1
|
Chacón P, Vega-Rioja A, Doukkali B, Del Valle Rodriguez A, Fernández-Delgado L, Domínguez-Cereijo L, Segura C, Pérez-Machuca BM, Perkins JR, El Bekay R, Cornejo-García JA, Hajji N, Monteseirín J, Rivas-Pérez D. Human Neutrophils Couple Nitric Oxide Production and Extracellular Trap Formation in Allergic Asthma. Am J Respir Crit Care Med 2024; 210:593-606. [PMID: 38445953 DOI: 10.1164/rccm.202305-0889oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 03/06/2024] [Indexed: 03/07/2024] Open
Abstract
Rationale: Nitric oxide (NO) is increased in the airways and serum of patients with allergic asthma, suggesting an important role in asthma. NO production has been widely attributed to the canonical inducible NO synthase. Much effort has been made to inhibit this enzyme, with two outcomes: no asthma improvement and partial NO reduction, suggesting the involvement of an inducible NO synthase-independent source. Objectives: Neutrophils produce NO under inflammatory conditions, and their role in asthma has been overlooked. The present study analyzes their possible role as sources of NO. Methods: Our hypothesis was tested in 99 allergic patients with intermittent bronchial asthma and 26 healthy donors. NO production by blood and sputum neutrophils in response to allergens, anti-IgE, and anti-IgE receptor antibodies was assessed by Griess reagent, flow cytometry, and confocal microscopy. The formation of extracellular traps (ETs) as a possible consequence of NO production was quantified by Western blot and confocal microscopy, and reactive oxygen species were assessed with luminol-enhanced chemiluminescence. Measurements and Main Results: Among blood and sputum granulocytes from patients with allergic asthma, only neutrophils produce NO by an IgE-dependent mechanism. This production is independent of NO synthase, but dependent on a reaction between L-arginine and reactive oxygen species from NOX2 (NADPH oxidase). NO and ETosis are induced in parallel, and NO amplifies ET formation, which is a key mediator in asthma. Conclusions: Our findings reveal a novel role of neutrophils as the unique allergen/IgE-dependent NO source in allergic asthma, enhancing ET formation. These results suggest that NO produced by neutrophils needs further consideration in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Pedro Chacón
- Laboratorio de Inmunología y Alergia-Fundación para la Gestión de la Investigación en Salud de Sevilla, Unidad de Gestión Clínica de Alergología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamento de Medicina, Facultad de Medicina, and
| | - Antonio Vega-Rioja
- Laboratorio de Inmunología y Alergia-Fundación para la Gestión de la Investigación en Salud de Sevilla, Unidad de Gestión Clínica de Alergología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamento de Medicina, Facultad de Medicina, and
| | - Bouchra Doukkali
- Laboratorio de Inmunología y Alergia-Fundación para la Gestión de la Investigación en Salud de Sevilla, Unidad de Gestión Clínica de Alergología, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Alberto Del Valle Rodriguez
- Laboratorio de Inmunología y Alergia-Fundación para la Gestión de la Investigación en Salud de Sevilla, Unidad de Gestión Clínica de Alergología, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Lourdes Fernández-Delgado
- Laboratorio de Inmunología y Alergia-Fundación para la Gestión de la Investigación en Salud de Sevilla, Unidad de Gestión Clínica de Alergología, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Leticia Domínguez-Cereijo
- Laboratorio de Inmunología y Alergia-Fundación para la Gestión de la Investigación en Salud de Sevilla, Unidad de Gestión Clínica de Alergología, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Carmen Segura
- Laboratorio de Inmunología y Alergia-Fundación para la Gestión de la Investigación en Salud de Sevilla, Unidad de Gestión Clínica de Alergología, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Beatriz María Pérez-Machuca
- Laboratorio de Inmunología y Alergia-Fundación para la Gestión de la Investigación en Salud de Sevilla, Unidad de Gestión Clínica de Alergología, Hospital Universitario Virgen Macarena, Seville, Spain
| | - James R Perkins
- Centro de Investigación Biomédica en Red de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Rajaa El Bekay
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga Plataforma en Nanomedicina, Hospital Regional Universitario de Málaga, Málaga, Spain
- Obesity and Nutrition Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - José Antonio Cornejo-García
- Instituto de Investigación Biomédica de Málaga, Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud, Málaga, Spain
| | - Nabil Hajji
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom; and
| | - Javier Monteseirín
- Hospital Quirón Sagrado Corazón and Hospital Quirón Infanta-Luisa, Seville, Spain
| | | |
Collapse
|
2
|
Devitt KA, Kern W, Kajstura MA, Holl EK, Hays AL, Hedley BD, Gonneau C, Jellison ER, McCloskey TW, Mishra S, Rebeles J, Ouseph MM. Implementation of flow cytometry testing on rare matrix samples: Special considerations and best practices when the sample is unique or difficult to obtain. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 39032144 DOI: 10.1002/cyto.b.22198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
The publication of Clinical and Laboratory Standards Institute's guideline H62 has provided the flow cytometry community with much-needed guidance on development and validation of flow cytometric assays (CLSI, 2021). It has also paved the way for additional exploration of certain topics requiring additional guidance. Flow cytometric analysis of rare matrices, or unique and/or less frequently encountered specimen types, is one such topic and is the focus of this manuscript. This document is the result of a collaboration subject matter experts from a diverse range of backgrounds and seeks to provide best practice consensus guidance regarding these types of specimens. Herein, we define rare matrix samples in the setting of flow cytometric analysis, address validation implications and challenges with these samples, and describe important considerations of using these samples in both clinical and research settings.
Collapse
Affiliation(s)
- Katherine A Devitt
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont, USA
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Wolfgang Kern
- Department of Flow Cytometry, MLL Munich Leukemia Laboratory, Munich, Germany
| | - Malgorzata A Kajstura
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Eda K Holl
- Danaher Corporation, Washington, DC, USA
| | - Amanda L Hays
- Scientific Office, BioAgilytix Labs, Durham, North Carolina, USA
| | - Benjamin D Hedley
- Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Christèle Gonneau
- Flow Cytometry Department, Labcorp Central Laboratories Services, Geneva, Switzerland
| | - Evan R Jellison
- Department of Immunology, UCONN School of Medicine, Farmington, Connecticut, USA
| | - Thomas W McCloskey
- Department of Research and Development, ICON Laboratory Services, Farmingdale, New York, USA
| | - Shruti Mishra
- Bone Marrow Transplantation and Stem Cell Research Centre, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jennifer Rebeles
- Department of Diagnostics, bioAffinity Technologies, San Antonio, Texas, USA
| | - Madhu M Ouseph
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Yao Y, Yang Y, Wang J, Yu P, Guo J, Dong L, Wang C, Liu P, Zhang Y, Song X. Proteomic and metabolomic proof of concept for unified airways in chronic rhinosinusitis and asthma. Ann Allergy Asthma Immunol 2024; 132:713-722.e4. [PMID: 38382675 DOI: 10.1016/j.anai.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) with comorbid asthma remains unclear. OBJECTIVE To assess upper and lower airway unity and identify a possible common pathogenesis in CRSwNP with asthma. METHODS This study analyzed the expression of proteins and metabolites in nasal lavage fluid cells (NLFCs) and induced sputum cells (ISCs). Differentially expressed proteins and their function-related metabolites in the upper and lower airways of patients having CRSwNP with or without asthma were identified; relevant signaling pathways were analyzed, and key pathway-related proteins were identified. Parallel reaction monitoring was used to verify these target proteins. RESULTS Protein or metabolite expression between NLFCs and ISCs was highly correlated and conservative on the basis of expression profiles and weighted gene coexpression network analysis. There were 17 differentially coexpressed proteins and their function-related 13 metabolites that were identified in the NLFCs and ISCs of CRSwNP, whereas 11 proteins and 11 metabolites were identified in CRSwNP with asthma. An asthma pathway was involved in the copathogenesis of upper and lower airways in whether CRSwNP or CRSwNP with asthma. The asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase, as the core of the protein-metabolism interaction networks between the upper and lower airways, were both highly coexpressed in NLFCs and ISCs in patients having either CRSwNP or CRSwNP with asthma by parallel reaction monitoring validation. CONCLUSION Proteomics and metabolomics reveal upper and lower airway unity. Asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase from the upper airway could be used to assess the potential risk of lower airway dysfunction in CRSwNP.
Collapse
Affiliation(s)
- Yao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Jianwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Jing Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Luchao Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Pengfei Liu
- Shanghai Applied Protein Technology Co, Ltd, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Peden DB, Almond M, Brooks C, Robinette C, Wells H, Burbank A, Hernandez M, Hinderliter A, Caughey M, Jiang Q, Wang Q, Li H, Zhou H, Alexis N. A pilot randomized clinical trial of γ-tocopherol supplementation on wood smoke-induced neutrophilic and eosinophilic airway inflammation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100177. [PMID: 37876758 PMCID: PMC10590746 DOI: 10.1016/j.jacig.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Background Air pollutants, including particulates from wood smoke, are a significant cause of exacerbation of lung disease. γ-Tocopherol is an anti-inflammatory isoform of vitamin E that has been shown to reduce allergen-, ozone-, and endotoxin-induced inflammation. Objective The objective of this study was to determine whether γ-tocopherol would prevent experimental wood smoke-induced airway inflammation in humans. Methods This was a randomized, placebo-controlled clinical trial testing the effect of a short course of γ-tocopherol-enriched supplementation on airway inflammation following a controlled exposure to wood smoke particulates. Results Short-course γ-tocopherol intervention did not reduce wood smoke-induced neutrophilic airway inflammation, but it did prevent wood smoke-induced eosinophilic airway inflammation. Conclusion γ-Tocopherol is a potential intervention for exacerbation of allergic airway inflammation, but further study examining longer dosing periods is required.
