas Gerais, Belo Horizonte, Brazil
- Directorate of Teaching and Research, Hematology and Hemotherapy Foundation of Amazonas (HEMOAM), Manaus, AM, Brazil
- Post-Graduate Program in Sciences Applied to Hematology, UEA, Manaus, AM, Brazil
- Nursing School of Manaus, UFAM, Manaus, AM, Brazil
| |
Collapse
|
20
|
Sakyi SA, Owusu‐Yeboah M, Obirikorang C, Dadzie Ephraim RK, Kwarteng A, Opoku S, Afranie BO, Senu E, Boateng AO, Boakye DK, Buckman TA, Amoani B. Profiling vitamin D, its mediators and proinflammatory cytokines in rheumatoid arthritis: A case-control study. Immun Inflamm Dis 2022; 10:e676. [PMID: 35894711 PMCID: PMC9274797 DOI: 10.1002/iid3.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION The active form of vitamin D has immunomodulatory and anti-inflammatory effect. Vitamin D is implicated in pathogenesis of rheumatoid arthritis (RA) and its deficiency leads to increased inflammation. Moreover, its production is dependent on concentration of calcium, phosphorus, and parathyroid hormone (PTH). Cytokines mediates inflammation in RA synovium. This study evaluated vitamin D, its mediators and proinflammatory cytokines among RA patients. METHODS In a case-control study, 78 RA patients from Komfo Anokye Teaching Hospital rheumatology clinic and 60 healthy blood donors were recruited. Chemistry analyzer and enzyme-linked immunosorbent assay kits were used to measure biochemical parameters and cytokines. RESULTS We found significantly higher levels of interleukin (IL)-1β, interferon gamma (IFN-γ), and tumor necrosis factor-α (TNF-α) in RA patients compared with controls (p < .05). There was a significant positive correlation between intact parathyroid hormone (iPTH) and IL-10 (r = .30, p < .05) and a negative correlation between IL-6 (r = -0.28, p > .05), IL-1β (r = -0.25, p > .05), TNF-α (r = -0.26, p > .05), IFN-γ (r = -0.24, p > .05), and iPTH. There was a significant negative correlation between IL-1β (r = -0.33, p < .05), IFN- γ (r = -0.29, p < .05), and calcium. CONCLUSION Reduced PTH, calcium, and phosphorus is associated with higher levels of proinflammatory cytokines which may worsen RA disease condition. Vitamin D is therefore not an independent regulator of proinflammatory cytokines in RA.
Collapse
Affiliation(s)
- Samuel A. Sakyi
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Mavis Owusu‐Yeboah
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Christian Obirikorang
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Richard K. Dadzie Ephraim
- Department of Medical Laboratory Sciences, Faculty of Allied HealthUniversity of Cape CoastCape CoastGhana
| | - Alexander Kwarteng
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Stephen Opoku
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Bright O. Afranie
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Ebenezer Senu
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Andy O. Boateng
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Derrick K. Boakye
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Tonnies A. Buckman
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Benjamin Amoani
- Department of Biomedical Science, School of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
| |
Collapse
|
21
|
Diakite B, Kassogue Y, Maiga M, Dolo G, Kassogue O, Musa J, Morhason-Bello I, Traore B, Traore CB, Kamate B, Coulibaly A, Bah S, Nadifi S, Murphy R, Holl JL, Hou L. Association of the Interleukin-10-592C/A Polymorphism and Cervical Cancer Risk: A Meta-Analysis. Genet Res (Camb) 2022; 2022:2319161. [PMID: 35919032 PMCID: PMC9296312 DOI: 10.1155/2022/2319161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
A literature review showed some discrepancies regarding the association of -592C/A with the risk of cervical cancer. To allow more precise analysis of the data by increasing the number of cases studied and more acceptable generalization by considering results from different sources, the present meta-analysis was performed on available published studies that explored the relationship between SNP-592C/A of the IL-10 gene and the risk of cervical cancer. Eleven available studies, including 4187 cases and 3311 controls, were included in this study investigating the relationship between the -592C/A polymorphism of IL-10 and cervical cancer risk. Fixed-effects or random-effects models were performed with pooled odds ratios (ORs). Heterogeneity and bias tests were performed by the inconsistency test and funnel plot, respectively. The overall analysis showed an increased susceptibility to cervical cancer with the -592C/A polymorphism of the IL-10 gene for the recessive model (OR = 1.30, 95% CI = 1.14-1.49), dominant model (OR = 1.36, 95% CI = 1.09-1.70), and additive model (OR = 1.25, 95% CI = 1.09-1.44). Regarding ethnicity, a significant association of the -592C/A polymorphism of the IL-10 gene was linked to an elevated risk of cervical cancer for all genetic models (recessive, dominant, and additive) in the Asian populations and for the recessive and additive models in Caucasians with P < 0.05. The -592C/A polymorphism of the IL-10 gene may be considered a risk factor for cervical cancer.
