1
|
Ali M, Corridon PR. Integrated environmental and health economic assessments of novel xeno-keratografts addressing a growing public health crisis. Sci Rep 2024; 14:25600. [PMID: 39465317 PMCID: PMC11514208 DOI: 10.1038/s41598-024-77783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024] Open
Abstract
Tissue scarcity poses global challenges for corneal transplantation and public health. Xeno-keratoplasty using animal-derived tissues offers a potential solution, but its environmental and economic implications remain unclear. This study evaluated two xeno-keratoplasty procedures at a single institution: (1) native corneas (Option 1) and (2) tissue-engineered corneal scaffolds derived from slaughterhouse waste (Option 2). Life cycle assessment (LCA) quantified environmental impacts across 18 midpoint indicators, while cost-effectiveness analysis (CEA) incorporated cost and environmental impact using two approaches. Option 1 exhibited significantly lower environmental impact than Option 2 across most indicators, primarily due to the energy and equipment demands of cell culture in Option 2. Both CEA approaches (carbon offset pricing and utility decrement) demonstrated cost-effectiveness dominance for Option 1. Xeno-keratoplasty using native corneas (Option 1) appears more environmentally and economically favorable than tissue-engineered scaffolds (Option 2) in the current analysis. Future studies could explore diverse xeno-keratoplasty techniques for optimizing sustainability.
Collapse
Affiliation(s)
- Mustafa Ali
- School of Management, University of Sheffield, South Yorkshire, S10 1FL, UK
| | - Peter R Corridon
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Rizwan HM, Naveed M, Sajid MS, Nazish N, Younus M, Raza M, Maqbool M, Khalil MH, Fouad D, Ataya FS. Enhancing agricultural sustainability through optimization of the slaughterhouse sludge compost for elimination of parasites and coliforms. Sci Rep 2024; 14:23953. [PMID: 39397149 PMCID: PMC11471828 DOI: 10.1038/s41598-024-75606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
For a sustainable ecology, slaughterhouse sludge must be managed effectively in preview of the parasitic or coliforms' spill over to the community. In order to determine the effectiveness of a customized biological decomposer solution in lowering the parasitic eggs and coliform bacteria, three composting units (Unit 1, Unit 2, and Unit 3) were treated with its different amounts. Over a period of 60 days, pH, temperature, humidity, number of the parasitic eggs per gram (EPG) of faecal material, viability of eggs, and coliform counts were evaluated. By the fifth day of the composting process, pH had significantly (P < 0.05) increased across all the treatments and then decreased gradually. Also on the 5th day, all three units entered the thermophilic range (> 45 °C), which persisted for 20 days for Unit 3 and 15 days for Units 1 and 2. Humidity levels initially increased significantly (P < 0.05) in all three units (Unit 3 = 71%, Unit 2 = 64%, and Unit 1 = 55%) but then gradually decreased. On day 5, no decrease in EPG in Unit 1 was detected; however, a non-significant (P > 0.05) 12.5% decline in EPG in Unit 2 and Unit 3 was recorded. After that, a significant (P < 0.05) reduction in EPG was observed in all the three treatments until day 25. By day 5, decreased egg viability was significantly (P < 0.05) recorded in Unit 3 (21.43%); in Unit 1 and Unit 2, the decrease was 6.25% and 14.29%, respectively. Additionally, all units showed a significant (P < 0.05) decrease in total coliforms, meeting minimum allowable limit in Unit 2 and 3 on day 10 and on day 15 in Unit 1. The most substantial reduction in faecal coliforms was observed in Unit 3 (from 2.6 log₁₀ to 1.3 log₁₀), followed by Unit 2 (from 2.6 log₁₀ to 1.5 log₁₀), and then Unit 1 (from 2.6 log₁₀ to 1.6 log₁₀). The results of this study support recommendation of advanced composting techniques to eradicate or reduce the abundance of pathogens (parasites and coliforms). Hence, we endorse the value of careful composting procedures in environment-friendly abattoir waste management and agricultural practices through creating pathogen-free, eco-friendly fertilizers to promote both agricultural and environmental sustainability.
Collapse
Affiliation(s)
- Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Science, Narowal, Sub campus UVAS, Lahore, Pakistan.
| | - Muhammad Naveed
- Institute of Soil & Environmental Sciences, University of Agriculture,, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Younus
- Section of Pathology, Department of Pathobiology, KBCMA College of Veterinary and Animal Science, Narowal, Sub campus UVAS, Lahore, Pakistan
| | - Mohsin Raza
- Section of Physiology, Department of Basic Sciences, KBCMA College of Veterinary and Animal Science, Narowal, Sub campus UVAS, Lahore, Pakistan
| | - Mahvish Maqbool
- Eastwood Lab, Department of Entomology, Virginia Tech University, Blacksburg, USA
| | - Muhammad Hamza Khalil
- Institute of Soil & Environmental Sciences, University of Agriculture,, Faisalabad, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Mironiuk M, Izydorczyk G, Witek-Krowiak A, Chojnacka K, Górecki H. Valorization of poultry slaughterhouse waste into fertilizers with designed properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17822-17834. [PMID: 38253836 DOI: 10.1007/s11356-024-31960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Climate change, soil erosion, air and water pollution, or problems related to waste management are just some of the many problems in the modern world. Comprehensive solutions are sought to reduce the effects of progressive environmental degradation according to the assumptions of the concept of sustainable development. The paper presents a technological concept that may be a response to these problems. The presented solution assumes full utilization of slaughterhouse waste with the simultaneous recovery of nutrients and the production of functional fertilizing products with designed properties. Four liquid fertilizer formulations with the following composition were prepared: N - 2.30-3.64%, P2O5 - 2.18-9.66%, and K2O - 0.11-4.49%. The manufactured products were characterized by a high sulfur content and the addition of microelements. The tests carried out on plants confirmed their effectiveness similar to commercial mineral fertilizers. An increase in green matter yield of peas by 5 t/ha and maize by 2 t/ha was observed. The lack of microbiological risk associated with their use has been proven. Good efficiency with a simultaneous reduction in production costs resulting from the use of waste materials, as well as limiting the negative impact of poultry farms on the environment, make this solution an attractive alternative to mineral fertilizers, in line with the assumptions of the circular economy.
Collapse
Affiliation(s)
- Małgorzata Mironiuk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego, 25, 50-372, Wrocław, Poland.
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego, 25, 50-372, Wrocław, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego, 25, 50-372, Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego, 25, 50-372, Wrocław, Poland
| | - Henryk Górecki
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego, 25, 50-372, Wrocław, Poland
| |
Collapse
|
4
|
Bünemann EK, Reimer M, Smolders E, Smith SR, Bigalke M, Palmqvist A, Brandt KK, Möller K, Harder R, Hermann L, Speiser B, Oudshoorn F, Løes AK, Magid J. Do contaminants compromise the use of recycled nutrients in organic agriculture? A review and synthesis of current knowledge on contaminant concentrations, fate in the environment and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168901. [PMID: 38042198 DOI: 10.1016/j.scitotenv.2023.168901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Use of nutrients recycled from societal waste streams in agriculture is part of the circular economy, and in line with organic farming principles. Nevertheless, diverse contaminants in waste streams create doubts among organic farmers about potential risks for soil health. Here, we gather the current knowledge on contaminant levels in waste streams and recycled nutrient sources, and discuss associated risks. For potentially toxic elements (PTEs), the input of zinc (Zn) and copper (Cu) from mineral feed supplements remains of concern, while concentrations of PTEs in many waste streams have decreased substantially in Europe. The same applies to organic contaminants, although new chemical groups such as flame retardants are of emerging concern and globally contamination levels differ strongly. Compared to inorganic fertilizers, application of organic fertilizers derived from human or animal feces is associated with an increased risk for environmental dissemination of antibiotic resistance. The risk depends on the quality of the organic fertilizers, which varies between geographical regions, but farmland application of sewage sludge appears to be a safe practice as shown by some studies (e.g. from Sweden). Microplastic concentrations in agricultural soils show a wide spread and our understanding of its toxicity is limited, hampering a sound risk assessment. Methods for assessing public health risks for organic contaminants must include emerging contaminants and potential interactions of multiple compounds. Evidence from long-term field experiments suggests that soils may be more resilient and capable to degrade or stabilize pollutants than often assumed. In view of the need to source nutrients for expanding areas under organic farming, we discuss inputs originating from conventional farms vs. non-agricultural (i.e. societal) inputs. Closing nutrient cycles between agriculture and society is feasible in many cases, without being compromised by contaminants, and should be enhanced, aided by improved source control, waste treatment and sound risk assessments.
Collapse
Affiliation(s)
- E K Bünemann
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland.
| | - M Reimer
- University of Hohenheim, Department of Fertilization and Soil Matter Dynamics, Fruwirthstr. 20, 70599 Stuttgart, Germany; Aarhus University, Department of Agroecology, Blichers Allé 20, 8830 Tjele, Denmark
| | - E Smolders
- Division Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - S R Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - M Bigalke
- Department of Soil Mineralogy and Soil Chemistry, Institute for Applied Geosciences, Technical University of Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - A Palmqvist
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - K K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - K Möller
- University of Hohenheim, Department of Fertilization and Soil Matter Dynamics, Fruwirthstr. 20, 70599 Stuttgart, Germany
| | - R Harder
- Environmental Engineering Group, Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - L Hermann
- Proman Management GmbH, Weingartenstrasse 92, 2214 Auersthal, Austria
| | - B Speiser
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - F Oudshoorn
- Innovation Centre for Organic Farming (ICOEL), Agro Food Park 26, 8200 Aarhus, Denmark
| | - A K Løes
- Norwegian Centre for Organic Agriculture (NORSØK), Gunnars veg 6, N-6630 Tingvoll, Norway
| | - J Magid
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
5
|
Al-Gheethi A, Ma NL, Rupani PF, Sultana N, Yaakob MA, Mohamed RMSR, Soon CF. Biowastes of slaughterhouses and wet markets: an overview of waste management for disease prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71780-71793. [PMID: 34585345 PMCID: PMC8477996 DOI: 10.1007/s11356-021-16629-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/16/2021] [Indexed: 06/12/2023]
Abstract
Slaughterhouse and wet market wastes are pollutants that have been always neglected by society. According to the Food and Agriculture Organization of the United Nations, more than three billion and nineteen million livestock were consumed worldwide in 2018, which reflects the vast amount and the broad spectrum of the biowastes generated. Slaughterhouse biowastes are a significant volume of biohazards that poses a high risk of contamination to the environment, an outbreak of diseases, and insecure food safety. This work comprehensively reviewed existing biowaste disposal practices and revealed the limitations of technological advancements to eradicate the threat of possible harmful infectious agents from these wastes. Policies, including strict supervision and uniform minimum hygienic regulations at all raw food processing factories, should therefore be tightened to ensure the protection of the food supply. The vast quantity of biowastes also offers a zero-waste potential for a circular economy, but the incorporation of biowaste recycling, including composting, anaerobic digestion, and thermal treatment, nevertheless remains challenging.