Collapse
Affiliation(s)
- David B. Peden
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martha Almond
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christian Brooks
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Carole Robinette
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Heather Wells
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison Burbank
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michelle Hernandez
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alan Hinderliter
- Department of Medicine, Division of Cardiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Melissa Caughey
- Department of Biomedical Engineering, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, Ind
| | - Qianyue Wang
- Department of Nutrition Science, Purdue University, West Lafayette, Ind
| | - Haolin Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Haibo Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Neil Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
6
|
Ali MM, Mukherjee M, Radford K, Patel Z, Capretta A, Nair P, Brennan JD. A Rapid Sputum-based Lateral Flow Assay for Airway Eosinophilia using an RNA-cleaving DNAzyme Selected for Eosinophil Peroxidase. Angew Chem Int Ed Engl 2023; 62:e202307451. [PMID: 37477970 DOI: 10.1002/anie.202307451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The first protein-binding allosteric RNA-cleaving DNAzyme (RCD) obtained by direct in vitro selection against eosinophil peroxidase (EPX), a validated marker for airway eosinophilia, is described. The RCD has nanomolar affinity for EPX, shows high selectivity against related peroxidases and other eosinophil proteins, and is resistant to degradation by mammalian nucleases. An optimized RCD was used to develop both fluorescence and lateral flow assays, which were evaluated using 38 minimally processed patient sputum samples (23 non-eosinophilic, 15 eosinophilic), producing a clinical sensitivity of 100 % and specificity of 96 %. This RCD-based lateral flow assay should allow for rapid evaluation of airway eosinophilia as an aid for guiding asthma therapy.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| | - Manali Mukherjee
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Katherine Radford
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Zil Patel
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| |
Collapse
|
7
|
Smith R, Yendamuri S, Vedire Y, Rosario S, Zollo R, Washington D, Sass S, Ivanick NM, Reid M, Barbi J. Immunoprofiling bronchoalveolar lavage cells reveals multifaceted smoking-associated immune dysfunction. ERJ Open Res 2023; 9:00688-2022. [PMID: 37342091 PMCID: PMC10277872 DOI: 10.1183/23120541.00688-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background Bronchoalveolar lavage (BAL) is an underutilised tool in the search for pulmonary disease biomarkers. While leukocytes with effector and suppressor function play important roles in airway immunity and tumours, it remains unclear if frequencies and phenotypes of BAL leukocytes can be useful parameters in lung cancer studies and clinical trials. We therefore explored the utility of BAL leukocytes as a source of biomarkers interrogating the impact of smoking, a major lung cancer risk determinant, on pulmonary immunity. Methods In this "test case" observational study, BAL samples from 119 donors undergoing lung cancer screening and biopsy procedures were evaluated by conventional and spectral flow cytometry to exemplify the comprehensive immune analyses possible with this biospecimen. Proportions of major leukocyte populations and phenotypic markers levels were found. Multivariate linear rank sum analysis considering age, sex, cancer diagnosis and smoking status was performed. Results Significantly increased frequencies of myeloid-derived suppressor cells and PD-L1-expressing macrophages were found in current and former smokers compared to never-smokers. While cytotoxic CD8 T-cells and conventional CD4 helper T-cell frequencies were significantly reduced in current and former smokers, expression of immune checkpoints PD-1 and LAG-3 as well as Tregs proportions were increased. Lastly, the cellularity, viability and stability of several immune readouts under cryostorage suggested BAL samples are useful for correlative end-points in clinical trials. Conclusions Smoking is associated with heightened markers of immune dysfunction, readily assayable in BAL, that may reflect a permissive environment for cancer development and progression in the airway.
Collapse
Affiliation(s)
- Randall Smith
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally
- These authors contributed equally to this article as lead authors and supervised the work
| | - Yeshwanth Vedire
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Zollo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Deschana Washington
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stephanie Sass
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nathaniel M. Ivanick
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Reid
- Department of Medicine – Survivorship and Supportive Care, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
8
|
Hickman E, Smyth T, Cobos-Uribe C, Immormino R, Rebuli ME, Moran T, Alexis NE, Jaspers I. Expanded characterization of in vitro polarized M0, M1, and M2 human monocyte-derived macrophages: Bioenergetic and secreted mediator profiles. PLoS One 2023; 18:e0279037. [PMID: 36862675 PMCID: PMC9980743 DOI: 10.1371/journal.pone.0279037] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/28/2022] [Indexed: 03/03/2023] Open
Abstract
Respiratory macrophage subpopulations exhibit unique phenotypes depending on their location within the respiratory tract, posing a challenge to in vitro macrophage model systems. Soluble mediator secretion, surface marker expression, gene signatures, and phagocytosis are among the characteristics that are typically independently measured to phenotype these cells. Bioenergetics is emerging as a key central regulator of macrophage function and phenotype but is often not included in the characterization of human monocyte-derived macrophage (hMDM) models. The objective of this study was to expand the phenotype characterization of naïve hMDMs, and their M1 and M2 subsets by measuring cellular bioenergetic outcomes and including an expanded cytokine profile. Known markers of M0, M1 and M2 phenotypes were also measured and integrated into the phenotype characterization. Peripheral blood monocytes from healthy volunteers were differentiated into hMDM and polarized with either IFN-γ + LPS (M1) or IL-4 (M2). As expected, our M0, M1, and M2 hMDMs exhibited cell surface marker, phagocytosis, and gene expression profiles indicative of their different phenotypes. M2 hMDMs however were uniquely characterized and different from M1 hMDMs by being preferentially dependent on oxidativte phosphorylation for their ATP generation and by secreting a distinct cluster of soluble mediators (MCP4, MDC, and TARC). In contrast, M1 hMDMs secreted prototypic pro-inflammatory cytokines (MCP1, eotaxin, eotaxin-3, IL12p70, IL-1α, IL15, TNF-β, IL-6, TNF-α, IL12p40, IL-13, and IL-2), but demonstrated a relatively constitutively heightened bioenergetic state, and relied on glycolysis for ATP generation. These data are similar to the bioenergetic profiles we previously observed in vivo in sputum (M1) and BAL (M2)-derived macrophages in healthy volunteers, supporting the notion that polarized hMDMs can provide an acceptable in vitro model to study specific human respiratory macrophage subtypes.
Collapse
Affiliation(s)
- Elise Hickman
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy Smyth
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Catalina Cobos-Uribe
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert Immormino
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Meghan E. Rebuli
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy Moran
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Neil E. Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
9
|
Vega-Rioja A, Chacón P, Fernández-Delgado L, Doukkali B, del Valle Rodríguez A, Perkins JR, Ranea JAG, Dominguez-Cereijo L, Pérez-Machuca BM, Palacios R, Rodríguez D, Monteseirín J, Ribas-Pérez D. Regulation and directed inhibition of ECP production by human neutrophils. Front Immunol 2022; 13:1015529. [PMID: 36518751 PMCID: PMC9744134 DOI: 10.3389/fimmu.2022.1015529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Neutrophils are involved in the pathophysiology of allergic asthma, where the Eosinophil Cationic Protein (ECP) is a critical inflammatory mediator. Although ECP production is attributed to eosinophils, we reported that ECP is also present in neutrophils from allergic patients where, in contrast to eosinophils, it is produced in an IgE-dependent manner. Given the key role of ECP in asthma, we investigated the molecular mechanisms involved in ECP production as well as the effects induced by agonists and widely used clinical approaches. We also analyzed the correlation between ECP production and lung function. Methods Neutrophils from allergic asthmatic patients were challenged with allergens, alone or in combination with cytokines, in the presence of cell-signaling inhibitors and clinical drugs. We analyzed ECP levels by ELISA and confocal microscopy. Lung function was assessed by spirometry. Results IgE-mediated ECP release is dependent on phosphoinositide 3-kinase, the extracellular signal-regulated kinase (ERK1/2) and the production of reactive oxygen species by NADPH-oxidase. Calcineurin phosphatase and the transcription factor NFAT are also involved. ECP release is enhanced by the cytokines interleukin (IL)-5 and granulocyte macrophage-colony stimulating factor, and inhibited by interferon-γ, IL-10, clinical drugs (formoterol, tiotropium and budesonide) and allergen-specific IT. We also found an inverse correlation between asthma severity and ECP levels. Conclusions Our results suggest the molecular pathways involved in ECP production and potential therapeutic targets. We also provide a new method to evaluate disease severity in asthmatic patients based on the quantification of in vitro ECP production by peripheral neutrophils.
Collapse
Affiliation(s)
- Antonio Vega-Rioja
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain,Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain,*Correspondence: Antonio Vega-Rioja, ; Pedro Chacón, ; Javier Monteseirín,
| | - Pedro Chacón
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain,Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain,*Correspondence: Antonio Vega-Rioja, ; Pedro Chacón, ; Javier Monteseirín,
| | | | - Bouchra Doukkali
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | - James R. Perkins
- Departamento de Biología Molecular y Bioquímica. Facultad de Ciencias, Universidad de Málaga, Málaga, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Juan A. G. Ranea
- Departamento de Biología Molecular y Bioquímica. Facultad de Ciencias, Universidad de Málaga, Málaga, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | | | | | | | | | - Javier Monteseirín
- Hospital Quirón Sagrado Corazón and Hospital Quirón Infanta-Luisa, Sevilla, Spain,*Correspondence: Antonio Vega-Rioja, ; Pedro Chacón, ; Javier Monteseirín,
| | | |
Collapse
|
10
|
Santopolo G, Clemente A, Rojo-Molinero E, Fernández S, Álvarez MC, Oliver A, de la Rica R. Improved cytometric analysis of untouched lung leukocytes by enzymatic liquefaction of sputum samples. Biol Proced Online 2022; 24:17. [PMID: 36396988 PMCID: PMC9673301 DOI: 10.1186/s12575-022-00181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background Phenotyping sputum-resident leukocytes and evaluating their functional status are essential analyses for exploring the cellular basis of pathological processes in the lungs, and flow cytometry is widely recognized as the gold-standard technique to address them. However, sputum-resident leukocytes are found in respiratory samples which need to be liquefied prior to cytometric analysis. Traditional liquefying procedures involve the use of a reducing agent such as dithiothreitol (DTT) in temperature-controlled conditions, which does not homogenize respiratory samples efficiently and impairs cell viability and functionality. Methods Here we propose an enzymatic method that rapidly liquefies samples by means of generating O2 bubbles with endogenous catalase. Sputum specimens from patients with suspected pulmonary infection were treated with DTT, the enzymatic method or PBS. We used turbidimetry to compare the liquefaction degree and cell counts were determined using a hemocytometer. Finally, we conducted a comparative flow cytometry study for evaluating frequencies of sputum-resident neutrophils, eosinophils and lymphocytes and their activation status after liquefaction. Results Enzymatically treated samples were better liquefied than those treated with DTT or PBS, which resulted in a more accurate cytometric analysis. Frequencies of all cell subsets analyzed within liquefied samples were comparable between liquefaction methods. However, the gentle cell handling rendered by the enzymatic method improves cell viability and retains in vivo functional characteristics of sputum-resident leukocytes (with regard to HLA-DR, CD63 and CD11b expression). Conclusion In conclusion, the proposed enzymatic liquefaction method improves the cytometric analysis of respiratory samples and leaves the cells widely untouched for properly addressing functional analysis of lung leukocytes. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00181-z.
Collapse
|
11
|
Lunderberg JM, Dutta S, Collier ARY, Lee JS, Hsu YM, Wang Q, Zheng W, Hao S, Zhang H, Feng L, Robson SC, Gao W, Riedel S. Pan-neutralizing, germline-encoded antibodies against SARS-CoV-2: Addressing the long-term problem of escape variants. Front Immunol 2022; 13:1032574. [DOI: 10.3389/fimmu.2022.1032574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the initially reported high efficacy of vaccines directed against ancestral SARS-CoV-2, repeated infections in both unvaccinated and vaccinated populations remain a major global health challenge. Because of mutation-mediated immune escape by variants-of-concern (VOC), approved neutralizing antibodies (neutAbs) effective against the original strains have been rendered non-protective. Identification and characterization of mutation-independent pan-neutralizing antibody responses are therefore essential for controlling the pandemic. Here, we characterize and discuss the origins of SARS-CoV-2 neutAbs, arising from either natural infection or following vaccination. In our study, neutAbs in COVID-19 patients were detected using the combination of two lateral flow immunoassay (LFIA) tests, corroborated by plaque reduction neutralization testing (PRNT). A point-of-care neutAb LFIA, NeutraXpress™, was validated using serum samples from historical pre-COVID-19 negative controls, patients infected with other respiratory pathogens, and PCR-confirmed COVID-19 patients. Surprisingly, potent neutAb activity was mainly noted in patients generating both IgM and IgG against the Spike receptor-binding domain (RBD), in contrast to samples possessing anti-RBD IgG alone. We propose that low-affinity, high-avidity, germline-encoded natural IgM and subsequent generation of class-switched IgG may have an underappreciated role in cross-protection, potentially offsetting immune escape by SARS-CoV-2 variants. We suggest Reverse Vaccinology 3.0 to further exploit this innate-like defense mechanism. Our proposition has potential implications for immunogen design, and provides strategies to elicit pan-neutAbs from natural B1-like cells. Refinements in future immunization protocols might further boost long-term cross-protection, even at the mucosal level, against clinical manifestations of COVID-19.
