1
|
Sharma M, Kumar C, Arya SK, Puri S, Khatri M. Neurological effects of carbon quantum dots on zebrafish: A review. Neuroscience 2024; 560:334-346. [PMID: 39384061 DOI: 10.1016/j.neuroscience.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
Fluorescent carbon dots have emerged as promising nanomaterials for various applications, including bioimaging, food safety detection and drug delivery. However, their potential impact on neurological systems, especially in-vivo models, remains a critical area of investigation. This review focuses on the neurological effects of carbon dots and carbon quantum dots on zebrafish, an established vertebrate model with a conserved central nervous system. Recent studies have demonstrated the efficient uptake and distribution of carbon dots in zebrafish tissues, with a particular affinity for neural tissues. The intricate neural architecture of zebrafish allows for the precise examination of behavioral changes and neurodevelopmental alterations induced by fluorescent carbon dots. Neurotoxicity assessments reveal both short-term and long-term effects, ranging from immediate behavioral alterations to subtle changes in neuronal morphology. The review discusses potential mechanisms underlying these effects highlights the need for standardized methodologies in assessing neurological outcomes and emphasizes the importance of ethical considerations in nanomaterial research. As the field of nanotechnology continues to advance, a comprehensive understanding of the impact of fluorescent carbon dots on neurological function in zebrafish is crucial for informing safe and sustainable applications in medicine and beyond.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Chaitanya Kumar
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India; Centre for Nanoscience &, Nanotechnology, University Institute for Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh 160014, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India.
| |
Collapse
|
2
|
Keshavarz Shahbaz S, Koushki K, Keshavarz Hedayati S, McCloskey AP, Kesharwani P, Naderi Y, Sahebkar A. Polymer nanotherapeutics: A promising approach toward microglial inhibition in neurodegenerative diseases. Med Res Rev 2024; 44:2793-2824. [PMID: 39031446 DOI: 10.1002/med.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/30/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Nanoparticles (NPs) that target multiple transport mechanisms facilitate targeted delivery of active therapeutic agents to the central nervous system (CNS) and improve therapeutic transport and efficacy across the blood-brain barrier (BBB). CNS nanotherapeutics mostly target neurons and endothelial cells, however, microglial immune cells are the first line of defense against neuronal damage and brain infections. Through triggering release of inflammatory cytokines, chemokines and proteases, microglia can however precipitate neurological damage-a significant factor in neurodegenerative diseases. Thus, microglial inhibitory agents are attracting much attention among those researching and developing novel treatments for neurodegenerative disorders. The most established inhibitors of microglia investigated to date are resveratrol, curcumin, quercetin, and minocycline. Thus, there is great interest in developing novel agents that can bypass or easily cross the BBB. One such approach is the use of modified-nanocarriers as, or for, delivery of, therapeutic agents to the brain and wider CNS. For microglial inhibition, polymeric NPs are the preferred vehicles for choice. Here, we summarize the immunologic and neuroinflammatory role of microglia, established microglia inhibitor agents, challenges of CNS drug delivery, and the nanotherapeutics explored for microglia inhibition to date. We also discuss applications of the currently considered "most useful" polymeric NPs for microglial-inhibitor drug delivery in CNS-related diseases.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadije Koushki
- Department of Neurosurgery, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yazdan Naderi
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Cho Y, Seo EU, Hwang KS, Kim H, Choi J, Kim HN. Evaluation of size-dependent uptake, transport and cytotoxicity of polystyrene microplastic in a blood-brain barrier (BBB) model. NANO CONVERGENCE 2024; 11:40. [PMID: 39406944 PMCID: PMC11480280 DOI: 10.1186/s40580-024-00448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Microplastics, particularly those in the micrometer scale, have been shown to enter the human body through ingestion, inhalation, and dermal contact. Recent research indicates that microplastics can potentially impact the central nervous system (CNS) by crossing the blood-brain barrier (BBB). However, the exact mechanisms of their transport, uptake, and subsequent toxicity at BBB remain unclear. In this study, we evaluated the size-dependent uptake and cytotoxicity of polystyrene microparticles using an engineered BBB model. Our findings demonstrate that 0.2 μm polystyrene microparticles exhibit significantly higher uptake and transendothelial transport compared to 1.0 μm polystyrene microparticles, leading to increased permeability and cellular damage. After 24 h of exposure, permeability increased by 15.6-fold for the 0.2 μm particles and 2-fold for the 1.0 μm particles compared to the control. After 72 h of exposure, permeability further increased by 27.3-fold for the 0.2 μm particles and a 4.5-fold for the 1.0 μm particles compared to the control. Notably, microplastics administration following TNF-α treatment resulted in enhanced absorption and greater BBB damage compared to non-stimulated conditions. Additionally, the size-dependent toxicity observed differently between 2D cultured cells and 3D BBB models, highlighting the importance of testing models in evaluating environmental toxicity.
Collapse
Affiliation(s)
- Yeongseon Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun U Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyelim Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- University of Science and Technology, Seoul, 02792, Republic of Korea.
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- Yonsei-Korea Institute of Science and Technology Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
5
|
Canfield JR, Sprague JE. Influence of carbon side chain length on the in vivo pharmacokinetic and pharmacodynamic characteristics of illicitly manufactured fentanyls. Drug Test Anal 2024; 16:1113-1121. [PMID: 38158874 DOI: 10.1002/dta.3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Since 2016, illicitly manufactured fentanyls and fentanyl analogs (referred to as IMFs) have contributed to an increase in drug overdoses. Although fentanyl has been characterized and evaluated extensively in animals and humans, many of the clandestinely synthesized analogs of fentanyl have not and users may unknowingly ingest these IMFs leading to overdose and potentially death. The pharmacodynamic (PD) and pharmacokinetic (PK) properties of four IMFs and fentanyl were evaluated in Sprague-Dawley rats. A 300-μg/kg subcutaneous dose of each compound (fentanyl, acetylfentanyl, cyclopropylfentanyl, butyrylfentanyl, and valerylfentanyl) was given. PD parameters were measured using a tail flick meter and core body temperature. Blood was drawn to evaluate PK parameters utilizing liquid chromatography tandem mass spectrometry (LC-MS/MS). Fentanyl displayed the greatest and longest lasting analgesia with a tail flick response of 10 s (the maximum cutoff). Additionally, fentanyl produced an average -4.9°C in core body temperature resulting in the greatest decrease in core body temperature. Acetylfentanyl, with the shortest carbon side chain, displayed the shortest T½, and lowest AUC and Cmax and resulted in an increase in body temperature. There were no other PK differences among the IMFs assessed. As IMFs are commonly seen on the streets and can pose significant risks to users (although these risks do depend on other factors such as dose and route of administration), there is a benefit to having the pharmacological properties of these compounds characterized to better understand the potential harm to humans.
Collapse
Affiliation(s)
- Jeremy R Canfield
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
6
|
Tambe P, Undale V, Sanap A, Bhonde R, Mante N. The prospective role of mesenchymal stem cells in Parkinson's disease. Parkinsonism Relat Disord 2024; 127:107087. [PMID: 39142905 DOI: 10.1016/j.parkreldis.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a stressful neurodegenerative disorder affecting millions worldwide. PD leads to debilitating motor and cognitive symptoms such as tremors, rigidity, and difficulty walking. Current therapies for PD are symptomatic and don't address the root cause. Therefore, there is an urgent need for better management and intensive research into alternative therapies. Mesenchymal stem cell (MSC) therapy is among the leading contenders among these promising avenues. We examined preclinical and clinical evidence demonstrating the neuroprotective, anti-inflammatory, and regenerative properties of the MSCs. This review focuses on the complex pathophysiological mechanisms of PD, as well as the perspectives of MSCs and their derivatives, such as secretomes and exosomes, in the clinical management of PD. We also analyzed the challenges and limitations of each approach, including delivery methods, timing of administration, and long-term safety considerations.
Collapse
Affiliation(s)
- Pratima Tambe
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India.
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India.