Collapse
Affiliation(s)
- Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Parveen Fatemeh Rupani
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Naznin Sultana
- Medical Academy, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Maizatul Azrina Yaakob
- Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| |
Collapse
|
6
|
Wehner M, Kleidorfer I, Whittle I, Bischof D, Bockreis A, Insam H, Mueller W, Hupfauf S. Decentralised system for demand-oriented collection of food waste - Assessment of biomethane potential, pathogen development and microbial community structure. BIORESOURCE TECHNOLOGY 2023; 376:128894. [PMID: 36931445 DOI: 10.1016/j.biortech.2023.128894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Enormous amounts of food waste (FW) are produced worldwide, requiring efficient disposal strategies, both economically and ecologically. Anaerobic digestion to produce biomethane is among the most promising strategies, but requires proper solutions for storage and delivery of the waste material. Here, a decentralized system for demand-oriented FW storage and its practical usability was assessed. FW was stored under batch and fed-batch strategies at 5 °C, 20 °C and 30 °C for 28 days. The results showed that FW can be stored without cooling since bacterially produced lactic acid rapidly stabilized the material and inactivated pathogens. While FW storage worked well under all storage conditions and strategies, 16S analysis revealed a distinct microbiota, which was highly characteristic for each storage temperature. Moreover, FW storage had no negative impact on methane yield and stored FW contained readily degradable substances for demand-oriented biogas production.
Collapse
Affiliation(s)
- Marco Wehner
- Unit of Environmental Engineering, Department of Infrastructure, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria.
| | - Irene Kleidorfer
- Unit of Environmental Engineering, Department of Infrastructure, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria
| | - Ingrid Whittle
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Daniela Bischof
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Anke Bockreis
- Unit of Environmental Engineering, Department of Infrastructure, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria; BioTreaT GmbH, Technikerstraße 21, 6020 Innsbruck, Austria
| | - Heribert Insam
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; BioTreaT GmbH, Technikerstraße 21, 6020 Innsbruck, Austria
| | - Wolfgang Mueller
- Unit of Environmental Engineering, Department of Infrastructure, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria
| | - Sebastian Hupfauf
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Pierce ES, Jindal C, Choi YM, Efird JT. The evidence for Mycobacterium avium subspecies paratuberculosis (MAP) as a cause of nonsolar uveal melanoma: a narrative review. Transl Cancer Res 2023; 12:398-412. [PMID: 36915598 PMCID: PMC10007888 DOI: 10.21037/tcr-22-2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Background and Objective Animal microorganisms have been proposed as a cause of human cancers associated with farming, agricultural occupation or residence, and related downstream exposures. Several studies have described uveal melanoma (UvM) as a farming-associated cancer. A possible suspect is the animal microorganism Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of paratuberculosis in dairy cows. This microbe is transmitted to humans through various means, including contact with animal faeces, contaminated dust and soil, organic fertilizers, and as workers in slaughterhouses/animal processing facilities. The objective of the current manuscript was to examine the putative association between Mycobacterium avium sub-species paratuberculosis and non-solar UvM. Methods Online data sources (PubMed, Scopus, Cochrane Library, and Google) published in English between 1980 to present were searched for key words pertaining to MAP exposure, farming-related occupations and activities, and locations with or in the vicinity of dairy cattle. Key Content and Findings While higher than expected rates of eye cancer have been suggested among dairy farmers, with MAP being ubiquitous in their environment, the involvement of MAP in the aetiology of non-solar UvMs (which account for ~97% of UvM cases) remains uncertain. Conclusions Alternative explanations exist and future cause-and-effect research is needed to answer this hypothesis. A precautionary approach to exposure continues to be a prudent strategy.
Collapse
Affiliation(s)
| | | | | | - Jimmy T. Efird
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- VA Cooperative Studies Program Coordinating Center, Boston, MA, USA
| |
Collapse
|
8
|
Composting of Wild Boar Carcasses in Lithuania Leads to Inactivation of African Swine Fever Virus in Wintertime. Pathogens 2023; 12:pathogens12020285. [PMID: 36839556 PMCID: PMC9966675 DOI: 10.3390/pathogens12020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
African swine fever (ASF) continues to spread and persist in the Eurasian wild boar population. The infection pressure resulting from infected carcasses in the environment can be a major contributor to disease persistence and spread. For this reason, it is crucial to find a safe and efficient method of carcass disposal under different circumstances. In the presented study, we investigated open-air composting of carcasses under winter conditions in northeastern Europe, i.e., Lithuania. We can demonstrate that the ASF virus (ASFV) is inactivated in both entire wild boar carcasses and pieces thereof in a time- and temperature-dependent manner. Composting piles reached up to 59.0 °C, and ASFV was shown to be inactivated. However, the ASFV genome was still present until the end of the 112-day sampling period. While further studies are needed to explore potential risk factors (and their mitigation), such as destruction of composting piles by scavengers or harsh weather conditions, composting seems to present a valid method to inactivate the ASFV in wild boar carcasses where rendering or other disposal methods are not feasible. In summary, composting provides a new tool in our toolbox of ASF control in wild boar and can be considered for carcass disposal.
Collapse
|
9
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
S R, Sabumon PC. A critical review on slaughterhouse waste management and framing sustainable practices in managing slaughterhouse waste in India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116823. [PMID: 36455438 DOI: 10.1016/j.jenvman.2022.116823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Global meat consumption is on a rise with around 253 million metric tons of meat produced globally in the year 2020. Because of the rise in population and change in food preferences, meat consumption trend is likely to continue. Meat production by animal slaughtering increases the slaughterhouse wastes in the form of both solid and liquid wastes. Although various technologies for slaughterhouse waste management are available in developed countries, the effective utilization of slaughterhouse waste management is still missing in developing countries like India. India plays an active role in the meat export business globally and stood 2nd in the world with a total export valuation of 2.89 billion US $ in the year 2020. In this context, this study presents a critical overview of the current technological advancements in the global slaughterhouse waste management including utilization of by-products and further, the prevailing slaughterhouse waste management of India is discussed. Finally, a sustainable slaughterhouse waste management strategy emphasizing circular economy and regulations improvements have been suggested for India to compete in this sector at global scale.
Collapse
Affiliation(s)
- Ragasri S
- School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, India
| | - P C Sabumon
- School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, India.
| |
Collapse
|
11
|
Batista-Barwinski MJ, Venturieri GA, Janke L, Sanches-Simões E, Tiegs F, Ariente-Neto R, Testolin RC, Miller PRM, Somensi CA, Radetski CM. Development of a low-cost inoculum to improve composting of cattle slaughterhouse by-products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:756-764. [PMID: 36039562 DOI: 10.1080/03601234.2022.2114742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The composting process is an option for acceptable environmental management of cattle slaughterhouse by-products. The goals of this article were (i) to make a low-cost inoculum using popular supermarket ingredients and microorganisms that are already present in the composting environment, and (ii) to compare the efficiency of the composting process with and without the application of formulated inoculum. Initially, a consortium of microorganisms already present in the composting environment (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris) was prepared in a low-cost culture medium for use as an inoculum for the composting process. The composting process with the addition of the inoculum was more efficient than the composting process without the inoculum, in terms of both the chemical composition and the process efficiency, but mainly in relation to the time required for composting, with the mean times for decay of 50% of the windrows' temperature (taking in to account the difference between internal and external windrow temperatures) being 96 days without inoculum and 65 days with inoculum. Thus, inoculum made with low-cost supermarket products reduced the composting time and yielded compost of better quality.
Collapse
Affiliation(s)
| | - Giorgini A Venturieri
- Programa de Pós-Graduação em Agroecossistemas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Leandro Janke
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eric Sanches-Simões
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Frankie Tiegs
- Instituto Federal Catarinense - Campus Araquari, Curso de Mestrado em Tecnologia e Ambiente, Araquari, SC, Brazil
| | - Rafael Ariente-Neto
- Universidade Federal do Paraná (UFPR), Campus Jandaia do Sul, Jandaia do Sul, PR, Brazil
| | - Renan C Testolin
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Paul Richard M Miller
- Programa de Pós-Graduação em Agroecossistemas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Cleder A Somensi
- Instituto Federal Catarinense - Campus Araquari, Curso de Mestrado em Tecnologia e Ambiente, Araquari, SC, Brazil
| | - Claudemir M Radetski
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
- Instituto Federal Catarinense - Campus Araquari, Curso de Mestrado em Tecnologia e Ambiente, Araquari, SC, Brazil
| |
Collapse
|
12
|
Li Q. Perspectives on Converting Keratin-Containing Wastes Into Biofertilizers for Sustainable Agriculture. Front Microbiol 2022; 13:918262. [PMID: 35794912 PMCID: PMC9251476 DOI: 10.3389/fmicb.2022.918262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Keratin-containing wastes become pollution to the environment if they are not treated properly. On the other hand, these wastes can be converted into value-added products applicable to many fields. Organic fertilizers and biofertilizers are important for sustainable agriculture by providing nutrients to enhance the growth speed of the plant and production. Keratin-containing wastes, therefore, will be an important resource to produce organic fertilizers. Many microorganisms exhibit capabilities to degrade keratins making them attractive to convert keratin-containing wastes into valuable products. In this review, the progress in microbial degradation of keratins is summarized. In addition, perspectives in converting keratin into bio- and organic fertilizers for agriculture are described. With proper treatment, feather wastes which are rich in keratin can be converted into high-value fertilizers to serve as nutrients for plants, reduce environmental pressure and improve the quality of the soil for sustainable agriculture.
Collapse
|
13
|
A Comprehensive Review on Utilization of Slaughterhouse By-Product: Current Status and Prospect. SUSTAINABILITY 2022. [DOI: 10.3390/su14116469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The meat processing industry produces a huge quantity of by-products, approximately 150 million tonnes per year. The live weight of the animals is distinguished as edible, inedible, and discardable by-products, with the discardable parts equating to 66%, 52%, and 80% of the overall live weight of cattle, lamb, and pigs, respectively. Only a small percentage of those by-products are nowadays exploited for the production of high added value products such as animal feed, glue, fertilizers, etc., whereas the main management method is direct disposal to landfills. As such, the current disposal methodologies of these by-products are problematic, contributing to environmental contamination, soil degradation, air pollution, and possible health problems. Nevertheless, these by-products are rich in collagen, keratin, and minerals, being thus promising sources of high-value materials such as bioenergy, biochemical and other biomaterials that could be exploited in various industrial applications. In this paper, the possible utilization of slaughterhouse by-products for the production of various high added value materials is discussed. In this context, the various processes presented provide solutions to more sustainable management of the slaughterhouse industry, contributing to the reduction of environmental degradation via soil and water pollution, the avoidance of space depletion due to landfills, and the development of a green economy.
Collapse
|
14
|
Suwerda B, Kasjono H, Haryanti S, Yushananta P. Poultry Slaughterhouse Wastewater Treatment Using Combine Anaerobic Filter with Constructed Wetland Methods. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Poultry slaughterhouse wastewater has a complex composition that is very harmful to health and the environment. A two-stage system is applied to treat wastewater, consisting of an anaerobic filter (AF) combined with constructed wetland (CW).
AIM: Experiments carried out under mesophilic conditions aim to evaluate the performance of a biological treatment combining AF and CW on three media filters.
METHODS: Observations were made for 15 consecutive days on chemical oxygen demand (COD), BOD5, TSS, pH, and fat oils and grease FOG (35.5 mg/L). The treatment system is operated with a sewage loading of 14 m3 s-1 and an RTH of 18.2 h.