Collapse
|
12
|
Curto E, Mateus-Medina ÉF, Crespo-Lessmann A, Osuna-Gómez R, Ujaldón-Miró C, García-Moral A, Galván-Blasco P, Soto-Retes L, Ramos-Barbón D, Plaza V. Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13400. [PMID: 36293979 PMCID: PMC9602830 DOI: 10.3390/ijerph192013400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Two subsets of eosinophils have been described: resident eosinophils with homeostatic functions (rEOS) in healthy subjects and in patients with nonallergic eosinophilic asthma, and inflammatory eosinophils (iEOS) in blood and lung samples from patients with allergic asthma. We explored if it would be possible to identify different subsets of eosinophils using flow cytometry and the gating strategy applied to induced sputum. We conducted an observational cross-sectional single-center study of 62 patients with persistent allergic asthma. Inflammatory cells from induced sputum samples were counted by light microscopy and flow cytometry, and cytokine levels in the supernatant were determined. Two subsets of eosinophils were defined that we call E1 (CD66b-high and CD15-high) and E2 (CD66b-low and CD15-low). Of the 62 patients, 24 were eosinophilic, 18 mixed, 10 paucigranulocytic, and 10 neutrophilic. E1 predominated over E2 in the eosinophilic and mixed patients (20.86% vs. 6.27% and 14.42% vs. 4.31%, respectively), while E1 and E2 were similar for neutrophilic and paucigranulocytic patients. E1 correlated with IL-5, fractional exhaled nitric oxide, and blood eosinophils. While eosinophil subsets have been identified for asthma in blood, we have shown that they can also be identified in induced sputum.
Collapse
Affiliation(s)
- Elena Curto
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Éder F. Mateus-Medina
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Astrid Crespo-Lessmann
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Rubén Osuna-Gómez
- Inflammatory Diseases Unit, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Cristina Ujaldón-Miró
- Cellular Immunotherapy and Gene Therapy Group (GITG), Oncology, Hematology and Transplantation Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Alba García-Moral
- Pediatric Allergy Unit, Pediatric Allergy Section, Pediatric Pneumology and Cystic Fibrosis, Pediatrics Service, Hospital Universitari Vall d’Hebron, 08041 Barcelona, Spain
| | - Paula Galván-Blasco
- Allergology Section, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, 08041 Barcelona, Spain
| | - Lorena Soto-Retes
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - David Ramos-Barbón
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Vicente Plaza
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
13
|
Sputum analysis by flow cytometry; an effective platform to analyze the lung environment. PLoS One 2022; 17:e0272069. [PMID: 35976857 PMCID: PMC9385012 DOI: 10.1371/journal.pone.0272069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Low dose computed tomography (LDCT) is the standard of care for lung cancer screening in the United States (US). LDCT has a sensitivity of 93.8% but its specificity of 73.4% leads to potentially harmful follow-up procedures in patients without lung cancer. Thus, there is a need for additional assays with high accuracy that can be used as an adjunct to LDCT to diagnose lung cancer. Sputum is a biological fluid that can be obtained non-invasively and can be dissociated to release its cellular contents, providing a snapshot of the lung environment. We obtained sputum from current and former smokers with a 30+ pack-year smoking history and who were either confirmed to have lung cancer or at high risk of developing the disease. Dissociated sputum cells were counted, viability determined, and labeled with a panel of markers to separate leukocytes from non-leukocytes. After excluding debris and dead cells, including squamous epithelial cells, we identified reproducible population signatures and confirmed the samples’ lung origin. In addition to leukocyte and epithelial-specific fluorescent antibodies, we used the highly fluorescent meso-tetra(4-carboxyphenyl) porphyrin (TCPP), known to preferentially stain cancer (associated) cells. We looked for differences in cell characteristics, population size and fluorescence intensity that could be useful in distinguishing cancer samples from high-risk samples. We present our data demonstrating the feasibility of a flow cytometry platform to analyze sputum in a high-throughput and standardized matter for the diagnosis of lung cancer.
Collapse
|
14
|
Alexis NE, Zhou LY, Burbank AJ, Almond M, Hernandez ML, Mills KH, Noah TL, Wells H, Zhou H, Peden DB. Development of a screening protocol to identify persons who are responsive to wood smoke particle-induced airway inflammation with pilot assessment of GSTM1 genotype and asthma status as response modifiers. Inhal Toxicol 2022; 34:329-339. [PMID: 35968917 PMCID: PMC10519374 DOI: 10.1080/08958378.2022.2110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND We are currently screening human volunteers to determine their sputum polymorphonuclear neutrophil (PMN) response 6- and 24-hours following initiation of exposure to wood smoke particles (WSP). Inflammatory responders (≥10% increase in %PMN) are identified for their subsequent participation in mitigation studies against WSP-induced airways inflammation. In this report we compared responder status (<i>N</i> = 52) at both 6 and 24 hr time points to refine/expand its classification, assessed the impact of the GSTM1 genotype, asthma status and sex on responder status, and explored whether sputum soluble phase markers of inflammation correlate with PMN responsiveness to WSP. RESULTS Six-hour responders tended to be 24-hour responders and vice versa, but 24-hour responders also had significantly increased IL-1beta, IL-6, IL-8 at 24 hours post WSP exposure. The GSTM1 null genotype significantly (<i>p</i> < 0.05) enhanced the %PMN response by 24% in the 24-hour responders and not at all in the 6 hours responders. Asthma status enhanced the 24 hour %PMN response in the 6- and 24-hour responders. In the entire cohort (not stratified by responder status), we found a significant, but very small decrease in FVC and systolic blood pressure immediately following WSP exposure and sputum %PMNs were significantly increased and associated with sputum inflammatory markers (IL-1beta, IL-6, IL-8, and PMN/mg) at 24 but not 6 hours post exposure. Blood endpoints in the entire cohort showed a significant increase in %PMN and PMN/mg at 6 but not 24 hours. Sex had no effect on %PMN response. CONCLUSIONS The 24-hour time point was more informative than the 6-hour time point in optimally and expansively defining airway inflammatory responsiveness to WSP exposure. GSTM1 and asthma status are significant effect modifiers of this response. These study design and subject parameters should be considered before enrolling volunteers for proof-of-concept WSP mitigation studies.
Collapse
Affiliation(s)
- Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Laura Y Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Allison J Burbank
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Martha Almond
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michelle L Hernandez
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine H Mills
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Heather Wells
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Haibo Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Fricker M, Qin L, Sánchez‐Ovando S, Simpson JL, Baines KJ, Riveros C, Scott HA, Wood LG, Wark PAB, Kermani NZ, Chung KF, Gibson PG. An altered sputum macrophage transcriptome contributes to the neutrophilic asthma endotype. Allergy 2022; 77:1204-1215. [PMID: 34510493 PMCID: PMC9541696 DOI: 10.1111/all.15087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022]
Abstract
Background Neutrophilic asthma (NA) is a clinically important asthma phenotype, the cellular and molecular basis of which is not completely understood. Airway macrophages are long‐lived immune cells that exert important homeostatic and inflammatory functions which are dysregulated in asthma. Unique transcriptomic programmes reflect varied macrophage phenotypes in vitro. We aimed to determine whether airway macrophages are transcriptomically altered in NA. Methods We performed RNASeq analysis on flow cytometry‐isolated sputum macrophages comparing NA (n = 7) and non‐neutrophilic asthma (NNA, n = 13). qPCR validation of RNASeq results was performed (NA n = 13, NNA n = 23). Pathway analysis (PANTHER, STRING) of differentially expressed genes (DEGs) was performed. Gene set variation analysis (GSVA) was used to test for enrichment of NA macrophage transcriptomic signatures in whole sputum microarray (cohort 1 ‐ controls n = 16, NA n = 29, NNA n = 37; cohort 2 U‐BIOPRED ‐ controls n = 16, NA n = 47, NNA n = 57). Results Flow cytometry‐sorting significantly enriched sputum macrophages (99.4% post‐sort, 44.9% pre‐sort, p < .05). RNASeq analysis confirmed macrophage purity and identified DEGs in NA macrophages. Selected DEGs (SLAMF7, DYSF, GPR183, CSF3, PI3, CCR7, all p < .05 NA vs. NNA) were confirmed by qPCR. Pathway analysis of NA macrophage DEGs was consistent with responses to bacteria, contribution to neutrophil recruitment and increased expression of phagocytosis and efferocytosis factors. GSVA demonstrated neutrophilic macrophage gene signatures were significantly enriched in whole sputum microarray in NA vs. NNA and controls in both cohorts. Conclusions We demonstrate a pathophysiologically relevant sputum macrophage transcriptomic programme in NA. The finding that there is transcriptional activation of inflammatory programmes in cell types other than neutrophils supports the concept of NA as a specific endotype.
Collapse
Affiliation(s)
- Michael Fricker
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Ling Qin
- Department of Respiratory Medicine Department of Pulmonary and Critical Care Medicine Xiangya Hospital Central South University Changsha China
| | - Stephany Sánchez‐Ovando
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Jodie L. Simpson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Katherine J. Baines
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Carlos Riveros
- Statistical services (CReDITSS) Hunter Medical Research Institute Newcastle NSW Australia
| | - Hayley A. Scott
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine Priority Research Centre for Healthy Lungs The University of Newcastle Newcastle NSW Australia
| | - Lisa G. Wood
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine Priority Research Centre for Healthy Lungs The University of Newcastle Newcastle NSW Australia
| | - Peter AB. Wark
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Nazanin Z. Kermani
- Data Science Institute Imperial College London London UK
- National Heart and Lung Institute Imperial College London London UK
| | - Kian Fan Chung
- Data Science Institute Imperial College London London UK
- National Heart and Lung Institute Imperial College London London UK
| | - Peter G. Gibson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| |
Collapse
|
16
|
Abstract
Tuberculosis (TB) remains the leading cause of bacterial disease-related death and is among the top 10 overall causes of death worldwide. The complex nature of this infectious lung disease has proven difficult to treat, and significant research efforts are now evaluating the feasibility of host-directed, adjunctive therapies. An attractive approach in host-directed therapy targets host epigenetics, or gene regulation, to redirect the immune response in a host-beneficial manner. Substantial evidence exists demonstrating that host epigenetics are dysregulated during TB and that epigenetic-based therapies may be highly effective to treat TB. However, the caveat is that much of the knowledge that exists on the modulation of the host epigenome during TB has been gained using in vitro, small-animal, or blood-derived cell models, which do not accurately reflect the pulmonary nature of the disease. In humans, the first and major target cells of Mycobacterium tuberculosis are alveolar macrophages (AM). As such, their response to infection and treatment is clinically relevant and ultimately drives the outcome of disease. In this review, we compare the fundamental differences between AM and circulating monocyte-derived macrophages in the context of TB and summarize the recent advances in elucidating the epigenomes of these cells, including changes to the transcriptome, DNA methylome, and chromatin architecture. We will also discuss trained immunity in AM as a new and emerging field in TB research and provide some perspectives for the translational potential of targeting host epigenetics as an alternative TB therapy.
