1
|
Akhtar Z, Canfyn M, Vanhee C, Delporte C, Adams E, Deconinck E. Evaluating MIR and NIR Spectroscopy Coupled with Multivariate Analysis for Detection and Quantification of Additives in Tobacco Products. SENSORS (BASEL, SWITZERLAND) 2024; 24:7018. [PMID: 39517913 PMCID: PMC11548177 DOI: 10.3390/s24217018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The detection and quantification of additives in tobacco products are critical for ensuring consumer safety and compliance with regulatory standards. Traditional analytical techniques, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and others, although effective, suffer from drawbacks, including complex sample preparation, high costs, lengthy analysis times, and the requirement for skilled operators. This study addresses these challenges by evaluating the efficacy of mid-infrared (MIR) spectroscopy and near-IR (NIR) spectroscopy, coupled with multivariate analysis, as potential solutions for the detection and quantification of additives in tobacco products. So, a representative set of tobacco products was selected and spiked with the targeted additives, namely caffeine, menthol, glycerol, and cocoa. Multivariate analysis of MIR and NIR spectra consisted of principal component analysis (PCA), hierarchical clustering analysis (HCA), partial least squares-discriminant analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA) to classify samples based on targeted additives. Based on the unsupervised techniques (PCA and HCA), a distinction could be made between spiked and non-spiked samples for all four targeted additives based on both MIR and NIR spectral data. During supervised analysis, SIMCA achieved 87-100% classification accuracy for the different additives and for both spectroscopic techniques. PLS-DA models showed classification rates of 80% to 100%, also demonstrating robust performance. Regression studies, using PLS, showed that it is possible to effectively estimate the concentration levels of the targeted molecules. The results also highlight the necessity of optimizing data pretreatment for accurate quantification of the target additives. Overall, NIR spectroscopy combined with SIMCA provided the most accurate and robust classification models for all target molecules, indicating that it is the most effective single technique for this type of analysis. MIR, on the other hand, showed the overall best performance for quantitative estimation.
Collapse
Affiliation(s)
- Zeb Akhtar
- Scientific Direction Chemical and Physical Health Risks, Service of Medicines and Health Products, Sciensano, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium; (Z.A.); (M.C.); (C.V.)
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, Herestraat 49, O&N2, PB 923, B-3000 Leuven, Belgium;
| | - Michaël Canfyn
- Scientific Direction Chemical and Physical Health Risks, Service of Medicines and Health Products, Sciensano, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium; (Z.A.); (M.C.); (C.V.)
| | - Céline Vanhee
- Scientific Direction Chemical and Physical Health Risks, Service of Medicines and Health Products, Sciensano, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium; (Z.A.); (M.C.); (C.V.)
| | - Cédric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bld Triomphe, Campus Plaine, CP 205/5, B-1050 Brussels, Belgium;
- Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bld Triomphe, Campus Plaine, CP 205/5, B-1050 Brussels, Belgium
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, Herestraat 49, O&N2, PB 923, B-3000 Leuven, Belgium;
| | - Eric Deconinck
- Scientific Direction Chemical and Physical Health Risks, Service of Medicines and Health Products, Sciensano, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium; (Z.A.); (M.C.); (C.V.)
| |
Collapse
|
2
|
Kassem NOF, Strongin RM, Stroup AM, Brinkman MC, El-Hellani A, Erythropel HC, Etemadi A, Exil V, Goniewicz ML, Kassem NO, Klupinski TP, Liles S, Muthumalage T, Noël A, Peyton DH, Wang Q, Rahman I, Valerio LG. A Review of the Toxicity of Ingredients in e-Cigarettes, Including Those Ingredients Having the FDA's "Generally Recognized as Safe (GRAS)" Regulatory Status for Use in Food. Nicotine Tob Res 2024; 26:1445-1454. [PMID: 38783714 PMCID: PMC11494494 DOI: 10.1093/ntr/ntae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Some firms and marketers of electronic cigarettes (e-cigarettes; a type of electronic nicotine delivery system (ENDS)) and refill liquids (e-liquids) have made claims about the safety of ingredients used in their products based on the term "GRAS or Generally Recognized As Safe" (GRAS). However, GRAS is a provision within the definition of a food additive under section 201(s) (21 U.S.C. 321(s)) of the U.S. Federal Food Drug and Cosmetic Act (FD&C Act). Food additives and GRAS substances are by the FD&C Act definition intended for use in food, thus safety is based on oral consumption; the term GRAS cannot serve as an indicator of the toxicity of e-cigarette ingredients when aerosolized and inhaled (ie, vaped). There is no legal or scientific support for labeling e-cigarette product ingredients as "GRAS." This review discusses our concerns with the GRAS provision being applied to e-cigarette products and provides examples of chemical compounds that have been used as food ingredients but have been shown to lead to adverse health effects when inhaled. The review provides scientific insight into the toxicological evaluation of e-liquid ingredients and their aerosols to help determine the potential respiratory risks associated with their use in e-cigarettes.
Collapse
Affiliation(s)
- Nada O F Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Andrea M Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD, USA
| | - Marielle C Brinkman
- College of Public Health, The Ohio State University, Columbus, OH, USA
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ahmad El-Hellani
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale Center for the Study of Tobacco Products (YCSTP), Yale School of Medicine, New Haven, CT, USA
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Vernat Exil
- School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Noura O Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | | | - Sandy Liles
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | | | - Alexandra Noël
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - David H Peyton
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Luis G Valerio
- Division of Nonclinical Science (DNCS), Office of Science/Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
3
|
Reilly S, Cheng T, Feng C, Walters MJ. Harmful and Potentially Harmful Constituents in E-Liquids and Aerosols from Electronic Nicotine Delivery Systems (ENDS). Chem Res Toxicol 2024; 37:1155-1170. [PMID: 38924487 PMCID: PMC11256903 DOI: 10.1021/acs.chemrestox.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
In 2012, the U.S. Food & Drug Administration (FDA) published an established list of 93 harmful and potentially harmful constituents (HPHCs) targeting four tobacco product types (cigarettes, cigarette tobacco, roll-your-own tobacco, smokeless tobacco). In 2016, the FDA finalized the deeming rule to regulate electronic nicotine delivery systems (ENDS). However, knowledge gaps exist regarding whether certain HPHCs are present in ENDS e-liquids and aerosols. We identified and addressed these gaps by conducting literature searches and then experimentally quantifying HPHCs in the e-liquid and aerosol of 37 ENDS brands based on gaps in the literature. The literature searches identified 66 e-liquid HPHCs and 68 aerosol HPHCs that have limited to no information regarding the quantifiability of these constituents. A contracted ISO 17025 accredited laboratory performed the HPHC quantifications. The availability of validated analytical methods in the contracted laboratory determined the HPHCs included in the study scope (63/66 for e-liquids, 64/68 for aerosols). Combining the results from the quantifications and literature searches, 36 (39%) and 34 (37%) HPHCs were found quantifiable (≥limit of quantification [LOQ]) in ENDS e-liquids and aerosols, respectively, with 25 HPHCs being quantifiable in both matrices. Quantifiability results imply potential HPHC transfers between matrices, leaching from components, or formations from aerosol generation. The study results can inform the scientific basis for manufacturers and regulators regarding regulatory requirements for HPHC reporting. The HPHC quantities can also inform evaluations of the public health impact of ENDS and public communications regarding ENDS health risks.
Collapse
Affiliation(s)
- Samantha
M. Reilly
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Tianrong Cheng
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Charles Feng
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Matthew J. Walters
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| |
Collapse
|
4
|
Li J, Ma Z, Dai H, Li H, Qiu J, Pang X. Application of PLSR in correlating sensory and chemical properties of middle flue-cured tobacco leaves with honey-sweet and burnt flavour. Heliyon 2024; 10:e29547. [PMID: 38655300 PMCID: PMC11035049 DOI: 10.1016/j.heliyon.2024.e29547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Among the eight types of aroma and flavour characteristics of Chinese flue-cured tobacco (FCT), tobacco grown in Shandong is classified as having a honey-sweet and burnt aroma. To elucidate the key chemical components that determine the characteristics of the honey-sweet and burnt aroma styles of Shandong FCT, we qualitatively and quantitatively evaluated the smoke flavour quality and five categories of flavour-related chemical components (routine components, water-soluble sugars, free amino acids, Amadori compounds and key aroma-active compounds) in Shandong middle FCT leaves using sensory analysis and modern instrumental analysis techniques. The association between the chemical components and sensory quality was analysed. Our results showed that the total sugars, reducing sugars (fructose, glucose, and psicose), total sugar-nicotine ratio, proline-total amino acid ratio, sulphur-containing amino acid-total amino acid ratio and fructosyl-proline (Fru-Pro) were high in premium FCT leaves. The aroma-active compounds associated with the honey-sweet burnt flavour style of the Shandong Middle FCT included sweet-scented 2,3-pentanedione, 2,3-butanedione, butyrolactone, 2-furanmethanol, roasted-like 2-pentylfura, and green-like 1-penten-3-one. Partial least squares regression (PLSR) analysis revealed that 29 aroma precursors were positively correlated with the sensory quality characteristics of Shandong FCT. The results of our study can provide guidance for the targeted improvement and precise regulation of the flavour-style characteristics of Shandong FCT.
