1
|
Luis E, Conde-Maldonado V, García-Nieto E, Juárez-Santacruz L, Alvarado M, Anaya-Hernández A. Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D. J Xenobiot 2024; 14:1450-1464. [PMID: 39449422 PMCID: PMC11503356 DOI: 10.3390/jox14040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Exposure to pesticides such as paraquat and 2,4-dichlorophenoxyacetic acid (2,4-D) has been linked to harmful health effects, including alterations in male reproduction. Both herbicides are widely used in developing countries and have been associated with reproductive alterations, such as disruption of spermatogenesis and steroidogenesis. The thyroid axis and Ca2+-permeable ion channels play a key role in these processes, and their disruption can lead to reproductive issues and even infertility. This study evaluated the short-term effects of exposure to commercial herbicides based on paraquat and 2,4-D on gene expression in rat testes. At the molecular level, exposure to paraquat increased the expression of the thyroid hormone transporters monocarboxylate transporter 8 (Mct8) and organic anion-transporting polypeptide 1C1 (Oatp1c1) and the thyroid receptor alpha (TRα), suggesting a possible endocrine disruption. However, it did not alter the expression of the sperm-associated cation channels (CatSper1-2) or vanilloid receptor-related osmotically activated channel (Trpv4) related to sperm motility. In contrast, exposure to 2,4-D reduced the expression of the Mct10 transporter, Dio2 deiodinase, and CatSper1, which could affect both the availability of T3 in testicular cells and sperm quality, consistent with previous studies. However, 2,4-D did not affect the expression of CatSper2 or Trpv4. Deregulation of gene expression could explain the alterations in male reproductive processes reported by exposure to paraquat and 2,4-D. These thyroid hormone-related genes can serve as molecular biomarkers to assess endocrine disruption due to exposure to these herbicides, aiding in evaluating the health risks of pesticides.
Collapse
Affiliation(s)
- Enoch Luis
- Investigadores por México CONAHCYT—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico;
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico
| | - Vanessa Conde-Maldonado
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Edelmira García-Nieto
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Libertad Juárez-Santacruz
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Mayvi Alvarado
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
| | - Arely Anaya-Hernández
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| |
Collapse
|
2
|
Boon D, Burns CJ. Biomonitoring of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide: A global view. Regul Toxicol Pharmacol 2024; 152:105687. [PMID: 39168368 DOI: 10.1016/j.yrtph.2024.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
We conducted a literature review of urinary 2,4-D in populations not associated with a herbicide application. Of the 33 studies identified, the median/mean concentrations were similar for children, adults, and pregnant women regardless of geography. Individuals with highest concentrations may have had opportunities to directly contact 2,4-D outside of an application. Most studies were conducted in populations in North America and did not examine potential sources of 2,4-D, or what factors might influence higher or lower urinary 2,4-D concentrations. In the future, prioritizing the examination of 2,4-D biomonitoring in other regions and collecting information on sources and factors influencing exposures would better our understanding of 2,4-D exposures globally. In all the studies reviewed the concentrations of urinary 2,4-D observed were orders of magnitude below the US regulatory endpoints, suggesting that people are not being exposed to 2,4-D at levels high enough to result in adverse health effects.
Collapse
Affiliation(s)
| | - Carol J Burns
- Burns Epidemiology Consulting, LLC, Thompsonville, MI, 49683 USA.
| |
Collapse
|
3
|
Yu X, Hu Y, Cao Z, Yan M, Xin J, Zheng S, Wan J, Cao X. Computational design and preparation of water-compatible noncovalent imprinted microspheres. J Chromatogr A 2024; 1725:464876. [PMID: 38718697 DOI: 10.1016/j.chroma.2024.464876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/15/2024]
Abstract
Herein, 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model template in a rational design strategy to produce water-compatible noncovalent imprinted microspheres. The proposed approach involved computational modelling for screening functional monomers and a simple method for preparing monodisperse and highly cross-linked microspheres. The fabricated non-imprinted polymer (NIP) and 2,4-d-imprinted polymer (2,4-d-MIP) were characterised, and their adsorption capabilities in an aqueous environment were evaluated. Results reveal that the pseudo-second-order kinetics model was appropriate for representing the adsorption of 2,4-D on NIP and 2,4-d-MIP, with R2 values of 0.97 and 0.99, respectively. The amount of 2,4-D adsorbed on 2,4-d-MIP (97.75 mg g-1) was considerably higher than those of phenoxyacetic acid (35.77 mg g-1), chlorogenic acid (9.72 mg g-1), spiramycin (1.56 mg g-1) and tylosin (1.67 mg g-1). Furthermore, it exhibited strong resistance to protein adsorption in an aqueous medium. These findings confirmed the feasibility of the proposed approach, providing a reference for the development of water-compatible noncovalent imprinted polymers.