RESULTS: The results showed that before processing, the average values of COD (2881.4 mg/L), BOD5 (967 mg/L), TSS (860.3 mg/L), pH (6.7), and FOG (35, 5 mg/L). The greater efficiency was obtained using gravel media, BOD5 (88.9%), COD (92.9%), TSS (93.4%), and FOG (87.3%). Optimal treatment conditions in this system were found for AF with gravel media, operating at hydraulic retention time = 4.2 h, out of a total of 18.2 h. The IB value increased from 0.3 to >0.5, indicating the combined AF and CW method is suitable for treating wastewater from poultry slaughterhouses.
CONCLUSIONS: The combination of the AF method and CW is well applied to the wastewater treatment of poultry slaughterhouses, and parameters values have complied with the applicable regulations. Nevertheless, the removal of oil and grease is highly recommended in pre-treatment to inhibit the anaerobic process.
Collapse
|
15
|
Mozhiarasi V, Natarajan TS. Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products. BIOMASS CONVERSION AND BIOREFINERY 2022:1-24. [PMID: 35194536 PMCID: PMC8830992 DOI: 10.1007/s13399-022-02352-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The slaughterhouse and poultry industry is possibly one of the fastest-growing sectors driven by the increasing demand in food availability. Subsequently, the wastes produced from the slaughterhouse and poultry industry are in huge quantities, which could be a promising resource for the recovery of value added products, and bioenergy production to minimize the dependence on fossil fuels. Furthermore, the wastes from slaughterhouses and poultry are a hub of pathogens that is capable of infecting humans and animals. This demands the emerging need for an effective and safe disposal method to reduce the spread of diseases following animal slaughtering. In light of that, the state of the production of slaughterhouse and poultry wastes was presented at first. Following this, the impact of solid waste exposure in terms of air, water, and soil pollution and the associated health challenges due to improper solid waste management practices were presented to highlight the importance of the topic. Secondly, the potency of these solid wastes and the various waste-to-energy technologies that have been employed for effective management and resource utilization of wastes generated from slaughterhouses and poultry were reviewed in detail. Finally, this review also highlights the opportunities and challenges associated with effective solid waste management, future requirements for the development of effective technologies for the recovery of value added products (like keratin, fibreboards), and biofuel production.
Collapse
Affiliation(s)
- Velusamy Mozhiarasi
- CLRI Regional Centre, CSIR-Central Leather Research Institute (CSIR-CLRI), Punjab Jalandhar, 144021 India
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, 600020 Tamil Nadu India
| |
Collapse
|
16
|
Meat Processing Waste as a Source of Nutrients and Its Effect on the Physicochemical Properties of Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14031341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine the effect of meat processing waste applied in the form of meat and bone meal (MBM) as a source of nutrients on the physicochemical properties of soil. A short–term small–area field experiment using MBM in maize monoculture was conducted in 2014–2017. Each year, MBM was applied presowing at 1.0, 2.0, and 3.0 t ha−1 to maize grown in experimental plots. The application of MBM decreased the bulk density and specific density and increased the pH of Haplic Luvisol Loamic (HLL) soil. The mineral nitrogen (N) content was highest when MBM was applied at 3.0 t ha−1 in HLL soil and 2.0 t ha−1 in Haplic Luvisol Arenic (HLA) soil. The minor differences in the mineral N content of soil between the treatment without fertilization and MBM treatments could be attributed to high N utilization by maize plants. The phosphorus (P) content of soil increased with a rise in the MBM dose. The P content of the arable layer was lower in HLA soil than in HLL soil, which resulted from higher P uptake by maize grain. The highest maize grain yield was achieved in the last year of the study, in response to the highest MBM dose and due to the residual effect of MBM.
Collapse
|
17
|
Preparation of FK-SA conjugate gel beads with double cross-linking for pH-controllable drug releasing. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. The source and fate of Mycobacterium tuberculosis complex in wastewater and possible routes of transmission. BMC Public Health 2022; 22:145. [PMID: 35057793 PMCID: PMC8781043 DOI: 10.1186/s12889-022-12527-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Mycobacterium tuberculosis complex (MTBC) consists of causative agents of both human and animal tuberculosis and is responsible for over 10 million annual infections globally. Infections occur mainly through airborne transmission, however, there are possible indirect transmissions through a faecal-oral route which is poorly reported. This faecal-oral transmission could be through the occurrence of the microbe in environments such as wastewater. This manuscript, therefore, reviews the source and fate of MTBC in the wastewater environment, including the current methods in use and the possible risks of infections. RESULTS The reviewed literature indicates that about 20% of patients with pulmonary TB may have extra-pulmonary manifestations such as GITB, resulting in shedding in feaces and urine. This could potentially be the reason for the detection of MTBC in wastewater. MTBC concentrations of up to 5.5 × 105 (±3.9 × 105) copies/L of untreated wastewater have been reported. Studies have indicated that wastewater may provide these bacteria with the required nutrients for their growth and could potentially result in environmental transmission. However, 98.6 (± 2.7) %, removal during wastewater treatment, through physical-chemical decantation (primary treatment) and biofiltration (secondary treatment) has been reported. Despite these reports, several studies observed the presence of MTBC in treated wastewater via both culture-dependent and molecular techniques. CONCLUSION The detection of viable MTBC cells in either treated or untreated wastewater, highlights the potential risks of infection for wastewater workers and communities close to these wastewater treatment plants. The generation of aerosols during wastewater treatment could be the main route of transmission. Additionally, direct exposure to the wastewater containing MTBC could potentially contribute to indirect transmissions which may lead to pulmonary or extra-pulmonary infections. This calls for the implementation of risk reduction measures aimed at protecting the exposed populations.
Collapse
Affiliation(s)
- Hlengiwe N Mtetwa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
19
|
Vithanage M, Mayakaduwage SS, Gunarathne V, Rajapaksha AU, Ahmad M, Abduljabbar A, Usman A, Al-Wabel MI, Ippolito JA, Ok YS. Animal carcass burial management: implications for sustainable biochar use. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:91. [PMID: 34957350 PMCID: PMC8693145 DOI: 10.1186/s13765-021-00652-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 06/02/2023]
Abstract
This review focuses on existing technologies for carcass and corpse disposal and potential alternative treatment strategies. Furthermore, key issues related to these treatments (e.g., carcass and corpse disposal events, available methods, performances, and limitations) are addressed in conjunction with associated environmental impacts. Simultaneously, various treatment technologies have been evaluated to provide insights into the adsorptive removal of specific pollutants derived from carcass disposal and management. In this regard, it has been proposed that a low-cost pollutant sorbent may be utilized, namely, biochar. Biochar has demonstrated the ability to remove (in)organic pollutants and excess nutrients from soils and waters; thus, we identify possible biochar uses for soil and water remediation at carcass and corpse disposal sites. To date, however, little emphasis has been placed on potential biochar use to manage such disposal sites. We highlight the need for strategic efforts to accurately assess biochar effectiveness when applied towards the remediation of complex pollutants produced and circulated within carcass and corpse burial systems.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - S. S. Mayakaduwage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Adel Abduljabbar
- Industrial Psychology, College of Education, King Saud University, Riyadh, Saudi Arabia
| | - Adel Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad I. Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841 South Korea
| |
Collapse
|
20
|
Nag R, Auer A, Nolan S, Russell L, Markey BK, Whyte P, O'Flaherty V, Bolton D, Fenton O, Richards KG, Cummins E. Evaluation of pathogen concentration in anaerobic digestate using a predictive modelling approach (ADRISK). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149574. [PMID: 34399337 DOI: 10.1016/j.scitotenv.2021.149574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Farmyard manure and slurry (FYM&S) is a valuable feedstock for anaerobic digestion (AD) plants. However, FYM&S may contain high concentrations of pathogens, and complete inactivation through the AD process is unlikely. Thus, following land application of digestate, pathogens may contaminate a range of environmental media posing a potential threat to public health. The present study aimed to combine primary laboratory data with literature-based secondary data to develop an Excel-based exposure assessment model (ADRISK) using a gamma generalised linear model to predict the final microorganism count in the digestate. This research examines the behaviour of a suite of pathogens (Cryptosporidium parvum, norovirus, Mycobacterium spp., Salmonella spp., Listeria monocytogenes, Clostridium spp., and pathogenic Escherichia coli) and indicators (total coliforms, E. coli, and enterococci) during mesophilic anaerobic digestion (M-AD) at 37 °C, pre/post-AD pasteurisation, and after a period of storage (with/without lime) for different feedstock proportions (slurry:food waste: 0:1, 1:3, 2:1, and 3:1). ADRISK tool simulations of faecal indicator bacteria levels across all scenarios show that the digestate can meet the EU standard without pasteurisation if the AD runs at 37 °C or a higher temperature with a higher C:N ratio (recipe 3) and a hydraulic retention time ≥ 7 days. The storage of digestate also reduced levels of microorganisms in the digestate. The Irish pasteurisation process (60 °C for 4 days), although more energy-intensive, is more effective than the EU pasteurisation (70 °C for 1 h) specification. Pre-AD pasteurisation was more effective for C. parvum, norovirus, Mycobacterium thermoresistibile. However, post-AD literature-based pasteurisation is most likely to assure the safety of the digestate. The information generated from this model can inform policy-makers regarding the optimal M-AD process parameters necessary to maximise the inactivation of microorganisms, ensuring adverse environmental impact is minimised, and public health is protected.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Agathe Auer
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, University Road, Galway, Ireland.
| | - Lauren Russell
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland; TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Bryan K Markey
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, University Road, Galway, Ireland.
| | - Declan Bolton
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Owen Fenton
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl G Richards
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
21
|
Abstract
This work reports on municipal sludge hygienization using electron beams. Three types of sewage sludge from two municipal wastewater treatment plants were tested: preliminary sludge with 4% TS, postflotation sludge with 2.5% TS and thickened preliminary sludge with 10% TS. The analysis of reference samples demonstrated the presence of bacteria and helminths ova in all examined samples. For the study of hygienization, electron beams from two types of accelerators, linear (Elektronika 10/10) and single cavity (ILU-6), were applied. For each type of accelerator, different irradiation methods were used: irradiation in sealed polyethylene bags using conveyor and flow irradiation installation. Experiments showed that the doses necessary for the elimination of mentioned pathogens were 4 kGy for preliminary sludge, 4 kGy for postflotation sludge and 5.5 kGy for preliminary sludge. The differences between the amounts of initial pathogens in preliminary and thickened preliminary sludge were marginal. It is possible that the higher irradiation dose required to hygienize thickened sludge resulted from higher TS concentration.
Collapse
|
22
|
Winders DJ, Abrell E. Slaughterhouse Workers, Animals, and the Environment: The Need for a Rights-Centered Regulatory Framework in the United States That Recognizes Interconnected Interests. Health Hum Rights 2021; 23:21-33. [PMID: 34966222 PMCID: PMC8694297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The COVID-19 pandemic has shone a bright light on industrial slaughterhouses in the United States and their impacts on the vulnerable beings-both human and animal-they exploit. But the severity of these impacts is the result of a long history of failed regulatory oversight. This paper highlights the inadequacies of the current regulatory system in the United States and how they have contributed to dangerous conditions for slaughterhouse workers, environmental degradation, and severe animal suffering. Further, it argues that a rights-centered One Health approach would provide the necessary conceptual foundation for a new regulatory framework that can meaningfully address the interconnected rights, health, and well-being of humans, animals, and the environment. As a first step in establishing this new framework, the United States should create a federal Slaughterhouse Oversight Commission to strengthen the rights, health, and well-being of humans and animals.