Collapse
Affiliation(s)
- Jing Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhiyuan Ma
- Shandong Zibo Tobacco Co., Ltd, Zibo City, Shandong Province, 255035, China
| | - Huawei Dai
- Shandong Zibo Tobacco Co., Ltd, Zibo City, Shandong Province, 255035, China
| | - Hu Li
- Shandong Zibo Tobacco Co., Ltd, Zibo City, Shandong Province, 255035, China
| | - Jun Qiu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xueli Pang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| |
Collapse
|
5
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Ning Y, Zhang LY, Mai J, Su JE, Cai JY, Chen Y, Jiang YL, Zhu MJ, Hu BB. Tobacco microbial screening and application in improving the quality of tobacco in different physical states. BIORESOUR BIOPROCESS 2023; 10:32. [PMID: 38647749 PMCID: PMC10992236 DOI: 10.1186/s40643-023-00651-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2024] Open
Abstract
The first-cured tobacco contains macromolecular substances with negative impacts on tobacco products quality, and must be aged and fermented to mitigate their effects on the tobacco products quality. However, the natural fermentation takes a longer cycle with large coverage area and low economic efficiency. Microbial fermentation is a method to improve tobacco quality. The change of chemical composition of tobacco during the fermentation is often correlated with shapes of tobacco. This study aimed to investigate the effects of tobacco microorganisms on the quality of different shapes of tobacco. Specifically, Bacillus subtilis B1 and Cytobacillus oceanisediminis C4 with high protease, amylase, and cellulase were isolated from the first-cured tobacco, followed by using them for solid-state fermentation of tobacco powder (TP) and tobacco leaves (TL). Results showed that strains B1 and C4 could significantly improve the sensory quality of TP, enabling it to outperform TL in overall texture and skeleton of tobacco products during cigarette smoking. Compared with the control, microbial fermentation could increase reducing sugar; regulate protein, starch, and cellulose, reduce nicotine, improve total aroma substances, and enable the surface of fermented TP and TL to be more loose, wrinkled, and porous. Microbial community analysis indicated that strains B1 and C4 could change the native structure of microbial community in TP and TL. LEfSe analysis revealed that the potential key biomarkers in TP and TL were Bacilli, Pseudonocardia, Pantoea, and Jeotgalicoccus, which may have cooperative effects with other microbial taxa in improving tobacco quality. This study provides a theoretical basis for improving tobacco fermentation process for better cigarettes quality.
Collapse
Affiliation(s)
- Ying Ning
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Li-Yuan Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jing Mai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jia-En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Jie-Yun Cai
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yong-Lei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China.
- College of Life and Geographic Sciences, The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi, 844006, China.
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China.
| |
Collapse
|
7
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
8
|
The Tobacco Smoke Component, Acrolein, as a Major Culprit in Lung Diseases and Respiratory Cancers: Molecular Mechanisms of Acrolein Cytotoxic Activity. Cells 2023; 12:cells12060879. [PMID: 36980220 PMCID: PMC10047238 DOI: 10.3390/cells12060879] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer’s disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke’s most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.
Collapse
|
9
|
Tulen CBM, Opperhuizen A, van Schooten FJ, Remels AHV. Disruption of the Molecular Regulation of Mitochondrial Metabolism in Airway and Lung Epithelial Cells by Cigarette Smoke: Are Aldehydes the Culprit? Cells 2023; 12:299. [PMID: 36672235 PMCID: PMC9857032 DOI: 10.3390/cells12020299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease for which cigarette smoking is the main risk factor. Acetaldehyde, acrolein, and formaldehyde are short-chain aldehydes known to be formed during pyrolysis and combustion of tobacco and have been linked to respiratory toxicity. Mitochondrial dysfunction is suggested to be mechanistically and causally involved in the pathogenesis of smoking-associated lung diseases such as COPD. Cigarette smoke (CS) has been shown to impair the molecular regulation of mitochondrial metabolism and content in epithelial cells of the airways and lungs. Although it is unknown which specific chemicals present in CS are responsible for this, it has been suggested that aldehydes may be involved. Therefore, it has been proposed by the World Health Organization to regulate aldehydes in commercially-available cigarettes. In this review, we comprehensively describe and discuss the impact of acetaldehyde, acrolein, and formaldehyde on mitochondrial function and content and the molecular pathways controlling this (biogenesis versus mitophagy) in epithelial cells of the airways and lungs. In addition, potential therapeutic applications targeting (aldehyde-induced) mitochondrial dysfunction, as well as regulatory implications, and the necessary required future studies to provide scientific support for this regulation, have been covered in this review.
Collapse
Affiliation(s)
- Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Alexander H. V. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
10
|
Liu A, Yuan K, Xu H, Zhang Y, Tian J, Li Q, Zhu W, Ye H. Proteomic and Metabolomic Revealed Differences in the Distribution and Synthesis Mechanism of Aroma Precursors in Yunyan 87 Tobacco Leaf, Stem, and Root at the Seedling Stage. ACS OMEGA 2022; 7:33295-33306. [PMID: 36157728 PMCID: PMC9494650 DOI: 10.1021/acsomega.2c03877] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Tobacco, as an important cash crop and model plant, has been the subject of various types of research. The quality of flue-cured tobacco products depends on the compound collection of tobacco leaves, including pigments, carbohydrates, amino acids, polyphenols, and alkaloid aroma precursors. The present study investigates tobacco seedling organs (leaf, stem, and root) with the assistance of label-free proteomic technology and untargeted metabonomic technology. We analyzed 4992 proteins and 298 metabolites obtained in the leaf, stem, and root groups and found that there were significant differences in both primary and secondary metabolism processes involved in aroma precursor biosynthesis, such as carbohydrate metabolism, energy metabolism, and amino acid biosynthesis, and phenylpropanoid, flavonoid, and alkaloid biosynthesis. The findings showed that the contents of alkaloid metabolites such as nornicotine, anatabine, anatalline, and myosmine were significantly higher in tobacco roots than in leaves and stems at the seedling stage.
Collapse
Affiliation(s)
- Amin Liu
- College
of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Kailong Yuan
- China
Tobacco Zhejiang Industrial Company Limited, Hangzhou 310008, PR China
| | - Haiqing Xu
- Anhui
Wannan Tobacco Company Limited, Xuancheng 242000, PR China
| | - Yonggang Zhang
- China
Tobacco Zhejiang Industrial Company Limited, Hangzhou 310008, PR China
| | - Jingkui Tian
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, PR China
| | - Qi Li
- China
Tobacco Zhejiang Industrial Company Limited, Hangzhou 310008, PR China
| | - Wei Zhu
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, PR China
| | - He Ye
- Department
of Pharmacy, Zhejiang Hospital, Hangzhou 310013, PR China
| |
Collapse
|
11
|
Cheng T, Reilly SM, Feng C, Walters MJ, Holman MR. Harmful and Potentially Harmful Constituents in the Filler and Smoke of Tobacco-Containing Tobacco Products. ACS OMEGA 2022; 7:25537-25554. [PMID: 35910156 PMCID: PMC9330232 DOI: 10.1021/acsomega.2c02646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The U.S. Food and Drug Administration established a list of 93 harmful and potentially harmful constituents (HPHCs) in tobacco products. While HPHCs are required to be submitted for tobacco products, knowledge gaps exist regarding which tobacco-containing tobacco product (TCTP, i.e., tobacco products that contain tobacco(s) as a component) types (cigarettes, cigars, roll-your-own tobaccos [RYOs], pipe tobaccos [pipes], smokeless tobacco products [STPs], waterpipe tobaccos [waterpipes]) and matrices (filler, smoke) contain which HPHCs. This study identified and addressed such gaps by conducting literature searches and measuring the amount of HPHCs in TCTP types and matrices. First, literature searches, performed for cigarettes, RYOs, and STPs for publications up to 2014 and for cigars, pipes, and waterpipes for publications up to 2016, identified knowledge gaps for the 93 HPHCs (or 119 HPHCs if cresols [o-, m-, p-cresol] are counted as 3 and chlorinated dioxins/furans as 25) across TCTP types and matrices. Then, three ISO 17025 accredited laboratories including two subcontracted laboratories performed the HPHC quantifications. Inclusion of the HPHCs, TCTP types, and matrices in the study scope was also determined by the availability of validated analytical methods in each laboratory. Eleven (9%) HPHCs are quantifiable in all brands for all TCTP types and matrices, 33 (28%) HPHCs are not quantifiable in any brands of any TCTP type and matrix, and 74 (63%) HPHCs are quantifiable only in some brands across TCTP types and matrices examined. Understanding the quantifiability of HPHCs in each TCTP type and matrix can inform the scientific basis for manufacturers regarding the regulatory requirements for reporting HPHCs. The quantity of HPHCs observed can also inform the evaluation of the public health impact of HPHCs and public communications regarding the health risks of tobacco products.
Collapse
Affiliation(s)
- Tianrong Cheng
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| | - Samantha M. Reilly
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| | - Charles Feng
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| | - Matthew J. Walters
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| | - Matthew R. Holman
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| |
Collapse
|
12
|
Havermans A, Mallock N, Zervas E, Caillé-Garnier S, Mansuy T, Michel C, Pennings JLA, Schulz T, Schwarze PE, Solimini R, Tassin JP, Vardavas CI, Merino M, Pauwels CGGM, van Nierop LE, Lambré C, Bolling AK. Review of industry reports on EU priority tobacco additives part A: Main outcomes and conclusions. Tob Prev Cessat 2022; 8:27. [PMID: 35860504 PMCID: PMC9255285 DOI: 10.18332/tpc/151529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
The European Union Tobacco Products Directive (EU TPD) mandates enhanced reporting obligations for tobacco manufacturers regarding 15 priority additives. Within the Joint Action on Tobacco Control (JATC), a review panel of independent experts was appointed for the scientific evaluation of the additive reports submitted by a consortium of 12 tobacco manufacturers. As required by the TPD, the reports were evaluated based on their comprehensiveness, methodology and conclusions. In addition, we evaluated the chemical, toxicological, addictive, inhalation facilitating and flavoring properties of the priority additives based on the submitted reports, supplemented by the panel's expert knowledge and some independent literature. The industry concluded that none of the additives is associated with concern. Due to significant methodological limitations, we question the scientific validity of these conclusions and conclude that they are not warranted. Our review demonstrates that many issues regarding toxicity, addictiveness and attractiveness of the additives have not been sufficiently addressed, and therefore concerns remain. For example, menthol facilitates inhalation by activation of the cooling receptor TRPM8. The addition of sorbitol and guar gum leads to a significant increase of aldehydes that may contribute to toxicity and addictiveness. Titanium dioxide particles (aerodynamic diameter <10 µm) are legally classified as carcinogenic when inhaled. For diacetyl no report was provided. Overall, the industry reports were not comprehensive, and the information presented provides an insufficient basis for the regulation of most additives. We, therefore, advise MS to consider alternative approaches such as the precautionary principle.