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| | - Nishant Mante
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| |
Collapse
|
7
|
Luo Y, Zhang Y, Feng Y, Zeng X, Zhu D, Yang Y, Hu H, Wang Q, Guo L, Zou L, Zhong X. Prenatal exposure to low doses of benzophenone-3 elicits disruption of cortical vasculature in fetuses through perturbations in Wnt/β-catenin signaling correlating with depression-like behavior in offspring mice. Toxicology 2024; 509:153960. [PMID: 39343157 DOI: 10.1016/j.tox.2024.153960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Benzophenone-3 (BP-3), commonly used in personal care products, is routinely detected in environmental and human matrices. Evidence delineates a correlation between gestational BP-3 exposure and emotional and social disorders in children and adolescents. However, sensitive target cells and the mode of action underlying the early responses to environmentally relevant level of BP-3 exposure remain unclear. In this study, 0.3 and 3 mg/kg of BP-3 were administered to pregnant mice. Compared with the control group, the cortical blood vessel development process manifested the highest susceptibility to BP-3 exposure using transcriptomic sequencing at embryonic day 14 (E14). Notably, the diminution in vascular density and tight junction proteins presence was observed in the fetal cortex at E14, concomitant with the suppressed transcriptional activity of genes essential to angiogenesis and barrier formation. Strikingly, the investigation revealed that BP-3 exposure impeded vascular sprouting in aortic ring explants and neuroendothelial migration, implicating the Wnt/β-catenin signaling pathway. Moreover, BP-3 exposure compromised perivascular neural stem cell differentiation. Cortical vascular injury correlated with the exhibition of depression-like behavior in four-week postnatal progeny. These insights underscore the cerebrovasculature as an early sensitive target for low doses of BP-3 exposure, fostering the development of biomarkers and the establishment of the adverse outcome pathway framework for BP-3 hazard evaluation.
Collapse
Affiliation(s)
- Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Feng
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhu
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China; Geriatric Immunization Research Center of Hunan Provincial Geriatric Institute, Changsha, Hunan, China.
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Ozceylan O, Sezgin-Bayindir Z. Current Overview on the Use of Nanosized Drug Delivery Systems in the Treatment of Neurodegenerative Diseases. ACS OMEGA 2024; 9:35223-35242. [PMID: 39184484 PMCID: PMC11340000 DOI: 10.1021/acsomega.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Neurodegenerative diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, prion disease, and Huntington's disease, present a growing health concern as human life expectancy increases. Despite this, effective treatments to halt disease progression remain elusive due to various factors, including challenges in drug delivery across physiological barriers like the blood-brain barrier and patient compliance issues leading to treatment discontinuation. In response, innovative treatment approaches leveraging noninvasive techniques with higher patient compliance are emerging as promising alternatives. This Review aims to synthesize current treatment options and the challenges encountered in managing neurodegenerative diseases, while also exploring innovative treatment modalities. Specifically, noninvasive strategies such as intranasal administration and nanosized drug delivery systems are gaining prominence for their potential to enhance treatment efficacy and patient adherence. Nanosized drug delivery systems, including liposomes, polymeric micelles, and nanoparticles, are evaluated within the context of outstanding studies. The advantages and disadvantages of these approaches are discussed, providing insights into their therapeutic potential and limitations. Through this comprehensive examination, this Review contributes to the ongoing discourse surrounding the development of effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ozlem Ozceylan
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
- Turkish
Medicines and Medical Devices Agency (TMMDA), 06520 Ankara, Turkey
| | - Zerrin Sezgin-Bayindir
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| |
Collapse
|
9
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
10
|
Afridi S, Sharma P, Choudhary F, Rizwan A, Nizam A, Parvez A, Farooqi H. Extracellular Vesicles: A New Approach to Study the Brain's Neural System and Its Diseases. Cell Biochem Biophys 2024; 82:521-534. [PMID: 38727784 DOI: 10.1007/s12013-024-01271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/25/2024]
Abstract
In normal and pathophysiological conditions our cells secrete vesicular bodies known as extracellular particles. Extracellular vesicles are lipid-bound extracellular particles. A majority of these extracellular vesicles are linked to cell-to-cell communication. Brain consists of tightly packed neural cells. Neural cell releases extracellular vesicles in cerebrospinal fluid. Extracellular vesicle mediated crosstalk maintains neural homeostasis in the central nervous system via transferring cargos between neural cells. In neurodegenerative diseases, small extracellular vesicle transfer misfolded proteins to healthy cells in the neural microenvironment. They can also cross blood-brain barrier (BBB) and stimulate peripheral immune response inside central nervous system. In today's world different approaches employ extracellular vesicle in various therapeutics. This review gives a brief knowledge about the biological relevance of extracellular vesicles in the central nervous system and relevant advances in the translational application of EV in brain disorders.
Collapse
Affiliation(s)
- Shahid Afridi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Furqan Choudhary
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Amber Rizwan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Anam Nizam
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
11
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024:10.1007/s12035-024-04205-5. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
12
|
Fallahi S, Zangbar HS, Farajdokht F, Rahbarghazi R, Mohaddes G, Ghiasi F. Exosomes as a therapeutic tool to promote neurorestoration and cognitive function in neurological conditions: Achieve two ends with a single effort. CNS Neurosci Ther 2024; 30:e14752. [PMID: 38775149 PMCID: PMC11110007 DOI: 10.1111/cns.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/16/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Exosomes possess a significant role in intercellular communications. In the nervous system, various neural cells release exosomes that not only own a role in intercellular communications but also eliminate the waste of cells, maintain the myelin sheath, facilitate neurogenesis, and specifically assist in normal cognitive function. In neurological conditions including Parkinson's disease (PD), Alzheimer's disease (AD), traumatic brain injury (TBI), and stroke, exosomal cargo like miRNAs take part in the sequela of conditions and serve as a diagnostic tool of neurological disorders, too. Exosomes are not only a diagnostic tool but also their inhibition or administration from various sources like mesenchymal stem cells and serum, which have shown a worthy potential to treat multiple neurological disorders. In addition to neurodegenerative manifestations, cognitive deficiencies are an integral part of neurological diseases, and applying exosomes in improving both aspects of these diseases has been promising. This review discusses the status of exosome therapy in improving neurorestorative and cognitive function following neurological disease.
Collapse
Affiliation(s)
- Solmaz Fallahi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Fereshteh Farajdokht
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Gisou Mohaddes
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Biomedical EducationCalifornia Health Sciences University, College of Osteopathic MedicineClovisCaliforniaUSA
| | - Fariba Ghiasi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
13
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
14
|
Singh S, Paul D, Nath V, A R. Exosomes: current knowledge and future perspectives. Tissue Barriers 2024; 12:2232248. [PMID: 37439246 PMCID: PMC11042064 DOI: 10.1080/21688370.2023.2232248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Exosomes are membrane-bound micro-vesicles that possess endless therapeutic potential for treatment of numerous pathologies including autoimmune, cardiovascular, ocular, and nervous disorders. Despite considerable knowledge about exosome biogenesis and secretion, still, there is a lack of information regarding exosome uptake by cell types and internal signaling pathways through which these exosomes process cellular response. Exosomes are key components of cell signaling and intercellular communication. In central nervous system (CNS), exosomes can penetrate BBB and maintain homeostasis by myelin sheath regulation and the waste products elimination. Therefore, the current review summarizes role of exosomes and their use as biomarkers in cardiovascular, nervous and ocular disorders. This aspect of exosomes provides positive hope to monitor disease development and enable early diagnosis and treatment optimization. In this review, we have summarized recent findings on physiological and therapeutic effects of exosomes and also attempt to provide insights about stress-preconditioned exosomes and stem cell-derived exosomes.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Deepraj Paul
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Rohini A
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
15
|
Bernardo J, Valentão P. Herb-drug interactions: A short review on central and peripheral nervous system drugs. Phytother Res 2024; 38:1903-1931. [PMID: 38358734 DOI: 10.1002/ptr.8120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Herbal medicines are widely perceived as natural and safe remedies. However, their concomitant use with prescribed drugs is a common practice, often undertaken without full awareness of the potential risks and frequently without medical supervision. This practice introduces a tangible risk of herb-drug interactions, which can manifest as a spectrum of consequences, ranging from acute, self-limited reactions to unpredictable and potentially lethal scenarios. This review offers a comprehensive overview of herb-drug interactions, with a specific focus on medications targeting the Central and Peripheral Nervous Systems. Our work draws upon a broad range of evidence, encompassing preclinical data, animal studies, and clinical case reports. We delve into the intricate pharmacodynamics and pharmacokinetics underpinning each interaction, elucidating the mechanisms through which these interactions occur. One pressing issue that emerges from this analysis is the need for updated guidelines and sustained pharmacovigilance efforts. The topic of herb-drug interactions often escapes the attention of both consumers and healthcare professionals. To ensure patient safety and informed decision-making, it is imperative that we address this knowledge gap and establish a framework for continued monitoring and education. In conclusion, the use of herbal remedies alongside conventional medications is a practice replete with potential hazards. This review not only underscores the real and significant risks associated with herb-drug interactions but also underscores the necessity for greater awareness, research, and vigilant oversight in this often-overlooked domain of healthcare.