Collapse
Affiliation(s)
- Delcianna J. Winders
- Visiting associate professor and animal law program director at Vermont Law School, South Royalton, USA.,Please address correspondence to Delcianna Winders.
| | - Elan Abrell
- Vice president of community planning and partnerships at the Phoenix Zones Initiative and a visiting assistant professor of environmental studies at New York University, New York, USA
| |
Collapse
|
23
|
Ranucci D, Di Giacomo L, Martina R, Branciari R, Miraglia D, Rea S, Stocchi R, Di Cerbo A, Roila R, Budelli L, Fortugno L, D`Innocenzo A, Cambiotti F, Del Zoppo M, Capecci E, Angellotti A, Ferretti E, Loschi AR. Food chain information systems in medium- and smallsized slaughterhouses of central Italy and organ and carcass condemnations: A five-year survey. Ital J Food Saf 2021; 10:9833. [PMID: 35018290 PMCID: PMC8672314 DOI: 10.4081/ijfs.2021.9833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
The flow of information between farms and slaughterhouses about animal health, is a fundamental process for modern meat inspection. The information provided by Food Chain Information (FCI) systems in medium-small sized slaughterhouses in central Italy, focusing on the data provided on the animal's health status, was performed through a five-year survey together with the number of organ and carcass condemnation for bovine, swine and ovine. The annual prevalence of condemnation was higher in bovine (from 10.49% in 2015 to 17.16% in 2019) than swine (from 6.39% in 2015 to 12.64% in 2019) and ovine (from 8.05% in 2019 to 8.98% in 2017), and an overall prevalence increase was observed in bovine and swine, throughout the years. The frequent lack of Food Chain Information (FCI) from farms to slaughterhouses should be emphasised, taking into consideration that a poor implementation of the system by farmers, could lead to a persistent risk of disease at farm level for these two species.
Collapse
Affiliation(s)
- David Ranucci
- Department of Veterinary Medicine, University of Perugia
| | | | | | | | | | - Stefano Rea
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica (MC)
| | - Roberta Stocchi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica (MC)
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica (MC)
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia
| | | | | | | | | | | | | | | | | | - Anna Rita Loschi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica (MC)
| |
Collapse
|
24
|
Guo Z, Usman M, Alsareii SA, Harraz FA, Al-Assiri MS, Jalalah M, Li X, Salama ES. Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. BIORESOURCE TECHNOLOGY 2021; 337:125383. [PMID: 34126358 DOI: 10.1016/j.biortech.2021.125383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The slaughterhouse waste (SHW) contains high organics which makes SHW a feasible feedstock for anaerobic digestion (AD). The present study systematically assessed the microbiome response and biomethanation along with the production of volatile fatty acids (VFAs) and ammonia under 2%, 4%, 6%, and 8% (w v-1) loadings of SHW in AD. The optimum loading was 2% SHW which resulted in maximum biomethane production and VFAs consumption. A higher SHW concentration (4% and 6%) resulted in a prolonged lag-phase and decreased biomethane production. High VFAs (28.88 g L-1) and ammonia nitrogen (>4 g L-1) accumulation were observed at 8% SHW leading to permanent inhibition of biomethane and methanogenic archaea. An increase in ammonia and VFAs concentration, at 4% and 6% SHW loadings, shifted the methanogenic pathway from acetoclastic to hydrogenotrophic lead by Methanoculleus. Acetoclastic Methanosaeta (77.15%) dominated the reactors loaded with 2% SHW resulting in the highest biomethane production.
Collapse
Affiliation(s)
- Zhaodi Guo
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Muhammad Usman
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87, Helwan, Cairo 11421, Egypt
| | - M S Al-Assiri
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Department of Electrical Engineering, Faculty of Engineering, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
25
|
MUTHUKUMAR M, NAVEENA BM, BANERJEE RITUPARNA, SINGH VIKRAM, BARBUDDHE SB. An overview of Indian livestock and meat sector. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i4.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large livestock wealth coupled with strong consumer base fuels greater prospects for meat production and processing in India. Meat sector in India is growing at 6% compound annual growth rate (CAGR) and immensely contributes to national food and nutritional security, economy as well as employment generation. Effective interventions like using genetically superior animals for breeding, improved feeding and husbandry management, reducing the mortality rate, linking producers to market, creating better infrastructure for animal welfare, meat production and quality testing, minimizing the post-harvest losses, implementing food safety management system, increased value addition and further processing of meat and byproducts, establishment of traceability and creation of disease free zones and e-marketing will play key roles in the shaping the meat sector development in the country. Effective implementation of both Central and State Government schemes and programmes is expected to enhance quantitative and qualitative improvement in livestock and meat production systems in a sustainable and environment friendly manner. Further, strong public-private-producer partnership by connecting producers, input-suppliers, service providers, financial institutions, retailers and exporters will reduce the risk and ensure prosperity of the meat sector.
Collapse
|
26
|
Silva I, Jorge C, Brito L, Duarte E. A pig slurry feast/famine feeding regime strategy to improve mesophilic anaerobic digestion efficiency and digestate hygienisation. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:947-955. [PMID: 33280536 DOI: 10.1177/0734242x20972794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The increasing concentration of livestock farms results in large amounts of waste production and the need for their management. The study of anaerobic digestion (AD) technology, under mesophilic conditions, applied to pig slurry is of the upmost importance for biogas recovery and sanitised digestate, contributing to a circular economy. The assessment of the effects of a feast/famine regime on biogas and biomethane (bio-CH4) yield with different feeding frequencies was performed. The evaluation was made in regards to three scenarios: the first is based on daily feeding (FR1); in the second, the feeding occurs once every two days (FR2); and in the third, the feeding happens once every three days (FR3). The results demonstrate that the biogas and methane yield increased by 34% and 37% between FR1 and FR3. The stability inside the reactor was maintained since specific loading energetic rate values did not exceed the recommended limit (0.4 d-1). It was also possible to conclude that the AD technology was efficient to sanitise the pig slurry, with the count of Escherichia coli going from 1 × 105 colony-forming units (CFU) g-1 to less than 100 CFU g-1, meeting the legal requirements for agricultural valorisation. The total anaerobic mesophile plate counts were significantly (p < 0.1) reduced from feeding to digestate, and the plate counts of Clostridia were significantly (p < 0.05) increased, reflecting the changes in the composition of the microbiota. The increasing yield in bio-CH4 in accordance with Clostridium counts suggests this genus as a positive microbiological key indicator of the AD performance.
Collapse
Affiliation(s)
- I Silva
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal
| | - C Jorge
- Luke - Natural Resources Institute Finland, Helsinki, Finland
- CEF - Forest Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal
| | - L Brito
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal
| | - E Duarte
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal
| |
Collapse
|
27
|
Lopes M, Miranda SM, Costa AR, Pereira AS, Belo I. Yarrowia lipolytica as a biorefinery platform for effluents and solid wastes valorization - challenges and opportunities. Crit Rev Biotechnol 2021; 42:163-183. [PMID: 34157916 DOI: 10.1080/07388551.2021.1931016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Due to its physiological and enzymatic features, Yarrowia lipolytica produces several valuable compounds from a wide range of substrates. Appointed by some authors as an industrial workhorse, Y. lipolytica has an extraordinary ability to use unrefined and complex low-cost substrates as carbon and nitrogen sources, aiding to reduce the waste surplus and to produce added-value compounds in a cost-effective way. Dozens of review papers regarding Y. lipolytica have been published till now, proving the interest that this yeast arouses in the scientific community. However, most of them are focused on metabolic pathways involved in substrates assimilation and product formation, or the development of synthetic biology tools in order to obtain engineered strains for biotechnological applications. This paper provides an exhaustive and up-to-date revision on the application of Y. lipolytica to valorize liquid effluents and solid wastes and its role in developing cleaner biotechnological approaches, aiming to boost the circular economy. Firstly, a general overview about Y. lipolytica is introduced, describing its intrinsic features and biotechnological applications. Then, an extensive survey of the literature regarding the assimilation of oily wastes (waste cooking oils, oil cakes and olive mill wastewaters), animal fat wastes, hydrocarbons-rich effluents, crude glycerol and agro-food wastes by Y. lipolytica strains will be discussed. This is the first article that brings together the environmental issue of all such residues and their valorization as feedstock for valuable compounds production by Y. lipolytica. Finally, it will demonstrate the potential of this non-conventional yeast to be used as a biorefinery platform.
Collapse
Affiliation(s)
- Marlene Lopes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana R Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana S Pereira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
28
|
Ali MA, Gould M. Untapped potentials of hazardous nanoarchitectural biopolymers. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124740. [PMID: 33476911 DOI: 10.1016/j.jhazmat.2020.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The First Industrial Revolution began when manual labour transitioned to machines. Fossil fuels and steam eventually replaced wood and water as an energy source used predominantly for the mechanized production of textiles and iron. The emergence of the required numerous enormous factories gave rise to smoke pollution due to the immense growth in coal consumption. The manufactured gas industry produced highly toxic effluent that was released into sewers and rivers polluting the water. Many pieces of legislation were introduced to overcome this issue, but with varying degrees of effectiveness. Alongside our growth in world population, the problems that we had with waste remained, but together with our increase in number the waste produced has also increased additionally. The immense volume of waste materials generated from human activity and the potentially detrimental effects on the environment and on public health have awakened in ourselves a critical need to embrace current scientific methods for the safe disposal of wastes. We are informed daily that our food waste must be better utilized to ensure enough food is available to feed the world's growing population in a sustainable way (Thyberg and Tonjes, 2016). Some things are easy, like waste food and cellulose products can be turned into compost, but how do we recycle sheep's wool? Or shrimp shells? Despite the fact that both these substances are hazardous, and have caused environmental and economic impact from being incinerated; but we anticipate that those substances may have the potential to convert into added value applications.We have been working in this area for over 15 years, working towards managing them and seeking their added value applications. We take the biological products, process (reconstitute) and engineer them into added value products such as functional and nanostructure materials including edible films, foams and composites including medical devices useful in the human body. Anything that we can ingest, should not cause an immune response in the human system. Natural biomacromolecules display the inherent ability to perform very specific chemical, mechanical or structural roles. Specifically, protein- and polysaccharide-based biomaterials have come to light as the most promising candidates for many biomedical applications due their biomimetic and nanostructured arrangements, their multi-functional features, and their capability to function as matrices that are capable of facilitating cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- M Azam Ali
- Department of Food Science, Centre for Bioengineering and Nanomedicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Maree Gould
- Department of Food Science, Centre for Bioengineering and Nanomedicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
29
|
Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry. Curr Microbiol 2021; 78:2212-2230. [PMID: 33903939 DOI: 10.1007/s00284-021-02491-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2021] [Indexed: 10/24/2022]
Abstract
Billions of tons of keratinous waste in the form of feathers, antlers, bristles, claws, hair, hoofs, horns, and wool are generated by different industries and their demolition causes environmental deterioration. Chicken feathers have 92% keratin that can be a good source of peptides, amino acids, and minerals. Traditional methods of feather hydrolysis require large energy inputs, and also reduce the content of amino acids and net protein utilization values. Biological treatment of feathers with keratinolytic microbes is a feasible and environmental favorable preference for the formulation of hydrolysate that can be used as bioactive peptides, protein supplement, livestock feed, biofertilizer, etc. The presence of amino acids, soluble proteins, and peptides in hydrolysate facilitates the growth of microbes in rhizosphere that promotes the uptake and utilization of nutrients from soil. Application of hydrolysate enhances water holding capacity, C/N ratio, and mineral content of soil. The plant growth promoting activities of hydrolysate potentiates its possible use in organic farming, and improves soil ecosystem and microbiota. This paper reviews the current scenario on the methods available for management of keratinous waste, nutritional quality of hydrolysate generated using keratinolytic microbes, and its possible application as plant growth promoter in agroindustry.