Collapse
|
17
|
Carstensen S, Holz O, Hohlfeld JM, Müller M. Quantitative analysis of endotoxin-induced inflammation in human lung cells by Chipcytometry. Cytometry A 2021; 99:967-976. [PMID: 33860615 DOI: 10.1002/cyto.a.24352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/07/2022]
Abstract
Chipcytometry is a tool that uses iterative staining cycles with multiple antibodies for a detailed characterization of cells. Cell recognition is based on morphological features. Cells fixed on microfluidic chips can be stored and shipped enabling a centralized analysis, which is important for assessments in multi-center clinical trials. The method was initially implemented for the analysis of cells from peripheral blood. We adapted it to more heterogeneous human lung cells from bronchoalveolar lavage (BAL) fluid and induced sputum (IS). We aimed to assess the performance of Chipcytometry to detect and quantify the endotoxin induced inflammatory response in healthy subjects. BAL and IS samples of 10 healthy subjects were collected prior to and following segmental and inhaled endotoxin challenge. Samples were analyzed by Chipcytometry and were compared with flow cytometry, and differential cell count (DCC). Chipcytometry clearly detected the endotoxin induced inflammatory response which was characterized by a massive increase of neutrophils (BAL: 2.5% to 54.7%; IS: 40.5% to 71.1%) and monocytes (BAL: 7.7% to 24.7%; IS: 8.0% to 14.5%). While some differences between detection methods exist, the overall results were comparable. The ability of Chipcytometry to verify fluorescent signals with morphological features improved the precision of rare cell analysis such as of induced sputum lymphocytes. In conclusion, Chipcytometry enables the quantitative analysis of cells from BAL fluid and IS. Advantages over DCC and flow cytometry include the storage of cells on chips, the ability for re-analysis and the mapping of surface marker binding to morphological information. It therefore appears to be a promising method for use in clinical respiratory drug development.
Collapse
Affiliation(s)
- Saskia Carstensen
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Meike Müller
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
18
|
Barber C, Lau L, Ward JA, Daniels T, Watson A, Staples KJ, Wilkinson TMA, Howarth PH. Sputum processing by mechanical dissociation: A rapid alternative to traditional sputum assessment approaches. CLINICAL RESPIRATORY JOURNAL 2021; 15:800-807. [PMID: 33749082 DOI: 10.1111/crj.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sputum cytology is currently the gold standard to evaluate cellular inflammation in the airways and phenotyping patients with airways diseases. Sputum eosinophil proportions have been used to guide treatment for moderate to severe asthma. Furthermore, raised sputum neutrophils are associated with poor disease control and impaired lung function in both asthma and COPD and small airways disease in cystic fibrosis. However, induced-sputum analysis is subjective and resource heavy, requiring dedicated specialist processing and assessment; this limits its utility in most clinical settings. Indirect blood eosinophil measures have been adopted in clinical care. However, there are currently no good peripheral blood biomarkers of airway neutrophils. A resource-light sputum processing approach could thus help integrate induced sputum more readily into routine clinical care. New mechanical disruption (MD) methods can rapidly obtain viable single cell suspensions from sputum samples. AIMS The aim of this study was to compare MD sputum processing to traditional methods for cell viability, granulocyte proportions and sputum cytokine analysis. METHODS Sputum plugs were split and processed using traditional methods and the MD method, and samples were then compared. RESULTS The MD method produced a homogeneous cell suspension in 62 s; 70 min faster than the standard method used. No significant difference was seen between the cell viability (p = 0.09), or the concentration of eosinophils (p = 0.83), neutrophils (p = 0.99) or interleukin-8 (p = 0.86) using MD. CONCLUSION This cost-effective method of sputum processing could provide a more pragmatic, sustainable means of directly monitoring the airway milieu. Therefore, we recommend this method be taken forward for further investigation.
Collapse
Affiliation(s)
- Clair Barber
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton, UK
| | - Laurie Lau
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan A Ward
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Thomas Daniels
- Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton, UK
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton, UK
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton, UK
| | - Peter H Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
19
|
Detection of Basophils and Other Granulocytes in Induced Sputum by Flow Cytometry. Methods Mol Biol 2021; 2163:281-291. [PMID: 32766984 DOI: 10.1007/978-1-0716-0696-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Flow cytometry is one of the most widely used techniques for the detection of surface markers on various cells, particularly the cells of the immune system, at a single-cell resolution. Modern flow cytometers can identify rare cell population in highly heterogeneous samples. Here we present a protocol that allows a precise detection of basophils as well as eosinophils and neutrophils in induced sputum samples. The identification of sputum basophils and other granulocytes contributes to a better understanding of the cellular network that promotes and regulates inflammation of the lower respiratory tract.
Collapse
|
20
|
Tejwani V, Moughames E, Suresh K, Tang SE, Mair LG, Romero K, Putcha N, Alexis NE, Woo H, D’Alessio FR, Hansel NN. Black Carbon Content in Airway Macrophages is Associated with Reduced CD80 Expression and Increased Exacerbations in Former Smokers With COPD. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2021; 8:91-99. [PMID: 33156984 PMCID: PMC8047619 DOI: 10.15326/jcopdf.2020.0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by recurrent exacerbations. Macrophages play a critical role in immune response and tissue repair in COPD. Airway macrophages (AM) are exposed to environmental exposures which are retained in the cytoplasmic material. Both biomass and particulate matter have been linked to higher AM black carbon. It is unknown if AM black carbon is associated with COPD morbidity and macrophage phenotype. METHODS Former smokers with COPD were enrolled and sputum induction was performed to obtain airway macrophages. Macrophages underwent black carbon quantification and flow cytometry phenotyping. Health information was obtained the same day as sputum induction and prospective exacerbations were assessed by monthly telephone calls. RESULTS We studied 30 former smokers with COPD who had a mean age of 67 years and mean forced expiratory volume in 1 second (FEV1)% predicted of 60.8%. Higher AM black carbon content was associated with increased total exacerbations and severe exacerbations and reduced CD80 expression. CONCLUSION AM black carbon association with respiratory morbidity is largely unexplored and this is the first study to identify association with prospective exacerbations. Macrophages expressed reduced CD80, a surface marker providing costimulatory signals required for development of antigen-specific immune responses. Our findings suggest that reduced CD80 expression is the pathophysiologic mechanism for the association of AM black carbon content and increased exacerbations. Therefore, beyond solely serving as a marker for increased exposures, AM black carbon content may be a predictor of future exacerbations given a macrophage less equipped to respond to an acute infectious exposure.
Collapse
Affiliation(s)
- Vickram Tejwani
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Eric Moughames
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Shih-En Tang
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Laura G. Mair
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States
| | - Karina Romero
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Neil E. Alexis
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Franco R. D’Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- **These authors share senior authorship
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- **These authors share senior authorship
| |
Collapse
|
21
|
Niessen NM, Baines KJ, Simpson JL, Scott HA, Qin L, Gibson PG, Fricker M. Neutrophilic asthma features increased airway classical monocytes. Clin Exp Allergy 2021; 51:305-317. [PMID: 33301598 DOI: 10.1111/cea.13811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Monocytes and macrophages are critical innate immune cells of the airways. Despite their differing functions, few clinical studies discriminate between them and little is known about their regulation in asthma. OBJECTIVE We aimed to distinguish and quantify macrophages, monocytes and monocyte subsets in induced sputum and blood and examine their relationship with inflammatory and clinical features of asthma. METHODS We applied flow cytometry to distinguish macrophages, monocytes and subsets in sputum and blood (n = 53; 45 asthma, 8 non-asthma) and a second asthma sputum cohort (n = 26). Monocyte subsets were identified by surface CD14/CD16 (CD14++ CD16- classical, CD14+ CD16+ intermediate and CD14+ CD16++ non-classical monocytes). Surface CD206, a marker of monocyte tissue differentiation, was measured in sputum. Relationship to airway inflammatory phenotype (neutrophilic n = 9, eosinophilic n = 14, paucigranulocytic n = 22) and asthma severity (severe n = 12, non-severe n = 33) was assessed. RESULTS Flow cytometry- and microscope-quantified sputum differential cell proportions were significantly correlated. Sputum macrophage number was reduced (p = .036), while classical monocyte proportion was increased in asthma vs non-asthma (p = .032). Sputum classical monocyte number was significantly higher in neutrophilic vs paucigranulocytic asthma (p = .013). CD206- monocyte proportion and number were increased in neutrophilic vs eosinophilic asthma (p < .001, p = .013). Increased sputum classical and CD206- monocyte numbers in neutrophilic asthma were confirmed in the second cohort. Blood monocytes did not vary with airway inflammatory phenotype, but blood classical monocyte proportion and number were increased in severe vs non-severe asthma (p = .022, p = .011). CONCLUSION AND CLINICAL RELEVANCE Flow cytometry allowed distinction of sputum macrophages, monocytes and subsets, revealing compartment-specific dysregulation of monocytes in asthma. We observed an increase in classical and CD206- monocytes in sputum in neutrophilic asthma, suggesting co-recruitment of monocytes and neutrophils to the airways in asthma. Our data suggest further investigation of how airway monocyte dysregulation impacts on asthma-related disease activity is merited.
Collapse
Affiliation(s)
- Natalie M Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Hayley A Scott
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ling Qin
- Department of Respiratory Medicine (Department of Pulmonary and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, China
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
22
|
Birmingham JM, Chesnova B, Wisnivesky JP, Calatroni A, Federman J, Bunyavanich S, Busse PJ. The Effect of Age on T-Regulatory Cell Number and Function in Patients With Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:646-654. [PMID: 34212550 PMCID: PMC8255355 DOI: 10.4168/aair.2021.13.4.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/20/2022]
Abstract
T-regulatory cells (Tregs) play a key role in suppressing effector cells and maintaining self-tolerance. Studies of younger adults and children suggest that insufficient differentiation and functional defects of Tregs may contribute to the development of asthma; however, data from older patients with asthma are limited. To address the effects of aging on the relationship of Treg frequency and function with clinical outcomes, we collected induced sputum (differential cell count and Treg frequency) and peripheral blood (Treg function and frequency) from aged (> 60 years of age) and younger (20–40 years old) patients with asthma. In younger patients, low Treg suppression was associated with significantly higher mean numbers of emergency department (ED) (1.8 vs. 0.17, P = 0.02) and urgent care visits (2.3 vs. 0.17, P = 0.01) for asthma, and decreased asthma control (mean Asthma Control Test [ACT] score, 17 vs. 21.3, P = 0.01) compared to those with high Treg suppression. In older patients, however, a lower Treg function was not significantly associated with ACT scores (18.2 vs. 13.4, P = 0.10), or the number of ED (P = 0.9) or urgent care visits (P = 0.2). Our data suggest that Tregs have a weak relationship with asthma control and clinical asthma outcomes in older patients and differ from findings in younger patients, where Tregs are more likely to play a protective role.