Collapse
Affiliation(s)
- João Bernardo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Tazhibi M, McQuillan N, Wei HJ, Gallitto M, Bendau E, Webster Carrion A, Berg X, Kokossis D, Zhang X, Zhang Z, Jan CI, Mintz A, Gartrell RD, Syed HR, Fonseca A, Pavisic J, Szalontay L, Konofagou EE, Zacharoulis S, Wu CC. Focused ultrasound-mediated blood-brain barrier opening is safe and feasible with moderately hypofractionated radiotherapy for brainstem diffuse midline glioma. J Transl Med 2024; 22:320. [PMID: 38555449 PMCID: PMC10981822 DOI: 10.1186/s12967-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Diffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT. METHODS To establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI). RESULTS FUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT. CONCLUSION Repeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.
Collapse
Affiliation(s)
- Masih Tazhibi
- Department of Radiation Oncology, Columbia University Irving Medical Center, 622 W. 168th Street, New York, NY, 10032, USA
| | - Nicholas McQuillan
- Department of Radiation Oncology, Columbia University Irving Medical Center, 622 W. 168th Street, New York, NY, 10032, USA
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, 622 W. 168th Street, New York, NY, 10032, USA
| | - Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, 622 W. 168th Street, New York, NY, 10032, USA
| | - Ethan Bendau
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Andrea Webster Carrion
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xander Berg
- Department of Radiation Oncology, Columbia University Irving Medical Center, 622 W. 168th Street, New York, NY, 10032, USA
| | - Danae Kokossis
- Department of Radiation Oncology, Columbia University Irving Medical Center, 622 W. 168th Street, New York, NY, 10032, USA
| | - Xu Zhang
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhiguo Zhang
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Chia-Ing Jan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY, 10027, USA
| | - Robyn D Gartrell
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Hasan R Syed
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Adriana Fonseca
- George Washington University, Washington, DC, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
- The Brain Tumor Institute, Children's National Hospital, Washington, DC, USA
| | - Jovana Pavisic
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
| | - Luca Szalontay
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Stergios Zacharoulis
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA.
- Bristol Myers Squibb, Princeton, NJ, 08901, USA.
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, 622 W. 168th Street, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA.
| |
Collapse
|
17
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
18
|
Nakkazi A, Forster D, Whitfield GA, Dyer DP, Dickie BR. A systematic review of normal tissue neurovascular unit damage following brain irradiation-Factors affecting damage severity and timing of effects. Neurooncol Adv 2024; 6:vdae098. [PMID: 39239570 PMCID: PMC11375288 DOI: 10.1093/noajnl/vdae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Background Radiotherapy is key in the treatment of primary and secondary brain tumors. However, normal tissue is inevitably irradiated, causing toxicity and contributing to cognitive dysfunction. The relative importance of vascular damage to cognitive decline is poorly understood. Here, we systematically review the evidence for radiation-induced damage to the entire neurovascular unit (NVU), particularly focusing on establishing the factors that influence damage severity, and timing and duration of vascular effects relative to effects on neural tissue. Methods Using PubMed and Web of Science, we searched preclinical and clinical literature published between January 1, 1970 and December 1, 2022 and evaluated factors influencing NVU damage severity and timing of NVU effects resulting from ionizing radiation. Results Seventy-two rodents, 4 canines, 1 rabbit, and 5 human studies met inclusion criteria. Radiation increased blood-brain barrier (BBB) permeability, reduced endothelial cell number and extracellular matrix proteoglycans, reduced tight junction proteins, upregulated cellular adhesion molecule expression, reduced activity of glucose and BBB efflux transporters and activated glial cells. In the brain parenchyma, increased metalloproteinases 2 and 9 levels, demyelination, cell death, and inhibited differentiation were observed. Effects on the vasculature and neural compartment were observed across acute, delayed, and late timepoints, and damage extent was higher with low linear energy transfer radiation, higher doses, lower dose rates, broader beams, and in the presence of a tumor. Conclusions Irradiation of normal brain tissue leads to widespread and varied impacts on the NVU. Data indicate that vascular damage is in most cases an early effect that does not quickly resolve. More studies are needed to confirm sequence of damages, and mechanisms that lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Annet Nakkazi
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Duncan Forster
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Gillian A Whitfield
- Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Nguyen-Thi PT, Ho TT, Nguyen TT, Vo GV. Nanotechnology-based Drug Delivery for Alzheimer's and Parkinson's Diseases. Curr Drug Deliv 2024; 21:917-931. [PMID: 37424345 DOI: 10.2174/1567201820666230707113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023]
Abstract
The delivery of drugs to the brain is quite challenging in the treatment of the central nervous system (CNS) diseases due to the blood-brain barrier and the blood-cerebrospinal fluid barrier. However, significant developments in nanomaterials employed by nanoparticle drug-delivery systems have substantial potential to cross or bypass these barriers leading to enhanced therapeutic efficacies. Advances in nanoplatform, nanosystems based on lipids, polymers and inorganic materials have been extensively studied and applied in treating Alzheimer's and Parkinson's diseases. In this review, various types of brain drug delivery nanocarriers are classified, summarized, and their potential as drug delivery systems in Alzheimer's and Parkinson's diseases is discussed. Finally, challenges facing the clinical translation of nanoparticles from bench to bedside are highlighted.
Collapse
Affiliation(s)
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71420, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University, Ho Chi Minh City [VNU-HCM], Ho Chi Minh City 700000, Vietnam
- Research Center for Genetics and Reproductive Health [CGRH], School of Medicine, Vietnam National University, Ho Chi Minh City [VNU-HCM], Ho Chi Minh City 70000, Vietnam
- Vietnam National University, Ho Chi Minh City [VNU-HCM], Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
20
|
Mwema A, Muccioli GG, des Rieux A. Innovative drug delivery strategies to the CNS for the treatment of multiple sclerosis. J Control Release 2023; 364:435-457. [PMID: 37926243 DOI: 10.1016/j.jconrel.2023.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Disorders of the central nervous system (CNS), such as multiple sclerosis (MS) represent a great emotional, financial and social burden. Despite intense efforts, great unmet medical needs remain in that field. MS is an autoimmune, chronic inflammatory demyelinating disease with no curative treatment up to date. The current therapies mostly act in the periphery and seek to modulate aberrant immune responses as well as slow down the progression of the disease. Some of these therapies are associated with adverse effects related partly to their administration route and show some limitations due to their rapid clearance and inability to reach the CNS. The scientific community have recently focused their research on developing MS therapies targeting different processes within the CNS. However, delivery of therapeutics to the CNS is mainly limited by the presence of the blood-brain barrier (BBB). Therefore, there is a pressing need to develop new drug delivery strategies that ensure CNS availability to capitalize on identified therapeutic targets. Several approaches have been developed to overcome or bypass the BBB and increase delivery of therapeutics to the CNS. Among these strategies, the use of alternative routes of administration, such as the nose-to-brain (N2B) pathway, offers a promising non-invasive option in the scope of MS, as it would allow a direct transport of the drugs from the nasal cavity to the brain. Moreover, the combination of bioactive molecules within nanocarriers bring forth new opportunities for MS therapies, allowing and/or increasing their transport to the CNS. Here we will review and discuss these alternative administration routes as well as the nanocarrier approaches useful to deliver drugs for MS.
Collapse
Affiliation(s)
- Ariane Mwema
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium.
| | - Anne des Rieux
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| |
Collapse
|
21
|
Long F, Pan Y, Li J, Sha S, Shi X, Guo H, Huang C, Xiao Q, Fan C, Zhang X, Fan JB, Wang Y. Orange-derived extracellular vesicles nanodrugs for efficient treatment of ovarian cancer assisted by transcytosis effect. Acta Pharm Sin B 2023; 13:5121-5134. [PMID: 38045062 PMCID: PMC10692363 DOI: 10.1016/j.apsb.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 12/05/2023] Open
Abstract
Extracellular vesicles (EVs) have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size, biocompatibility, and high stability. Herein, we demonstrate orange-derived extracellular vesicles (OEV) nanodrugs (DN@OEV) by modifying cRGD-targeted doxorubicin (DOX) nanoparticles (DN) onto the surface of OEV, enabling significantly enhancing tumor accumulation and penetration, thereby efficiently inhibiting the growth of ovarian cancer. The obtained DN@OEV enabled to inducement of greater transcytosis capability in ovarian cancer cells, which presented the average above 10-fold transcytosis effect compared with individual DN. It was found that DN@OEV could trigger receptor-mediated endocytosis to promote early endosome/recycling endosomes pathway for exocytosis and simultaneously reduce degradation in the early endosomes-late endosomes-lysosome pathway, thereby inducing the enhanced transcytosis. In particular, the zombie mouse model bearing orthotopic ovarian cancer further validated DN@OEV presented high accumulation and penetration in tumor tissue by the transcytosis process. Our study indicated the strategy in enhancing transcytosis has significant implications for improving the therapeutic efficacy of the drug delivery system.