Collapse
Affiliation(s)
- Brehima Diakite
- Centre de Recherche et de Formation sur les Pathologies Moleculaires (CREFPAM), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yaya Kassogue
- Centre de Recherche et de Formation sur les Pathologies Moleculaires (CREFPAM), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mamoudou Maiga
- Centre de Recherche et de Formation sur les Pathologies Moleculaires (CREFPAM), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, Illinois 60611, USA
- Institute for Global Health, Northwestern University, Chicago, Illinois 60611, USA
| | - Guimogo Dolo
- Centre de Recherche et de Formation sur les Pathologies Moleculaires (CREFPAM), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Oumar Kassogue
- Centre de Recherche et de Formation sur les Pathologies Moleculaires (CREFPAM), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Jonah Musa
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, Illinois 60611, USA
- Institute for Global Health, Northwestern University, Chicago, Illinois 60611, USA
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Jos, Plateau State, Jos, Nigeria
| | - Imran Morhason-Bello
- Department of Obstetrics and Gynecology, Faculty of Clinical Sciences and Institute for Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Ban Traore
- Faculty of Sciences and Techniques, USTTB, Bamako, Mali
| | - Cheick Bougadari Traore
- Centre de Recherche et de Formation sur les Pathologies Moleculaires (CREFPAM), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bakarou Kamate
- Centre de Recherche et de Formation sur les Pathologies Moleculaires (CREFPAM), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Aissata Coulibaly
- Centre de Recherche et de Formation sur les Pathologies Moleculaires (CREFPAM), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sekou Bah
- Faculty of Pharmacy, USTTB, Bamako, Mali
| | | | - Robert Murphy
- Institute for Global Health, Northwestern University, Chicago, Illinois 60611, USA
| | - Jane L. Holl
- Department of Neurology, University of Chicago, Chicago, Illinois 60611, USA
| | - Lifang Hou
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, Illinois 60611, USA
- Institute for Global Health, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
22
|
Bhatia S, Nguyen D, Darragh LB, Van Court B, Sharma J, Knitz MW, Piper M, Bukkapatnam S, Gadwa J, Bickett TE, Bhuvane S, Corbo S, Wu B, Lee Y, Fujita M, Joshi M, Heasley LE, Ferris RL, Rodriguez O, Albanese C, Kapoor M, Pasquale EB, Karam SD. EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nat Commun 2022; 13:3535. [PMID: 35725568 PMCID: PMC9209511 DOI: 10.1038/s41467-022-31124-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/06/2022] [Indexed: 01/14/2023] Open
Abstract
Differential outcomes of EphB4-ephrinB2 signaling offers formidable challenge for the development of cancer therapeutics. Here, we interrogate the effects of targeting EphB4 and ephrinB2 in head and neck squamous cell carcinoma (HNSCC) and within its microenvironment using genetically engineered mice, recombinant constructs, pharmacologic agonists and antagonists. We observe that manipulating the EphB4 intracellular domain on cancer cells accelerates tumor growth and angiogenesis. EphB4 cancer cell loss also triggers compensatory upregulation of EphA4 and T regulatory cells (Tregs) influx and their targeting results in reversal of accelerated tumor growth mediated by EphB4 knockdown. EphrinB2 knockout on cancer cells and vasculature, on the other hand, results in maximal tumor reduction and vascular normalization. We report that EphB4 agonism provides no additional anti-tumoral benefit in the absence of ephrinB2. These results identify ephrinB2 as a tumor promoter and its receptor, EphB4, as a tumor suppressor in HNSCC, presenting opportunities for rational drug design.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jaspreet Sharma
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shiv Bhuvane
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Wu
- Krembil Research Institute, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Lynn E Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
23
|
Unuvar Purcu D, Korkmaz A, Gunalp S, Helvaci DG, Erdal Y, Dogan Y, Suner A, Wingender G, Sag D. Effect of stimulation time on the expression of human macrophage polarization markers. PLoS One 2022; 17:e0265196. [PMID: 35286356 PMCID: PMC8920204 DOI: 10.1371/journal.pone.0265196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/27/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are highly plastic cells that can polarize into functionally distinct subsets in vivo and in vitro in response to environmental signals. The development of protocols to model macrophage polarization in vitro greatly contributes to our understanding of macrophage biology. Macrophages are divided into two main groups: Pro-inflammatory M1 macrophages (classically activated) and anti-inflammatory M2 macrophages (alternatively activated), based on several key surface markers and the production of inflammatory mediators. However, the expression of these common macrophage polarization markers is greatly affected by the stimulation time used. Unfortunately, there is no consensus yet regarding the optimal stimulation times for particular macrophage polarization markers in in vitro experiments. This situation is problematic, (i) as analysing a particular marker at a suboptimal time point can lead to false-negative results, and (ii) as it clearly impedes the comparison of different studies. Using human monocyte-derived macrophages (MDMs) in vitro, we analysed how the expression of the main polarization markers for M1 (CD64, CD86, CXCL9, CXCL10, HLA-DR, IDO1, IL1β, IL12, TNF), M2a (CD200R, CD206, CCL17, CCL22, IL-10, TGM2), and M2c (CD163, IL-10, TGFβ) macrophages changes over time at mRNA and protein levels. Our data establish the most appropriate stimulation time for the analysis of the expression of human macrophage polarization markers in vitro. Providing such a reference guide will likely facilitate the investigation of macrophage polarization and its reproducibility.
Collapse
Affiliation(s)
- Duygu Unuvar Purcu
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Asli Korkmaz
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sinem Gunalp
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Yonca Erdal
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yavuz Dogan
- Department of Microbiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Asli Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- * E-mail:
| |
Collapse
|
24
|
Wu Z, Liu D, Deng F. The Role of Vitamin D in Immune System and Inflammatory Bowel Disease. J Inflamm Res 2022; 15:3167-3185. [PMID: 35662873 PMCID: PMC9160606 DOI: 10.2147/jir.s363840] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific inflammatory disease that includes ulcerative colitis (UC) and Crohn’s disease (CD). The pathogenesis of IBD is not fully understood but is most reported associated with immune dysregulation, dysbacteriosis, genetic susceptibility, and environmental risk factors. Vitamin D is an essential nutrient for the human body, and it not only regulates bone metabolism but also the immune system, the intestinal microbiota and barrier. Vitamin D insufficiency is common in IBD patients, and the abnormal low levels of vitamin D are highly correlated with disease activity, treatment response, and risk of relapse of IBD. Accumulating evidence supports the protective role of vitamin D in IBD through regulating the adaptive and innate immunity, maintaining the intestinal barrier and balancing the gut microbiota. This report aims to provide a broad overview of the role vitamin D in the immune system, especially in the pathogenesis and treatment of IBD, and its possible role in predicting relapse.
Collapse
Affiliation(s)
- Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Correspondence: Feihong Deng, Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Research Center of Digestive Disease, Central South University, Changsha, Hunan410011, People’s Republic of China, Email
| |
Collapse
|
25
|
Docherty S, Harley R, McAuley JJ, Crowe LAN, Pedret C, Kirwan PD, Siebert S, Millar NL. The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review. BMC Sports Sci Med Rehabil 2022; 14:5. [PMID: 34991697 PMCID: PMC8740100 DOI: 10.1186/s13102-022-00397-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023]
Abstract
The physiological effects of physical exercise are ubiquitously reported as beneficial to the cardiovascular and musculoskeletal systems. Exercise is widely promoted by medical professionals to aid both physical and emotional wellbeing; however, mechanisms through which this is achieved are less well understood. Despite numerous beneficial attributes, certain types of exercise can inflict significant significant physiological stress. Several studies document a key relationship between exercise and immune activation. Activation of the innate immune system occurs in response to exercise and it is proposed this is largely mediated by cytokine signalling. Cytokines are typically classified according to their inflammatory properties and evidence has shown that cytokines expressed in response to exercise are diverse and may act to propagate, modulate or mitigate inflammation in musculoskeletal health. The review summarizes the existing literature on the relationship between exercise and the immune system with emphasis on how exercise-induced cytokine expression modulates inflammation and the immune response.