Collapse
Affiliation(s)
- Janette M Birmingham
- Divisions of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bogdana Chesnova
- Divisions of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan P Wisnivesky
- Divisions of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Divisions of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jessie Federman
- Divisions of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula J Busse
- Divisions of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Stewart E, Wang X, Chupp GL, Montgomery RR. Profiling cellular heterogeneity in asthma with single cell multiparameter CyTOF. J Leukoc Biol 2020; 108:1555-1564. [PMID: 32911570 DOI: 10.1002/jlb.5ma0720-770rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways that afflicts over 30 million individuals in the United States and over 300 million individuals worldwide. The inflammatory response in the airways is often characterized by the analysis of sputum, which contains multiple types of cells including neutrophils, macrophages, lymphocytes, and rare bronchial epithelial cells. Subtyping patients using microscopy of the sputum has identified both neutrophilic and eosinophilic infiltrates in airway inflammation. However, with the extensive heterogeneity among these cell types, a higher resolution understanding of the inflammatory cell types present in the sputum is needed to dissect the heterogeneity of disease. Improved recognition of the distinct phenotypes and sources of inflammation in asthmatic granulocytes may identify relevant pathways for clinical management or investigation of novel therapeutic mediators. Here, we employed mass cytometry or cytometry by time-of-flight to quantify frequency and define functional status of sputum derived airway cells in asthmatic patients and healthy controls. This in-depth single cell analysis method identified multiple distinct subtypes of airway immune cells, especially in neutrophils. Significance was discovered by statistical analysis as well as a data-driven unbiased clustering approach. Our multidimensional assessment method identifies differences in cellular function and supports identification of cellular status that may contribute to diverse clinical responses. This technical advance is relevant for studies of pathogenesis and may provide meaningful insights to advance our knowledge of asthmatic inflammation.
Collapse
Affiliation(s)
- Emma Stewart
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Mohd Isa KN, Hashim Z, Jalaludin J, Lung Than LT, Hashim JH. The Effects of Indoor Pollutants Exposure on Allergy and Lung Inflammation: An Activation State of Neutrophils and Eosinophils in Sputum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5413. [PMID: 32731346 PMCID: PMC7432088 DOI: 10.3390/ijerph17155413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND To explore the inflammation phenotypes following indoor pollutants exposure based on marker expression on eosinophils and neutrophils with the application of chemometric analysis approaches. METHODS A cross-sectional study was undertaken among secondary school students in eight suburban and urban schools in the district of Hulu Langat, Selangor, Malaysia. The survey was completed by 96 students at the age of 14 by using the International Study of Asthma and Allergies in Children (ISAAC) and European Community Respiratory Health Survey (ECRHS) questionnaires. The fractional exhaled nitric oxide (FeNO) was measured, and an allergic skin prick test and sputum induction were performed for all students. Induced sputum samples were analysed for the expression of CD11b, CD35, CD63, and CD66b on eosinophils and neutrophils by flow cytometry. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde were measured inside the classrooms. RESULTS Chemometric and regression results have clustered the expression of CD63 with PM2.5, CD11b with NO2, CD66b with FeNO levels, and CO2 with eosinophils, with the prediction accuracy of the models being 71.88%, 76.04%, and 76.04%, respectively. Meanwhile, for neutrophils, the CD63 and CD66b clustering with PM2.5 and CD11b with FeNO levels showed a model prediction accuracy of 72.92% and 71.88%, respectively. CONCLUSION The findings indicated that the exposure to PM2.5 and NO2 was likely associated with the degranulation of eosinophils and neutrophils, following the activation mechanisms that led to the inflammatory reactions.
Collapse
Affiliation(s)
- Khairul Nizam Mohd Isa
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (J.J.)
- Environmental Health Research Cluster (EHRc), Environmental Healthcare Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Selangor, Malaysia
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (J.J.)
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (J.J.)
| | - Leslie Thian Lung Than
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Jamal Hisham Hashim
- IIGH United Nations University, UKM Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia;
| |
Collapse
|
25
|
Fricker M, Qin L, Niessen N, Baines KJ, McDonald VM, Scott HA, Simpson JL, Gibson PG. Relationship of sputum mast cells with clinical and inflammatory characteristics of asthma. Clin Exp Allergy 2020; 50:696-707. [PMID: 32291815 DOI: 10.1111/cea.13609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mast cells (MCs) are innate immune cells that regulate atopic and non-atopic inflammation in the airways. MCs play a critical role in the pathogenesis of asthma, yet their relationship to airway and systemic inflammation and clinical characteristics of asthma is poorly understood. OBJECTIVE To quantify MCs in induced sputum samples and understand their relationship to airway and circulatory immune cells, and clinical variables in asthma. METHODS We employed flow cytometry of sputum samples to quantify MCs, basophils and other immune cells in 51 participants (45 asthma and 6 non-asthma controls). Relationship of MCs to airway (n = 45) and blood (n = 19) immune cells, participant demographics, asthma history, spirometry and airways hyperresponsiveness (AHR) to hypertonic saline was determined by correlation and comparison of cut-off-based sputum MC high vs low participants. RESULTS Mast cells, basophils and eosinophils were increased in asthma vs non-asthma control sputum. In asthma sputum, MCs, basophils and eosinophils were significantly intercorrelated, and MCs and basophils were elevated in participants with eosinophilic asthma. MCs and basophils, but not eosinophils, correlated with AHR. Sputum MC high asthma was characterized by an increased proportion of participants with uncontrolled asthma and reduced FEV1 and FVC. Trends towards similar clinical associations with elevated MCs were observed in a paucigranulocytic subpopulation (n = 15) lacking airway eosinophilia or neutrophilia. Receiver operator characteristic (ROC) analysis showed peripheral blood eosinophil (PBE) count predicted elevated sputum eosinophils and basophils, but not MCs. CONCLUSIONS AND CLINICAL RELEVANCE Sputum MCs are elevated in asthma, and their measurement may be useful as they relate to key clinical features of asthma (spirometry, asthma control, AHR). PBE count did not predict airway MC status, suggesting direct measurement of airway MCs by sensitive methods such as flow cytometry should be further developed.
Collapse
Affiliation(s)
- Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ling Qin
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Natalie Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Hayley A Scott
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
26
|
Podolska MJ, Mahajan A, Hahn J, Knopf J, Maueröder C, Petru L, Ullmann M, Schett G, Leppkes M, Herrmann M, Muñoz LE, Schauer C. Treatment with DNases rescues hidden neutrophil elastase from aggregated NETs. J Leukoc Biol 2019; 106:1359-1366. [PMID: 31478257 DOI: 10.1002/jlb.3ab0918-370r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 07/09/2018] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The release of neutrophil extracellular traps (NETs) is one of the weapons neutrophils have in their armory. NETs consist of extracellular chromatin fibers decorated with a plethora of cytoplasmic and granular proteins, such as the antimicrobial serine protease neutrophil elastase (NE). Because the first description of NETs as beneficial to the host, reports on their double-faced role in health and disease have considerably increased recently. On one hand, NETs reportedly trap and kill bacteria and also participate in the resolution of the acute inflammation associated with infection and with tissue damage. On the other hand, numerous negative aspects of NETs contribute to the etiopathogenesis of autoimmune disorders. Employing soluble and solid fluorescent substrates, we demonstrate the interaction of NE with aggregated NETs (aggNETs), the limitation of its enzymatic activity and the containment of the enzyme from surrounding tissues. These events prevent the spread of inflammation and tissue damage. The detection of DNase 1-dependent elevation of NE activity attests the continuous presence of patrolling neutrophils forming NETs and aggNETs even under conditions physiologic conditions.
Collapse
Affiliation(s)
- Malgorzata J Podolska
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Aparna Mahajan
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Jonas Hahn
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Christian Maueröder
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany.,Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lenka Petru
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany.,Department of Rheumatology, First Faculty of Medicine, Charles University-Institute of Rheumatology, Prague, Czech Republic
| | - Marc Ullmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Georg Schett
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Moritz Leppkes
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 1-Gastroenterology, Pneumology and Endocrinology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Luis E Muñoz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Christine Schauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| |
Collapse
|
27
|
Hisert KB, Liles WC, Manicone AM. A Flow Cytometric Method for Isolating Cystic Fibrosis Airway Macrophages from Expectorated Sputum. Am J Respir Cell Mol Biol 2019; 61:42-50. [PMID: 30742539 PMCID: PMC6604218 DOI: 10.1165/rcmb.2018-0236ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022] Open
Abstract
Research to understand the contribution of macrophages to nonresolving airway inflammation in cystic fibrosis (CF) and other chronic suppurative airways diseases has been hindered by a lack of methods for isolating and studying these cells. With the development of technologies that can characterize small numbers of cells or individual cells, there is an even greater need for methodologies to isolate rare cells in heterogeneous specimens. Here, we describe a method that overcomes the technical obstacles imposed by sputum debris and apoptotic cells, and allows isolation of pure populations of macrophages from CF sputum. In addition to enhancing our ability to study human CF airway macrophages, this protocol can be adapted to study cells in sputum from other chronic suppurative lung diseases (e.g., chronic obstructive pulmonary disease) and used for isolation of individual cells for single cell analyses.
Collapse
Affiliation(s)
| | - W. Conrad Liles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | | |
Collapse
|
28
|
Happle C, Meyer-Decking L, Dreier A, Wetzke M, Gläsener S, Grychtol R, Braubach P, Jablonka A, Haid S, Jirmo AC, Habener A, Skuljec J, Hansen G. Improved protocol for simultaneous analysis of leukocyte subsets and epithelial cells from murine and human lung. Exp Lung Res 2018; 44:127-136. [PMID: 29677457 DOI: 10.1080/01902148.2018.1432721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study and isolate lung cells by flow cytometry, enzymatic digestion and generation of single cell suspensions is required. This significantly influences expression of cellular epitopes and protocols need to be adapted for the best isolation and subsequent analysis of specific cellular subsets. MATERIALS AND METHODS We optimized protocols for the simultaneous isolation and characterization of specific human and murine lung cell types. For alveolar epithelial cells (AEC), a primarily dispase based digestion method and for leukocytes, a primarily collagenase based technique was adapted. Protocols were applied in parallel in either single experimental mice or human lung specimens. RESULTS Optimized dispase/DNase digestion yielded a high percentage of Epcam+CD45-CD31- AEC as assessed by flow cytometry. Epcam+CD45-CD3-CD11b-CD11c-CD16/32-CD19-CD31-F4/80- AEC were readily sortable with high purity and typical morphology and function upon in vitro stimulation with lipopolysaccharide or respiratory-syncytial-virus (RSV) infection. To analyze lung leukocytes, specimens were digested with an adapted collagenase/DNase protocol yielding high percentages of viable leukocytes with typical morphology, function, and preserved subset specific leukocyte markers. Both protocols could be applied simultaneously in a single experimental mouse post mortem. Application of both digestion methods in primary human lung specimens yielded similar results with high proportions of Epcam+CD45- human AEC after dispase/DNase digestion and preservation of human T cell epitopes after collagenase/DNase digestion. CONCLUSION The here described protocols were optimized for the simple and efficient isolation of murine and human lung cells. In contrast to previously described techniques, they permit simultaneous in-depth characterization of pulmonary epithelial cells and leukocyte subsets such as T helper, cytotoxic T, and B cells from one sample. As such, they may help to comprehensively and sustainably characterize murine and human lung specimens and facilitate studies on the role of lung immune cells in different respiratory pathologies.