Collapse
Affiliation(s)
- Feng Long
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Pan
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinheng Li
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Suinan Sha
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiubo Shi
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haoyan Guo
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuanqing Huang
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian Xiao
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Fan
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingmei Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun-Bing Fan
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Wang
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Naseem A, Alturise F, Alkhalifah T, Khan YD. BBB-PEP-prediction: improved computational model for identification of blood-brain barrier peptides using blending position relative composition specific features and ensemble modeling. J Cheminform 2023; 15:110. [PMID: 37980534 PMCID: PMC10656963 DOI: 10.1186/s13321-023-00773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/21/2023] [Indexed: 11/20/2023] Open
Abstract
BBPs have the potential to facilitate the delivery of drugs to the brain, opening up new avenues for the development of treatments targeting diseases of the central nervous system (CNS). The obstacle faced in central nervous system disorders stems from the formidable task of traversing the blood-brain barrier (BBB) for pharmaceutical agents. Nearly 98% of small molecule-based drugs and nearly 100% of large molecule-based drugs encounter difficulties in successfully penetrating the BBB. This importance leads to identification of these peptides, can help in healthcare systems. In this study, we proposed an improved intelligent computational model BBB-PEP-Prediction for identification of BBB peptides. Position and statistical moments based features have been computed for acquired benchmark dataset. Four types of ensembles such as bagging, boosting, stacking and blending have been utilized in the methodology section. Bagging employed Random Forest (RF) and Extra Trees (ET), Boosting utilizes XGBoost (XGB) and Light Gradient Boosting Machine (LGBM). Stacking uses ET and XGB as base learners, blending exploited LGBM and RF as base learners, while Logistic Regression (LR) has been applied as Meta learner for stacking and blending. Three classifiers such as LGBM, XGB and ET have been optimized by using Randomized search CV. Four types of testing such as self-consistency, independent set, cross-validation with 5 and 10 folds and jackknife test have been employed. Evaluation metrics such as Accuracy (ACC), Specificity (SPE), Sensitivity (SEN), Mathew's correlation coefficient (MCC) have been utilized. The stacking of classifiers has shown best results in almost each testing. The stacking results for independent set testing exhibits accuracy, specificity, sensitivity and MCC score of 0.824, 0.911, 0.831 and 0.663 respectively. The proposed model BBB-PEP-Prediction shown superlative performance as compared to previous benchmark studies. The proposed system helps in future research and research community for in-silico identification of BBB peptides.
Collapse
Affiliation(s)
- Ansar Naseem
- Department of Artificial Intelligence, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Saudi Arabia.
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
23
|
Nguyen-Thi PT, Nguyen TT, Phan HL, Ho TT, Vo TV, Vo GV. Cell membrane-based nanomaterials for therapeutics of neurodegenerative diseases. Neurochem Int 2023; 170:105612. [PMID: 37714337 DOI: 10.1016/j.neuint.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/20/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Central nervous system (CNS) diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), glioblastoma (GBM), and peripheral nerve injury have been documented as incurable diseases, which lead to serious impacts on human health especially prevalent in the aging population worldwide. Most of the treatment strategies fail due to low efficacy, toxicity, and poor brain penetration. Recently, advancements in nanotechnology have helped alleviate the challenges associated with the application of cell membrane-based nanomaterials against CNS diseases. In the following review, the existing types of cell membrane-based nanomaterials systems which have improved therapeutic efficacy for CNS diseases would be described. A summary of recent progress in the incorporation of nanomaterials in cell membrane-based production, separation, and analysis will be provided. Addition to, challenges relate to large-scale manufacturing of cell membrane-based nanomaterials and future clinical trial of such platforms will be discussed.
Collapse
Affiliation(s)
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Viet Nam.
| | - Hoang Long Phan
- Faculty of Pharmacy, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University -Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
24
|
Fernandez M, Nigro M, Travagli A, Pasquini S, Vincenzi F, Varani K, Borea PA, Merighi S, Gessi S. Strategies for Drug Delivery into the Brain: A Review on Adenosine Receptors Modulation for Central Nervous System Diseases Therapy. Pharmaceutics 2023; 15:2441. [PMID: 37896201 PMCID: PMC10610137 DOI: 10.3390/pharmaceutics15102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper neuronal activity, angiogenesis and neurogenesis, as well as to prevent the entry of immune cells into the brain. However, the BBB also restricts the penetration of drugs, thus presenting a challenge in the development of therapeutics for CNS diseases. On the other hand, adenosine, an endogenous purine-based nucleoside that is expressed in most body tissues, regulates different body functions by acting through its G-protein-coupled receptors (A1, A2A, A2B and A3). Adenosine receptors (ARs) are thus considered potential drug targets for treating different metabolic, inflammatory and neurological diseases. In the CNS, A1 and A2A are expressed by astrocytes, oligodendrocytes, neurons, immune cells and ECs. Moreover, adenosine, by acting locally through its receptors A1 and/or A2A, may modulate BBB permeability, and this effect is potentiated when both receptors are simultaneously activated. This review showcases in vivo and in vitro evidence supporting AR signaling as a candidate for modifying endothelial barrier permeability in the treatment of CNS disorders.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | | | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| |
Collapse
|
25
|
Xue S, Zhou X, Yang ZH, Si XK, Sun X. Stroke-induced damage on the blood-brain barrier. Front Neurol 2023; 14:1248970. [PMID: 37840921 PMCID: PMC10569696 DOI: 10.3389/fneur.2023.1248970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
The blood-brain barrier (BBB) is a functional phenotype exhibited by the neurovascular unit (NVU). It is maintained and regulated by the interaction between cellular and non-cellular matrix components of the NVU. The BBB plays a vital role in maintaining the dynamic stability of the intracerebral microenvironment as a barrier layer at the critical interface between the blood and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain) and short diffusion distance between neurons and capillaries allow endothelial cells to dominate the regulatory role. The NVU is a structural component of the BBB. Individual cells and components of the NVU work together to maintain BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of the BBB, including impaired function of the tight junction and other molecules, as well as increased BBB permeability, leading to brain edema and a range of clinical symptoms. This review summarizes the cellular composition of the BBB and describes the protein composition of the barrier functional junction complex and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
Collapse
Affiliation(s)
| | | | | | | | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Bolden CT, Skibber MA, Olson SD, Zamorano Rojas M, Milewicz S, Gill BS, Cox CS. Validation and characterization of a novel blood-brain barrier platform for investigating traumatic brain injury. Sci Rep 2023; 13:16150. [PMID: 37752338 PMCID: PMC10522590 DOI: 10.1038/s41598-023-43214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a highly-selective physiologic barrier responsible for maintaining cerebral homeostasis. Innovative in vitro models of the BBB are needed to provide useful insights into BBB function with CNS disorders like traumatic brain injury (TBI). TBI is a multidimensional and highly complex pathophysiological condition that requires intrinsic models to elucidate its mechanisms. Current models either lack fluidic shear stress, or neglect hemodynamic parameters important in recapitulating the human in vivo BBB phenotype. To address these limitations in the field, we developed a fluid dynamic novel platform which closely mimics these parameters. To validate our platform, Matrigel-coated Transwells were seeded with brain microvascular endothelial cells, both with and without co-cultured primary human astrocytes and bone-marrow mesenchymal stem cells. In this article we characterized BBB functional properties such as TEER and paracellular permeability. Our platform demonstrated physiologic relevant decreases in TEER in response to an ischemic environment, while directly measuring barrier fluid fluctuation. These recordings were followed with recovery, implying stability of the model. We also demonstrate that our dynamic platform is responsive to inflammatory and metabolic cues with resultant permeability coefficients. These results indicate that this novel dynamic platform will be a valuable tool for evaluating the recapitulating BBB function in vitro, screening potential novel therapeutics, and establishing a relevant paradigm to evaluate the pathophysiology of TBI.