Collapse
Affiliation(s)
- Sophie Docherty
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Rachael Harley
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Joseph J McAuley
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Lindsay A N Crowe
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Carles Pedret
- Sports Medicine and Imaging Department, Clinica Diagonal, C/Sant Mateu 24-26, 08950, Esplugues de Llobregat, Spain
| | - Paul D Kirwan
- School of Physiotherapy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Physiotherapy Department, Connolly Hospital, Dublin, Ireland
| | - Stefan Siebert
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK.
| |
Collapse
|
26
|
Palano MT, Gallazzi M, Cucchiara M, Dehò F, Capogrosso P, Bruno A, Mortara L. The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:694-718. [PMID: 36338516 PMCID: PMC9630328 DOI: 10.37349/etat.2022.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer (PCa) accounts as the most common non-cutaneous disease affecting males, and as the first cancer, for incidence, in male. With the introduction of the concept of immunoscore, PCa has been classified as a cold tumor, thus driving the attention in the development of strategies aimed at blocking the infiltration/activation of immunosuppressive cells, while favoring the infiltration/activation of anti-tumor immune cells. Even if immunotherapy has revolutionized the approaches to cancer therapy, there is still a window failure, due to the immune cell plasticity within PCa, that can acquire pro-tumor features, subsequent to the tumor microenvironment (TME) capability to polarize them. This review discussed selected relevant soluble factors [transforming growth factor-beta (TGFβ), interleukin-6 (IL-6), IL-10, IL-23] and cellular components of the innate immunity, as drivers of tumor progression, immunosuppression, and angiogenesis within the PCa-TME.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Federico Dehò
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Paolo Capogrosso
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Correspondence: Antonino Bruno,
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Lorenzo Mortara, . Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
27
|
Freitas RAD, Lima VV, Bomfim GF, Giachini FRC. Interleukin-10 in the Vasculature: Pathophysiological Implications. Curr Vasc Pharmacol 2021; 20:230-243. [PMID: 34961448 DOI: 10.2174/1570161120666211227143459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Interleukin-10 (IL-10) is an important immunomodulatory cytokine, initially characterized as an anti-inflammatory agent released by immune cells during infectious and inflammatory processes. IL-10 exhibits biological functions that extend to the regulation of different intracellular signaling pathways directly associated with vascular function. This cytokine plays a vital role in vascular tone regulation through the change of important proteins involved in vasoconstriction and vasodilation. Numerous investigations covered here have shown that therapeutic strategies inducing IL-10 result in anti-inflammatory, anti-hypertrophic, antihyperplastic, anti-apoptotic and antihypertensive effects. This non-systematic review summarizes the modulating effects mediated by IL-10 in vascular tissue, particularly on vascular tone, and the intracellular pathway induced by this cytokine. We also highlight the advances in IL-10 manipulation as a therapeutic target in different cardiovascular pathophysiologies, including the physiological implications in animals and humans. Finally, the review illustrates current and potential future perspectives of the potential use of IL-10 in clinical trials, based on the clinical evidence.
Collapse
Affiliation(s)
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| | | | - Fernanda Regina Casagrande Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia - Brazil.
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| |
Collapse
|
28
|
Ren Y, Cui G, Gao Y. Research progress on inflammatory mechanism of primary Sjögren syndrome. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:783-794. [PMID: 35347914 PMCID: PMC8931614 DOI: 10.3724/zdxbyxb-2021-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
Primary Sjögren syndrome is an autoimmune disease, in which a large number of lymphocytes infiltrate the exocrine glands and cause gland dysfunction. Its pathogenesis is related to the chronic inflammation of the exocrine glands caused by genetic factors, immunodeficiency or viral infection. Long-term inflammation leads to accelerated apoptosis of epithelial cells, disordered gland structure, increased expression of proinflammatory cytokine such as CXC subfamily ligand (CXCL) 12, CXCL13, B cell-activating factor (BAF), interleukin (IL)-6, interferon (IFN)-γ and tumor necrosis factor (TNF)-α in submandibular gland. With the action of antigen-presenting cells such as dendritic cells and macrophages, lymphocytes (mainly B cells) are induced to mature in secondary lymphoid organs and migrate to the submandibular gland to promotes the formation of germinal centers and the synthesis of autoantibodies. Meanwhile, innate lymphocytes, vascular endothelial cells and mucosa-associated constant T cells as important immune cells, also participated in the inflammatory response of the submandibular gland in primary Sjögren syndrome through different mechanisms. This process involves the activation of multiple signal pathways such as JAK/STAT, MAPK/ERK, PI3K/AKT/mTOR, PD-1/PD-L1, TLR/MyD88/NF-κB, BAF/BAF-R and IFN. These signaling pathways interact with each other and are intricately complex, causing lymphocytes to continuously activate and invade the submandibular glands. This article reviews the latest literature to clarify the mechanism of submandibular gland inflammation in primary Sjögren syndrome, and to provide insights for further research.
Collapse
|
29
|
Luo Y, Liu Y, Shen Y, He J, Li H, Lan C, Li J, Chen H, Chen D, Ren Z, Yu B, Huang Z, Zheng P, Mao X, Yu J, Luo J, Yan H. Fermented Alfalfa Meal Instead of "Grain-Type" Feedstuffs in the Diet Improves Intestinal Health Related Indexes in Weaned Pigs. Front Microbiol 2021; 12:797875. [PMID: 34966376 PMCID: PMC8710769 DOI: 10.3389/fmicb.2021.797875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023] Open
Abstract
Corn and soybean meal are the two main components in formula feed of farm animals, leading to a serious food competition between humans and livestock. An alternative may be to encourage the utilization of unconventional feedstuff in animal diet. In the current study, we evaluated the utilization of fermented alfalfa meal (FAM) in weaned pigs. Twenty weaned piglets (separately caged) were randomly divided into two groups. Pigs in the control group (CON) were fed corn-soybean meal diet, and part of corn and soya protein concentrate in the diet of another group was replaced by 8% FAM. After 40 days of feeding, the average feed intake of FAM pigs was increased (P > 0.05), and the villus height (VH) of jejunum and duodenum, crypt depth (CD), and VH/CD in FAM pigs was improved compared to the CON group (P < 0.05). The increase (P < 0.05) of goblet cells in the jejunum of FAM pigs was positively correlated with the expression of MUC-2 gene (R = 0.9150). The expression of genes related to immunity (IRAK4, NF-κB, and IL-10) and intestinal barrier (Occludin and MUC-2) in the jejunum, as well as the expression of ZO-1 and MUC-2 in the colon of these pigs, also showed increase (P < 0.05) compared to CON pigs, which was accompanied by the decrease (P < 0.05) of LPS concentration in the serum. The elevated proportion of CD3+ and CD8+ T-lymphocyte subsets in spleen (P < 0.05) confirmed the improvement of systemic immune function in FAM pigs. In addition, FAM pigs have a higher β-diversity of microbial community (P < 0.05) and promoted enrichment of probiotics such as Lactobacillus that positively was correlated with acetate concentration in the colon over CON pigs. In summary, partially replacement of expanded corn and soya protein concentrate with FAM (8%) may benefit the intestinal barrier and immune function of weaned pigs without affecting their growth. Our findings also provide evidence of the feasibility of FAM as a dietary component in pigs to reduce the consumption of grain.