Collapse
Affiliation(s)
- Christine Happle
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Lena Meyer-Decking
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Anika Dreier
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Martin Wetzke
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Stephanie Gläsener
- b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Ruth Grychtol
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Peter Braubach
- b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany.,c Department of Pathology , Hannover Medical School , Hannover , Germany
| | - Alexandra Jablonka
- d Department of Clinical Immunology and Rheumatology , Hannover Medical School , Hannover , Germany.,e German Center for Infection Research (DZIF) , Standort Hannover-Braunschweig , Germany
| | - Sibylle Haid
- f Experimental Virology and TWINCORE , a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research , Hannover , Germany
| | - Adan Chari Jirmo
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Anika Habener
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Jelena Skuljec
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Gesine Hansen
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| |
Collapse
|
29
|
Guiot J, Demarche S, Henket M, Paulus V, Graff S, Schleich F, Corhay JL, Louis R, Moermans C. Methodology for Sputum Induction and Laboratory Processing. J Vis Exp 2017. [PMID: 29286433 DOI: 10.3791/56612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The technique of sputum induction and processing is a recognized non-invasive method allowing the collection and analysis of cells from the airways, which is interesting in various respiratory diseases like asthma, chronic obstructive pulmonary disease (COPD), chronic cough, or idiopathic pulmonary fibrosis. This technique is well tolerated, safe and non-invasive, but is currently limited to research services and specialized centers in clinical practice because it is technically demanding, time-consuming, and requires trained staff. The success rate of sputum induction and analysis is about 80%. Here, we describe the induction and laboratory processing of sputum samples. Sputum is induced by inhalation of hypertonic or isotonic saline with salbutamol. For the processing, we use the whole sputum technique. Dithiothreitol (DTT) is used to allow mucolysis of sputum samples. The primary aim of sputum processing is to obtain a differential cell count to study the cell types present in the airway lumen. Additional analyses may also be performed on sputum supernatant and sputum cells, which may allow further investigation into inflammatory processes and immune mechanisms. Examples include studying mediators in sputum supernatant and performing a large spectrum of analysis on sputum cells such as flow cytometry, genomics, or proteomics. Finally, representative results of sputum analysis in healthy controls, asthmatics, and COPD patients are presented.
Collapse
Affiliation(s)
- Julien Guiot
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege;
| | - Sophie Demarche
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege; Department of Clinical Pharmacy, CIRM (Center for Interdisciplinary Research on Medicines), University of Liege
| | - Monique Henket
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege
| | - Virginie Paulus
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege
| | - Sophie Graff
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege
| | - Florence Schleich
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege
| | - Jean-Louis Corhay
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege
| | - Renaud Louis
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege
| | - Catherine Moermans
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Research Group, University of Liege
| |
Collapse
|
30
|
Fux M, von Garnier C. Sputum basophils and asthma diagnosis: dawn of a new era? Allergy 2017; 72:1437-1439. [PMID: 28561329 DOI: 10.1111/all.13214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- M. Fux
- University Institute of Clinicla Chemistry; Inselspital; Bern University Hospital; University of Bern; Bern Switzerland
| | - C. von Garnier
- Respiratory Medicine; Bern University Hospital; University of Bern; Bern Switzerland
| |
Collapse
|
31
|
Bodas M, Vij N. Augmenting autophagy for prognosis based intervention of COPD-pathophysiology. Respir Res 2017; 18:83. [PMID: 28472967 PMCID: PMC5418861 DOI: 10.1186/s12931-017-0560-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is foremost among the non-reversible fatal ailments where exposure to tobacco/biomass-smoke and aging are the major risk factors for the initiation and progression of the obstructive lung disease. The role of smoke-induced inflammatory-oxidative stress, apoptosis and cellular senescence in driving the alveolar damage that mediates the emphysema progression and severe lung function decline is apparent, although the central mechanism that regulates these processes was unknown. To fill in this gap in knowledge, the central role of proteostasis and autophagy in regulating chronic lung disease causing mechanisms has been recently described. Recent studies demonstrate that cigarette/nicotine exposure induces proteostasis/autophagy-impairment that leads to perinuclear accumulation of polyubiquitinated proteins as aggresome-bodies, indicative of emphysema severity. In support of this concept, autophagy inducing FDA-approved anti-oxidant drugs control tobacco-smoke induced inflammatory-oxidative stress, apoptosis, cellular senescence and COPD-emphysema progression in variety of preclinical models. Hence, we propose that precise and early detection of aggresome-pathology can allow the timely assessment of disease severity in COPD-emphysema subjects for prognosis-based intervention. While intervention with autophagy-inducing drugs is anticipated to reduce alveolar damage and lung function decline, resulting in a decrease in the current mortality rates in COPD-emphysema subjects.
Collapse
Affiliation(s)
- Manish Bodas
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
| | - Neeraj Vij
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
32
|
Malmhäll C, Johansson K, Winkler C, Alawieh S, Ekerljung L, Rådinger M. Altered miR-155 Expression in Allergic Asthmatic Airways. Scand J Immunol 2017; 85:300-307. [PMID: 28199728 DOI: 10.1111/sji.12535] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 01/19/2023]
Abstract
We and others have previously identified microRNAs (miRNAs) with pathological roles in animal models of asthma, where miR-146a and miR-155 have been described to play important roles in inflammatory responses. To date, few studies have investigated miRNA expression in human asthmatics. In the current study, significantly lower levels of miR-155 were detected in cell-free sputum from allergic asthmatics compared to healthy controls. Induced sputum isolated from allergic asthmatics in and out of pollen season revealed that miR-155 expression, but not miR-146a, is reduced in lymphocytes in season compared to post-season. In contrast, miR-155 was found to increase, whereas miR-146a decreased in PBMCs and cell-free PBMC culture media upon T cell receptor stimulation via αCD3/CD28 in both allergic asthmatics and healthy controls. Our findings suggest that miR-155 is differentially expressed ex vivo in airways of allergic asthmatics compared to healthy controls, which may have implications in the local immune response in allergic asthma.
Collapse
Affiliation(s)
- C Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K Johansson
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - S Alawieh
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - L Ekerljung
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Yao Y, Welp T, Liu Q, Niu N, Wang X, Britto CJ, Krishnaswamy S, Chupp GL, Montgomery RR. Multiparameter Single Cell Profiling of Airway Inflammatory Cells. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2017; 92:12-20. [PMID: 27807928 PMCID: PMC5250532 DOI: 10.1002/cyto.b.21491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022]
Abstract
Airway diseases affect over 7% of the U.S. population and millions of patients worldwide. Asthmatic patients have wide variation in clinical severity with different clinical and physiologic manifestations of disease that may be driven by distinct biologic mechanisms. Further, the immunologic underpinnings of this complex trait disease are heterogeneous and treatment success depends on defining subgroups of asthmatics. Because of the limited availability and number of cells from the lung, the active site, in-depth investigation has been challenging. Recent advances in technology support transcriptional analysis of cells from induced sputum. Flow cytometry studies have described cells present in the sputum but a detailed analysis of these subsets is lacking. Mass cytometry or CyTOF (Cytometry by Time-Of-Flight) offers tremendous opportunities for multiparameter single cell analysis. Experiments can now allow detection of up to ∼40 markers to facilitate unprecedented multidimensional cellular analyses. Here we demonstrate the use of CyTOF on primary airway samples obtained from well-characterized patients with asthma and cystic fibrosis. Using this technology, we quantify cellular frequency and functional status of defined cell subsets. Our studies provide a blueprint to define the heterogeneity among subjects and underscore the power of this single cell method to characterize airway immune status. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Yi Yao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tobias Welp
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Qing Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Naiqian Niu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Xiaomei Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Clemente J. Britto
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Geoff L. Chupp
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
34
|
Busse PJ, Birmingham JM, Calatroni A, Manzi J, Goryachokovsky A, Fontela G, Federman AD, Wisnivesky JP. Effect of aging on sputum inflammation and asthma control. J Allergy Clin Immunol 2016; 139:1808-1818.e6. [PMID: 27725186 DOI: 10.1016/j.jaci.2016.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aged asthmatic patients experience increased morbidity and mortality. Knowledge of the aging effect on airway inflammation and asthma control is limited. OBJECTIVE We sought to compare airway inflammation and its relationship to asthma control in aged versus younger patients and determine whether differences are asthma specific or caused by "inflamm-aging." METHODS We performed a prospective study of aged (>60 years) and younger (21-40 years) inner-city patients with asthma. After a run-in period to control for inhaled corticosteroid use, induced sputum was collected. Age-matched nonasthmatic control subjects were included to measure age-related inflammatory changes. RESULTS Aged (mean age, 67.9 ± 5.1 years; n = 35) compared with younger (mean age, 30.8 ± 5.9 years; n = 37) asthmatic patients had significantly worse asthma control and lower FEV1. Aged asthmatic patients had higher sputum neutrophil (30.5 × 104/mL and 23.1%) and eosinophil (7.0 × 104/mL and 3.8%) numbers and percentages compared with younger patients (neutrophils, 13.0 × 104/mL [P < .01] and 6.9% [P < .01]; eosinophils, 2.0 × 104/mL [P < .01] and 1.2% [P < .01]). Aged asthmatic patients had higher sputum IL-6 (P < .01) and IL-8 (P = .01) levels. No significant inflammatory differences between aged and younger control subjects were observed. In aged asthmatic patients increased sputum IL-6 and macrophage inflammatory protein 3α/CCL20 levels were significantly associated with decreased asthma control and increased sputum neutrophil numbers and IL-1β, IL-6, and macrophage inflammatory protein 3α/CCL20 levels were associated with hospitalization. CONCLUSIONS The inflammatory patterns of aged versus younger asthmatic patients are associated with increased sputum neutrophil and eosinophil values and cytokine levels related to neutrophil recruitment. Differences in airway inflammation can contribute to diminished asthma control in the aged. Further understanding of asthma pathophysiology in aged patients is needed to improve management of this vulnerable population.
Collapse
Affiliation(s)
- Paula J Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Janette M Birmingham
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Joseph Manzi
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anna Goryachokovsky
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Giselle Fontela
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alex D Federman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Juan P Wisnivesky
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
35
|
Rao M, Valentini D, Poiret T, Dodoo E, Parida S, Zumla A, Brighenti S, Maeurer M. B in TB: B Cells as Mediators of Clinically Relevant Immune Responses in Tuberculosis. Clin Infect Dis 2016; 61Suppl 3:S225-34. [PMID: 26409285 PMCID: PMC4583574 DOI: 10.1093/cid/civ614] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protective role of B cells and humoral immune responses in tuberculosis infection has been regarded as inferior to cellular immunity directed to the intracellular pathogen Mycobacterium tuberculosis. However, B-cell–mediated immune responses in tuberculosis have recently been revisited in the context of B-cell physiology and antigen presentation. We discuss in this review the diverse functions of B cells in tuberculosis, with a focus on their biological and clinical relevance to progression of active disease. We also present the peptide microarray platform as a promising strategy to discover unknown antigenic targets of M. tuberculosis that could contribute to the better understanding of epitope focus of the humoral immune system against M. tuberculosis.
Collapse
Affiliation(s)
- Martin Rao
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Davide Valentini
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Poiret
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Ernest Dodoo
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Shreemanta Parida
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre at University College Hospitals NHS Foundation Trust, United Kingdom
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
36
|
Yu YRA, Hotten DF, Malakhau Y, Volker E, Ghio AJ, Noble PW, Kraft M, Hollingsworth JW, Gunn MD, Tighe RM. Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. Am J Respir Cell Mol Biol 2016; 54:13-24. [PMID: 26267148 DOI: 10.1165/rcmb.2015-0146oc] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Clear identification of specific cell populations by flow cytometry is important to understand functional roles. A well-defined flow cytometry panel for myeloid cells in human bronchoalveolar lavage (BAL) and lung tissue is currently lacking. The objective of this study was to develop a flow cytometry-based panel for human BAL and lung tissue. We obtained and performed flow cytometry/sorting on human BAL cells and lung tissue. Confocal images were obtained from lung tissue using antibodies for cluster of differentiation (CD)206, CD169, and E cadherin. We defined a multicolor flow panel for human BAL and lung tissue that identifies major leukocyte populations. These include macrophage (CD206(+)) subsets and other CD206(-) leukocytes. The CD206(-) cells include: (1) three monocyte (CD14(+)) subsets, (2) CD11c(+) dendritic cells (CD14(-), CD11c(+), HLA-DR(+)), (3) plasmacytoid dendritic cells (CD14(-), CD11c(-), HLA-DR(+), CD123(+)), and (4) other granulocytes (neutrophils, mast cells, eosinophils, and basophils). Using this panel on human lung tissue, we defined two populations of pulmonary macrophages: CD169(+) and CD169(-) macrophages. In lung tissue, CD169(-) macrophages were a prominent cell type. Using confocal microscopy, CD169(+) macrophages were located in the alveolar space/airway, defining them as alveolar macrophages. In contrast, CD169(-) macrophages were associated with airway/alveolar epithelium, consistent with interstitial-associated macrophages. We defined a flow cytometry panel in human BAL and lung tissue that allows identification of multiple immune cell types and delineates alveolar from interstitial-associated macrophages. This study has important implications for defining myeloid cells in human lung samples.