Collapse
Affiliation(s)
- Christopher T Bolden
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| | - Max A Skibber
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Miriam Zamorano Rojas
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samantha Milewicz
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
27
|
Li X, Pu X, Wang X, Wang J, Liao X, Huang Z, Yin G. A dual-targeting peptide for glioblastoma screened by phage display peptide library biopanning combined with affinity-adaptability analysis. Int J Pharm 2023; 644:123306. [PMID: 37572856 DOI: 10.1016/j.ijpharm.2023.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The obstruction of blood-brain barrier (BBB) and the poor specific targeting are still the major obstacles and challenges of targeted nano-pharmaceutical therapy for glioblastoma (GBM) up to now. It is critical to find appropriate targeting ligands that can effectively mediate the nano-pharmaceuticals to penetrate brain capillary endothelial cells (BCECs) and then specifically bind to glioblastoma cells (GCs). Herein, a dual-targeting ligand for GBM was screened by the combination of phage display peptide library biopanning and affinity-adaptability analysis. Based on the acquisition of sub-library of peptide which exhibited the specific affinity to both BCECs and GCs, a comparison parameter of relative affinity was deliberately introduced to evaluate the relative affinity of candidate peptides to U251-MG cells and bEnd.3 cells. The optimized WTW peptide (sequenced as WTWEYTK) was provided with a high relative affinity (RU/B = 2.44), implying that its high affinity to U251-MG cells and moderate affinity to bEnd.3 cells might synergistically promote its receptor-mediated internalization and transport, the dissociation from bEnd.3, and the binding to U251-MG. The results of BBB model trials in vitro showed that the BBB penetration efficiency and GBM accumulation of WTW peptide were significantly higher than those of WSL peptide, GNH peptide, and REF peptide. Results of orthotopic GBM xenograft model assays in vivo also indicated that WTW peptide had successfully penetrated the BBB and improved accumulation in GBM. The screened WTW peptide might be the potential dual-targeting ligand to motivate the advancement of GBM targeted therapy.
Collapse
Affiliation(s)
- Xiaoxu Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Zhongbin Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
28
|
Tomitaka A, Vashist A, Kolishetti N, Nair M. Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases. NANOSCALE ADVANCES 2023; 5:4354-4367. [PMID: 37638161 PMCID: PMC10448356 DOI: 10.1039/d3na00180f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Magnetic nanoparticles possess unique properties distinct from other types of nanoparticles developed for biomedical applications. Their unique magnetic properties and multifunctionalities are especially beneficial for central nervous system (CNS) disease therapy and diagnostics, as well as targeted and personalized applications using image-guided therapy and theranostics. This review discusses the recent development of magnetic nanoparticles for CNS applications, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and drug addiction. Machine learning (ML) methods are increasingly applied towards the processing, optimization and development of nanomaterials. By using data-driven approach, ML has the potential to bridge the gap between basic research and clinical research. We review ML approaches used within the various stages of nanomedicine development, from nanoparticle synthesis and characterization to performance prediction and disease diagnosis.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Computer and Information Sciences, College of Natural and Applied Science, University of Houston-Victoria Texas 77901 USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| |
Collapse
|
29
|
van Vliet EF, Knol MJ, Schiffelers RM, Caiazzo M, Fens MHAM. Levodopa-loaded nanoparticles for the treatment of Parkinson's disease. J Control Release 2023; 360:212-224. [PMID: 37343725 DOI: 10.1016/j.jconrel.2023.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) resulting in dopamine (DA) deficiency, which manifests itself in motor symptoms including tremors, rigidity and bradykinesia. Current PD treatments aim at symptom reduction through oral delivery of levodopa (L-DOPA), a precursor of DA. However, L-DOPA delivery to the brain is inefficient and increased dosages are required as the disease progresses, resulting in serious side effects like dyskinesias. To improve PD treatment efficacy and to reduce side effects, recent research focuses on the encapsulation of L-DOPA into polymeric- and lipid-based nanoparticles (NPs). These formulations can protect L-DOPA from systemic decarboxylation into DA and improve L-DOPA delivery to the central nervous system. Additionally, NPs can be modified with proteins, peptides and antibodies specifically targeting the blood-brain barrier (BBB), thereby reducing required dosages and free systemic DA. Alternative delivery approaches for NP-encapsulated L-DOPA include intravenous (IV) administration, transdermal delivery using adhesive patches and direct intranasal administration, facilitating increased therapeutic DA concentrations in the brain. This review provides an overview of the recent advances for NP-mediated L-DOPA delivery to the brain, and debates challenges and future perspectives on the field.
Collapse
Affiliation(s)
- Emile F van Vliet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Maarten J Knol
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | | | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
30
|
Muscetti O, Blal N, Mollo V, Netti PA, Guarnieri D. Intracellular Localization during Blood-Brain Barrier Crossing Influences Extracellular Release and Uptake of Fluorescent Nanoprobes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1999. [PMID: 37446515 DOI: 10.3390/nano13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
To improve the efficacy of nanoparticles (NPs) and boost their theragnostic potential for brain diseases, it is key to understand the mechanisms controlling blood-brain barrier (BBB) crossing. Here, the capability of 100 nm carboxylated polystyrene NPs, used as a nanoprobe model, to cross the human brain endothelial hCMEC/D3 cell layer, as well as to be consequently internalized by human brain tumor U87 cells, is investigated as a function of NPs' different intracellular localization. We compared NPs confined in the endo-lysosomal compartment, delivered to the cells through endocytosis, with free NPs in the cytoplasm, delivered by the gene gun method. The results indicate that the intracellular behavior of NPs changed as a function of their entrance mechanism. Moreover, by bypassing endo-lysosomal accumulation, free NPs were released from cells more efficiently than endocytosed NPs. Most importantly, once excreted by the endothelial cells, free NPs were released in the cell culture medium as aggregates smaller than endocytosed NPs and, consequently, they entered the human glioblastoma U87 cells more efficiently. These findings prove that intracellular localization influences NPs' long-term fate, improving their cellular release and consequent cellular uptake once in the brain parenchyma. This study represents a step forward in designing nanomaterials that are able to reach the brain effectively.
Collapse
Affiliation(s)
- Ornella Muscetti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Naym Blal
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, (CRIB), University of Naples Federico II, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Daniela Guarnieri
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| |
Collapse
|
31
|
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8:217. [PMID: 37231000 PMCID: PMC10212980 DOI: 10.1038/s41392-023-01481-w] [Citation(s) in RCA: 201] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Blood-brain barrier (BBB) is a natural protective membrane that prevents central nervous system (CNS) from toxins and pathogens in blood. However, the presence of BBB complicates the pharmacotherapy for CNS disorders as the most chemical drugs and biopharmaceuticals have been impeded to enter the brain. Insufficient drug delivery into the brain leads to low therapeutic efficacy as well as aggravated side effects due to the accumulation in other organs and tissues. Recent breakthrough in materials science and nanotechnology provides a library of advanced materials with customized structure and property serving as a powerful toolkit for targeted drug delivery. In-depth research in the field of anatomical and pathological study on brain and BBB further facilitates the development of brain-targeted strategies for enhanced BBB crossing. In this review, the physiological structure and different cells contributing to this barrier are summarized. Various emerging strategies for permeability regulation and BBB crossing including passive transcytosis, intranasal administration, ligands conjugation, membrane coating, stimuli-triggered BBB disruption, and other strategies to overcome BBB obstacle are highlighted. Versatile drug delivery systems ranging from organic, inorganic, and biologics-derived materials with their synthesis procedures and unique physio-chemical properties are summarized and analyzed. This review aims to provide an up-to-date and comprehensive guideline for researchers in diverse fields, offering perspectives on further development of brain-targeted drug delivery system.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|
32
|
Kuo YC, De S. Development of carbon dots to manage Alzheimer's disease and Parkinson's disease. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
33
|
Huang X, Shi S, Wang H, Zhao T, Wang Y, Huang S, Su Y, Zhao C, Yang M. Advances in antibody-based drugs and their delivery through the blood-brain barrier for targeted therapy and immunotherapy of gliomas. Int Immunopharmacol 2023; 117:109990. [PMID: 37012874 DOI: 10.1016/j.intimp.2023.109990] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Gliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches. With the rapid development of molecular immunology, significant breakthroughs have been made in targeted glioma therapy and immunotherapy. Antibody-based therapy has excellent advantages in treating gliomas due to its high specificity and sensitivity. This article reviewed various targeted antibody drugs for gliomas, including anti-glioma surface marker antibodies, anti-angiogenesis antibodies, and anti-immunosuppressive signal antibodies. Notably, many antibodies have been validated clinically, such as bevacizumab, cetuximab, panitumumab, and anti-PD-1 antibodies. These antibodies can improve the targeting of glioma therapy, enhance anti-tumor immunity, reduce the proliferation and invasion of glioma, and thus prolong the survival time of patients. However, the existence of the blood-brain barrier (BBB) has caused significant difficulties in drug delivery for gliomas. Therefore, this paper also summarized drug delivery methods through the BBB, including receptor-mediated transportation, nano-based carriers, and some physical and chemical methods for drug delivery. With these exciting advancements, more antibody-based therapies will likely enter clinical practice and allow more successful control of malignant gliomas.