Collapse
Affiliation(s)
- Anne Havermans
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Nadja Mallock
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Efthimios Zervas
- Hellenic Thoracic Society, Athens, Greece
- School of Applied Arts and Sustainable Design, Hellenic Open University, Athens, Greece
| | | | - Thibault Mansuy
- French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Cécile Michel
- French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Thomas Schulz
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | | | | - Miguel Merino
- Andalusia Agency For Agriculture and Fisheries Development, Seville, Spain
| | - Charlotte G. G. M. Pauwels
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Lotte E. van Nierop
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Claude Lambré
- National Institute of Health and Medical Research, Paris, France
| | | |
Collapse
|
13
|
Soleimani F, Dobaradaran S, De-la-Torre GE, Schmidt TC, Saeedi R. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152667. [PMID: 34963586 DOI: 10.1016/j.scitotenv.2021.152667] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 05/05/2023]
Abstract
The commercially sold cigarettes contain more than 7000 chemicals, and their combustion produces potential toxicants in mainstream smoke (MS), sidestream smoke (SS), secondhand smoke (SHS), thirdhand smoke (THS), and discarded cigarette butts (CBs). We conducted a systematic review of published literature to compare the toxicants produced in each of these phases of tobacco combustion (MS, SS, and CBs). The initial search included 12,301 articles, but after screening and final restrictions considering the aims of this review, 159 published studies were selected for inclusion. Additionally, SHS and THS are briefly discussed here. Overall, polycyclic aromatic hydrocarbons (PAHs) and other aromatic hydrocarbons have been represented in more studies than other compounds. However, metals and nitrosamines were detected in higher concentrations than other components in SS. The concentrations of most PAHs and other aromatic hydrocarbons in MS and SS are higher compared to concentrations found in CBs. Also, the concentrations of all the studied carbonyl compounds, aldehydes and ketones in SS and MS were higher than in CBs. The mean levels of alcohols and phenols in SS were higher than those reported for both MS and CBs. Tobacco toxicants are inhaled by smokers and transmitted to the environment through SS, SHS, THS, and discarded CBs. However, further studies are necessary to assess adverse effects of toxicants found in CBs and THS not only on human health, but also on the environment and ecosystems. The results of this review provide updated information on the chemical contents of MS, SS, SHS, THS, and CBs. It adds to the growing understanding that smoking creates major health problems for smokers and passive smokers, but also that it generates environmental hazards with consequences to the ecosystems and human health through discarded CBs, SHS, and THS exposure.
Collapse
Affiliation(s)
- Farshid Soleimani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universit¨atsstr. 5, Essen, Germany.
| | | | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universit¨atsstr. 5, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Tong L, Hutcheson JD. A surface-based calibration approach to enable dynamic and accurate quantification of colorimetric assay systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4290-4297. [PMID: 34473147 DOI: 10.1039/d1ay01130h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colorimetry is widely used in assay systems for its low-cost, ease-of-use, rapidity, moderate storage requirements and intuitively visible effects. However, the application is limited due to its relatively low sensitivity. Conventional colorimetric calibration methods often use a fixed incubation time that can limit the detection range, system robustness and sensitivity. In this paper, we used color saturation to measure the accumulation of product (correlation coefficient R2 = 0.9872), and we created a novel "calibration mesh" method based on an expanded sigmoid function to enhance sensitivity. The novel calibration mesh method can be adapted for a wide variety of assay systems to improve robustness and detection range, and provide a dynamic and faster output.
Collapse
Affiliation(s)
- Lin Tong
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL, 33174, USA.
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL, 33174, USA.
| |
Collapse
|
15
|
Edwards SH, Hassink MD, Taylor KM, Watson CH, Kuklenyik P, Kimbrell B, Wang L, Chen P, Valentín-Blasini L. Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smoke of Commercial Little Cigars. Chem Res Toxicol 2021; 34:1034-1045. [PMID: 33667338 DOI: 10.1021/acs.chemrestox.0c00367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cigars are among the broad variety of tobacco products that have not been as extensively studied and characterized as cigarettes. Small cigars wrapped in a tobacco-containing sheet, commonly referred to as little cigars, are a subcategory that are similar to conventional cigarettes with respect to dimensions, filters, and overall appearance. Tobacco-specific nitrosamines (TSNAs) are carcinogens in the tobacco used in both little cigars and cigarettes. This study uses a validated high-performance liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) method to measure the TSNAs 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) in the tobacco filler and the nonintense International Organization for Standardization smoking regimen, ISO 3308, and the newer ISO 20778 Cigarette Intensive (CI) smoking regimen mainstream smoke of 60 commercial little cigars. Tobacco filler NNK and NNN quantities ranged from 26 to 2950 and 1440 to 12 100 ng/g tobacco, respectively. NNK and NNN by the ISO nonintense smoking regimen ranged from 89 to 879 and 200 to 1540 ng/cigar, respectively; by the CI regimen, NNK and NNN ranged from 138 to 1570 and 445 to 2780 ng/cigar, respectively. The average transfer (%) for NNK and NNN from tobacco filler to mainstream smoke was 24% and 36% by the ISO nonintense and CI smoking regimens, respectively. By the ISO nonintense and CI smoking regimens, mainstream smoke NNK and NNN yields showed a moderate to strong correlation (ISO nonintense, R2 = 0.60-0.68, p < 0.0001; CI, R2 = 0.78-0.81, p < 0.0001) with tobacco filler NNK and NNN quantities. In addition, the mainstream smoke NNK and NNN yields of little cigars were determined to be 3- to 5-fold higher compared to previously tested commercial cigarettes. The mainstream smoke NNK and NNN yields have wide variation among commercial little cigars and suggest that, despite design similarities to cigarettes, machine-smoke yields of carcinogenic TSNAs are higher in little cigars.
Collapse
Affiliation(s)
- Selvin H Edwards
- Center for Tobacco Products, Food and Drug Administration, Beltsville, Maryland 20705, United States
| | - Matthew D Hassink
- Center for Tobacco Products, Food and Drug Administration, Beltsville, Maryland 20705, United States
| | - Kenneth M Taylor
- Center for Tobacco Products, Food and Drug Administration, Beltsville, Maryland 20705, United States
| | - Clifford H Watson
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, Georgia 30341, United States
| | - Peter Kuklenyik
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, Georgia 30341, United States
| | - Brett Kimbrell
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Liqun Wang
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, Georgia 30341, United States
| | - Patrick Chen
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Liza Valentín-Blasini
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, Georgia 30341, United States
| |
Collapse
|
16
|
Pennings JLA, Cremers JWJM, Becker MJA, Klerx WNM, Talhout R. Aldehyde and Volatile Organic Compound Yields in Commercial Cigarette Mainstream Smoke Are Mutually Related and Depend on the Sugar and Humectant Content in Tobacco. Nicotine Tob Res 2021; 22:1748-1756. [PMID: 31679033 PMCID: PMC7542651 DOI: 10.1093/ntr/ntz203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023]
Abstract
Introduction The World Health Organization (WHO) Framework Convention on Tobacco control recognizes the need for tobacco product regulation. In line with that, the WHO Study Group on Tobacco Product Regulation (TobReg) proposed to regulate nine toxicants in mainstream cigarette smoke, including aldehydes, volatile organic compounds (VOCs), and carbon monoxide (CO). We analyzed their relations in 50 commercially available cigarette brands, using two different smoking regimes, and their dependence on sugar and humectant concentrations in tobacco filler. Methods We measured sugar and humectant in tobacco filler and aldehydes, VOCs, and tar, nicotine, and CO (TNCO) in mainstream smoke. The general statistics, correlations between emission yields, and correlations between contents and emissions yields were determined for these data. Results For aldehydes, several significant correlations were found with precursor ingredients in unburnt tobacco when smoked with the Intense regime, most prominently for formaldehyde with sucrose, glucose, total sugars, and glycerol. For VOCs, 2,5-dimethylfuran significantly correlates with several sugars under both International Standards Organization (ISO) and Intense smoking conditions. A correlation network visualization shows connectivity between a sugar cluster, an ISO cluster, and an Intense cluster, with Intense formaldehyde as a central highest connected hub. Conclusions Our multivariate analysis showed several strong connections between the compounds determined. The toxicants proposed by WHO, in particular, formaldehyde, can be used to monitor yields of other toxicants under Intense conditions. Emissions of formaldehyde, acetaldehyde, acrolein, and 2,5-dimethylfuran may decrease when sugar and humectants contents are lowered in tobacco filler. Implications Our findings suggest that the aldehydes and VOCs proposed by TobReg are a representative selection for smoke component market monitoring purposes. In particular, formaldehyde yields may be useful to monitor emissions of other toxicants under Intense conditions. Since the most and strongest correlations were observed with the Intense regime, policymakers are advised to prescribe this regime for regulatory purposes. Policymakers should also consider sugars and humectants contents as targets for future tobacco product regulations, with the additional advantage that consumer acceptance of cigarette smoke is proportional to their concentrations in the tobacco blend.