Collapse
Affiliation(s)
- Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuqing Shen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hua Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Cong Lan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jiayan Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
ROS-Based Nanoparticles for Atherosclerosis Treatment. MATERIALS 2021; 14:ma14226921. [PMID: 34832328 PMCID: PMC8619986 DOI: 10.3390/ma14226921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (AS), a chronic arterial disease, is the leading cause of death in western developed countries. Considering its long-term asymptomatic progression and serious complications, the early prevention and effective treatment of AS are particularly important. The unique characteristics of nanoparticles (NPs) make them attractive in novel therapeutic and diagnostic applications, providing new options for the treatment of AS. With the assistance of reactive oxygen species (ROS)-based NPs, drugs can reach specific lesion areas, prolong the therapeutic effect, achieve targeted controlled release and reduce adverse side effects. In this article, we reviewed the mechanism of AS and the generation and removal strategy of ROS. We further discussed ROS-based NPs, and summarized their biomedical applications in scavenger and drug delivery. Furthermore, we highlighted the recent advances, challenges and future perspectives of ROS-based NPs for treating AS.
Collapse
|
31
|
Elkafas H, Badary O, Elmorsy E, Kamel R, Yang Q, Al-Hendy A. Endocrine-Disrupting Chemicals and Vitamin D Deficiency in the Pathogenesis of Uterine Fibroids. JOURNAL OF ADVANCED PHARMACY RESEARCH 2021; 5:260-275. [PMID: 34746367 DOI: 10.21608/aprh.2021.66748.1124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Uterine fibroids (UFs) are the most prevalent gynecologic neoplasm, affecting 70-80% of women over their lifespan. Although UFs are benign they can become life-threatening and require invasive surgeries such as myomectomy and hysterectomy. Notwithstanding the significant negative influence UFs have on female reproductive health, very little is known about early events that initiate tumor development. Several risk factors for UFs have been identified including vitamin D deficiency, inflammation, DNA repair deficiency, and environmental exposures to endocrine-disrupting chemicals (EDCs). EDCs have come under scrutiny recently due to their role in UF development. Epidemiologic studies have found an association between increased risk for early UF diagnosis and in utero EDC exposure. Environmental exposure to EDCs during uterine development increases UF incidence in a UF animal model. Notably, several studies demonstrated that abnormal myometrial stem cells (MMSCs) are the cell origin for UFs development. Our recent studies demonstrated that early-life EDC exposure reprogrammed the MMSCs toward a pro-fibroid landscape and altered the DNA repair and inflammation pathways. Notably, Vitamin D3 (VITD3) as a natural compound shrank the UF growth concomitantly with the reversion of several abnormal biological pathways and ameliorated the developmental exposure-induced DNA damage and pro-inflammation pathway in primed MMSCs. This review highlights and emphasizes the importance of multiple pathway interactions in the context of hypovitaminosis D at the MMSCs level and provides proof-of-concept information that can help develop a safe, long-term, durable, and non-surgical therapeutic option for UFs.
Collapse
Affiliation(s)
- Hoda Elkafas
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) formally, (NODCAR), Cairo 35521, Egypt.,Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Osama Badary
- Department of Clinical Pharmacy, Faculty of Pharmacy, British University in Egypt, Cairo 11837, Egypt
| | - Engy Elmorsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
32
|
Effects of Essential Oils and Selected Compounds from Lamiaceae Family as Adjutants on the Treatment of Subjects with Periodontitis and Cardiovascular Risk. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Essential oils from different plant species were found to contain different compounds exhibiting anti-inflammatory effects with the potential to be a valid alternative to conventional chemotherapy that is limited in long-term use due to its serious side effects. Generally, the first mechanism by which an organism counteracts injurious stimuli is inflammation, which is considered a part of the innate immune system. Periodontitis is an infectious and inflammatory disease caused by a dysbiosis in the subgingival microbiome that triggers an exacerbated immune response of the host. The immune–inflammatory component leads to the destruction of gingival and alveolar bone tissue. The main anti-inflammation strategies negatively modulate the inflammatory pathways and the involvement of inflammatory mediators by interfering with the gene’s expression or on the activity of some enzymes and so affecting the release of proinflammatory cytokines. These effects are a possible target from an effective and safe approach, suing plant-derived anti-inflammatory agents. The aim of the present review is to summarize the current evidence about the effects of essentials oils from derived from plants of the Lamiaceae family as complementary agents for the treatment of subjects with periodontitis and their possible effect on the cardiovascular risk of these patients.
Collapse
|
33
|
Takashima M, Lalonde C, Olszanski LA, Zhao FQ. Localized and Systemic Inflammatory Mediators in a Murine Acute Mastitis Model. J Inflamm Res 2021; 14:4053-4067. [PMID: 34456581 PMCID: PMC8387587 DOI: 10.2147/jir.s313799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Milk depression is the major driver of economic loss due to mastitis in dairy animals. The aim of this study was to identify potential mediators of milk depression by investigating the local and systemic changes in gene expression or cytokine production during endotoxin challenge of the mammary gland in a mouse model. Methods The left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, Escherichia coli 055: B5, 50 μL of 0.4 mg/mL) or sterile PBS through the teat meatus 3 days postpartum (n = 9). The 4th glands were individually collected 12 h after LPS injection and analyzed to identify gene expression changes by RNA sequencing and real-time PCR, and the plasma was collected before and after LPS challenge and analyzed to determine the levels of 32 cytokines. Results Transcriptome analysis showed that in addition to strong pro-inflammatory responses, which included granulocyte and monocyte migration and cytokine production and signaling, the LPS-treated glands exhibited strong ubiquitin-mediated and immune-mediated proteasome activation and an increase in nitric oxide-mediated oxidative stress. Furthermore, LPS induced a down-regulation in vesicle membrane, vesicle-mediated trafficking, and metabolic processes of amino acids and other organic molecules in the mammary gland. Of the 32 cytokines analyzed, the levels of 24 (mainly IL-6, G-CSF, MCP-1, RANTES, MIG, MIP-1b, KC, MIP-2, IP-10, and TNFα) were increased or tended to increase in the blood after LPS treatment, and only the levels of IL-9 were decreased. In the mammary gland after LPS challenge, the levels of IL-5, IL-6, IP-10, LIF, MCP-1, MIP-2, and TNFα were significantly increased, and the levels of INFΥ, IL-2, IL-4, IL-10, and IL-12 (p40) were decreased. Discussion These observations provide potential markers and targets for further studies on the prevention and treatment of gram-negative bacteria-induced mastitis.