Collapse
Affiliation(s)
- Xin Huang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Shuyou Shi
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Hongrui Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yibo Wang
- The College of Clinical College, Jilin University, Changchun, China
| | - Sihua Huang
- The College of Clinical College, Jilin University, Changchun, China
| | - Yingying Su
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunyan Zhao
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Ming Yang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
34
|
Lin LY, Juillard P, Hawke S, Marsh-Wakefield F, Grau GE. Oral Cladribine Impairs Intermediate, but Not Conventional, Monocyte Transmigration in Multiple Sclerosis Patients across a Model Blood-Brain Barrier. Int J Mol Sci 2023; 24:ijms24076487. [PMID: 37047460 PMCID: PMC10094666 DOI: 10.3390/ijms24076487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
Multiple sclerosis (MS) is a disease in which the immune system damages components of the central nervous system (CNS), leading to the destruction of myelin and the formation of demyelinating plaques. This often occurs in episodic “attacks” precipitated by the transmigration of leukocytes across the blood-brain barrier (BBB), and repeated episodes of demyelination lead to substantial losses of axons within and removed from plaques, ultimately leading to progressive neurological dysfunction. Within leukocyte populations, macrophages and T and B lymphocytes are the predominant effectors. Among current immunotherapies, oral cladribine’s impact on lymphocytes is well characterised, but little is known about its impact on other leukocytes such as monocytes and dendritic cells (DCs). The aim of this study was to determine the transmigratory ability of monocyte and DC subsets in healthy subjects and untreated and cladribine-treated relapse-remitting MS (RRMS) patients using a well-characterised model of the BBB. Peripheral blood mononuclear cells from subjects were added to an in vitro transmigration assay to assess cell migration. Our findings show that while prior treatment with oral cladribine inhibits the migration of intermediate monocytes, it has no impact on the transmigration of DC subsets. Overall, our data indicate a previously unrecognised role of cladribine on intermediate monocytes, known to accumulate in the brain active MS lesions.
Collapse
Affiliation(s)
- Linda Y. Lin
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pierre Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Hawke
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Central West Neurology and Neurosurgery, Orange, NSW 2800, Australia
| | - Felix Marsh-Wakefield
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW 2006, Australia
- Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (F.M.-W.); (G.E.G.)
| | - Georges E. Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (F.M.-W.); (G.E.G.)
| |
Collapse
|
35
|
Khan MS, Mohapatra S, Gupta V, Ali A, Naseef PP, Kurunian MS, Alshadidi AAF, Alam MS, Mirza MA, Iqbal Z. Potential of Lipid-Based Nanocarriers against Two Major Barriers to Drug Delivery-Skin and Blood-Brain Barrier. MEMBRANES 2023; 13:343. [PMID: 36984730 PMCID: PMC10058721 DOI: 10.3390/membranes13030343] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Over the past few years, pharmaceutical and biomedical areas have made the most astounding accomplishments in the field of medicine, diagnostics and drug delivery. Nanotechnology-based tools have played a major role in this. The implementation of this multifaceted nanotechnology concept encourages the advancement of innovative strategies and materials for improving patient compliance. The plausible usage of nanotechnology in drug delivery prompts an extension of lipid-based nanocarriers with a special reference to barriers such as the skin and blood-brain barrier (BBB) that have been discussed in the given manuscript. The limited permeability of these two intriguing biological barriers restricts the penetration of active moieties through the skin and brain, resulting in futile outcomes in several related ailments. Lipid-based nanocarriers provide a possible solution to this problem by facilitating the penetration of drugs across these obstacles, which leads to improvements in their effectiveness. A special emphasis in this review is placed on the composition, mechanism of penetration and recent applications of these carriers. It also includes recent research and the latest findings in the form of patents and clinical trials in this field. The presented data demonstrate the capability of these carriers as potential drug delivery systems across the skin (referred to as topical, dermal and transdermal delivery) as well as to the brain, which can be exploited further for the development of safe and efficacious products.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Ahsan Ali
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | | | - Mohamed Saheer Kurunian
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulkhaliq Ali F. Alshadidi
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan P.O. Box 114, Saudi Arabia
| | - Mohd. Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
36
|
Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol Ther 2023; 31:657-675. [PMID: 36457248 PMCID: PMC10014236 DOI: 10.1016/j.ymthe.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.
Collapse
Affiliation(s)
- Bethan J Critchley
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; Orchard Therapeutics Ltd., London EC4N 6EU, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
37
|
Díaz-Urbina D, Medina-Reyes EI, López-Alonso VE, Delgado-Buenrostro NL, Mancilla Díaz JM, Pedraza-Chaverri J, Chirino YI. Food-grade titanium dioxide (E171) differentially affects satiation in mice fed a regular or a high fat diet. Food Chem Toxicol 2023; 173:113610. [PMID: 36657699 DOI: 10.1016/j.fct.2023.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Food-grade titanium dioxide (E171) is a widely used food additive and the toxicity after oral consumption is still under research, although it has been already banned in some countries. The consumption of this additive occurs mainly through ultra-processed food products which also contain high amounts of fat. High fat diets (HFD) impair the physiological system controlling satiation and satiety, which are responsible for control of food intake and energy status. The impact of E171 on animal behavior has been poorly explored and here we hypothesize that E171 could worsen the effects on feeding behavior induced by HFD. Therefore, we aimed to evaluate the effects of E171 on the feeding pattern and the behavioral satiety sequence (BSS) of mice fed with a regular diet (RD) or a HFD after 1 and 16 weeks of exposure. The results showed that RD + E171 increased food intake and feeding time, but the prototypical structure of the BSS pattern (feeding→ grooming-activity → resting), was preserved. Conversely, food consumption was not altered in HFD + E171, but the BSS pattern was disrupted as the animals prolonged resting time and spent less time being active. Our findings suggest that E171 delayed the onset of satiation in mice fed with RD but induced the opposite effect in mice fed with HFD.
Collapse
Affiliation(s)
- Daniel Díaz-Urbina
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico.
| | - Estefany I Medina-Reyes
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000 C.U., Coyoacán, 04510, Ciudad de México, CDMX, Mexico.
| | - Verónica E López-Alonso
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Norma Laura Delgado-Buenrostro
- Laboratorio de Carcinogénesis y Toxicología. Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Juan M Mancilla Díaz
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000 C.U., Coyoacán, 04510, Ciudad de México, CDMX, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología. Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| |
Collapse
|
38
|
Rodríguez-González A, Moya M, Rodríguez de Fonseca F, Gómez de Heras R, Orio L. Alcohol binge drinking induces downregulation of blood-brain barrier proteins in the rat frontal cortex -but not in the hippocampus- that is not prevented by OEA pretreatment. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11091. [PMID: 38389819 PMCID: PMC10880752 DOI: 10.3389/adar.2023.11091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2024]
Abstract
Alcohol binge drinking promotes neuroinflammation which could be partially mediated by the passage of ABD-induced peripheral inflammatory molecules to the brain parenchyma through the blood-brain barrier. The BBB is sealed by tight junction proteins, which regulate the access of substances to the brain. Whether ABD alters the BBB or not remains controversial. Here, we measured the expression of BBB proteins in frontal cortex and hippocampus after an ABD procedure that was previously shown to induce neuroinflammation in the FC, and checked neuroinflammation in the hippocampus. Oleoylethanolamide is known to inhibit ABD-induced neuroinflammation in rat FC but the mechanisms of action are not clear: whereas OEA protects against alcohol-induced breakdown of the TJ proteins in the gut barrier reducing peripheral inflammation, its effect in the TJ of the BBB remains unknown. Here, we studied whether OEA (5 mg/kg, before each gavage) prevented alcohol-induced BBB dysfunction by measuring the expression of zona-occludens, occludin, and laminin in FC and hippocampus. ABD animals showed reduced laminin and occludin levels in the FC, indicative of BBB dysfunction, which is concordant with previous findings showing ABD-induced neuroinflammation in this brain region. OEA did not prevent ABD-induced changes in the BBB proteins in the FC, suggesting that the OEA main mechanism of action to inhibit neuroinflammation in this brain region is not related to prevention of TJ proteins alteration in the BBB. In the hippocampus, this ABD protocol did not alter BBB protein levels and no markers of neuroinflammation were found elevated.