Collapse
Affiliation(s)
- Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China; State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China
| | - Yawen Hu
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Mengxia Yan
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Jianhui Xin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Shuyun Zheng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China.
| |
Collapse
|
4
|
Nazim T, Kubiak A, Cegłowski M. Quantification of 2,4-dichlorophenoxyacetic acid in environmental samples using imprinted polyethyleneimine with enhanced selectivity as a selective adsorbent in ambient plasma mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133661. [PMID: 38341890 DOI: 10.1016/j.jhazmat.2024.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Detection and quantification of various organic chemicals in the environment is critical to track their fate and control their levels. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely applied phenoxy herbicide with potential toxicity to fish and other aquatic organisms. In this study, we address the need for improved detection of 2,4-D by introducing a novel analytical method for its quantification. This method relies on the selective extraction of 2,4-D using MIPs and their subsequent direct analysis using ambient plasma mass spectrometry. During the synthesis, MIPs with various degrees of glycidol (GLY) functionalization were obtained. Experimental data showed that MIPs with no GLY functionalization displayed the highest adsorption capacity. Conversely, MIPs with 30% GLY functionalization exhibited the greatest selectivity for 2,4-D, rendering them valuable for extraction of 2,4-D even in the presence of other contaminants. Finally, the obtained MIPs were applied for quantification of 2,4-D in various water samples through direct analysis using a specially designed ambient plasma mass spectrometry setup. This approach improved the detection limits by 200-fold compared to pure solution analysis. The quantification of 2,4-D in river water samples yielded highly satisfactory recoveries, demonstrating the effective utility of the proposed analytical setup for real-life water sample analysis.
Collapse
Affiliation(s)
- Tomasz Nazim
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
5
|
Werthmann DW, Rabito FA, Adamkiewicz G, Reponen T, Calafat AM, Ospina M, Chew GL. Pesticide exposure and asthma morbidity in children residing in urban, multi-family housing. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:241-250. [PMID: 36765101 PMCID: PMC10412724 DOI: 10.1038/s41370-023-00524-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Children are potentially more susceptible to the adverse effects of pesticides due to more sensitive organ systems and lower capacity to metabolize and eliminate chemicals compared to adults. The health risks are particularly concerning children with asthma, living in low-income neighborhoods in multi-family housing because of their impaired respiratory health, and factors associated with low-income, multi-family environments. OBJECTIVE To assess the association between pesticide exposure and asthma morbidity among children 7-12 years residing in low-income, multi-family housing. METHODS The concentrations of seven urinary pesticide biomarkers: 3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-4-methyl-6-hydroxypyrimidine, para-nitrophenol (PNP), 3-phenoxybenzoic acid (3-PBA), 4-fluoro-3-phenoxybenzoic acid, trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid, and 2,4-dichlorophenoxyacetic acid (2,4-D) were measured. Children (n = 162) were followed for one year with three measures of pesticides biomarkers. Associations between individual biomarkers and asthma attack, asthma related health care utilization, and fraction of exhaled nitric oxide (FeNO), adjusting for demographic and household factors were examined with Generalized Estimating Equations (GEE). Weighted Quantile Sum (WQS) regression was used to examine the effect of pesticide mixture on asthma attacks and asthma-related health care utilization (HCU). RESULTS In adjusted GEE models, positive non-significant associations were found between PNP and HCU (adjusted Odds Ratio(aOR):2.05 95% CI:0.76-5.52) and null associations for 3-PBA and HCU (aOR:1.07 95% CI: 0.88-1.29). Higher concentrations of PNP and 2,4-D were associated with significantly lower FeNO levels (PNP: -17.4%; 2,4-D:-19.74%). The mixture was positively associated with HCU in unadjusted (OR: 1.56 97.5% CI: 1.08-2.27) but not significant in adjusted models (aOR: 1.40 97.5% CI: .86-2.29). The non-specific pyrethroid biomarker 3-PBA at baseline contributed the greatest weight to the index (45%). SIGNIFICANCE There were non-significant associations between pesticide biomarkers and respiratory outcomes in children with asthma. There was a suggestive association between urinary pesticide biomarkers and HCU. Further studies with larger sample sizes could help to confirm these findings. IMPACT STATEMENT Pesticide exposure among children in the urban environment is ubiquitous and there is a dearth of information on the impact of low-level chronic exposure in vulnerable populations. This study suggested that pesticide exposure at concentrations below the national average may not affect asthma morbidity in children. However, different biomarkers of pesticides showed different effects, but the mixture suggested increasing pesticide exposure results in asthma related HCU. The results may show that children with asthma may be at risk for negative health outcomes due to pesticides and the need to further examine this relationship.