Collapse
|
30
|
Cremonez PA, Teleken JG, Weiser Meier TR, Alves HJ. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111854. [PMID: 33360925 DOI: 10.1016/j.jenvman.2020.111854] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The anaerobic digestion is a process widely recognized as an interesting alternative for the treatment and stabilization of residual organic substrates. However, several technical limitations were observed based on the characteristics of the organic matter submitted to the process, such as the presence of high concentrations of soluble sugars or fats. The technology of anaerobic digestion in multiple stages is described as a viable option in the control of variables, optimizing the environmental conditions of the main microorganisms involved in the process, assuring high solid removal and methane production, besides allowing a higher energy yield through the generation of molecular fuel hydrogen. Several studies reviewed the process of anaerobic digestion in multiple stages in the treatment of food waste, although few report its use applied directly to agroindustrial residues. Thus, the present work aims to review the literature evaluating the scenario and viability of the multi-stage anaerobic digestion process applied to agroindustrial effluents. Effluents such as manipueira, vinasse, and dairy wastewater are substrates that present high yields when treated by AD processes with stage separation. The high concentration of easily fermentable sugars results in a high production of molecular hydrogen (co-product of the production of volatile acids in the acid phase) and methane (methanogenic phase). The great challenges related to the development of the sector are focused on the stability of the composition and yield of hydrogen in the acid phase, besides the problems resulting from the treatment of complex residues. Thus, the present study suggests that future works should focus on the technologies of new microorganisms and optimization of process parameters, providing maturation and scale-up of the two-stage anaerobic digestion technique.
Collapse
Affiliation(s)
- Paulo André Cremonez
- Federal University of Paraná (UFPR-Campus Palotina), 2153 Pioneiro St., Bairro Jardim Dallas, Palotina, PR, 85.950-000, Brazil.
| | - Joel Gustavo Teleken
- Federal University of Paraná (UFPR-Campus Palotina), 2153 Pioneiro St., Bairro Jardim Dallas, Palotina, PR, 85.950-000, Brazil
| | - Thompson Ricardo Weiser Meier
- Federal University of Paraná (UFPR-Campus Palotina), 2153 Pioneiro St., Bairro Jardim Dallas, Palotina, PR, 85.950-000, Brazil
| | - Helton José Alves
- Federal University of Paraná (UFPR-Campus Palotina), 2153 Pioneiro St., Bairro Jardim Dallas, Palotina, PR, 85.950-000, Brazil
| |
Collapse
|
31
|
Pepin B, Williams T, Polson D, Gauger P, Dee S. Survival of swine pathogens in compost formed from preprocessed carcasses. Transbound Emerg Dis 2020; 68:2239-2249. [PMID: 33037785 PMCID: PMC8359276 DOI: 10.1111/tbed.13876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
An introduction of a Foreign Animal Disease (FAD) like African Swine Fever Virus (ASF) would be financially devastating. For example, ASF, a highly contagious pathogen with high mortality rates, is a World Health Organization reportable disease that has recently been spreading across Asia and Europe. Control of ASF would likely require mass euthanasia of infected and exposed animals similar to the United Kingdom's elimination of Foot and Mouth Disease (FMD). Subsequent disposal of infectious carcasses must adequately eliminate the virus and prevent further transmission of the disease. Although composting swine carcasses is widely used throughout the industry, limited data is available describing pathogen survival or elimination during this process. While current methods have evaluated the composting of swine carcasses under temperature-controlled settings, they have not considered the effects of adverse weather conditions (e.g., cold winter conditions) where composting is routinely performed. This study utilized preprocessing (grinding) of swine carcasses prior to composting, which decreases the amount of required carbon material and land space. The ability of composting to reduce the level of viral nucleic acid during cold weather conditions and the risk of environmental contamination that may occur during preprocessing was evaluated. In this study, pigs challenged with Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Porcine Epidemic Diarrhea Virus (PEDV), common domestic diseases, before euthanasia provided infectious carcasses containing pathogen surrogates. Composting of preprocessed carcasses achieved adequate temperatures necessary to eliminate FAD and common swine pathogens during cold weather conditions (monitored by compost temperature over time, virus diagnostic testing, and swine bioassay for PRRSV and PEDV). Under the conditions of this study, composting preprocessed carcasses presents minimal risk to air and groundwater contamination. In conclusion, composting preprocessed euthanized swine under adverse weather conditions is a safe and feasible option for mass disposal of infected carcasses.
Collapse
Affiliation(s)
- Brent Pepin
- Pipestone Veterinary Services, Pipestone, MN, USA
| | | | - Dale Polson
- Boehringer Ingelheim Animal Health, Duluth, GA, USA
| | | | - Scott Dee
- Pipestone Veterinary Services, Pipestone, MN, USA
| |
Collapse
|
32
|
Jiang G, Ameer K, Kim H, Lee EJ, Ramachandraiah K, Hong GP. Strategies for Sustainable Substitution of Livestock Meat. Foods 2020; 9:E1227. [PMID: 32899106 PMCID: PMC7555167 DOI: 10.3390/foods9091227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
The consequences of climate change are becoming increasingly discernible everywhere, and initiatives have been taken worldwide to mitigate climate change. In agriculture, particularly meat production from the livestock sector is known to contribute to greenhouse gas emissions (GHG) that drive climate change. Thus, to mitigate climate impact, strategies that include a shift in consumption patterns, technological advancements and reduction in food wastes/losses have been discussed. In this review, strategies that focus on meat consumption patterns are evaluated from the technological feasibility, environmental impact and consumer acceptance viewpoints. While plant-based substitutes have efficient nutrient conversion and lower GHG emissions, consumer perception, cost, and other trade-offs exist. Although cultured meat precludes the need of any animals and large land areas, its environmental impact is not clear and is contingent upon production systems and the achievement of decarbonization. Reducing wastes and the re-use of meat processing by-products have the potential to lower the environmental impact. Valuable proteins, heat, electricity and biofuels extracted from wastes and by-products not only reduce the disposal of wastes but also offset some GHG emissions. Perception related challenges that exist for all substitution strategies require specific consumer target marketing strategies. Policy measures such as taxation of meat products and subsidies for alternatives are also met with challenges, thereby requiring reforms or new policies.
Collapse
Affiliation(s)
- Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China;
| | - Kashif Ameer
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Honggyun Kim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea; (H.K.); (E.-J.L.)
| | - Eun-Jung Lee
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea; (H.K.); (E.-J.L.)
| | - Karna Ramachandraiah
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea; (H.K.); (E.-J.L.)
| | - Geun-Pyo Hong
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea; (H.K.); (E.-J.L.)
| |
Collapse
|
33
|
“What a Waste”—Can We Improve Sustainability of Food Animal Production Systems by Recycling Food Waste Streams into Animal Feed in an Era of Health, Climate, and Economic Crises? SUSTAINABILITY 2020. [DOI: 10.3390/su12177071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Food waste has been a major barrier to achieving global food security and environmental sustainability for many decades. Unfortunately, food waste has become an even bigger problem in many countries because of supply chain disruptions during the COVID-19 pandemic and African Swine Fever epidemic. Although Japan and South Korea have been leaders in recycling food waste into animal feed, countries that produce much greater amounts of food waste, such as the United States and the European Union, have lagged far behind. Concerns about the risk of transmission of bacteria, prions, parasites, and viruses have been the main obstacles limiting the recycling of food waste streams containing animal-derived tissues into animal feed and have led to government regulations restricting this practice in the U.S. and EU. However, adequate thermal processing is effective for inactivating all biological agents of concern, perhaps except for prions from infected ruminant tissues. The tremendous opportunity for nitrogen and phosphorus resource recovery along with several other environmental benefits from recycling food waste streams and rendered animal by-products into animal feed have not been fully appreciated for their substantial contribution toward solving our climate crisis. It is time to revisit our global approach to improving economic and environmental sustainability by more efficiently utilizing the abundant supply of food waste and animal tissues to a greater extent in animal feed while protecting human and animal health in food animal production systems.
Collapse
|
34
|
Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int J Hyg Environ Health 2020; 227:113524. [DOI: 10.1016/j.ijheh.2020.113524] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
|
35
|
Brennan B, Briciu-Burghina C, Hickey S, Abadie T, al Ma Awali SM, Delaure Y, Durkan J, Holland L, Quilty B, Tajparast M, Pulit C, Fitzsimons L, Nolan K, Regan F, Lawler J. Pilot Scale Study: First Demonstration of Hydrophobic Membranes for the Removal of Ammonia Molecules from Rendering Condensate Wastewater. Int J Mol Sci 2020; 21:ijms21113914. [PMID: 32486214 PMCID: PMC7312626 DOI: 10.3390/ijms21113914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrophobic membrane contactors represent a promising solution to the problem of recycling ammoniacal nitrogen (N-NH4) molecules from waste, water or wastewater resources. The process has been shown to work best with wastewater streams that present high N-NH4 concentrations, low buffering capacities and low total suspended solids. The removal of N-NH4 from rendering condensate, produced during heat treatment of waste animal tissue, was assessed in this research using a hydrophobic membrane contactor. This study investigates how the molecular composition of rendering condensate wastewater undergo changes in its chemistry in order to achieve suitability to be treated using hydrophobic membranes and form a suitable product. The main objective was to test the ammonia stripping technology using two types of hydrophobic membrane materials, polypropylene (PP) and polytetrafluoroethylene (PTFE) at pilot scale and carry out: (i) Process modification for NH3 molecule removal and (ii) product characterization from the process. The results demonstrate that PP membranes are not compatible with the condensate waste as it caused wetting. The PTFE membranes showed potential and had a longer lifetime than the PP membranes and removed up to 64% of NH3 molecules from the condensate waste. The product formed contained a 30% concentrated ammonium sulphate salt which has a potential application as a fertilizer. This is the first demonstration of hydrophobic membrane contactors for treatment of condensate wastewater.