Collapse
Affiliation(s)
- Alicia Rodríguez-González
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (Red de Investigación en Atención Primaria en Adicciones), Madrid, Spain
| | - Raquel Gómez de Heras
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (Red de Investigación en Atención Primaria en Adicciones), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
39
|
Abstract
The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining central nervous system (CNS) homeostasis. An intact BBB protects the brain from undesired compounds and proteins from the blood; however, BBB impairment is involved in various pathological conditions including stroke. In vivo evaluation of BBB integrity in the post-stroke brain is important for investigating stroke-induced CNS pathogenesis and developing CNS-targeted therapeutic agents. In this chapter, we describe both quantitative and morphometric methods and tools to evaluate BBB integrity in vivo. These methods do not require expensive magnetic resonance imaging (MRI) and computed tomography (CT) imaging capabilities and can be conducted in research laboratories with access to a confocal microscope and fluorescence microplate reader.
Collapse
|
40
|
Mwema A, Bottemanne P, Paquot A, Ucakar B, Vanvarenberg K, Alhouayek M, Muccioli GG, des Rieux A. Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD 2-G. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102633. [PMID: 36435364 DOI: 10.1016/j.nano.2022.102633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Here, prostaglandin D2-glycerol ester (PGD2-G) was selected to target neuroinflammation. As PGD2-G is reported to have a short plasmatic half-life, we propose to use lipid nanocapsules (LNC) as vehicle to safely transport PGD2-G to the central nervous system (CNS). PGD2-G-loaded LNC (PGD2-G-LNC) reduced pro-inflammatory cytokine expression in activated microglial cells, even so after crossing a primary olfactory cell monolayer. A single nasal administration of PGD2-G-LNC in lipopolysaccharide (LPS)-treated mice reduced pro-inflammatory cytokine expression in the olfactory bulb. Coating LNC's surface with a cell-penetrating peptide, transactivator of transcription (TAT), increased its accumulation in the brain. Although TAT-coated PGD2-G-LNC modestly exerted its anti-inflammatory effect in a mouse model of multiple sclerosis similar to free PGD2-G after nasal administration, TAT-coated LNC surprisingly reduced the expression of pro-inflammatory chemokines in the CNS. These data propose LNC as an interesting drug delivery tool and TAT-coated PGD2-G-LNC remains a good candidate, in need of further work.
Collapse
Affiliation(s)
- Ariane Mwema
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Pauline Bottemanne
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Adrien Paquot
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Bernard Ucakar
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| | - Anne des Rieux
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| |
Collapse
|
41
|
Cano A, Muñoz-Morales Á, Sánchez-López E, Ettcheto M, Souto EB, Camins A, Boada M, Ruíz A. Exosomes-Based Nanomedicine for Neurodegenerative Diseases: Current Insights and Future Challenges. Pharmaceutics 2023; 15:298. [PMID: 36678926 PMCID: PMC9863585 DOI: 10.3390/pharmaceutics15010298] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases constitute a group of pathologies whose etiology remains unknown in many cases, and there are no treatments that stop the progression of such diseases. Moreover, the existence of the blood-brain barrier is an impediment to the penetration of exogenous molecules, including those found in many drugs. Exosomes are extracellular vesicles secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Due to their natural origin and molecular similarities with most cell types, exosomes have emerged as promising therapeutic tools for numerous diseases. Specifically, neurodegenerative diseases have shown to be a potential target for this nanomedicine strategy due to the difficult access to the brain and the strategy's pathophysiological complexity. In this regard, this review explores the most important biological-origin drug delivery systems, innovative isolation methods of exosomes, their physicochemical characterization, drug loading, cutting-edge functionalization strategies to target them within the brain, the latest research studies in neurodegenerative diseases, and the future challenges of exosomes as nanomedicine-based therapeutic tools.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Álvaro Muñoz-Morales
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Agustín Ruíz
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
42
|
Hoque M, Samanta A, Alam SSM, Zughaibi TA, Kamal MA, Tabrez S. Nanomedicine-based immunotherapy for Alzheimer's disease. Neurosci Biobehav Rev 2023; 144:104973. [PMID: 36435391 DOI: 10.1016/j.neubiorev.2022.104973] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease caused by the deposition of amyloid β (Aβ) fibrils forming extracellular plaques and the development of neurofibrillary tangles (NFT) of intracellular hyperphosphorylated tau protein. Currently, the AD treatments focus on improving cognitive and behavioral symptoms and have limited success. It is imperative to develop novel treatment approaches that can control/inhibit AD progression, especially in the elderly population. Immunotherapy provides a promising and safe treatment option for AD by boosting the patient's immune system. The minimum immune surveillance in the immune-privileged brain, however, makes immunotherapy for AD a challenging endeavor. Therefore, the success of AD immunotherapy depends mainly on the strategy by which therapeutics is delivered to the brain rather than its efficacy. The blood-brain barrier (BBB) is a major obstacle to therapeutic delivery into the brain microenvironment. Various nano-formulations have been exploited to improve the efficacy of AD immunotherapy. In this review, the applications of different types of nano-formulations in augmenting AD immunotherapy have been discussed.
Collapse
Affiliation(s)
- Mehboob Hoque
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | - Arijit Samanta
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | | | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
43
|
Rasmussen CLM, Hede E, Routhe LJ, Körbelin J, Helgudottir SS, Thomsen LB, Schwaninger M, Burkhart A, Moos T. A novel strategy for delivering Niemann-Pick type C2 proteins across the blood-brain barrier using the brain endothelial-specific AAV-BR1 virus. J Neurochem 2023; 164:6-28. [PMID: 35554935 PMCID: PMC10084444 DOI: 10.1111/jnc.15621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Treating central nervous system (CNS) diseases is complicated by the incapability of numerous therapeutics to cross the blood-brain barrier (BBB), mainly composed of brain endothelial cells (BECs). Genetically modifying BECs into protein factories that supply the CNS with recombinant proteins is a promising approach to overcome this hindrance, especially in genetic diseases, like Niemann Pick disease type C2 (NPC2), where both CNS and peripheral cells are affected. Here, we investigated the potential of the BEC-specific adeno-associated viral vector (AAV-BR1) encoding NPC2 for expression and secretion from primary BECs cultured in an in vitro BBB model with mixed glial cells, and in healthy BALB/c mice. Transduced primary BECs had significantly increased NPC2 gene expression and secreted NPC2 after viral transduction, which significantly reversed cholesterol deposition in NPC2 deficient fibroblasts. Mice receiving an intravenous injection with AAV-BR1-NCP2-eGFP were sacrificed 8 weeks later and examined for its biodistribution and transgene expression of eGFP and NPC2. AAV-BR1-NPC2-eGFP was distributed mainly to the brain and lightly to the heart and lung, but did not label other organs including the liver. eGFP expression was primarily found in BECs throughout the brain but occasionally also in neurons suggesting transport of the vector across the BBB, a phenomenon also confirmed in vitro. NPC2 gene expression was up-regulated in the brain, and recombinant NPC2 protein expression was observed in both transduced brain capillaries and neurons. Our findings show that AAV-BR1 transduction of BECs is possible and that it may denote a promising strategy for future treatment of NPC2.