Collapse
Affiliation(s)
- Derek W Werthmann
- Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Felicia A Rabito
- Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | - Tiina Reponen
- University of Cincinnati, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ginger L Chew
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
6
|
Liu J, Yang T, Li Y, Li S, Li Y, Xu S, Xia W. Associations of maternal exposure to 2,4-dichlorophenoxyacetic acid during early pregnancy with steroid hormones among one-month-old infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169414. [PMID: 38114038 DOI: 10.1016/j.scitotenv.2023.169414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Exposure to 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used hormonal herbicide, may disrupt steroid hormone homeostasis. However, evidence from population-based studies is limited, especially for one-month-old infants whose steroid hormones are in a state of adjustment to extrauterine life and can be important indicators of endocrine development. This study aimed to explore the associations between maternal 2,4-D exposure during early pregnancy and infant steroid hormone levels. METHODS The 885 mother-infant pairs were from a birth cohort in Wuhan, China. Maternal exposure to 2,4-D was determined in urine samples from early pregnancy, and nine steroid hormones were determined in infant urine. The associations of maternal 2,4-D exposure with infant steroid hormones and their product-to-precursor ratios were estimated based on generalized linear models, and bioinformatic analysis was conducted with public databases to explore the potential mechanisms involved. RESULTS The detection frequency of 2,4-D was 99.32 %, and the detection frequency of steroid hormones ranged from 98.42 % to 100.00 %. After adjusting for covariates, an interquartile range increase in 2,4-D concentrations was associated with a 7.84 % decrease in 11-deoxycortisol (95 % confidence interval, CI: -14.12 %, -1.10 %), an 8.09 % decrease in corticosterone (95 % CI: -14.56 %, -1.14 %), an 8.67 % decrease in cortisol (95 % CI: -14.43 %, -2.52 %), a 13.00 % decrease in cortisone (95 % CI: -20.64 %, -4.62 %), and an 11.17 % decrease in aldosterone (95 % CI: -19.62 %, -1.83 %). Maternal 2,4-D was also associated with lower infant cortisol/17α-OH-progesterone, cortisol/pregnenolone, and aldosterone/pregnenolone ratios. In bioinformatic analysis, pathways/biological processes related to steroid hormone synthesis and secretion were enriched from target genes of 2,4-D exposure. CONCLUSIONS Maternal urinary 2,4-D during early pregnancy was associated with lower infant urinary 11-deoxycortisol, corticosterone, cortisol, cortisone, and aldosterone, reflecting that 2,4-D exposure may interfere with infant steroid hormone homeostasis. Further efforts are still needed to study the relevant health effects of exposure to 2,4-D, particularly for vulnerable populations.