Collapse
Affiliation(s)
- Miyuki Takashima
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA.,Wakunaga Pharmaceutical Co. Ltd, Osaka, 532-0003, Japan
| | - Christian Lalonde
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Laura Ashley Olszanski
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
34
|
Interleukin-10-592 polymorphism: impact on relapse and survival after allogeneic hematopoietic stem cell transplantation in children with hematological malignancies. J Cancer Res Clin Oncol 2021; 148:985-991. [PMID: 34152493 PMCID: PMC8930899 DOI: 10.1007/s00432-021-03695-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/13/2021] [Indexed: 12/14/2022]
Abstract
Purpose Interleukin-10 (IL-10) potentially can promote the development of alloimmunity. The aim of this study was to investigate if the IL-10-592 CC genotype in the donor reduces the risk of relapse after hematopoietic stem cell transplantation (HSCT) and if that has an impact on event-free survival (EFS) and overall survival (OS). Methods A cohort of 211 children with acute lymphoblastic leukemia (n = 99), acute myeloid leukemia (n = 69), myelodysplastic syndrome (n = 31) or chronic myeloid leukemia (n = 12) who underwent hematopoietic stem cell transplantation (HSCT) in a single center and their respective donors were genotyped of IL-10 gene for rs1800872 using TaqMan real-time polymerase chain reaction. Results The IL-10-592 CC genotype was detected in 107 of the 211 donors (50.7%) and in 106 of the 211 patients (50.2%). Genotype AC was found in 95 donors (45.0%) and in 90 patients (42.7%). Nine donors (4.3%) and 15 patients (7.1%) were homozygous for AA. Ultimately, we observed a significantly reduced incidence of relapse rate (RR) in patients who were transplanted from a donor with the IL-10-592 CC genotype (19% versus 43% (AC) versus 49% (AA); P = 0.0007). In addition, a significant increase of EFS (P = 0.004) and OS (P = 0.006) was detected if the IL-10-592 CC genotype is present in the donor. The occurrence of the IL-10-592 CC genotype, in either donors or recipients, had no significant impact on acute and chronic graft-versus-host disease. In addition, the IL-10-592 genotype of the recipients was not relevant for the RR (P = 0.47434), the EFS (P = 0.840), and the OS (P = 0.535). Conclusion The IL-10-592 CC genotype in the donor was associated with a significant decrease of RR which led to a significant increase of EFS and OS after HSCT. This is the first study to describe an association of the IL-10 gene polymorphism with RR, EFS, and OS after HSCT. Selecting a donor with the IL-10-592 CC genotype could be a useful therapeutic strategy for improving the outcome after allogeneic HSCT.
Collapse
|
35
|
Mateus AP, Mourad M, Power DM. Skin damage caused by scale loss modifies the intestine of chronically stressed gilthead sea bream (Sparus aurata, L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103989. [PMID: 33385418 DOI: 10.1016/j.dci.2020.103989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The present study was designed to test if the damage caused by scale loss provokes a change in other innate immune barriers such as the intestine and how chronic stress affects this response. Sea bream (Sparus aurata) were kept in tanks at low density (16 kg m-3, LD) or exposed to a chronic high density (45 kg m-3, HD) stress for 4 weeks. Scales were then removed (approximately 50%) from the left flank in the LD and HD fish. Intestine samples (n = 8/group) were examined before and at 12 h, 3 days and 7 days after scale removal. Changes in the morphology of the intestine revealed that chronic stress and scale loss was associated with intestinal inflammation. Specifically, enterocyte height and the width of the lamina propria, submucosa and muscle layer were significantly increased (p < 0.05) 3 days after skin damage in fish under chronic stress (HD) compared to other treatments (LDWgut3d or HDgut0h). This was associated with a significant up-regulation (p < 0.05) in the intestine of gene transcripts for cell proliferation (pcna) and anti-inflammatory cytokine tgfβ1 and down-regulation of gene transcripts for the pro-inflammatory cytokines tnf-α and il1β (p < 0.05) in HD and LD fish 3 days after scale removal compared to the undamaged control (LDgut0h). Furthermore, a significant up-regulation of kit, a marker of mast cells, in the intestine of HDWgut3d and LDWgut3d fish suggests they may mediate the crosstalk between immune barriers. Skin damage induced an increase in cortisol levels in the anterior intestine in HDWgut12 h fish and significant (p < 0.05) down-regulation of mr expression, irrespective of stress. These results suggest glucocorticoid levels and signalling in the intestine of fish are modified by superficial cutaneous wounds and it likely modulates intestine inflammation.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Mona Mourad
- Laboratory of Fish Reproduction and Spawning, Aquaculture Division, National Institute of Oceanography & Fisheries, Kayet-bey, Al-Anfoushy, 21556, Alexandria, Egypt.
| | - Deborah M Power
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
36
|
Bosman-Schluep D, de Pril R, Verbaken B, Legent A, Stallen J, de Jong EC, Janssen RAJ. siRNA-based identification of IBD-related targets in human monocyte-derived dendritic cells. J Immunol Methods 2021; 494:113058. [PMID: 33891922 DOI: 10.1016/j.jim.2021.113058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023]
Abstract
Inflammatory bowel disease (IBD) is thought to be caused by an aberrant host response to the commensal enteric flora in genetically susceptible individuals. Dendritic cells (DCs) play a key role in the regulation of this response as they sample gut commensals. In healthy individuals DCs actively contribute to tolerance upon recognition of these resident bacteria, whereas in individuals with IBD, DCs will initiate an inflammatory response. To mimic the disease response in vitro, human monocyte-derived DCs were matured with E. coli causing the cells to produce high levels of the pro-inflammatory cytokine IL-12/IL-23p40 (p40) and low levels of the anti-inflammatory cytokine IL-10. A siRNA-based screening assay was developed and screened to identify potential therapeutic targets that shift this balance towards an immunosuppressive state with lower levels of p40 and higher levels of IL-10. The screening assay was optimized and quality controlled using non-targeting controls and positive control siRNAs targeting IL12B and TLR4 transcripts. In the primary screen, smartpool siRNAs were screened for reduction in p40 expression, induction of IL-10 levels, or increase in IL-10:p40 ratios without affecting cell viability. All potential targets were taken forward into a confirmation screen in a different DC donor in which four individual siRNAs per target were screened. At least two siRNAs per target should have an effect to be considered a valid target. This screen resulted in a concise list of ten genes, of which their role in DC maturation is currently being investigated.