Collapse
Affiliation(s)
- Jeroen L A Pennings
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, MA Bilthoven, The Netherlands
| | - Johannes W J M Cremers
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, MA Bilthoven, The Netherlands
| | - Mark J A Becker
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, MA Bilthoven, The Netherlands
| | - Walther N M Klerx
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, MA Bilthoven, The Netherlands
| | - Reinskje Talhout
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, MA Bilthoven, The Netherlands
| |
Collapse
|
17
|
Keith RJ, Fetterman JL, Orimoloye OA, Dardari Z, Lorkiewicz PK, Hamburg NM, DeFilippis AP, Blaha MJ, Bhatnagar A. Characterization of Volatile Organic Compound Metabolites in Cigarette Smokers, Electronic Nicotine Device Users, Dual Users, and Nonusers of Tobacco. Nicotine Tob Res 2020; 22:264-272. [PMID: 30759242 DOI: 10.1093/ntr/ntz021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Limited research exists about the possible cardiovascular effects of electronic nicotine delivery systems (ENDS). We therefore sought to compare exposure to known or potentially cardiotoxic volatile organic compounds (VOCs) in ENDS users, smokers, and dual users. METHODS A total of 371 individuals from the Cardiovascular Injury due to Tobacco Use study, a cross-sectional study of healthy participants aged 21-45 years, were categorized as nonusers of tobacco (n = 87), sole ENDS users (n = 17), cigarette smokers (n = 237), and dual users (n = 30) based on 30-day self-reported tobacco product use patterns. Participants provided urine samples for VOC and nicotine metabolite measurement. We assessed associations between tobacco product use and VOC metabolite measures using multivariable-adjusted linear regression models. RESULTS Mean (SD) age of the population was 32 (±6.8) years, 55% men. Mean urinary cotinine level in nonusers of tobacco was 2.6 ng/mg creatinine, whereas cotinine levels were similar across all tobacco product use categories (851.6-910.9 ng/mg creatinine). In multivariable-adjusted models, sole ENDS users had higher levels of metabolites of acrolein, acrylamide, acrylonitrile, and xylene compared with nonusers of tobacco, but lower levels of most VOC metabolites compared with cigarette smokers or dual users. In direct comparison of cigarettes smokers and dual users, we found lower levels of metabolites of styrene and xylene in dual users. CONCLUSION Although sole ENDS use may be associated with lower VOC exposure compared to cigarette smoking, further study is required to determine the potential health effects of the higher levels of certain reactive aldehydes, including acrolein, in ENDS users compared with nonusers of tobacco. IMPLICATIONS ENDS use in conjunction with other tobacco products may not significantly reduce exposure to VOC, but sole use does generally reduce some VOC exposure and warrants more in-depth studies.
Collapse
Affiliation(s)
- Rachel J Keith
- American Heart Association Tobacco, Regulation and Addiction Center, University of Louisville School of Medicine, Louisville, KY
| | - Jessica L Fetterman
- American Heart Association Tobacco, Regulation and Addiction Center, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Olusola A Orimoloye
- American Heart Association Tobacco, Regulation and Addiction Center, Ciccarone Center for the Prevention of Heart Disease, John Hopkins Hospital, Baltimore, MD
| | - Zeina Dardari
- American Heart Association Tobacco, Regulation and Addiction Center, Ciccarone Center for the Prevention of Heart Disease, John Hopkins Hospital, Baltimore, MD
| | - Pawel K Lorkiewicz
- American Heart Association Tobacco, Regulation and Addiction Center, University of Louisville School of Medicine, Louisville, KY
| | - Naomi M Hamburg
- American Heart Association Tobacco, Regulation and Addiction Center, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Andrew P DeFilippis
- American Heart Association Tobacco, Regulation and Addiction Center, University of Louisville School of Medicine, Louisville, KY
| | - Michael J Blaha
- American Heart Association Tobacco, Regulation and Addiction Center, Ciccarone Center for the Prevention of Heart Disease, John Hopkins Hospital, Baltimore, MD
| | - Aruni Bhatnagar
- American Heart Association Tobacco, Regulation and Addiction Center, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
18
|
Banožić M, Jokić S, Ačkar Đ, Blažić M, Šubarić D. Carbohydrates-Key Players in Tobacco Aroma Formation and Quality Determination. Molecules 2020; 25:E1734. [PMID: 32283792 PMCID: PMC7181196 DOI: 10.3390/molecules25071734] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/03/2023] Open
Abstract
Carbohydrates are important compounds in natural products where they primarily serve as a source of energy, but they have important secondary roles as precursors of aroma or bioactive compounds. They are present in fresh and dried (cured) tobacco leaves as well. The sugar content of tobacco depends on the tobacco variety, harvesting, and primarily on the curing conditions (temperature, time and moisture). If the process of curing employs high temperatures (flue-curing and sun-curing), final sugar content is high. In contrast, when air curing has a lower temperature, at the end of the process, sugar level is low. Beside simple sugars, other carbohydrates reported in tobacco are oligosaccharides, cellulose, starch, and pectin. Degradation of polysaccharides results in a higher yield of simple sugars, but at the same time reduces sugars oxidization and transfer into carbon dioxide and water. Loss of sugar producers will compensate with added sugars, to cover undesirable aroma properties and achieve a better, pleasant taste during smoking. However, tobacco carbohydrates can be precursors for many harmful compounds, including formaldehyde and 5-hydroxymethylfurfural. Keeping in mind that added sugars in tobacco production are unavoidable, it is important to understand all changes in carbohydrates from harvesting to consuming in order to achieve better product properties and avoid the formation of harmful compounds. This review summarizes current knowledge about tobacco carbohydrates, including changes during processing with special focus on carbohydrates as precursors of harmful compounds during smoking.
Collapse
Affiliation(s)
- Marija Banožić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.B.); (Đ.A.); (D.Š.)
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.B.); (Đ.A.); (D.Š.)
| | - Đurđica Ačkar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.B.); (Đ.A.); (D.Š.)
| | - Marijana Blažić
- Karlovac University of Applied Sciences, Josip Juraj Strossmayer Square 9, 47000 Karlovac, Croatia;
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.B.); (Đ.A.); (D.Š.)
| |
Collapse
|
19
|
In vitro mutagenicity of gas-vapour phase extracts from flavoured and unflavoured heated tobacco products. Toxicol Rep 2019; 6:1155-1163. [PMID: 31737489 PMCID: PMC6849343 DOI: 10.1016/j.toxrep.2019.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 11/23/2022] Open
Abstract
The in vitro mutagenic and genotoxic potential of Heated Tobacco Products (HTPs) has already been studied with the particulate phase and reported previously. This study has been designed to complement the in vitro assessment of the HTP and to determine whether the inclusion of potential flavourings would alter the in vitro response by testing the other phase of the aerosol, the gas-vapour phase (GVP). Both flavoured and unflavoured Neostik GVP samples did not show any sign of mutagenic activity in the Ames test but induced a mutagenic response in the mouse lymphoma assay (MLA), however, these responses were significantly less than those of the reference cigarette, 3R4F. The results demonstrated that GVP emissions of this HTP did not induce either new qualitative or quantitative mutagenic hazards compared to 3R4F, as assessed by the Ames test (no new responsive strains) and MLA (a lower mutagenic response), respectively. A statistical comparative analysis of the responses showed that the addition of flavourings that may thermally decompose under the conditions of use did not add to the in vitro baseline responses of the unflavoured Neostik.
Collapse
|
20
|
Oliveira da Silva AL, Bialous SA, Albertassi PGD, Arquete DADR, Fernandes AMMS, Moreira JC. The taste of smoke: tobacco industry strategies to prevent the prohibition of additives in tobacco products in Brazil. Tob Control 2019; 28:e92-e101. [PMID: 31152115 DOI: 10.1136/tobaccocontrol-2018-054892] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND The tobacco industry (TI) uses several strategies to attract new consumers, including using additives in tobacco products, which makes tobacco especially attractive to youth. Based on scientific evidence and the principles of the WHO Framework Convention on Tobacco Control, the Brazilian Health Regulatory Agency (ANVISA, for the name in Portuguese), published the Collegiate Board Resolution (RDC, for the name in Portuguese) 14/2012 in 2012, prohibiting the addition of substances that enhance the flavour and taste of tobacco products in order to make them more attractive. In response, the TI used various strategies to prevent RDC 14/2012 from entering into force. At the time, the Brazilian additive ban was the most comprehensive in the world as it included a ban on menthol. OBJECTIVES This paper analyses the arguments and strategies used by the TI to prevent the implementation of the additives ban. METHODS Review of published articles, reports, legislation and legislative activity, internal TI documents, media stories and other documents to describe TI's reaction to the ban. RESULTS The results show that the TI used some well-known strategies to delay or cancel the entering into force of the resolution. For example, the TI attempted political interference, used litigation and commissioned studies with findings that questioned the resolution's rationale. The TI strategies used in Brazil are similar to those used at the global level to oppose other tobacco control measures. CONCLUSIONS TI successfully delayed the most comprehensive additive ban in the world using its usual tactics, despite the fact that none of the arguments presented by the TI had an acceptable scientific basis or evidence.