Collapse
Affiliation(s)
- Yen-Rei A Yu
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | | | - Yuryi Malakhau
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | - Ellen Volker
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | - Andrew J Ghio
- 2 National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina
| | - Paul W Noble
- 3 Department of Medicine, Cedar Sinai Medical Center, Los Angeles, California; and
| | - Monica Kraft
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | | | - Michael D Gunn
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | - Robert M Tighe
- 1 Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
37
|
Tak T, Hilvering B, Tesselaar K, Koenderman L. Similar activation state of neutrophils in sputum of asthma patients irrespective of sputum eosinophilia. Clin Exp Immunol 2015; 182:204-12. [PMID: 26148992 DOI: 10.1111/cei.12676] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2015] [Indexed: 01/13/2023] Open
Abstract
Inflammatory phenotypes of asthma are associated with differences in disease characteristics. It is unknown whether these inflammatory phenotypes are reflected by the activation status of neutrophils in blood and sputum. We obtained peripheral blood and induced sputum from 21 asthma patients and stratified our samples based on sputum eosinophilia resulting in two groups (>3% eosinophils: n = 13, <3%: n = 8). Eosinophils and neutrophils from blood and sputum were analysed for expression of activation and degranulation markers by flow cytometry. Data were analysed by both classical, non-parametric statistics and a multi-dimensional approach, using principal component analysis (PCA). Patients with sputum eosinophilia were characterized by increased asthma control questionnaire (ACQ) scores and blood eosinophil counts. Both sputum neutrophils and eosinophils displayed an activated and degranulated phenotype compared to cells obtained from blood. Specifically, degranulation of all granule types was detected in sputum cells, combined with an increased expression of the activation markers (activated) Mac-1 (CD11b), programmed death ligand 1 (PD-L1) (CD274) and a decreased expression of CD62L. CD69 expression was only increased on sputum eosinophils. Surface marker expression of neutrophils was similar in the presence or absence of eosinophilia, either by single or multi-dimensional analysis. Sputum neutrophils were highly activated and degranulated irrespective of sputum eosinophilia. Therefore, we conclude that differences in granulocyte activation in sputum and/or blood are not associated with clinical differences in the two groups of asthma patients. The finding of PD-L1 expression on sputum granulocytes suggests an immunomodulatory role of these cells in the tissue.
Collapse
Affiliation(s)
- T Tak
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - B Hilvering
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - K Tesselaar
- Department of Immunology, Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - L Koenderman
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
38
|
Trend S, de Jong E, Lloyd ML, Kok CH, Richmond P, Doherty DA, Simmer K, Kakulas F, Strunk T, Currie A. Leukocyte Populations in Human Preterm and Term Breast Milk Identified by Multicolour Flow Cytometry. PLoS One 2015; 10:e0135580. [PMID: 26288195 PMCID: PMC4545889 DOI: 10.1371/journal.pone.0135580] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022] Open
Abstract
Background Extremely preterm infants are highly susceptible to bacterial infections but breast milk provides some protection. It is unknown if leukocyte numbers and subsets in milk differ between term and preterm breast milk. This study serially characterised leukocyte populations in breast milk of mothers of preterm and term infants using multicolour flow cytometry methods for extended differential leukocyte counts in blood. Methods Sixty mothers of extremely preterm (<28 weeks gestational age), very preterm (28–31 wk), and moderately preterm (32–36 wk), as well as term (37–41 wk) infants were recruited. Colostrum (d2–5), transitional (d8–12) and mature milk (d26–30) samples were collected, cells isolated, and leukocyte subsets analysed using flow cytometry. Results The major CD45+ leukocyte populations circulating in blood were also detectable in breast milk but at different frequencies. Progression of lactation was associated with decreasing CD45+ leukocyte concentration, as well as increases in the relative frequencies of neutrophils and immature granulocytes, and decreases in the relative frequencies of eosinophils, myeloid and B cell precursors, and CD16- monocytes. No differences were observed between preterm and term breast milk in leukocyte concentration, though minor differences between preterm groups in some leukocyte frequencies were observed. Conclusions Flow cytometry is a useful tool to identify and quantify leukocyte subsets in breast milk. The stage of lactation is associated with major changes in milk leukocyte composition in this population. Fresh preterm breast milk is not deficient in leukocytes, but shorter gestation may be associated with minor differences in leukocyte subset frequencies in preterm compared to term breast milk.
Collapse
Affiliation(s)
- Stephanie Trend
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Emma de Jong
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Megan L. Lloyd
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, Western Australia, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Chooi Heen Kok
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, Western Australia, Australia
- Neonatal Clinical Care Unit, King Edward Memorial Hospital for Women, Perth, Western Australia, Australia
| | - Peter Richmond
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Dorota A. Doherty
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Karen Simmer
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, Western Australia, Australia
- Neonatal Clinical Care Unit, King Edward Memorial Hospital for Women, Perth, Western Australia, Australia
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, Australia
| | - Tobias Strunk
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, Western Australia, Australia
- Neonatal Clinical Care Unit, King Edward Memorial Hospital for Women, Perth, Western Australia, Australia
| | - Andrew Currie
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
39
|
Nagakumar P, Denney L, Fleming L, Bush A, Lloyd CM, Saglani S. Type 2 innate lymphoid cells in induced sputum from children with severe asthma. J Allergy Clin Immunol 2015; 137:624-626.e6. [PMID: 26277593 DOI: 10.1016/j.jaci.2015.06.038] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Prasad Nagakumar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, London, United Kingdom
| | - Laura Denney
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise Fleming
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, London, United Kingdom
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, London, United Kingdom
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, London, United Kingdom.
| |
Collapse
|
40
|
Bauer RN, Müller L, Brighton LE, Duncan KE, Jaspers I. Interaction with epithelial cells modifies airway macrophage response to ozone. Am J Respir Cell Mol Biol 2015; 52:285-94. [PMID: 25054807 DOI: 10.1165/rcmb.2014-0035oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell-Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell-derived signals are important determinants of Mac immunophenotype and response to O3.
Collapse
|
41
|
Bleck B, Kazeros A, Bakal K, Garcia-Medina L, Adams A, Liu M, Lee RA, Tse DB, Chiu A, Grunig G, Egan JP, Reibman J. Coexpression of type 2 immune targets in sputum-derived epithelial and dendritic cells from asthmatic subjects. J Allergy Clin Immunol 2015; 136:619-627.e5. [PMID: 25813919 DOI: 10.1016/j.jaci.2014.12.1950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Noninvasive sputum sampling has enabled the identification of biomarkers in asthmatic patients. Studies of discrete cell populations in sputum can enhance measurements compared with whole sputum in which changes in rare cells and cell-cell interactions can be masked. OBJECTIVE We sought to enrich for sputum-derived human bronchial epithelial cells (sHBECs) and sputum-derived myeloid type 1 dendritic cells (sDCs) to describe transcriptional coexpression of targets associated with a type 2 immune response. METHODS A case-control study was conducted with patients with mild asthma (asthmatic cases) and healthy control subjects. Induced sputum was obtained for simultaneous enrichment of sHBECs and sDCs by using flow cytometry. Quantitative PCR was used to measure mRNA for sHBEC thymic stromal lymphopoietin (TSLP), IL33, POSTN, and IL25 and downstream targets in sDCs (OX40 ligand [OX40L], CCL17, PPP1R14A, CD1E, CD1b, CD80, and CD86). RESULTS Final analyses for the study sample were based on 11 control subjects and 13 asthmatic cases. Expression of TSLP, IL33, and POSTN mRNA was increased in sHBECs in asthmatic cases (P = .001, P = .05, and P = .04, respectively). Expression of sDC OX40L and CCL17 mRNA was increased in asthmatic cases (P = .003 and P = .0001, respectively). sHBEC TSLP mRNA expression was strongly associated with sDC OX40L mRNA expression (R = 0.65, P = .001) and less strongly with sDC CCL17 mRNA expression. sHBEC IL33 mRNA expression was associated with sDC OX40L mRNA expression (R = 0.42, P = .04) but not sDC CCL17 mRNA expression. CONCLUSIONS Noninvasive sampling and enrichment of select cell populations from sputum can further our understanding of cell-cell interactions in asthmatic patients with the potential to enhance endotyping of asthmatic patients.
Collapse
Affiliation(s)
- Bertram Bleck
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Angeliki Kazeros
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Keren Bakal
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | | | - Alexandra Adams
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Mengling Liu
- Department of Environmental Medicine, New York University Langone Medical Center, New York, NY; Population Health, New York University School of Medicine, New York, NY
| | - Richard A Lee
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Doris B Tse
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Amanda Chiu
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University Langone Medical Center, New York, NY
| | - John P Egan
- Department of Medicine, New York University Langone Medical Center, New York, NY
| | - Joan Reibman
- Department of Medicine, New York University Langone Medical Center, New York, NY; Department of Environmental Medicine, New York University Langone Medical Center, New York, NY.
| |
Collapse
|
42
|
Freeman CM, Crudgington S, Stolberg VR, Brown JP, Sonstein J, Alexis NE, Doerschuk CM, Basta PV, Carretta EE, Couper DJ, Hastie AT, Kaner RJ, O'Neal WK, Paine R, Rennard SI, Shimbo D, Woodruff PG, Zeidler M, Curtis JL. Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). J Transl Med 2015; 13:19. [PMID: 25622723 PMCID: PMC4314767 DOI: 10.1186/s12967-014-0374-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/26/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) is a multi-center longitudinal, observational study to identify novel phenotypes and biomarkers of chronic obstructive pulmonary disease (COPD). In a subset of 300 subjects enrolled at six clinical centers, we are performing flow cytometric analyses of leukocytes from induced sputum, bronchoalveolar lavage (BAL) and peripheral blood. To minimize several sources of variability, we use a "just-in-time" design that permits immediate staining without pre-fixation of samples, followed by centralized analysis on a single instrument. METHODS The Immunophenotyping Core prepares 12-color antibody panels, which are shipped to the six Clinical Centers shortly before study visits. Sputum induction occurs at least two weeks before a bronchoscopy visit, at which time peripheral blood and bronchoalveolar lavage are collected. Immunostaining is performed at each clinical site on the day that the samples are collected. Samples are fixed and express shipped to the Immunophenotyping Core for data acquisition on a single modified LSR II flow cytometer. Results are analyzed using FACS Diva and FloJo software and cross-checked by Core scientists who are blinded to subject data. RESULTS Thus far, a total of 152 sputum samples and 117 samples of blood and BAL have been returned to the Immunophenotyping Core. Initial quality checks indicate useable data from 126 sputum samples (83%), 106 blood samples (91%) and 91 BAL samples (78%). In all three sample types, we are able to identify and characterize the activation state or subset of multiple leukocyte cell populations (including CD4+ and CD8+ T cells, B cells, monocytes, macrophages, neutrophils and eosinophils), thereby demonstrating the validity of the antibody panel. CONCLUSIONS Our study design, which relies on bi-directional communication between clinical centers and the Core according to a pre-specified protocol, appears to reduce several sources of variability often seen in flow cytometric studies involving multiple clinical sites. Because leukocytes contribute to lung pathology in COPD, these analyses will help achieve SPIROMICS aims of identifying subgroups of patients with specific COPD phenotypes. Future analyses will correlate cell-surface markers on a given cell type with smoking history, spirometry, airway measurements, and other parameters. TRIAL REGISTRATION This study was registered with ClinicalTrials.gov as NCT01969344 .