Collapse
Affiliation(s)
| | | | | | | | | | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam UMC, the Netherlands
| | | |
Collapse
|
37
|
Gao C, Peng F, Xie X, Peng L. The Relationship Between Blood Interleukin-10 and Cardiovascular Mortality and All-Cause Mortality After Kidney Transplantation. Risk Manag Healthc Policy 2021; 14:1481-1489. [PMID: 33883954 PMCID: PMC8053705 DOI: 10.2147/rmhp.s309764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Circulating interleukin (IL)-10 is associated with adverse cardiovascular events in chronic kidney disease (CKD). Whether IL-10 predicts cardiovascular and all-cause mortality after kidney transplantation (KT) is unknown. Methods The association between plasma IL-10 and cardiovascular and all-cause mortality was analyzed in a prospective cohort, which included 418 stable kidney transplant recipients, at a median of 3.6 (range=1.2–8.4) years after transplantation. Multivariate Cox regression models were performed to adjusting related confounding factors. Results Median level of IL-10 in KT patient was 22.3 pg/mL. Multivariate Cox regression analysis revealed that serum levels IL-10 were significantly and independently associated with cardiovascular mortality after adjusting for age, gender, BMI, current smoker, current drinker, cause of kidney disease, systolic and diastolic BP, laboratory indexes and medication (HR=1.26, 95% CI 1.19–2.08, P-trend<0.001). The multivariate Cox analysis also suggested that serum levels IL-10 were independently associated with all-cause mortality (HR=1.25, 95% CI 1.11–1.8, P-trend=0.023) after controlling these same related confounding factors. Sensitivity and stratified analysis showed that the significant association can be affected by history of acute rejection. Conclusion Plasma IL-10 is independently and significant associated with cardiovascular and all-cause mortality after kidney transplantation. The significant association is independent of cardiovascular risk factors and other related confounding factors.
Collapse
Affiliation(s)
- Chen Gao
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Fenghua Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Xubiao Xie
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| |
Collapse
|
38
|
Effects of Hyperbaric Oxygen Therapy in Children with Severe Atopic Dermatitis. J Clin Med 2021; 10:jcm10061157. [PMID: 33802050 PMCID: PMC8001365 DOI: 10.3390/jcm10061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/18/2022] Open
Abstract
In the course of atopic dermatitis (AD), the overactivity of the immune system, associated with predominant Th2 lymphocyte responses, is observed, which leads to an increased inflammatory reaction. Cases of a severe course of atopic dermatitis lead to the search for new therapeutic options. The aim of this study was to assess the effects of hyperbaric oxygen therapy (HBOT) treatment for severe cases of AD in children. A total of 15 children with severe AD underwent therapy. The influence of HBOT on the clinical course of AD and immunomodulatory effect of the therapy was analyzed by the SCORAD and objective SCORAD (oSCORAD) scales and by determining the serum concentration of immunological parameters (blood: nTreg lymphocytes, CD4+CD25highCD127-FOXP3+, NKT lymphocytes CD3+, CD16/56+, and serum: total IgE, cytokines IL-4, IL-6, and IL-10, before and after the 30-day treatment cycle). The study showed a significant effect of the therapy on the improvement of the skin condition. In all children, a reduction in the extent and intensity of skin lesions, reduction of redness, swelling, oozing/crusting, scratch marks and skin lichenification after HBOT was observed. Patients also reported a reduction in the intensity of pruritus and an improvement in sleep quality after therapy. In all children, a statistically significant decrease in the serum level of IgE was observed. However, no statistically significant changes in the blood levels of IL-4, IL-6 and IL-10, as well as the percentage of CD4+CD25highCD127−FOXP3+ Treg and NKT lymphocytes, were found. In conclusion, the use of hyperbaric therapy has a positive impact on treatment results in children with a severe course of atopic dermatitis.
Collapse
|
39
|
Pérez-Serrano RM, Soza-Bolaños AI, Castillo-Valdés SN, Hernández-Valdez G, Mora-Izaguirre O, González-Dávalos ML, Dammaschke T, Domínguez-Pérez RA. Endodontic set sealer eluates promote cytokine production in human mononuclear and periodontal ligament cells. AUST ENDOD J 2021; 47:415-422. [PMID: 33650775 DOI: 10.1111/aej.12493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022]
Abstract
Endodontic freshly mixed sealers display toxic effects; however, these are significantly reduced and most become relatively inert in the set state but there is no information about the possible inflammatory reaction promoted by them. Four contemporary and different formulated endodontic set sealers (MTA Fillapex, BioRoot RCS, AH Plus, and Pulp Canal Sealer) were evaluated. Human periodontal ligament cells and human peripheral blood mononuclear cells were stimulated for 3, 6, 12 and 24 h. Interleukin-6, tumour necrosis factor-alpha, interleukin-8 and interleukin-10 concentrations were measured by enzyme-linked immunosorbent assay. All endodontic set sealer eluates promoted a similar production (P ˃ 0.05) of the four cytokines. However, their concentrations decreased within a short time period to nearly undetectable concentrations after 24 h, suggesting that the studied endodontic set sealers do not possess inflammatory properties which has favoured their long-term use in clinical practice.