Collapse
Affiliation(s)
- Andre Luiz Oliveira da Silva
- CESTEH, Escola Nacional de Saude Publica Sergio Arouca, Rio de Janeiro, RJ, Brazil .,Agencia Nacional de Vigilancia Sanitaria - ANVISA, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Josino Costa Moreira
- CESTEH, Escola Nacional de Saude Publica Sergio Arouca, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Crooks I, Neilson L, Scott K, Reynolds L, Oke T, Forster M, Meredith C, McAdam K, Proctor C. Evaluation of flavourings potentially used in a heated tobacco product: Chemical analysis, in vitro mutagenicity, genotoxicity, cytotoxicity and in vitro tumour promoting activity. Food Chem Toxicol 2018; 118:940-952. [PMID: 29879435 DOI: 10.1016/j.fct.2018.05.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
We designed a novel tobacco-heating product (THP) that heats tobacco to release nicotine and aerosolised components, such as glycerol and tobacco volatiles from a tobacco rod (Neostik). Heating tobacco significantly reduces levels of combustion-derived toxicants in the aerosol compared to cigarette smoke. This study was conducted to determine whether the inclusion of potential flavourings in the THP would add to the levels of toxicants in the emissions or alter in vitro responses. Levels of measured toxicants were similar in the flavoured and unflavoured Neostik emissions and significantly less than emissions from the reference cigarette, 3R4F. No mutagenicity was observed with the Neostiks in the Ames test or in the mouse lymphoma assay. There was evidence of a weak genotoxic response in the in vitro micronucleus test using V79 cells from both Neostiks and these responses were less than 3R4F. They did not show tumour-promoting potential in the Bhas 42 cell transformation assay and were not cytotoxic in the Neutral Red uptake assay. 3R4F elicited toxic responses in all assays at significantly lower concentrations. The addition of flavourings to the Neostik tested did not alter the chemical profile of THP emissions or change in vitro responses relative to the unflavoured Neostik.
Collapse
Affiliation(s)
- Ian Crooks
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK.
| | - Louise Neilson
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Ken Scott
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Lorna Reynolds
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Tobi Oke
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Mark Forster
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Clive Meredith
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Kevin McAdam
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Chris Proctor
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
22
|
Pauwels CG, Klerx WN, Pennings JL, Boots AW, van Schooten FJ, Opperhuizen A, Talhout R. Cigarette Filter Ventilation and Smoking Protocol Influence Aldehyde Smoke Yields. Chem Res Toxicol 2018; 31:462-471. [PMID: 29727173 PMCID: PMC6008735 DOI: 10.1021/acs.chemrestox.7b00342] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 11/29/2022]
Abstract
The WHO study group on tobacco product regulation (TobReg) advised regulating and lowering toxicant levels in cigarette smoke. Aldehydes are one of the chemical classes on the TobReg smoke toxicants priority list. To provide insight in factors determining aldehyde yields, the levels of 12 aldehydes in mainstream cigarette smoke of 11 Dutch brands were quantified. Variations in smoking behavior and cigarette design affecting human exposure to aldehydes were studied by using four different machine testing protocols. Machine smoking was based on the International Standardization Organization (ISO) and Health Canada Intense (HCI) regime, both with and without taping the filter vents. The 11 cigarette brands differed in (i) design and blend characteristics; (ii) tar, nicotine, and carbon monoxide (TNCO) levels; (iii) popularity; and (iv) manufacturer. Cigarette smoke was trapped on a Cambridge filter pad and carboxen cartridge. After being dissolved in methanol/CS2 and derivatization with DNPH, the aldehyde yields were determined using HPLC-DAD. Using an intense smoking regime (increased puff volume, shorter puff interval) significantly increased aldehyde yields, following the pattern: ISO < ISO-taped < HCI-untaped < HCI. For all of the regimes, acetaldehyde and acrolein yields were strongly correlated ( r = 0.804). The difference in TNCO and aldehyde levels between regular and highly ventilated low-TNCO cigarettes (as measured using ISO) diminished when smoking intensely; this effect is stronger when combined with taping filter vents. The highly ventilated low-TNCO brands showed six times more aldehyde production per mg nicotine for the intense smoking regimes. In conclusion, acetaldehyde and acrolein can be used as representatives for the class of volatile aldehydes for the different brands and smoking regimes. The aldehyde-to-nicotine ratio increased when highly ventilated cigarettes were smoked intensely, similar to real smokers. Thus, a smoker of highly ventilated low-TNCO cigarettes has an increased potential for higher aldehyde exposures compared to a smoker of regular cigarettes.
Collapse
Affiliation(s)
- Charlotte G.G.M. Pauwels
- Department
of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational
Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Centre
for Health Protection, National Institute
for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Walther N.M. Klerx
- Centre
for Health Protection, National Institute
for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Jeroen L.A. Pennings
- Centre
for Health Protection, National Institute
for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Agnes W. Boots
- Department
of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational
Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Frederik J. van Schooten
- Department
of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational
Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department
of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational
Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Office
of Risk Assessment and Research, Netherlands
Food and Consumer Product Safety Authority (NVWA), P.O. Box 8433, 3503 RK Utrecht, The Netherlands
| | - Reinskje Talhout
- Centre
for Health Protection, National Institute
for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
23
|
Kassem NOF, Kassem NO, Liles S, Zarth AT, Jackson SR, Daffa RM, Chatfield DA, Carmella SG, Hecht SS, Hovell MF. Acrolein Exposure in Hookah Smokers and Non-Smokers Exposed to Hookah Tobacco Secondhand Smoke: Implications for Regulating Hookah Tobacco Products. Nicotine Tob Res 2018; 20:492-501. [PMID: 28591850 PMCID: PMC5896480 DOI: 10.1093/ntr/ntx133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/05/2017] [Indexed: 12/31/2022]
Abstract
Introduction Acrolein is a highly ciliatoxic agent, a toxic respiratory irritant, a cardiotoxicant, and a possible carcinogen present in tobacco smoke including hookah tobacco. Methods 105 hookah smokers and 103 non-smokers attended exclusively hookah smoking social events at either a hookah lounge or private home, and provided urine samples the morning of and the morning after the event. Samples were analyzed for 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of acrolein. Results Geometric mean (GM) urinary 3-HPMA levels in hookah smokers and non-smokers exposed to secondhand smoke (SHS) increased significantly, 1.41 times, 95% CI = 1.15 to 1.74 and 1.39 times, 95% CI = 1.16 to 1.67, respectively, following a hookah social event. The highest increase (1.68 times, 95% CI = 1.15 to 2.45; p = 0.007) in 3-HPMA post a hookah social event was among daily hookah smokers (GM, from 1991 pmol/mg to 3348 pmol/mg). Pre-to-post event change in urinary 3-HPMA was significantly positively correlated with pre-to-post event change in urinary cotinine among hookah smokers at either location of hookah event, (ρ = 0.359, p = 0.001), and among non-smokers in hookah lounges (ρ = 0.369, p = 0.012). Conclusions Hookah tobacco smoke is a source of acrolein exposure. Findings support regulating hookah tobacco products including reducing humectants and sugar additives, which are precursors of acrolein under certain pyrolysis conditions. We suggest posting health warning signs for indoor smoking in hookah lounges, and encouraging voluntary bans of smoking hookah tobacco in private homes. Implications Our study is the first to quantify the increase in acrolein exposure in hookah smokers and non-smokers exposed to exclusively hookah tobacco SHS at hookah social events in homes or hookah lounges. Our findings provide additional support for regulating hookah tobacco product content, protecting non-smokers' health by posting health warning signs for indoor smoking in hookah lounges, and encouraging home bans on hookah tobacco smoking to safeguard vulnerable residents.
Collapse
Affiliation(s)
- Nada O F Kassem
- Center for Behavioral Epidemiology and Community Health (CBEACH), Graduate School of Public Health, Division of Health Promotion, San Diego State University, San Diego, CA, USA
| | - Noura O Kassem
- Center for Behavioral Epidemiology and Community Health (CBEACH), Graduate School of Public Health, Division of Health Promotion, San Diego State University, San Diego, CA, USA
| | - Sandy Liles
- Center for Behavioral Epidemiology and Community Health (CBEACH), Graduate School of Public Health, Division of Health Promotion, San Diego State University, San Diego, CA, USA
| | - Adam T Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sheila R Jackson
- Center for Behavioral Epidemiology and Community Health (CBEACH), Graduate School of Public Health, Division of Health Promotion, San Diego State University, San Diego, CA, USA
| | - Reem M Daffa
- Center for Behavioral Epidemiology and Community Health (CBEACH), Graduate School of Public Health, Division of Health Promotion, San Diego State University, San Diego, CA, USA
| | - Dale A Chatfield
- San Diego State University Department of Chemistry, San Diego, CA, USA
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Melbourne F Hovell
- Center for Behavioral Epidemiology and Community Health (CBEACH), Graduate School of Public Health, Division of Health Promotion, San Diego State University, San Diego, CA, USA
| |
Collapse
|
24
|
Eaton D, Jakaj B, Forster M, Nicol J, Mavropoulou E, Scott K, Liu C, McAdam K, Murphy J, Proctor CJ. Assessment of tobacco heating product THP1.0. Part 2: Product design, operation and thermophysical characterisation. Regul Toxicol Pharmacol 2017; 93:4-13. [PMID: 29080851 DOI: 10.1016/j.yrtph.2017.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/14/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
A novel tobacco heating product, THP1.0, that heats tobacco below 245 °C is described. It was designed to eliminate tobacco combustion, while heating tobacco to release nicotine, tobacco volatiles and glycerol to form its aerosol. The stewardship assessment approach behind the THP 1.0 design was based on established toxicological principles. Thermophysical studies were conducted to examine the extent of tobacco thermal conversion during operation. Thermogravimetric analysis of the tobacco material revealed the major thermal behaviour in air and nitrogen up to 900 °C. This, combined with the heating temperature profiling of the heater and tobacco rod, verified that the tobacco was not subject to combustion. The levels of tobacco combustion markers (CO, CO2, NO and NOx) in the aerosol of THP1.0 were significantly lower than the levels if there were any significant pyrolysis or combustion. Quantification of other tobacco thermal decomposition and evaporative transfer markers showed that these levels were, on average, reduced by more than 90% in THP1.0 aerosol as compared with cigarette smoke. The physical integrity of the tobacco consumable rod showed no ashing. Taken together, these data establish that the aerosol generated by THP1.0 is produced mainly by evaporation and distillation, and not by combustion or pyrolysis.