Collapse
Affiliation(s)
| | - Eva Hede
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lisa Juul Routhe
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center, Hamburg, Germany
| | - Steinunn Sara Helgudottir
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Louiza Bohn Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
44
|
Advances in Antibody-Based Therapeutics for Cerebral Ischemia. Pharmaceutics 2022; 15:pharmaceutics15010145. [PMID: 36678774 PMCID: PMC9866586 DOI: 10.3390/pharmaceutics15010145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral ischemia is an acute disorder characterized by an abrupt reduction in blood flow that results in immediate deprivation of both glucose and oxygen. The main types of cerebral ischemia are ischemic and hemorrhagic stroke. When a stroke occurs, several signaling pathways are activated, comprising necrosis, apoptosis, and autophagy as well as glial activation and white matter injury, which leads to neuronal cell death. Current treatments for strokes include challenging mechanical thrombectomy or tissue plasminogen activator, which increase the danger of cerebral bleeding, brain edema, and cerebral damage, limiting their usage in clinical settings. Monoclonal antibody therapy has proven to be effective and safe in the treatment of a variety of neurological disorders. In contrast, the evidence for stroke therapy is minimal. Recently, Clone MTS510 antibody targeting toll-like receptor-4 (TLR4) protein, ASC06-IgG1 antibody targeting acid sensing ion channel-1a (ASIC1a) protein, Anti-GluN1 antibodies targeting N-methyl-D-aspartate (NMDA) receptor associated calcium influx, GSK249320 antibody targeting myelin-associated glycoprotein (MAG), anti-High Mobility Group Box-1 antibody targeting high mobility group box-1 (HMGB1) are currently under clinical trials for cerebral ischemia treatment. In this article, we review the current antibody-based pharmaceuticals for neurological diseases, the use of antibody drugs in stroke, strategies to improve the efficacy of antibody therapeutics in cerebral ischemia, and the recent advancement of antibody drugs in clinical practice. Overall, we highlight the need of enhancing blood-brain barrier (BBB) penetration for the improvement of antibody-based therapeutics in the brain, which could greatly enhance the antibody medications for cerebral ischemia in clinical practice.
Collapse
|
45
|
Liu D, Bai J, Chen Q, Tan R, An Z, Xiao J, Qu Y, Xu Y. Brain metastases: It takes two factors for a primary cancer to metastasize to brain. Front Oncol 2022; 12:1003715. [PMID: 36248975 PMCID: PMC9554149 DOI: 10.3389/fonc.2022.1003715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis of a cancer is a malignant disease with high mortality, but the cause and the molecular mechanism remain largely unknown. Using the samples of primary tumors of 22 cancer types in the TCGA database, we have performed a computational study of their transcriptomic data to investigate the drivers of brain metastases at the basic physics and chemistry level. Our main discoveries are: (i) the physical characteristics, namely electric charge, molecular weight, and the hydrophobicity of the extracellular structures of the expressed transmembrane proteins largely affect a primary cancer cell’s ability to cross the blood-brain barrier; and (ii) brain metastasis may require specific functions provided by the activated enzymes in the metastasizing primary cancer cells for survival in the brain micro-environment. Both predictions are supported by published experimental studies. Based on these findings, we have built a classifier to predict if a given primary cancer may have brain metastasis, achieving the accuracy level at AUC = 0.92 on large test sets.
Collapse
Affiliation(s)
- Dingyun Liu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jun Bai
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Qian Chen
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Renbo Tan
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zheng An
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States
| | - Jun Xiao
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yingwei Qu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Ying Xu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States
- *Correspondence: Ying Xu,
| |
Collapse
|
46
|
Zhang S, Gan L, Cao F, Wang H, Gong P, Ma C, Ren L, Lin Y, Lin X. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res Bull 2022; 190:69-83. [PMID: 36162603 DOI: 10.1016/j.brainresbull.2022.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Three different barriers are formed between the cerebrovascular and the brain parenchyma: the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the cerebrospinal fluid-brain barrier (CBB). The BBB is the main regulator of blood and central nervous system (CNS) material exchange. The semipermeable nature of the BBB limits the passage of larger molecules and hydrophilic small molecules, Food and Drug Administration (FDA)-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Although the complexity of the BBB affects CNS drug delivery, understanding the composition and function of the BBB can provide a platform for the development of new methods for CNS drug delivery. This review summarizes the classification of the brain barrier, the composition and role of the basic structures of the BBB, and the transport, barrier, and destruction mechanisms of the BBB; discusses the advantages and disadvantages of different drug delivery methods and prospects for future drug delivery strategies.
Collapse
Affiliation(s)
- Shanshan Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Lin Gan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Fengye Cao
- Yiyang The First Hospital of Traditional Chinese Medicine, Yiyang, Hunan Province, 413000, China
| | - Hao Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Peng Gong
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Congcong Ma
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Li Ren
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yubo Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xianming Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
47
|
Wang L, Dou J, Jiang W, Wang Q, Liu Y, Liu H, Wang Y. Enhanced Intracellular Transcytosis of Nanoparticles by Degrading Extracellular Matrix for Deep Tissue Radiotherapy of Pancreatic Adenocarcinoma. NANO LETTERS 2022; 22:6877-6887. [PMID: 36036792 DOI: 10.1021/acs.nanolett.2c01005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intracellular transcytosis can enhance the penetration of nanomedicines to deep avascular tumor tissues, but strategies that can improve transcytosis are limited. In this study, we discovered that pyknomorphic extracellular matrix (ECM) is a shield that impairs endocytosis of nanoparticles and their movement between adjacent cells and thus limits their active transcytosis in tumors. We further showed that degradation of pivotal constituent of ECM (i.e., collagen) effectively enhances intracellular transcytosis of nanoparticles. Specifically, a collagenase conjugating transcytosis nanoparticle (Col-TNP) can dissociate into collagenase and cationized gold nanoparticles in response to tumor acidity, which enables their ECM tampering ability and active transcytosis in tumors. The breakage of ECM further enhances the active transcytosis of cationized nanoparticles into deep tumor tissues as well as radiosensitization efficacy of pancreatic adenocarcinoma. Our study opens up new paths to enhance the active transcytosis of nanomedicines for the treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Li Wang
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, China
| | - Jiaxiang Dou
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Jiang
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qin Wang
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Liu
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hang Liu
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yucai Wang
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Lee MJ, Zhu J, An JH, Lee SE, Kim TY, Oh E, Kang YE, Chung W, Heo JY. A transcriptomic analysis of cerebral microvessels reveals the involvement of Notch1 signaling in endothelial mitochondrial-dysfunction-dependent BBB disruption. Fluids Barriers CNS 2022; 19:64. [PMID: 36028880 PMCID: PMC9414148 DOI: 10.1186/s12987-022-00363-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background Endothelial cells (ECs) in cerebral vessels are considered the primary targets in acute hemorrhagic brain injuries. EC dysfunction can aggravate neuronal injuries by causing secondary inflammatory responses and blood–brain barrier (BBB) disruption. Previous studies have reported that enhancement of mitochondrial function within ECs may reduce BBB disruption and decrease the severity of acute brain injuries. However, the molecular signaling pathways through which enhanced EC mitochondrial function is enhanced to exert this BBB protective effect have not been fully elucidated. Methods To identify signaling pathways involved in linking EC-specific mitochondrial dysfunction and BBB disruption, we first performed RNA sequencing using isolated cerebral vessels from TEKCRIF1 KO mice, a mouse strain that displays EC-specific mitochondrial dysfunction. After identification, we assessed the significance of candidate signaling pathways using an intracerebral hemorrhage (ICH) mouse model. BBB integrity was assessed using an IgG leakage assay, and symptomatic changes were evaluated using behavioral assays. Results Transcriptome analyses of the TEKCRIF1 KO mouse revealed significant changes in Notch1 signaling, a pathway intimately involved in BBB maintenance. We also observed a decrease in Notch1 signaling and expression of the mitochondrial oxidative phosphorylation (OxPhos) complex in the ICH mouse model, which also exhibits BBB disruption. To further assess the function of Notch1 signaling in relation to BBB disruption, we injected ICH model mice with adropin, a protein that interacts with the Notch1 ligand NB-3 and activates Notch1 signaling. We found that adropin prevented BBB disruption and reduced the extent (area) of the injury compared with that in vehicle controls, in association with alteration of mitochondrial function. Conclusion These results suggest that the Notch1 signaling pathway acts as an upstream regulator of DEGs and can be a target to regulate the changes involved with endothelial mitochondrial dysfunction-dependent BBB disruption. Thus, treatment methods that activate Notch1 may be beneficial in acute brain injuries by protecting BBB integrity. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00363-7.
Collapse
Affiliation(s)
- Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jiebo Zhu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jong Hun An
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University School of Medicine, Deajeon, 35015, Republic of Korea
| | - Tae Yeon Kim
- Bio-Synergy Research Center, Daejeon, 34141, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University School of Medicine, Deajeon, 35015, Republic of Korea.
| | - Woosuk Chung
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea. .,Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea.
| | - Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea. .,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
49
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
50
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|