Collapse
Affiliation(s)
- Brian Brennan
- DCU Water Institute, School of Chemical Science, Dublin City University, D09V209 Dublin 9, Ireland; (B.B.); (C.B.-B.); (K.N.); (F.R.)
| | - Ciprian Briciu-Burghina
- DCU Water Institute, School of Chemical Science, Dublin City University, D09V209 Dublin 9, Ireland; (B.B.); (C.B.-B.); (K.N.); (F.R.)
| | - Sean Hickey
- DCU Water Institute, School of Biotechnology, Dublin City University, D09V209 Dublin 9, Ireland; (S.H.); (L.H.); (B.Q.); (M.T.); (C.P.)
| | - Thomas Abadie
- DCU Water Institute, School of Mechanical & Manufacturing Engineering, Dublin City University, D09V209 Dublin 9, Ireland; (T.A.); (S.M.a.M.A.); (Y.D.); (L.F.)
| | - Sultan M. al Ma Awali
- DCU Water Institute, School of Mechanical & Manufacturing Engineering, Dublin City University, D09V209 Dublin 9, Ireland; (T.A.); (S.M.a.M.A.); (Y.D.); (L.F.)
| | - Yan Delaure
- DCU Water Institute, School of Mechanical & Manufacturing Engineering, Dublin City University, D09V209 Dublin 9, Ireland; (T.A.); (S.M.a.M.A.); (Y.D.); (L.F.)
| | | | - Linda Holland
- DCU Water Institute, School of Biotechnology, Dublin City University, D09V209 Dublin 9, Ireland; (S.H.); (L.H.); (B.Q.); (M.T.); (C.P.)
| | - Brid Quilty
- DCU Water Institute, School of Biotechnology, Dublin City University, D09V209 Dublin 9, Ireland; (S.H.); (L.H.); (B.Q.); (M.T.); (C.P.)
| | - Mohammad Tajparast
- DCU Water Institute, School of Biotechnology, Dublin City University, D09V209 Dublin 9, Ireland; (S.H.); (L.H.); (B.Q.); (M.T.); (C.P.)
| | - Casper Pulit
- DCU Water Institute, School of Biotechnology, Dublin City University, D09V209 Dublin 9, Ireland; (S.H.); (L.H.); (B.Q.); (M.T.); (C.P.)
| | - Lorna Fitzsimons
- DCU Water Institute, School of Mechanical & Manufacturing Engineering, Dublin City University, D09V209 Dublin 9, Ireland; (T.A.); (S.M.a.M.A.); (Y.D.); (L.F.)
| | - Kieran Nolan
- DCU Water Institute, School of Chemical Science, Dublin City University, D09V209 Dublin 9, Ireland; (B.B.); (C.B.-B.); (K.N.); (F.R.)
| | - Fiona Regan
- DCU Water Institute, School of Chemical Science, Dublin City University, D09V209 Dublin 9, Ireland; (B.B.); (C.B.-B.); (K.N.); (F.R.)
| | - Jenny Lawler
- DCU Water Institute, School of Biotechnology, Dublin City University, D09V209 Dublin 9, Ireland; (S.H.); (L.H.); (B.Q.); (M.T.); (C.P.)
- Qatar Energy and Environmental Research Institute, Hamad bin Khalifa University, Doha, P.O. Box 34110, Qatar
- Correspondence:
| |
Collapse
|
36
|
He C, Mei Y, Zhang Y, Liu L, Li P, Zhang Z, Jing Y, Li G, Jiao Y. Enhanced biodiesel production from diseased swine fat by ultrasound-assisted two-step catalyzed process. BIORESOURCE TECHNOLOGY 2020; 304:123017. [PMID: 32087546 DOI: 10.1016/j.biortech.2020.123017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
In order to enhance the yield of high quality biodiesel form diseased swine fat, the ultrasound-assisted two-step catalyzed process was employed. First, three-dimensional ultrasound-assisted concentrated sulfuric acid pre-esterification experiment was carried out. Then, the transesterification reaction catalyzed by KOH was performed, and four parameters (catalyst concentration, reaction time, methanol/oil molar ratio and reaction temperature) were optimized using response surface methodology. The results showed that the optimal transesterification reaction conditions were catalyst concentration of 1.11 wt%, reaction temperature of 62.3 °C, methanol/oil molar ratio of 7.42:1, and reaction time of 116.14 min. The most significant factor affecting biodiesel purity was identified as catalyst concentration. Under the optimal conditions, the maximum biodiesel purity reached to 98% with the reaction time of 176.14 min, shortened by 63.3% compared with previous works. Furthermore, most of the biodiesel properties agreed the quality requirements established by Official Regulations of GB/25199-2017 of China.
Collapse
Affiliation(s)
- Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yahe Mei
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yun Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
37
|
Tápparo DC, Viancelli A, Amaral ACD, Fongaro G, Steinmetz RLR, Magri ME, Barardi CRM, Kunz A. Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure. ENVIRONMENTAL TECHNOLOGY 2020; 41:682-690. [PMID: 30080477 DOI: 10.1080/09593330.2018.1508256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
The present study evaluated anaerobic co-digestion of swine manure and swine carcasses for biogas yield and inactivation/behaviour of pathogens purpose. Biochemical Methane Production tests were performed with samples containing ratios of 3, 7.5 and 15 kgcarcass m-3 manure. For pathogens inactivation experiments known amounts of model microrganisms (sensitive and resistant) were artificially inoculated in anaerobic reactors at 24°C and 37°C. The addition of carcass resulted in an increase until 119% of biogas yield compared to swine manure mono-digestion. Salmonella enterica, Escherichia coli and PCV2 were reduced >3log10 (24°C or 37°C) during 30 days. At 37°C, MS2 and PhiX-174 were reduced 3log10 and 1.8log10, respectively. At 24°C, MS2 reduced 1.5 log10 and PhiX-174 did not present any decay over 30 days. Considering the most resistant biomarkers pathogens, as bacteriophage, we recommend the swine carcasses pre-treatment, such as high temperatures, for sanitary security.
Collapse
Affiliation(s)
| | | | | | - Gislaine Fongaro
- Universidade Federal de Santa Catarina - PPGBB, Florianópolis, Brazil
- Universidade Federal da Fronteira Sul - PPGCTA, Erechim, Brazil
| | | | - Maria Elisa Magri
- Universidade Federal de Santa Catarina - PPGBB, Florianópolis, Brazil
| | | | - Airton Kunz
- Western Paraná State University - UNIOESTE/CCET/PGEAGRI, Cascavel, Brazil
- Embrapa Suínos e Aves, Concórdia, Brazil
| |
Collapse
|
38
|
Pathogen Reduction Potential in Anaerobic Digestion of Organic Fraction of Municipal Solid Waste and Food Waste. Molecules 2020; 25:molecules25020275. [PMID: 31936589 PMCID: PMC7024283 DOI: 10.3390/molecules25020275] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 11/23/2022] Open
Abstract
Anaerobic digestion (AD) is a commonly used method of processing waste. Regardless of the type of the used digestate (fertilizer, feedstock in case of solid-state fermentation, raw-material in case of thermal treatment) effective pathogen risk elimination, even in the case of high pathogen concentration is essential. An investigation of the survival time and inactivation rate of the Salmonella Senftenberg W775, Enterococcus spp., and Ascaris suum eggs during thermophilic anaerobic digestion performed on laboratory scale and confirmation of hygienization in full-scale operation were performed in this study. Except for sanitization efficiency, the AD process performance and stability were also verified based on determination of pH value, dry matter content, acidity, alkalinity, and content of fatty acids. The elimination of pathogen was met within 6.06 h, 5.5 h, and about 10 h for the Salmonella Senftenberg W775, Enterococcus spp., and Ascaris suum, respectively in the laboratory trials. The obtained results were confirmed in full-scale tests, using 1500 m3 Kompogas® reactors, operating in MBT Plant located in Poland. Sanitization of the digestate was achieved. Furthermore, the process was stable. The pH value, suspended solids, and ammonium content remained stable at 8.5, 35%, and 3.8 g/kg, respectively. The acetic acid content was noted between almost 0.8 and over 1.1 g/kg, while the concentration of propionic acid was noted at maximum level of about 100 mg/kg. The AD conditions could positively affect the pathogen elimination. Based on these results it can be found that anaerobic digestion under thermophilic conditions results in high sanitation efficiency.
Collapse
|
39
|
Kayikci Y, Ozbiltekin M, Kazancoglu Y. Minimizing losses at red meat supply chain with circular and central slaughterhouse model. JOURNAL OF ENTERPRISE INFORMATION MANAGEMENT 2019. [DOI: 10.1108/jeim-01-2019-0025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe purpose of this paper is to find solutions to improve the red meat sector in an emerging economy, Turkey, from the circular economy point of view, and taking sustainability approach. The need for circular management within the red meat sector in Turkey is emphasized by using Grey method. As theoretical contribution of this study, the investigation of the causes of losses at the slaughter stages of the red meat supply chain leads to proposals for sustainable and circular solutions.Design/methodology/approachGrey method is used to predict the number of slaughtered cattle and the amount of bone and blood waste in the slaughtering process between 2018 and 2020.FindingsIt is revealed that according to Grey prediction calculations, although the amount of slaughtered cattle, bone and blood waste seem have decreased between 2018 and 2020, there are still significant losses in Turkish red meat sector. For bone waste, this is expected to be 56,581,200 kg in 2018, 48,235,840 kg in 2019 and 41,121,380 kg in 2020. For blood waste, it is expected to be 24,754,275 kg in 2018, 21,103,180 kg in 2019 and 17,990,604 kg in 2020.Social implicationsThe proposed model in the study will contribute on sector revitalization, increase in product safety, quality and hygiene, development in the management of training and education centers for farmers/labors and increase in employment.Originality/valueThis paper represents policymakers with a proposal for triple bottom line (TBL) based circular and central slaughterhouse model, based on TBL, which brings social, economic and environmental benefits for the red meat sector in Turkey.
Collapse
|
40
|
Longhurst PJ, Tompkins D, Pollard SJT, Hough RL, Chambers B, Gale P, Tyrrel S, Villa R, Taylor M, Wu S, Sakrabani R, Litterick A, Snary E, Leinster P, Sweet N. Risk assessments for quality-assured, source-segregated composts and anaerobic digestates for a circular bioeconomy in the UK. ENVIRONMENT INTERNATIONAL 2019; 127:253-266. [PMID: 30928849 DOI: 10.1016/j.envint.2019.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
A circular economy relies on demonstrating the quality and environmental safety of wastes that are recovered and reused as products. Policy-level risk assessments, using generalised exposure scenarios, and informed by stakeholder communities have been used to appraise the acceptability of necessary changes to legislation, allowing wastes to be valued, reused and marketed. Through an extensive risk assessment exercise, summarised in this paper, we explore the burden of proof required to offer safety assurance to consumer and brand-sensitive food sectors in light of attempts to declassify, as wastes, quality-assured, source-segregated compost and anaerobic digestate products in the United Kingdom. We report the residual microbiological and chemical risks estimated for both products in land application scenarios and discuss these in the context of an emerging UK bioeconomy worth £52bn per annum. Using plausible worst case assumptions, as demanded by the quality food sector, risk estimates and hazard quotients were estimated to be low or negligible. For example, the human health risk of E. coli 0157 illness from exposure to microbial residuals in quality-assured composts, through a ready-to-eat vegetable consumption exposure route, was estimated at ~10-8 per person per annum. For anaerobic digestion residues, 7 × 10-3cases of E. coli 0157 were estimated per annum, a potential contribution of 0.0007% of total UK cases. Hazard quotients for potential chemical contaminants in both products were insufficient in magnitude to merit detailed quantitative risk assessments. Stakeholder engagement and expert review was also a substantive feature of this study. We conclude that quality-assured, source-segregated products applied to land, under UK quality protocols and waste processing standards, pose negligible risks to human, animal, environmental and crop receptors, providing that risk management controls set within the standards and protocols are adhered to.