Collapse
Affiliation(s)
- Dan Eaton
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Blerta Jakaj
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Mark Forster
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - James Nicol
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Eleni Mavropoulou
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Kenneth Scott
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Chuan Liu
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK.
| | - Kevin McAdam
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - James Murphy
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| | - Christopher J Proctor
- Research and Development, British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire SO15 8TL, UK
| |
Collapse
|
25
|
Paumgartten FJR, Gomes-Carneiro MR, Oliveira ACAXD. The impact of tobacco additives on cigarette smoke toxicity: a critical appraisal of tobacco industry studies. CAD SAUDE PUBLICA 2017; 33Suppl 3:e00132415. [PMID: 28954055 DOI: 10.1590/0102-311x00132415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Cigarette production involves a number of substances and materials other than just tobacco, paper and a filter. Tobacco additives include flavorings, enhancers, humectants, sugars, and ammonium compounds. Although companies maintain that tobacco additives do not enhance smoke toxicity and do not make cigarettes more attractive or addictive, these claims are questioned by independent researchers. This study reviewed the studies on the effects of tobacco additives on smoke chemistry and toxicity. Tobacco additives lead to higher levels of formaldehyde and minor changes in other smoke analytes. Toxicological studies (bacterial mutagenicity and mammalian cytoxicity tests, rat 90 days inhalation studies and bone-marrow cell micronucleus assays) found that tobacco additives did not enhance smoke toxicity. Rodent assays, however, poorly predicted carcinogenicity of tobacco smoke, and were clearly underpowered to disclose small albeit toxicologically relevant differences between test (with tobacco additives) and control (without tobacco additives) cigarettes. This literature review led to the conclusion that the impact of tobacco additives on tobacco smoke harmfulness remains unclear.
Collapse
|
26
|
Reilly SM, Goel R, Trushin N, Elias RJ, Foulds J, Muscat J, Liao J, Richie JP. Brand variation in oxidant production in mainstream cigarette smoke: Carbonyls and free radicals. Food Chem Toxicol 2017; 106:147-154. [PMID: 28528972 PMCID: PMC5532802 DOI: 10.1016/j.fct.2017.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
Oxidative stress/damage resulting from exposure to cigarette smoke plays a critical role in the development of tobacco-caused diseases. Carbonyls and free radicals are two major classes of oxidants in tobacco smoke. There is little information on the combined delivery of these oxidants across different cigarette brands; thus, we set out to measure and compare their levels in mainstream smoke from popular US cigarettes. Mainstream smoke from 28 different cigarette brands produced by smoking (FTC protocol) was analyzed for five important, abundant carbonyls, and levels were compared to previously determined free radical for the same brands. Overall, there were large variations (3- to 6-fold) in carbonyl levels across brands with total carbonyl levels ranging from 275 to 804 μg/cigarette, which persisted even after adjusting for ventilation. Individual carbonyl levels were highly correlated with each other (r2: 0.40-0.95, P < 0.003) except for formaldehyde. Both gas-phase (r2: 0.37, P = 0.006) and particulate-phase (r2: 0.27, P = 0.005) free radicals were correlated to total carbonyl content; however, this correlation disappeared after adjusting for ventilation. These data show that overall oxidant production varies widely by cigarette brand and the resulting difference in oxidant burden could potentially lead to differences in disease risk.
Collapse
Affiliation(s)
- Samantha M Reilly
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Reema Goel
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Neil Trushin
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ryan J Elias
- Department of Food Science, Pennsylvania State University, College of Agricultural Sciences, University Park, PA, United States
| | - Jonathan Foulds
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joshua Muscat
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, PA, United States.
| |
Collapse
|
27
|
Sotiriou I, Chalkiadaki K, Nikolaidis C, Sidiropoulou K, Chatzaki E. Pharmacotherapy in smoking cessation: Corticotropin Releasing Factor receptors as emerging intervention targets. Neuropeptides 2017; 63:49-57. [PMID: 28222901 DOI: 10.1016/j.npep.2017.02.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
Smoking represents perhaps the single most important health risk factor and a global contributor to mortality that can unquestionably be prevented. Smoking is responsible for many diseases, including various types of cancer, chronic obstructive pulmonary disease, coronary heart disease, peripheral vascular disease and peptic ulcer, while it adversely affects fetal formation and development. Since smoking habit duration is a critical factor for mortality, the goal of treatment should be its timely cessation and relapse prevention. Drug intervention therapy is an important ally in smoking cessation. Significant positive steps have been achieved in the last few years in the development of supportive compounds. In the present review, we analyze reports studying the role of Corticotropin Releasing Factor (CRF), the principle neuroendocrine mediator of the stress response and its two receptors (CRF1 and CRF2) in the withdrawal phase as well as in the abstinence from nicotine use. Although still in pre-clinical evaluation, therapeutic implications of these data were investigated in order to highlight potential pharmaceutical interventions.
Collapse
Affiliation(s)
- Ioannis Sotiriou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Christos Nikolaidis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| |
Collapse
|
28
|
Elucidation of the aroma compositions of Zhenjiang aromatic vinegar using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry and gas chromatography-olfactometry. J Chromatogr A 2017; 1487:218-226. [DOI: 10.1016/j.chroma.2017.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 11/18/2022]
|
29
|
Edwards SH, Rossiter LM, Taylor KM, Holman MR, Zhang L, Ding YS, Watson CH. Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smoke of U.S. Commercial Cigarettes. Chem Res Toxicol 2017; 30:540-551. [PMID: 28001416 PMCID: PMC5318265 DOI: 10.1021/acs.chemrestox.6b00268] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tobacco-specific nitrosamines (TSNAs) are N-nitroso-derivatives of pyridine-alkaloids (e.g., nicotine) present in tobacco and cigarette smoke. Two TSNAs, N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are included on the Food and Drug Administration's list of harmful and potentially harmful constituents (HPHCs) in tobacco products and tobacco. The amounts of four TSNAs (NNK, NNN, N-nitrosoanabasine (NAB), and N'-nitrosoanatabine (NAT)) in the tobacco and mainstream smoke from 50 U.S. commercial cigarette brands were measured from November 15, 2011 to January 4, 2012 using a validated HPLC/MS/MS method. Smoke samples were generated using the International Organization of Standardization (ISO) and Canadian Intense (CI) machine-smoking regimens. NNN and NAT were the most abundant TSNAs in tobacco filler and smoke across all cigarette brands, whereas NNK and NAB were present in lesser amounts. The average ratios for each TSNA in mainstream smoke to filler content is 29% by the CI smoking regimen and 13% for the ISO machine-smoking regimen. The reliability of individual TSNAs to predict total TSNA amounts in the filler and smoke was examined. NNN, NAT, and NAB have a moderate to high correlation (R2 = 0.61-0.98, p < 0.0001), and all three TSNAs individually predict total TSNAs with minimal difference between measured and predicted total TSNA amounts (error < 7.4%). NNK has weaker correlation (R2 = 0.56-0.82; p < 0.0001) and is a less reliable predictor of total TSNA quantities. Tobacco weight and levels of TSNAs in filler influence TSNA levels in smoke from the CI machine-smoking regimen. In contrast, filter ventilation is a major determinant of levels of TSNAs in smoke by the ISO machine-smoking regimen. Comparative analysis demonstrates substantial variability in TSNA amounts in tobacco filler and mainstream smoke yields under ISO and CI machine-smoking regimens among U.S. commercial cigarette brands.
Collapse
Affiliation(s)
- Selvin H. Edwards
- Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD, USA, 20850
| | - Lana M. Rossiter
- Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD, USA, 20850
| | - Kenneth M. Taylor
- Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD, USA, 20850
| | - Matthew R. Holman
- Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD, USA, 20850
| | - Liqin Zhang
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, GA, 30341
| | - Yan S. Ding
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, GA, 30341
| | - Clifford H. Watson
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, GA, 30341
| |
Collapse
|
30
|
Kienhuis AS, Staal YCM, Soeteman-Hernández LG, van de Nobelen S, Talhout R. A test strategy for the assessment of additive attributed toxicity of tobacco products. Food Chem Toxicol 2016; 94:93-102. [PMID: 27155068 DOI: 10.1016/j.fct.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
The new EU Tobacco Product Directive (TPD) prohibits tobacco products containing additives that are toxic in unburnt form or that increase overall toxicity of the product. This paper proposes a strategy to assess additive attributed toxicity in the context of the TPD. Literature was searched on toxicity testing strategies for regulatory purposes from tobacco industry and governmental institutes. Although mainly traditional in vivo testing strategies have been applied to assess toxicity of unburnt additives and increases in overall toxicity of tobacco products due to additives, in vitro tests combined with toxicogenomics and validated using biomarkers of exposure and disease are most promising in this respect. As such, tests are needed that are sensitive enough to assess additive attributed toxicity above the overall toxicity of tobacco products, which can associate assay outcomes to human risk and exposure. In conclusion, new, sensitive in vitro assays are needed to conclude whether comparable testing allows for assessment of small changes in overall toxicity attributed to additives. A more pragmatic approach for implementation on a short-term is mandated lowering of toxic emission components. Combined with risk assessment, this approach allows assessment of effectiveness of harm reduction strategies, including banning or reducing of additives.