Collapse
Affiliation(s)
- Rosa M Pérez-Serrano
- Endodontic Specialization Program, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico.,Laboratorio de Investigación Odontológica Multidisciplinaria, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Queretaro, Mexico
| | - Ana I Soza-Bolaños
- Endodontic Specialization Program, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Samantha N Castillo-Valdés
- Endodontic Specialization Program, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Gabriela Hernández-Valdez
- Endodontic Specialization Program, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | | | | | - Till Dammaschke
- Department of Periodontology and Operative Dentistry, Westphalian Wilhelms-University, Münster, Germany
| | - Rubén A Domínguez-Pérez
- Endodontic Specialization Program, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico.,Laboratorio de Investigación Odontológica Multidisciplinaria, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Queretaro, Mexico
| |
Collapse
|
40
|
Lüttgenau J, Imboden I, Wellnitz O, Romer R, Scaravaggi I, Neves AP, Borel N, Bruckmaier RM, Janett F, Bollwein H. Intrauterine infusion of killed semen adversely affects uterine blood flow and endometrial gene expression of inflammatory cytokines in mares susceptible to persistent breeding-induced endometritis. Theriogenology 2021; 163:18-30. [PMID: 33493874 DOI: 10.1016/j.theriogenology.2020.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
Persistent breeding-induced endometritis (PBIE) is a leading cause of infertility in mares. The objective of the study was to assess genital perfusion and endometrial gene expression of inflammatory cytokines in mares classified as susceptible (n = 5) or resistant (n = 5) to PBIE. Ten mares were examined daily during estrus until 6 d after hCG-induced ovulation for two estrous cycles. Twenty-four hours after application of 1500 IU hCG, 4 mL of killed (by repeated freezing in liquid nitrogen and thawing at 50 °C) deep-frozen semen or sterile saline was instilled into the uterine body and examinations were carried out immediately before and 3, 6, and 12 h after intrauterine infusion. Examinations included blood sampling to determine plasma progesterone (P4) concentrations, and transrectal ultrasonography in B- and color Doppler mode to determine follicular and luteal size and blood flow, the extent of intrauterine fluid, as well as time-averaged maximum velocity (TAMV), blood flow volume (BFV), and blood flow resistance (expressed as pulsatility index, PI) of the uterine arteries. Additionally, endometrial biopsies were obtained at 24 h before, and 2 and 7 d after infusion, and mRNA expressions of IL1B, IL6, IL8, IL10, TNF, CASP3, and COX2 were determined by qRT-PCR. Statistical analyses were performed with mixed models. Intrauterine fluid retention (diameter >20 mm for at least 3 d) was found after infusion of killed semen in five susceptible mares. There was no treatment effect (semen vs saline; P > 0.05) on genital blood flow, plasma P4 concentration, and endometrial gene expression. In comparison to resistant mares, susceptible mares had an increased (P = 0.04) BFV of the uterine arteries at 24 h before intrauterine infusion of killed semen, and an increased (P = 0.03) PI at 2 d after infusion. The TAMV, plasma P4 concentrations, and follicular and luteal size and blood flow did not differ (P > 0.05) between resistant and susceptible mares. Endometrial mRNA expression of IL1B increased (P = 0.05) at 2 d after the infusion of killed semen in the susceptible mares, and the expression of IL10 increased (P = 0.003) at 7 d after the infusion within the resistant mares. Interleukin 6 mRNA was increased (P = 0.05) in susceptible compared to resistant mares at 2 d after infusion. In summary, an intrauterine infusion of killed semen increases uterine blood flow resistance and alters endometrial gene expression of inflammatory cytokines for at least 7 d but does not affect ovarian blood supply and luteal function in mares susceptible to PBIE.
Collapse
Affiliation(s)
- J Lüttgenau
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - I Imboden
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - R Romer
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - I Scaravaggi
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - A P Neves
- Faculdade de Zootecnia, Unipampa Campus, Dom Pedrito, Brazil
| | - N Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - F Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - H Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Freitas RA, Junior RRP, Justina VD, Bressan AFM, Bomfim GF, Carneiro FS, Giachini FR, Lima VV. Angiotensin (1-7)-attenuated vasoconstriction is associated with the Interleukin-10 signaling pathway. Life Sci 2020; 262:118552. [PMID: 33035583 DOI: 10.1016/j.lfs.2020.118552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
AIMS Angiotensin-1-7 [Ang-(1-7)] is an essential peptide of the renin-angiotensin system that promotes benefits modulating effects in different tissues. Similarly, interleukin-10 (IL-10) exhibits an immunomodulatory action on the vasculature. This study aimed to evaluate whether Ang-(1-7) levels attenuates vascular contractile response, mediated by IL-10-pathway (JAK1/STAT3/IL-10). MAIN METHODS Aortas from male mice C57BL/6J and knockout for IL-10 (IL-10-/-) were incubated with Ang-(1-7) [10 μM] or vehicle, during 5 min, 1 h, 6 h, 12 h, and 24 h. Concentration-response curves to phenylephrine, western blotting, and flow cytometry analysis was performed to evaluate the contractile response, protein expression, and IL-10 levels, respectively. KEY FINDINGS Incubation with Ang-(1-7) produced a time-dependent increase in Janus kinases 1 (JAK1) expression, as well as increased expression and activity of the signal transducer and activator of transcription 3 (STAT3) protein. However, this effect was not observed in knockout animals for IL-10. After 12 h of Ang-(1-7) treatment, arteries from control mice displayed decreased vascular reactivity to phenylephrine, but this effect was not observed in the absence of endogenous IL-10. Additionally, incubation with Ang-(1-7) augments IL-10 levels after 6 h, 12 h, and 24 h of incubation. SIGNIFICANCE These results demonstrated the role of Ang-(1-7) in the IL-10 signaling pathway and its effects in the vascular contractility response. Thus, these findings suggest a new synergic action where Ang-(1-7) and IL-10 converge into a protective mechanism against vascular dysfunction.
Collapse
Affiliation(s)
- Raiany A Freitas
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Rinaldo R P Junior
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Vanessa D Justina
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Alecsander F M Bressan
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda R Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Victor V Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.
| |
Collapse
|
42
|
Wesson DE. Serum bicarbonate as a cardiovascular risk factor: evolving from 'non-traditional'? Nephrol Dial Transplant 2020; 35:1282-1285. [PMID: 32003809 DOI: 10.1093/ndt/gfz297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Donald E Wesson
- Baylor Scott and White Health and Wellness Center, Dallas, TX, USA.,Department of Internal Medicine, Texas A&M College of Medicine, Dallas, TX, USA
| |
Collapse
|
43
|
Zhang FH, Liu Y, Dong XB, Hao H, Fan KL, Meng XQ, Kong L. Shenmai Injection Upregulates Heme Oxygenase-1 to Confer Protection Against Severe Acute Pancreatitis. J Surg Res 2020; 256:295-302. [PMID: 32712444 DOI: 10.1016/j.jss.2020.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND To explore the mechanism of Shenmai injection (SMI) on severe acute pancreatitis (SAP) through heme oxygenase-1 (HO-1) signaling. METHODS A total of 40 male Sprague-Dawley (SD) rats (220-260 g) were grouped into the following four categories (n = 10): SAP + SMI + Zinc protoporphyrin (ZnPP), SAP + SMI, SAP, and sham surgery groups. ZnPP is a specific inhibitor of HO-1. Four percent of sodium taurocholate (1 mL/kg) was retrogradely injected via the pancreatic duct to induce the SAP model. The SAP group rats received 1.6 mL/kg saline by intravenous injection 30 min after the induction of SAP. The SAP + SMI group rats received 1.6 mL/kg SMI by intravenous injection 30 min after the induction of SAP. The SAP + SMI + ZnPP group rats received an intravenous injection of 1.6 mL/kg SMI and intraperitoneal administration of 30 mg/kg ZnPP 30 min after the SAP induction. Twenty-four hours after the SAP induction, blood samples were collected for the measurement of amylase, lipase, creatinine, myeloperoxidase, interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and HO-1 level, while tissue specimens were harvested for the determination of HO-1, TNF-α, and IL-10 mRNA level. Meanwhile, histopathological changes in organs (pancreas, lung, and kidney) were stored. RESULTS The serum concentration of amylase, lipase, creatinine, and myeloperoxidase was higher in the SAP group than in the SAP + SMI group. Treatment with SMI increased HO-1 and IL-10 level and reduced TNF-α level in serum and tissues compared to the SAP group (P < 0.05). Treatment with SMI abolished the organ-damaging effects of SAP (P < 0.05). Furthermore, suppression of HO-1 expression by ZnPP canceled the aforementioned effects. CONCLUSIONS SMI confers protection against the SAP-induced systemic inflammatory response and multiple organs damage via HO-1 upregulation.