Collapse
Affiliation(s)
- Philip J Longhurst
- Cranfield University, School of Water, Energy and Environment, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - David Tompkins
- Waste and Resources Action Programme, Second Floor, Blenheim Court, 19 George Street, Banbury, Oxfordshire OX16 5BH, United Kingdom
| | - Simon J T Pollard
- Cranfield University, School of Water, Energy and Environment, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom.
| | - Rupert L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Brian Chambers
- RSK ADAS Limited, Spring Lodge, 172 Chester Road, Helsby, WA6 0AR, United Kingdom
| | - Paul Gale
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Sean Tyrrel
- Cranfield University, School of Water, Energy and Environment, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Raffaella Villa
- Cranfield University, School of Water, Energy and Environment, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Matthew Taylor
- RSK ADAS Limited, Spring Lodge, 172 Chester Road, Helsby, WA6 0AR, United Kingdom
| | - Shaomin Wu
- Cranfield University, School of Water, Energy and Environment, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom; Kent Business School, University of Kent, Canterbury, Kent CT2 7FS, United Kingdom
| | - Ruben Sakrabani
- Cranfield University, School of Water, Energy and Environment, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Audrey Litterick
- Earthcare Technical Limited, Manor Farm, Chalton, Waterlooville, Hampshire PO8 0BG, United Kingdom
| | - Emma Snary
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Paul Leinster
- Cranfield University, School of Water, Energy and Environment, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Nina Sweet
- Waste and Resources Action Programme, Second Floor, Blenheim Court, 19 George Street, Banbury, Oxfordshire OX16 5BH, United Kingdom
| |
Collapse
|
41
|
Tsachidou B, Scheuren M, Gennen J, Debbaut V, Toussaint B, Hissler C, George I, Delfosse P. Biogas residues in substitution for chemical fertilizers: A comparative study on a grassland in the Walloon Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:212-225. [PMID: 30798232 DOI: 10.1016/j.scitotenv.2019.02.238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
To provide sufficient quantities of food and feed, farming systems have to overcome limiting factors such as the nutrient depletion of arable soils. Nitrogen being the main mineral element required for plant growth, has led to the extensive use of chemical fertilizers causing nitrogen pollution of the ecosystems. This field study investigates the use of biogas residues (BRs) as biofertilizers and their contribution to the mitigation of nitrate leaching in agricultural soils, while also demonstrating the polluting nature of chemical fertilizers. Nine different fertilization treatments classified in three schemes and two nitrogen doses were tested for three consecutive years on a grassland in the Walloon Region of Belgium. Residual soil mineral nitrogen, percentage contribution of treatments in residual nitrate and agronomic performance were assessed for each fertilization treatment. The results obtained showed significant differences on treatment and scheme level regarding nitrate accumulation in the soil, with chemical fertilizers posing the highest nitrate leaching risk. BRs did not cause nitrate accumulation in the soil, and were N rate and rainfall independent, while the chemical treatments indicated a cumulative tendency under high N rate and low precipitation. Forage yield did not demonstrate statistical differences on treatment and scheme level but varied with changing precipitation, while the maximum application rate suggested a plateau. Aboveground nitrogen content was significantly higher after the application of chemical fertilizers only in the first year, while all the chemical treatments indicated a dilution effect under elevated annual rainfall. Finally, the partial substitution of chemical fertilizers by raw digestate reduced the concentration of NO3- in the soil without having a negative impact on the yield and N content of the biomass. These results strongly advocate for the environmental benefits of BRs over chemical fertilizers and underline their suitability as biofertilizers and substitutes for chemical fertilizers in similar agricultural systems.
Collapse
Affiliation(s)
- Bella Tsachidou
- Luxembourg Institute of Science and Technology, ERIN, Belvaux, Luxembourg; Université Libre de Bruxelles, Laboratoire d'Ecologie des Systèmes Aquatiques, Bruxelles, Belgium.
| | - Marie Scheuren
- Université de Liège, Département des Sciences de la Vie, Faculté des Sciences, Liège, Belgium
| | | | - Vincent Debbaut
- Université de Liège, Département des Sciences de la Vie, Faculté des Sciences, Liège, Belgium
| | | | - Christophe Hissler
- Luxembourg Institute of Science and Technology, ERIN, Belvaux, Luxembourg
| | - Isabelle George
- Université Libre de Bruxelles, Laboratoire d'Ecologie des Systèmes Aquatiques, Bruxelles, Belgium
| | - Philippe Delfosse
- Luxembourg Institute of Science and Technology, ERIN, Belvaux, Luxembourg
| |
Collapse
|
42
|
Bennett CE, Thomas R, Williams M, Zalasiewicz J, Edgeworth M, Miller H, Coles B, Foster A, Burton EJ, Marume U. The broiler chicken as a signal of a human reconfigured biosphere. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180325. [PMID: 30662712 PMCID: PMC6304135 DOI: 10.1098/rsos.180325] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 05/29/2023]
Abstract
Changing patterns of human resource use and food consumption have profoundly impacted the Earth's biosphere. Until now, no individual taxa have been suggested as distinct and characteristic new morphospecies representing this change. Here we show that the domestic broiler chicken is one such potential marker. Human-directed changes in breeding, diet and farming practices demonstrate at least a doubling in body size from the late medieval period to the present in domesticated chickens, and an up to fivefold increase in body mass since the mid-twentieth century. Moreover, the skeletal morphology, pathology, bone geochemistry and genetics of modern broilers are demonstrably different to those of their ancestors. Physical and numerical changes to chickens in the second half of the twentieth century, i.e. during the putative Anthropocene Epoch, have been the most dramatic, with large increases in individual bird growth rate and population sizes. Broiler chickens, now unable to survive without human intervention, have a combined mass exceeding that of all other birds on Earth; this novel morphotype symbolizes the unprecedented human reconfiguration of the Earth's biosphere.
Collapse
Affiliation(s)
- Carys E. Bennett
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| | - Richard Thomas
- School of Archaeology and Ancient History, University of Leicester, Leicester LE1 7RH, UK
| | - Mark Williams
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| | - Jan Zalasiewicz
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| | - Matt Edgeworth
- School of Archaeology and Ancient History, University of Leicester, Leicester LE1 7RH, UK
| | - Holly Miller
- Department of Classics and Archaeology, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ben Coles
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| | - Alison Foster
- School of Archaeology and Ancient History, University of Leicester, Leicester LE1 7RH, UK
| | - Emily J. Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK
| | - Upenyu Marume
- School of Agriculture Science, North West University, P Bag X 2046, Mmabatho 2735, South Africa
| |
Collapse
|
43
|
Ning Z, Zhang H, Li W, Zhang R, Liu G, Chen C. Anaerobic digestion of lipid-rich swine slaughterhouse waste: Methane production performance, long-chain fatty acids profile and predominant microorganisms. BIORESOURCE TECHNOLOGY 2018; 269:426-433. [PMID: 30268045 DOI: 10.1016/j.biortech.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 05/25/2023]
Abstract
This study investigated methane production, long-chain fatty acids (LCFAs) profile, and predominant microorganisms in anaerobic digestion (AD) of lipid-rich swine slaughterhouse waste (SSW). The maximum methane yield was 999.2 mL/g VS. LCFAs, as inhibitory hydrolysis products, accumulated first to 1165 mg/L on day 3, and then decreased sharply to 125.7 mg/L on day 9, and finally were degraded to 20 mg/L on day 27. Linoleic acid (C18:2), oleic acid (C18:1) and palmitic acid (C16:0) were the dominant LCFAs. The easy conversion of C18:1 to C16:0 compared with difficult degradation of C16:0 resulted in an increase of C16:0 on day 4-6. Predominant microorganisms were Clostridium, Syntrophomonas and Methanospirillum. This study proved the high methane potential of lipid-rich SSW and gained insights into the degradation process by analysis of intermediates of LCFAs and predominant microorganisms. The results can provide valuable guidance for efficient utilization of this waste to produce methane in future.
Collapse
Affiliation(s)
- Zhifang Ning
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Han Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wanwu Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruihong Zhang
- Department of Biological & Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
44
|
Gurtler JB, Doyle MP, Erickson MC, Jiang X, Millner P, Sharma M. Composting To Inactivate Foodborne Pathogens for Crop Soil Application: A Review. J Food Prot 2018; 81:1821-1837. [PMID: 30320513 DOI: 10.4315/0362-028x.jfp-18-217] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Compost is organic material that has been degraded into a nutrient-stabilized humus-like substance through intense microbial activity, which can provide essential plant nutrients (nitrogen, phosphorus) to aid in the growth of fruits and vegetables. Compost can be generated from animal waste feedstocks; these can contain human pathogens, which can be inactivated through the heat and microbial competition promoted during the composting process. Outbreaks of infections caused by bacterial pathogens such as Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on fruit and vegetable commodities consumed raw emphasize the importance of minimizing the risk of pathogenic contamination on produce commodities. This review article investigates factors that affect the reduction and survival of bacterial foodborne pathogens during the composting process. Interactions with indigenous microorganisms, carbon:nitrogen ratios, and temperature changes influence pathogen survival, growth, and persistence in finished compost. Understanding the mechanisms of pathogen survival during the composting process and mechanisms that reduce pathogen populations can minimize the risk of pathogen contamination in the cultivation of fruits and vegetables.
Collapse
Affiliation(s)
- Joshua B Gurtler
- 1 U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038 (ORCID: http://orcid.org/0000-0001-5844-7794 [J.B.G.])
| | - Michael P Doyle
- 2 Center for Food Safety, University of Georgia, 350 Woodroof Drive, Griffin, Georgia 30223
| | - Marilyn C Erickson
- 2 Center for Food Safety, University of Georgia, 350 Woodroof Drive, Griffin, Georgia 30223
| | - Xiuping Jiang
- 3 Department of Food, Nutrition and Packaging Sciences, Clemson University, 217 P & A Building, Clemson, South Carolina 29634
| | - Patricia Millner
- 4 U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Building 201, Beltsville Area Research Center-East, Beltsville, Maryland 20705, USA (ORCID: http://orcid.org/0000-0002-8585-0308 [M.S.])
| | - Manan Sharma
- 4 U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Building 201, Beltsville Area Research Center-East, Beltsville, Maryland 20705, USA (ORCID: http://orcid.org/0000-0002-8585-0308 [M.S.])
| |
Collapse
|
45
|
Arias JZ, Reuter T, Sabir A, Gilroyed BH. Ambient alkaline hydrolysis and anaerobic digestion as a mortality management strategy for whole poultry carcasses. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 81:71-77. [PMID: 30527045 DOI: 10.1016/j.wasman.2018.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Livestock mortality management is a critical factor for ensuring biosecurity, minimizing environmental impact, and maintaining public trust in livestock production agriculture. The number of technologies currently used for livestock mortality management is small, including composting, burial, incineration, landfilling, and rendering. Each technology has advantages and disadvantages which make their suitability situational. In this study, ambient alkaline hydrolysis (AAH) using 2, 4, or 8 M potassium hydroxide at ambient temperature and pressure was explored as a disposal method for whole broiler chicken carcasses. Alkaline hydrolysate (pH > 14) resulting from the process was neutralized by mixing with acidic corn silage, and then utilized as a substrate for anaerobic digestion in bench top continuously stirred tank reactors. All AAH treatments solubilized broiler carcasses within 20 days. Corn silage neutralized 2 M hydrolysate using a 2:1 (w/w) mixing ratio, while 4 M hydrolysate required a 4:1 mixing ratio. Anaerobic digestion of neutralized hydrolysate reduced volatile solids by >96% for all treatments. Highest methane yields were observed from the 2 M hydrolysate (607.2 ± 47.9 g mL-1 VS), while biogas production from the 8 M hydrolysate was totally inhibited over a total of 42 days. Ambient alkaline hydrolysis followed by silage neutralization and anaerobic digestion provides a feasible, straightforward technology to manage routine and emergency animal mortalities.