Collapse
Affiliation(s)
- Anne S Kienhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Yvonne C M Staal
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Lya G Soeteman-Hernández
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Suzanne van de Nobelen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Reinskje Talhout
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
31
|
Alwis KU, deCastro BR, Morrow JC, Blount BC. Acrolein Exposure in U.S. Tobacco Smokers and Non-Tobacco Users: NHANES 2005-2006. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1302-8. [PMID: 26024353 PMCID: PMC4671235 DOI: 10.1289/ehp.1409251] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/27/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Acrolein is a highly reactive α,β unsaturated aldehyde and respiratory irritant. Acrolein is formed during combustion (e.g., burning tobacco or biomass), during high-temperature cooking of foods, and in vivo as a product of oxidative stress and polyamine metabolism. No biomonitoring reference data have been reported to characterize acrolein exposure for the U.S. OBJECTIVES Our goals were to a) evaluate two acrolein metabolites in urine--N-acetyl-S-(3-hydroxypropyl)-L-cysteine (3HPMA) and N-acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA)--as biomarkers of exposure to acrolein for the U.S. population by age, sex, race, and smoking status; and b) assess tobacco smoke as a predictor of acrolein exposure. METHODS We analyzed urine from National Health and Nutrition Examination Survey (NHANES 2005-2006) participants ≥ 12 years old (n = 2,866) for 3HPMA and CEMA using ultra-high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC/ESI-MSMS). Sample-weighted linear regression models stratified for non-tobacco users versus tobacco smokers (as defined by serum cotinine and self-report) characterized the association of urinary 3HPMA and CEMA with tobacco smoke exposure, adjusting for urinary creatinine, sex, age, and race/ethnicity. RESULTS 3HPMA and CEMA levels were higher among tobacco smokers (cigarettes, cigars, and pipe users) than among non-tobacco users. The median 3HPMA levels for tobacco smokers and non-tobacco users were 1,089 and 219 μg/g creatinine, respectively. Similarly, median CEMA levels were 203 μg/g creatinine for tobacco smokers and 78.8 μg/g creatinine for non-tobacco users. Regression analysis showed that serum cotinine was a significant positive predictor (p < 0.0001) of both 3HPMA and CEMA among tobacco smokers. CONCLUSIONS Tobacco smoke was a significant predictor of acrolein exposure in the U.S. population.
Collapse
Affiliation(s)
- K Udeni Alwis
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
32
|
Tassew Z, Chandravanshi BS. Levels of nicotine in Ethiopian tobacco leaves. SPRINGERPLUS 2015; 4:649. [PMID: 26543783 PMCID: PMC4628019 DOI: 10.1186/s40064-015-1448-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022]
Abstract
Tobacco is a valuable cash crop. It is the most widely grown non-food crop in the world. Tobacco use is widespread due to its addictive nature of its main constituent nicotine. Therefore, the knowledge of nicotine level in tobacco is important to tobacco industry and in the area of toxicology to control its harmful effect on health. There is no report in the literature on nicotine level of Ethiopian raw (unprocessed) tobacco leaves. Hence, the objective of this study is to determine the levels of nicotine in the Ethiopian tobacco leaves. Samples were collected based on their leaves positions, species and place of cultivation from different regions of Ethiopia. These were Virginia type tobacco from Shewa Robit and Billate, Burley and Oriental types of tobacco from Awassa and native tobacco used as pipe smoking (Gaya) from Wollayita. The level of nicotine in four different varieties of Ethiopian tobacco leaves was determined using high performance liquid chromatography. The level of nicotine in the four different varieties of Ethiopian tobacco were Virginia tobacco (3.26 %), the native tobacco ‘Gaya’ (1.10 %), Burley tobacco (0.650 %), and Oriental tobacco leaves (≤0.0500 %). It was found that the nicotine level of Ethiopian Virginia tobacco leaves increases from bottom to top leaf (stalk) positions of the tobacco plant. It was also found that the nicotine level of Ethiopian tobacco leaves varies in different species and the nicotine level of the same tobacco species differ in different area of cultivation. In general, the level of nicotine in Ethiopian tobacco is comparable with that in the rest of the world.
Collapse
Affiliation(s)
- Zebasil Tassew
- Quality Control Department, Ethiopian Pharmaceuticals Manufacturing Sh. Co. (Epharm), P.O. Box 2457, Addis Ababa, Ethiopia ; Department of Chemistry, Bahir Dar University, P.O. Box 79 Bahir Dar, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
33
|
Kichko TI, Kobal G, Reeh PW. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx. Am J Physiol Lung Cell Mol Physiol 2015; 309:L812-20. [PMID: 26472811 PMCID: PMC4609941 DOI: 10.1152/ajplung.00164.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/16/2015] [Indexed: 02/08/2023] Open
Abstract
Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1(-/-) and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1(-/-) and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research.
Collapse
Affiliation(s)
- Tatjana I Kichko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Gerd Kobal
- Altria Client Services Inc., Richmond, Virginia
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; and
| |
Collapse
|
34
|
Paschke M, Hutzler C, Henkler F, Luch A. Toward the stereochemical identification of prohibited characterizing flavors in tobacco products: the case of strawberry flavor. Arch Toxicol 2015; 89:1241-55. [PMID: 26138682 DOI: 10.1007/s00204-015-1558-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
With the revision of the European Tobacco Products Directive (2014/40/EU), characterizing flavors such as strawberry, candy, vanillin or chocolate will be prohibited in cigarettes and fine-cut tobacco. Product surveillance will therefore require analytical means to define and subsequently detect selected characterizing flavors that are formed by supplemented flavors within the complex matrix tobacco. We have analyzed strawberry-flavored tobacco products as an example for characterizing fruit-like aroma. Using this approach, we looked into aroma components to find indicative patterns or features that can be used to satisfy obligatory product information as requested by the European Directive. Accordingly, a headspace solid-phase microextraction (HS-SPME) technique was developed and coupled to subsequent gas chromatography-mass spectrometry (GC/MS) to characterize different strawberry-flavored tobacco products (cigarettes, fine-cut tobacco, liquids for electronic cigarettes, snus, shisha tobacco) for their volatile additives. The results were compared with non-flavored, blend characteristic flavored and other fruity-flavored cigarettes, as well as fresh and dried strawberries. Besides different esters and aldehydes, the terpenes linalool, α-terpineol, nerolidol and limonene as well as the lactones γ-decalactone, γ-dodecalactone and γ-undecalactone could be verified as compounds sufficient to convey some sort of strawberry flavor to tobacco. Selected flavors, i.e., limonene, linalool, α-terpineol, citronellol, carvone and γ-decalactone, were analyzed further with respect to their stereoisomeric composition by using enantioselective HS-SPME-GC/MS. These experiments confirmed that individual enantiomers that differ in taste or physiological properties can be distinguished within the tobacco matrix. By comparing the enantiomeric composition of these compounds in the tobacco with that of fresh and dried strawberries, it can be concluded that non-natural strawberry aroma is usually used to produce strawberry-flavored tobacco products. Such authenticity control can become of interest particularly when manufacturers claim that natural sources were used for flavoring of products. Although the definition of characterizing flavors by analytical means remains challenging, specific compounds or features are required to be defined for routine screening of reported information. Clarifications by sensory testing might still be necessary, but could be limited to a few preselected samples.
Collapse
Affiliation(s)
- Meike Paschke
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany,
| | | | | | | |
Collapse
|
35
|
Nesil T, Kanit L, Pogun S. Bitter taste and nicotine preference: evidence for sex differences in rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2014; 41:57-67. [DOI: 10.3109/00952990.2014.990091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Piadé JJ, Roemer E, Dempsey R, Hornig G, Deger Evans A, Völkel H, Schramke H, Trelles-Sticken E, Wittke S, Weber S, Schorp MK. Toxicological assessment of kretek cigarettes: Part 2: kretek and American-blended cigarettes, smoke chemistry and in vitro toxicity. Regul Toxicol Pharmacol 2014; 70 Suppl 1:S15-25. [PMID: 25497993 DOI: 10.1016/j.yrtph.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/29/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Two commercial kretek cigarettes typical for the Indonesian market and a reference kretek cigarette were compared to the American-blended reference cigarette 2R4F by smoke chemistry characterization and in vitro cytotoxicity and mutagenicity assessments. Despite the widely diverse designs and deliveries of the selected kretek cigarettes, their smoke composition and in vitro toxicity data present a consistent pattern when data were normalized to total particulate matter (TPM) deliveries. This confirms the applicability of the studies' conclusions to a wide range of kretek cigarette products. After normalization to TPM delivery, nicotine smoke yields of kretek cigarettes were 29-46% lower than that of the 2R4F. The yields of other nitrogenous compounds were also much lower, less than would be expected from the mere substitution of one third of the tobacco filler by clove material. Yields of light molecular weight pyrolytic compounds, notably aldehydes and hydrocarbons, were reduced, while yields of polycyclic aromatic hydrocarbons were unchanged and phenol yield was increased. The normalized in vitro toxicity was lowered accordingly, reflecting the yield reductions in gas-phase cytotoxic compounds and some particulate-phase mutagenic compounds. These results do not support a higher toxicity of the smoke of kretek cigarettes compared to American-blended cigarettes.