Collapse
Affiliation(s)
- Christine M Freeman
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
| | - Sean Crudgington
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
| | - Valerie R Stolberg
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| | - Jeanette P Brown
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
| | - Joanne Sonstein
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, Chapel Hill, NC, 27599, USA.
| | - Claire M Doerschuk
- Center for Airways Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Patricia V Basta
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Elizabeth E Carretta
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - David J Couper
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Annette T Hastie
- Center for Genomics and Personalized Medicine, Wake Forest University, Winston-Salem, NC, 27157, USA.
| | - Robert J Kaner
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Genetic Medicine, Weill Cornell Medical College, New York, NY, 10021, USA.
| | - Wanda K O'Neal
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Robert Paine
- Division of Pulmonary, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, 84112, USA.
| | - Stephen I Rennard
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Daichi Shimbo
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California at San Francisco, San Francisco, CA, 94143, USA.
| | - Michelle Zeidler
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jeffrey L Curtis
- Pulmonary & Critical Care Medicine Section, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
- Pulmonary and Critical Care Medicine Section (506/111G), Department of Veterans Affairs Healthsystem, 2215 Fuller Road, Ann Arbor, MI, 48105-2303, USA.
| |
Collapse
|
43
|
Alexis NE, Huang YCT, Rappold AG, Kehrl H, Devlin R, Peden DB. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter. Am J Respir Crit Care Med 2014; 190:235-7. [PMID: 25025358 DOI: 10.1164/rccm.201401-0126le] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Neil E Alexis
- 1 University of North Carolina School of Medicine Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
44
|
Hernandez ML, Wagner JG, Kala A, Mills K, Wells HB, Alexis NE, Lay JC, Jiang Q, Zhang H, Zhou H, Peden DB. Vitamin E, γ-tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers. Free Radic Biol Med 2013; 60:56-62. [PMID: 23402870 PMCID: PMC3654053 DOI: 10.1016/j.freeradbiomed.2013.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 01/11/2023]
Abstract
Epidemiologic studies suggest that dietary vitamin E is an important candidate intervention for asthma. Our group has shown that daily consumption of vitamin E (γ-tocopherol, γT) has anti-inflammatory actions in both rodent and human phase I studies. The objective of this study was to test whether γT supplementation could mitigate a model of neutrophilic airway inflammation in rats and in healthy human volunteers. F344/N rats were randomized to oral gavage with γT versus placebo, followed by intranasal LPS (20μg) challenge. Bronchoalveolar lavage fluid and lung histology were used to assess airway neutrophil recruitment. In a phase IIa clinical study, 13 nonasthmatic subjects completed a double-blinded, placebo-controlled crossover study in which they consumed either a γT-enriched capsule or a sunflower oil placebo capsule. After 7 days of daily supplementation, they underwent an inhaled LPS challenge. Induced sputum was assessed for neutrophils 6 h after inhaled LPS. The effect of γT compared to placebo on airway neutrophils post-LPS was compared using a repeated-measures analysis of variance. In rats, oral γT supplementation significantly reduced tissue infiltration (p<0.05) and accumulation of airway neutrophils (p<0.05) that are elicited by intranasal LPS challenge compared to control rats. In human volunteers, γT treatment significantly decreased induced sputum neutrophils (p=0.03) compared to placebo. Oral supplementation with γT reduced airway neutrophil recruitment in both rat and human models of inhaled LPS challenge. These results suggest that γT is a potential therapeutic candidate for prevention or treatment of neutrophilic airway inflammation in diseased populations.
Collapse
Affiliation(s)
- Michelle L Hernandez
- Center for Environmental Medicine, Asthma, & Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Geiser M, Lay JC, Bennett WD, Zhou H, Wang X, Peden DB, Alexis NE. Effects of ex vivo γ-tocopherol on airway macrophage function in healthy and mild allergic asthmatics. J Innate Immun 2013; 5:613-24. [PMID: 23689260 DOI: 10.1159/000350234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/26/2013] [Indexed: 01/06/2023] Open
Abstract
Elevated inflammation and altered immune responses are features found in atopic asthmatic airways. Recent studies indicate γ-tocopherol (GT) supplementation can suppress airway inflammation in allergic asthma. We studied the effects of in vitro GT supplementation on receptor-mediated phagocytosis and expression of cell surface molecules associated with innate and adaptive immunity on sputum-derived macrophages. Cells from nonsmoking healthy (n = 6) and mild house dust mite-sensitive allergic asthmatics (n = 6) were treated ex vivo with GT (300 µM) or saline (control). Phagocytosis of opsonized zymosan A bioparticles (Saccharomyces cerevisiae) and expression of surface molecules associated with innate and adaptive immunity were assessed using flow cytometry. GT caused significantly decreased (p < 0.05) internalization of attached zymosan bioparticles and decreased (p < 0.05) macrophage expression of CD206, CD36 and CD86 in allergic asthmatics but not in controls. Overall, GT caused downregulation of both innate and adaptive immune response elements, and atopic status appears to be an important factor.
Collapse
Affiliation(s)
- Marianne Geiser
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, N.C., USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Use of PD biomarkers to drive dose selection and early clinical decision making. Bioanalysis 2013; 4:2485-97. [PMID: 23157357 DOI: 10.4155/bio.12.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A major challenge facing the development of new therapies is the high level of compound attrition in late-stage clinical studies. A key factor in reducing these unsustainable levels of attrition is the successful evaluation of the level of drug effect on its target pathway in early development, otherwise known as testing the compound mechanism. Incorporation of PD biomarkers into Phase I/II trials to demonstrate compound binding to its molecular target and the subsequent modulation of downstream pathways enables early testing of compound mechanism and provides a data-driven framework for decisions on compound progression. This review will discuss the identification and validation of such 'fit-for-purpose' PD biomarkers, and case studies illustrating their use and value in dose selection and accelerating the clinical development of small-molecule drugs will be described.
Collapse
|
47
|
Janssen O, Schaumann F, Holz O, Lavae-Mokhtari B, Welker L, Winkler C, Biller H, Krug N, Hohlfeld JM. Low-dose endotoxin inhalation in healthy volunteers--a challenge model for early clinical drug development. BMC Pulm Med 2013; 13:19. [PMID: 23537365 PMCID: PMC3635929 DOI: 10.1186/1471-2466-13-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inhalation of endotoxin (LPS) induces a predominantly neutrophilic airway inflammation and has been used as model to test the anti-inflammatory activity of novel drugs. In the past, a dose exceeding 15-50 μg was generally needed to induce a sufficient inflammatory response. For human studies, regulatory authorities in some countries now request the use of GMP-grade LPS, which is of limited availability. It was therefore the aim of this study to test the effect and reproducibility of a low-dose LPS challenge (20,000 E.U.; 2 μg) using a flow- and volume-controlled inhalation technique to increase LPS deposition. METHODS Two to four weeks after a baseline sputum induction, 12 non-smoking healthy volunteers inhaled LPS on three occasions, separated by at least 4 weeks. To modulate the inflammatory effect of LPS, a 5-day PDE4 inhibitor (Roflumilast) treatment preceded the last challenge. Six hours after each LPS inhalation, sputum induction was performed. RESULTS The low-dose LPS inhalation was well tolerated and increased the mean percentage of sputum neutrophils from 25% to 72%. After the second LPS challenge, 62% neutrophils and an increased percentage of monocytes were observed. The LPS induced influx of neutrophils and the cumulative inflammatory response compared with baseline were reproducible. Treatment with Roflumilast for 5 days did not have a significant effect on sputum composition. CONCLUSION The controlled inhalation of 2 μg GMP-grade LPS is sufficient to induce a significant neutrophilic airway inflammation in healthy volunteers. Repeated low-dose LPS challenges potentially result in a small shift of the neutrophil/monocyte ratio; however, the cumulative response is reproducible, enabling the use of this model for "proof-of-concept" studies for anti-inflammatory compounds during early drug development.
Collapse
Affiliation(s)
- Ole Janssen
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brooks CR, van Dalen CJ, Hermans IF, Douwes J. Identifying leukocyte populations in fresh and cryopreserved sputum using flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 84:104-13. [DOI: 10.1002/cyto.b.21069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/11/2022]
|
49
|
Messier EM, Mason RJ, Kosmider B. Efficient and rapid isolation and purification of mouse alveolar type II epithelial cells. Exp Lung Res 2012; 38:363-73. [DOI: 10.3109/01902148.2012.713077] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Hernandez ML, Herbst M, Lay JC, Alexis NE, Brickey WJ, Ting JPY, Zhou H, Peden DB. Atopic asthmatic patients have reduced airway inflammatory cell recruitment after inhaled endotoxin challenge compared with healthy volunteers. J Allergy Clin Immunol 2012; 130:869-76.e2. [PMID: 22770265 DOI: 10.1016/j.jaci.2012.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/03/2012] [Accepted: 05/11/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atopic asthmatic patients are reported to be more sensitive to the effects of environmental endotoxin (LPS) than healthy volunteers (HVs). It is unknown whether this sensitivity is due to dysregulated inflammatory responses after LPS exposure in atopic asthmatic patients. OBJECTIVE We sought to test the hypothesis that atopic asthmatic patients respond differentially to inhaled LPS challenge compared with HVs. METHODS Thirteen allergic asthmatic (AA) patients and 18 nonallergic nonasthmatic subjects (healthy volunteers [HVs]) underwent an inhalation challenge to 20,000 endotoxin units of Clinical Center Reference Endotoxin (LPS). Induced sputum and peripheral blood were obtained at baseline and 6 hours after inhaled LPS challenge. Sputum and blood samples were assayed for changes in inflammatory cell numbers and cytokine and cell-surface marker levels on monocytes and macrophages. RESULTS The percentage of neutrophils in sputum (%PMN) in induced sputum similarly and significantly increased in both HVs and AA patients after inhaled LPS challenge. However, the absolute numbers of leukocytes and PMNs recruited to the airways were significantly lower in AA patients compared with those seen in HVs with inhaled LPS challenge. Sputum levels of IL-6 and TNF-α were significantly increased in both cohorts, but levels of IL-1β and IL-18 were only significantly increased in the HV group. Cell-surface expression of Toll-like receptors 4 and 2 were significantly enhanced only in the HV group. CONCLUSIONS The airway inflammatory response to inhaled LPS challenge is blunted in AA patients compared with that seen in HVs and accompanied by reductions in airway neutrophilia and inflammasome-dependent cytokine production. These factors might contribute to increased susceptibility to airway microbial infection or colonization in AA patients.
Collapse
Affiliation(s)
- Michelle L Hernandez
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | |
Collapse
|