Collapse
Affiliation(s)
- Joshua Z Arias
- School of Environmental Sciences, University of Guelph Ridgetown Campus, Ridgetown N0P 2C0, Canada
| | - Tim Reuter
- Livestock Research Division, Alberta Agriculture and Forestry, Lethbridge T1J 4V6, Canada
| | - Asma Sabir
- School of Environmental Sciences, University of Guelph Ridgetown Campus, Ridgetown N0P 2C0, Canada
| | - Brandon H Gilroyed
- School of Environmental Sciences, University of Guelph Ridgetown Campus, Ridgetown N0P 2C0, Canada; Centre for Agricultural Renewable Energy and Sustainability, University of Guelph Ridgetown Campus, Ridgetown N0P 2C0, Canada.
| |
Collapse
|
46
|
Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnol Adv 2018; 36:1238-1254. [PMID: 29673973 PMCID: PMC7125918 DOI: 10.1016/j.biotechadv.2018.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Abstract
Aquatic organisms, such as microalgae (Chlorella, Arthrospira (Spirulina), Tetrasselmis, Dunalliela etc.) and duckweed (Lemna spp., Wolffia spp. etc.) are a potential source for the production of protein-rich biomass and for numerous other high-value compounds (fatty acids, pigments, vitamins etc.). Their cultivation using agro-industrial wastes and wastewater (WaW) is of particular interest in the context of a circular economy, not only for recycling valuable nutrients but also for reducing the requirements for fresh water for the production of biomass. Recovery and recycling of nutrients is an unavoidable long-term approach for securing future food and feed production. Agro-industrial WaW are rich in nutrients and have been widely considered as a potential nutrient source for the cultivation of microalgae/duckweed. However, they commonly contain various hazardous contaminants, which could potentially taint the produced biomass, raising various concerns about the safety of their consumption. Herein, an overview of the most important contaminants, including heavy metals and metalloids, pathogens (bacteria, viruses, parasites etc.), and xenobiotics (hormones, antibiotics, parasiticides etc.) is given. It is concluded that pretreatment and processing of WaW is a requisite step for the removal of several contaminants. Among the various technologies, anaerobic digestion (AD) is widely used in practice and offers a technologically mature approach for WaW treatment. During AD, various organic and biological contaminants are significantly removed. Further removal of contaminants could be achieved by post-treatment and processing of digestates (solid/liquid separation, dilution etc.) to further decrease the concentration of contaminants. Moreover, during cultivation an additional removal may occur through various mechanisms, such as precipitation, degradation, and biotransformation. Since many jurisdictions regulate the presence of various contaminants in feed or food setting strict safety monitoring processes, it would be of particular interest to initiate a multi-disciplinary discussion whether agro-industrial WaW ought to be used to cultivate microalgae/duckweed for feed or food production and identify most feasible options for doing this safely. Based on the current body of knowledge it is estimated that AD and post-treatment of WaW can lower significantly the risks associated with heavy metals and pathogens, but it is yet unclear to what extent this is the case for certain persistent xenobiotics.
Collapse
|
47
|
The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste. SUSTAINABILITY 2018. [DOI: 10.3390/su10030795] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effectiveness of co-additives for improving livestock waste composting (reduction of air pollution and conservation of nutrients) was investigated. Biochar and Flue gas desulphurization gypsum (FGD gypsum) were used to supplement the composting of a mixture of slaughter waste, swine slurry, and sawdust. Different compositions of additives (0% or 5% each, 10% biochar or FGD gypsum) were tested in triplicate on the laboratory scale. In addition, the effects of two different aeration schemes (continuous and intermittent) were also investigated. Ammonia volatilization, physicochemical characteristics, and compost maturity indices were investigated. The results indicated that the use of the co-additive (Biochar and FGD gypsum) during composting of livestock waste led to a reduction of ammonia volatilization by 26–59% and to a 6.7–7.9-fold increase of nitrate accumulation. The total ammonia volatilization of intermittent aeration treatment was lower than that of continuous aeration using co-additives treatment. It was concluded that co-additives (biochar and FGD gypsum) might be utilized in livestock waste composting to reduce ammonia volatilization and improve nutrient conservation.
Collapse
|
48
|
Adhikari BB, Chae M, Bressler DC. Utilization of Slaughterhouse Waste in Value-Added Applications: Recent Advances in the Development of Wood Adhesives. Polymers (Basel) 2018; 10:E176. [PMID: 30966212 PMCID: PMC6415179 DOI: 10.3390/polym10020176] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022] Open
Abstract
Globally, slaughterhouses generate large volumes of animal byproducts. While these byproducts are an important resource of industrial protein that could potentially be utilized in various value-added applications, they are currently either underutilized in high-value applications or being used for production of relatively low-value products such as animal feed and pet food. Furthermore, some of the byproducts of animal slaughtering cannot enter food and feed chains and thus their disposal possesses a serious environmental concern. An innovative utilization of the proteinaceous waste generated by slaughterhouses comprises of waste processing to extract proteins, which are then incorporated into industrial processes to produce value-added bio-based products. In this report, we review the current processes for extraction of protein from proteinaceous waste of slaughterhouses, and utilization of the recovered protein in the development of protein-based wood adhesives.
Collapse
Affiliation(s)
- Birendra B Adhikari
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Michael Chae
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
49
|
Adhikari BB, Kislitsin V, Appadu P, Chae M, Choi P, Bressler DC. Development of hydrolysed protein-based plywood adhesive from slaughterhouse waste: effect of chemical modification of hydrolysed protein on moisture resistance of formulated adhesives. RSC Adv 2018; 8:2996-3008. [PMID: 35541209 PMCID: PMC9077546 DOI: 10.1039/c7ra09952e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/09/2018] [Indexed: 12/03/2022] Open
Abstract
Specified risk materials (SRM) constitute the proteinaceous waste of slaughterhouses and are currently being disposed off either by incineration or by land filling. Over the last few years, our efforts have focused on developing technology platforms for deployment of this renewable resource for various value-added industrial applications. This report describes a technology for utilization of SRM for the development of an environmentally friendly plywood adhesive with an improved water resistance property. The feedstock (SRM) was first thermally hydrolysed according to a standard protocol, and the hydrolysed protein fragments (peptides) were recovered from the hydrolysate. The recovered peptides were chemically modified through esterification reaction using ethanol, and then chemically crosslinked with polyamideamine-epichlorohydrin (PAE) resin to develop a wood adhesive system. Plywood specimens were then developed using the peptides-PAE resin-based adhesive. The effects of crosslinking time, solid content of the adhesive formulation, ratio of peptides and crosslinking agent in the formulation, and curing conditions of specimen preparation on lap shear strength of resulting plywood specimens were systematically evaluated. Despite the hydrophilic nature of hydrolysed protein fragments, the peptides-PAE resin formulations exhibited remarkable water resistance property after curing. Capping of polar carboxyl groups of peptides by converting them to esters further improved the water resistance property of this adhesive system. Under the optimum conditions of adhesive preparation and curing, the ethyl ester derivative of peptides and PAE resin-based formulations resulted in plywood specimens having comparable dry as well as soaked shear strengths to those of commercial phenol formaldehyde resin.
Collapse
Affiliation(s)
- Birendra B Adhikari
- Department of Agricultural, Food and Nutritional Science Faculty of Agricultural, Life and Environmental Sciences, University of Alberta Edmonton AB T6G 2P5 Canada +1-780-492-4265 +1-780-492-4986
| | - Vadim Kislitsin
- Department of Chemical and Materials Engineering Faculty of Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Pooran Appadu
- Department of Agricultural, Food and Nutritional Science Faculty of Agricultural, Life and Environmental Sciences, University of Alberta Edmonton AB T6G 2P5 Canada +1-780-492-4265 +1-780-492-4986
| | - Michael Chae
- Department of Agricultural, Food and Nutritional Science Faculty of Agricultural, Life and Environmental Sciences, University of Alberta Edmonton AB T6G 2P5 Canada +1-780-492-4265 +1-780-492-4986
| | - Phillip Choi
- Department of Chemical and Materials Engineering Faculty of Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science Faculty of Agricultural, Life and Environmental Sciences, University of Alberta Edmonton AB T6G 2P5 Canada +1-780-492-4265 +1-780-492-4986
| |
Collapse
|
50
|
Moukazis I, Pellera FM, Gidarakos E. Slaughterhouse by-products treatment using anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:652-662. [PMID: 28711182 DOI: 10.1016/j.wasman.2017.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
The objective of the present study is to evaluate the use of animal by-products (ABP) as substrates for anaerobic digestion, aiming at methane production. Specifically, four ABP of Category 2 and 3, namely (i) stomach and rumen, (ii) stomach contents, (iii) breasts and reproductive organs and (iv) bladders and intestines with their contents, were selected. The methane potential of each ABP was initially determined, while the feasibility of anaerobic co-digestion of ABP with two agroindustrial waste, i.e. orange peels and olive leaves was also studied. To this purpose, Biochemical Methane Potential (BMP), as well as semi-continuous assays were respectively conducted. In the latter, the effect of the variation in the organic loading rate (OLR) on methane production was investigated. Results obtained from BMP assays showed that the samples containing breasts and reproductive organs, bladders and intestine, and stomach and rumen, had higher methane potentials of 815, 787 and 759 mLCH4,STP/gVS, respectively. Moreover, according to the results of the semi-continuous assays, maximum methane yields between 253 and 727mLCH4/gVSfed were obtained at an OLR of 0.8gVS/L/d. The only case in which methanogenesis inhibition phenomena, due to increased ammonia concentrations, were observed, was the assay being fed with a mixture of breasts and reproductive organs and orange peels, at the highest OLR. This inhibition phenomenon was attributed to an inappropriate C/N ratio.
Collapse
Affiliation(s)
- Ioannis Moukazis
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, 73100 Chania, Greece.
| | - Frantseska-Maria Pellera
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, 73100 Chania, Greece.
| | - Evangelos Gidarakos
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, 73100 Chania, Greece.
| |
Collapse
|