Collapse
Affiliation(s)
- Fei-Hu Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Emergency Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yang Liu
- Department of Emergency Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Bin Dong
- Department of Emergency Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Hao
- Department of Emergency Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai-Liang Fan
- Department of Emergency Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xian-Qing Meng
- Department of Emergency Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Kong
- Department of Emergency Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
44
|
Zhang Y, Miao X, Zhang Z, Wei R, Sun S, Liang G, Li H, Chu C, Zhao L, Zhu X, Guo Q, Wang B, Li X. miR-374b-5p is increased in deep vein thrombosis and negatively targets IL-10. J Mol Cell Cardiol 2020; 144:97-108. [DOI: 10.1016/j.yjmcc.2020.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
|
45
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
46
|
Extracellular Vesicles and Tumor-Immune Escape: Biological Functions and Clinical Perspectives. Int J Mol Sci 2020; 21:ijms21072286. [PMID: 32225076 PMCID: PMC7177226 DOI: 10.3390/ijms21072286] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
The modulation of the immune system is one of the hallmarks of cancer. It is now widely described that cancer cells are able to evade the immune response and thus establish immune tolerance. The exploration of the mechanisms underlying this ability of cancer cells has always attracted the scientific community and is the basis for the development of new promising cancer therapies. Recent evidence has highlighted how extracellular vesicles (EVs) represent a mechanism by which cancer cells promote immune escape by inducing phenotypic changes on different immune cell populations. In this review, we will discuss the recent findings on the role of tumor-derived extracellular vesicles (TEVs) in regulating immune checkpoints, focusing on the PD-L1/PD-1 axis.
Collapse
|
47
|
Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal stromal cell based therapies for the treatment of immune disorders: recent milestones and future challenges. Expert Opin Drug Deliv 2020; 17:189-200. [PMID: 31918562 DOI: 10.1080/17425247.2020.1714587] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Mesenchymal stromal cells (MSCs) present unique immunomodulatory properties that make them promising candidates for the treatment of inflammatory and immune disorders. MSC-mediated immunomodulation is a complex combination of mechanisms, in which the secretome plays a fundamental role. The plethora of bioactive molecules MSCs produce, such as indoleamine 2,3-dioxygenase (IDO) or prostaglandin E2 (PGE2), efficiently regulates innate and adaptive immunity. As a result, MSCs have been extensively employed in preclinical studies, leading to the conduction of multiple clinical trials.Areas covered: This review summarizes the effects of some of the key biomolecules in the MSC secretome and the advances in preclinical studies exploring the treatment of disorders including graft-versus-host disease (GvHD) or inflammatory bowel disease (IBD). Further, late-stage clinical trials and the first MSC-based therapies that recently obtained regulatory approval are discussed.Expert opinion: Extensive research supports the potential of MSC-based immunomodulatory therapies. However, to establish the bases for clinical translation, the future of study lies in the standardization of protocols and in the development of strategies that boost the therapeutic properties of MSCs.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
48
|
Sireswar S, Biswas S, Dey G. Adhesion and anti-inflammatory potential of Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food Funct 2020; 11:2555-2572. [DOI: 10.1039/c9fo02249j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A seabuckthorn based beverage matrix retains the functionality of L. rhamnosus GG and exhibits enhanced anti-inflammatory effects against LPS-induced inflammation in zebrafish.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| | | | - Gargi Dey
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| |
Collapse
|
49
|
Kim M, Sahu A, Hwang Y, Kim GB, Nam GH, Kim IS, Chan Kwon I, Tae G. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/- mice. Biomaterials 2020; 226:119550. [DOI: 10.1016/j.biomaterials.2019.119550] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
|
50
|
Huang J, Xiang Y, Zhang H, Wu N, Chen X, Wu L, Xu B, Li C, Zhang Z, Tong S, Zhong L, Li Y. Plasma Level of Interferon-γ Predicts the Prognosis in Patients With New-Onset Atrial Fibrillation. Heart Lung Circ 2019; 29:e168-e176. [PMID: 31813744 DOI: 10.1016/j.hlc.2019.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Patients with atrial fibrillation are at increased risk of stroke and mortality. It is not clear if inflammatory biomarkers are associated with stroke and mortality in patients with atrial fibrillation. We aimed to evaluate the predictive value of three inflammatory biomarkers (interleukin [IL]-9, IL-10, and interferon [IFN]-γ) for stroke and mortality in atrial fibrillation. METHOD A total of 232 patients with new-onset atrial fibrillation were enrolled and 217 patients were completely followed-up. Peripheral plasma concentrations of cytokines (IL-9, IL-10, and IFN-γ) were measured using Luminex xMAP assays. The association between dichotomous groups of cytokines and outcomes were evaluated by a Cox proportional hazards model. The incremental value of inflammatory biomarkers, in addition to the CHA2DS2-VASc score, was also assessed. RESULTS Patients were followed-up for a median duration of 27 (interquartile range [IQR], 23-30) months. The elevated plasma level of IFN-γ was an independent risk factor for stroke (hazard ratio [HR], 4.02 [IQR, 1.06-15.34]; p=0.042) and all-cause mortality (HR, 3.93 [IQR, 1.43-10.78]; p=0.008) in patients with atrial fibrillation. Adding high IFN-γ to the CHA2DS2-VASc score showed improvement in discrimination and reclassification prediction for stroke and mortality. However, IL-9 and IL-10 had no statistically significant association with stroke and all-cause mortality in patients with atrial fibrillation. CONCLUSIONS In this "real-world" cohort of patients with atrial fibrillation, we have shown for the first time that plasma levels of IFN-γ could provide incremental prognostic value supplementary to that obtained from the CHA2DS2-VASc scores for predicting of stroke and all-cause mortality.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Huan Zhang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xinghua Chen
- Department of Cardiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Bin Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Chengying Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Zhihui Zhang
- Department of Cardiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Shifei Tong
- Cardiovascular Disease Center, Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Zhong
- Cardiovascular Disease Center, Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China.
| |
Collapse
|