Collapse
Affiliation(s)
- J-J Piadé
- Philip Morris International, Philip Morris Products SA, Rue des Usines 90, 2000 Neuchâtel, Switzerland
| | - E Roemer
- Philip Morris International, Philip Morris Products SA, Rue des Usines 90, 2000 Neuchâtel, Switzerland
| | - R Dempsey
- Philip Morris International, Philip Morris Products SA, Rue des Usines 90, 2000 Neuchâtel, Switzerland.
| | - G Hornig
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - A Deger Evans
- Philip Morris International, Philip Morris Products SA, Quai Jeanrenaud 56, 2000 Neuchâtel, Switzerland
| | - H Völkel
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - H Schramke
- Philip Morris International, Philip Morris Products SA, Rue des Usines 90, 2000 Neuchâtel, Switzerland
| | - E Trelles-Sticken
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - S Wittke
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - S Weber
- Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - M K Schorp
- Philip Morris International, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
37
|
Investigating predictability of in vitro toxicological assessments of cigarettes: Analysis of 7years of regulatory submissions to Canadian regulatory authorities. Regul Toxicol Pharmacol 2014; 68:222-30. [DOI: 10.1016/j.yrtph.2013.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 11/21/2022]
|
38
|
Gonzalez-Suarez I, Sewer A, Walker P, Mathis C, Ellis S, Woodhouse H, Guedj E, Dulize R, Marescotti D, Acali S, Martin F, Ivanov NV, Hoeng J, Peitsch MC. Systems biology approach for evaluating the biological impact of environmental toxicants in vitro. Chem Res Toxicol 2014; 27:367-76. [PMID: 24428674 DOI: 10.1021/tx400405s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to cigarette smoke is a leading cause of lung diseases including chronic obstructive pulmonary disease and cancer. Cigarette smoke is a complex aerosol containing over 6000 chemicals and thus it is difficult to determine individual contributions to overall toxicity as well as the molecular mechanisms by which smoke constituents exert their effects. We selected three well-known harmful and potentially harmful constituents (HPHCs) in tobacco smoke, acrolein, formaldehyde and catechol, and established a high-content screening method using normal human bronchial epithelial cells, which are the first bronchial cells in contact with cigarette smoke. The impact of each HPHC was investigated using 13 indicators of cellular toxicity complemented with a microarray-based whole-transcriptome analysis followed by a computational approach leveraging mechanistic network models to identify and quantify perturbed molecular pathways. HPHCs were evaluated over a wide range of concentrations and at different exposure time points (4, 8, and 24 h). By high-content screening, the toxic effects of the three HPHCs could be observed only at the highest doses. Whole-genome transcriptomics unraveled toxicity mechanisms at lower doses and earlier time points. The most prevalent toxicity mechanisms observed were DNA damage/growth arrest, oxidative stress, mitochondrial stress, and apoptosis/necrosis. A combination of multiple toxicological end points with a systems-based impact assessment allows for a more robust scientific basis for the toxicological assessment of HPHCs, allowing insight into time- and dose-dependent molecular perturbations of specific biological pathways. This approach allowed us to establish an in vitro systems toxicology platform that can be applied to a broader selection of HPHCs and their mixtures and can serve more generally as the basis for testing the impact of other environmental toxicants on normal bronchial epithelial cells.
Collapse
Affiliation(s)
- Ignacio Gonzalez-Suarez
- Philip Morris International R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Soeteman-Hernández LG, Bos PMJ, Talhout R. Tobacco smoke-related health effects induced by 1,3-butadiene and strategies for risk reduction. Toxicol Sci 2013; 136:566-80. [PMID: 24014643 PMCID: PMC3858188 DOI: 10.1093/toxsci/kft194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022] Open
Abstract
1,3-Butadiene (BD) is a smoke component selected by the World Health Organization (WHO) study group on Tobacco Product Regulation (TobReg) for mandated lowering. We examined the tobacco smoke-related health effects induced by BD and possible health impacts of risk reduction strategies. BD levels in mainstream smoke (MSS) from international and Canadian cigarettes and environmental tobacco smoke (ETS) were derived from scientific journals and international government reports. Dose-response analyses from toxicity studies from government reports were evaluated and the most sensitive cancer and noncancer endpoints were selected. The risks were evaluated by taking the ratio (margin of exposure, MOE) from the most sensitive toxicity endpoint and appropriate exposure estimates for BD in MSS and ETS. BD is a good choice for lowering given that MSS and ETS were at levels for cancer (leukemia) and noncancer (ovarian atrophy) risks, and the risks can be significantly lowered when lowering the BD concentrations in smoke. Several risk reduction strategies were analyzed including a maximum level of 125% of the median BD value per milligram nicotine obtained from international brands as recommended by the WHO TobReg, tobacco substitute sheets, dual and triple carbon filters, and polymer-derived carbon. The use of tobacco substitute sheet with a polymer-derived carbon filter resulted in the most significant change in risk for cancer and noncancer effects. Our results demonstrate that MOE analysis might be a practical way to assess the impact of risk reduction strategies on human health in the future.
Collapse
Affiliation(s)
| | - Peter M. J. Bos
- †Centre for Substance and Product Safety, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
40
|
Shintu L, Caldarelli S, Campredon M. HRMAS NMR spectroscopy combined with chemometrics as an alternative analytical tool to control cigarette authenticity. Anal Bioanal Chem 2013; 405:9093-100. [PMID: 24057027 DOI: 10.1007/s00216-013-7354-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 11/29/2022]
Abstract
In this paper, we present for the first time the use of high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy combined with chemometrics as an alternative tool for the characterization of tobacco products from different commercial international brands as well as for the identification of counterfeits. Although cigarette filling is a very complex chemical mixture, we were able to discriminate between dark, bright, and additive-free cigarette blends belonging to six different filter-cigarette brands, commercially available, using an approach for which no extraction procedure is required. Second, we focused our study on a specific worldwide-distributed brand for which established counterfeits were available. We discriminated those from their genuine counterparts with 100% accuracy using unsupervised multivariate statistical analysis. The counterfeits that we analyzed showed a higher amount of nicotine and solanesol and a lower content of sugars, all endogenous tobacco leaf metabolites. This preliminary study demonstrates the great potential of HRMAS NMR spectroscopy to help in controlling cigarette authenticity.
Collapse
Affiliation(s)
- Laetitia Shintu
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2-UMR 7313, 13397, Marseille, France,
| | | | | |
Collapse
|
41
|
Kichko TI, Lennerz J, Eberhardt M, Babes RM, Neuhuber W, Kobal G, Reeh PW. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons. J Pharmacol Exp Ther 2013; 347:529-39. [PMID: 23926288 DOI: 10.1124/jpet.113.205971] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.
Collapse
Affiliation(s)
- Tatjana I Kichko
- Institute of Physiology and Pathophysiology (T.I.K., J.L., M.E., R.M.B., P.W.R.) and Institute of Anatomy I (W.N.), Friedrich-Alexander-University, Erlangen, Germany; Institute of Pathology, University of Ulm, Ulm, Germany (J.L.); Department of Biophysics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania (R.M.B.); Department of Anesthesiology and Intensive Care, Hannover Medical School, Hannover, Germany (M.E.); and Altria Client Services, Inc., Richmond, Virginia (G.K.)
| | | | | | | | | | | | | |
Collapse
|
42
|
Piadé JJ, Wajrock S, Jaccard G, Janeke G. Formation of mainstream cigarette smoke constituents prioritized by the World Health Organization--yield patterns observed in market surveys, clustering and inverse correlations. Food Chem Toxicol 2013; 55:329-47. [PMID: 23357567 DOI: 10.1016/j.fct.2013.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
Abstract
The WHO TobReg proposed mandating ceilings on selected smoke constituents determined from the market-specific median of nicotine-normalized yield distributions. Data validating this regulatory concept were obtained from essentially single-blend surveys. This process is strongly impacted by inverse correlations among yields. In the present study, 18 priority WHO smoke constituent yields (nicotine-normalized) were determined (using two smoking regimens) from 262 commercial brands including American, Virginia and local blends from 13 countries. Principal Component Analysis was used to identify yields patterns, clustering of blend types and the inverse correlations causing these clusters. Three principal components explain about 75% of total data variability. PC1 was sensitive to the relative levels of gas- and particle-phase compounds. PC2 and PC3 cluster American- and Virginia-blends, revealing inverse correlations: Nitrogen oxides and amino- or nitroso-aromatic compounds inversely correlate to either formaldehyde and acrolein, or benzo(a)pyrene and di-hydroxybenzenes. These results can be explained by reviewing the processes determining each components smoke delivery. Regulatory initiatives simultaneously targeting selected smoke constituents in markets with mixed blend styles will be strongly impacted by the inverse correlations described. It is difficult to predict the ultimate impact of such regulations on public health, considering the complex chemistry of cigarette smoke formation.
Collapse
Affiliation(s)
- J-J Piadé
- Philip Morris International R&D, Philip Morris Products S.A., Rue des Usines 90, 2000 Neuchâtel, Switzerland.
| | | | | | | |
Collapse
|
43
|
Oldham MJ, Coggins CRE, McKinney WJ. A comprehensive evaluation of selected components and processes used in the manufacture of cigarettes: approach and overview. Inhal Toxicol 2013; 25 Suppl 2:1-5. [PMID: 24341842 DOI: 10.3109/08958378.2013.854429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT In addition to tobacco and cigarette ingredients, there are many non-tobacco components and processes used to manufacture commercial cigarettes. Proposed cigarette components and manufacturing process changes were evaluated using a tiered toxicological testing program. OBJECTIVE The toxicological testing and evaluation of proposed changes to selected non-tobacco cigarette components and manufacturing processes are described in this special report. MATERIALS AND METHODS Selected non-tobacco cigarette components and manufacturing processes were evaluated using experimental and control cigarettes. These experimental cigarettes were evaluated using mainstream smoke chemistry, bacterial mutagenicity and cytotoxicity assays. In some evaluations, 90-day nose-only mainstream smoke inhalation studies using rats were performed. RESULTS Some proposed design changes were not implemented, or limitations on their use were established. Most study results, however, were similar to those previously reported in the scientific literature for design changes in cigarette construction. CONCLUSION The studies reported in the series of publication demonstrate that our testing approach is feasible for evaluation of cigarette component and manufacturing process changes.
Collapse
Affiliation(s)
- Michael J Oldham
- Regulatory Affairs, Altria Client Services Inc. , Richmond, VA , USA and
| | | | | |
Collapse
|
44
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:429-34. [PMID: 22931856 DOI: 10.1097/med.0b013e328358c698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|