Collapse
Affiliation(s)
- Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Li ZM, Robinson M, Kannan K. An assessment of exposure to several classes of pesticides in pet dogs and cats from New York, United States. ENVIRONMENT INTERNATIONAL 2022; 169:107526. [PMID: 36155914 PMCID: PMC9574881 DOI: 10.1016/j.envint.2022.107526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Exposure of pet dogs and cats to pesticides used in and around homes (e.g., lawns and gardens) is a significant health concern. Furthermore, some pesticides are directly used on dogs and cats for flea, lice, and tick control. Despite this, little is known regarding the extent of pesticide exposure in pets. In this study, we determined the concentrations of 30 biomarkers of pesticide exposure in urine collected from dogs and cats in New York State, USA: 6 dialkylphosphate (DAP) metabolites of organophosphates (OPs); 14 neonicotinoids (neonics); 3 specific metabolites of OPs; 5 pyrethroids (PYRs); and 2 phenoxy acids (PAs). The sum median concentrations of these 30 pesticide biomarkers (ΣPesticides) in dog and cat urine were 35.2 and 38.1 ng/mL, respectively. Neonics were the most prevalent in dogs (accounting for 43% of the total concentrations), followed by DAPs (17%), PYRs (16%), OPs (13%), and PAs (∼10%). In cat urine, neonics alone accounted for 83% of the total concentrations. Elevated concentrations of imidacloprid were found in the urine of certain dogs (max: 115 ng/mL) and cats (max: 1090 ng/mL). Some pesticides showed gender- and sampling location- related differences in urinary concentrations. We calculated daily exposure doses of pesticides from the measured urinary concentrations through a reverse dosimetry approach. The estimated daily intakes (DIs) of chlorpyrifos, diazinon, and cypermethrin were above the chronic reference doses (cRfDs) in 22, 76, and 5%, respectively, of dogs. The DIs of chlorpyrifos, parathion, diazinon, and imidacloprid were above the cRfDs in 33, 14, 100, and 29%, respectively, of cats. This study thus provides evidence that pet dogs and cats are exposed to certain pesticides at levels that warrant immediate attention.
Collapse
Affiliation(s)
- Zhong-Min Li
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Morgan Robinson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
8
|
Wang Y, Wan Y, Cao M, Wang A, Mahai G, He Z, Xu S, Xia W. Urinary 2,4-dichlorophenoxyacetic acid in Chinese pregnant women at three trimesters: Variability, exposure characteristics, and association with oxidative stress biomarkers. CHEMOSPHERE 2022; 304:135266. [PMID: 35688197 DOI: 10.1016/j.chemosphere.2022.135266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Widespread exposure to herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) could have potential adverse health effects on pregnant women. However, related data are scarce. This study aimed to characterize 2,4-D exposure among three trimesters of pregnancy and to explore the relationship of 2,4-D with oxidative stress biomarkers [i.e., 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-hydroxy guanosine (8-OHG), and 4-hydroxy nonenal mercapturic acid (HNEMA)] in urine. The present study analyzed 3675 urine samples of 1225 women (across the three trimesters of pregnancy) in Wuhan, central China. 2,4-D was detectable in 97.4% of the urine samples. The median unadjusted concentration of 2,4-D was 0.12 ng/mL, and the corresponding concentration adjusted by urinary specific gravity (SG-adjusted) was 0.13 ng/mL. The intraclass correlation coefficient of 2,4-D (SG-adjusted concentrations) was 0.07 across the three trimesters. Significantly higher urinary levels of 2,4-D were found in samples from younger pregnant women/samples collected during winter. In addition, significantly positive association between urinary concentrations of oxidative stress biomarkers and 2,4-D were found in repeated analysis; an interquartile range increase in 2,4-D was significantly (p < 0.001) associated with a 20.8% increase in 8-OHG, a 26.7% increase in 8-OHdG, and a 30.7% increase in HNEMA, respectively. Such associations were also found in trimester-specific analyses. This is the first time to quantify the urinary 2,4-D of pregnant women in China, and this study found significantly positive associations of 2,4-D with oxidative stress biomarkers. Further studies are needed to verify such associations and explore other potential adverse effects of 2,4-D exposure.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Meiling Cao
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
9
|
Ye X, Zhang F, Yang L, Yang W, Zhang L, Wang Z. Paper-based multicolor sensor for on-site quantitative detection of 2,4-dichlorophenoxyacetic acid based on alkaline phosphatase-mediated gold nanobipyramids growth and colorimeter-assisted method for quantifying color. Talanta 2022; 245:123489. [PMID: 35460981 DOI: 10.1016/j.talanta.2022.123489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
On-site quantitative analysis of pesticides is important for food safety. Colorimetric gold nanobipyramids (AuNBPs) sensors are powerful methods for on-site detection. However, a single quantitative method and the instability of AuNBPs in solution limit the practicability of those sensors. Here, a paper-based multicolor AuNBPs sensor involved a colorimeter-assisted method for quantifying color was developed for quantitative detection of 2,4-dichlorophenoxyacetic acid (2,4-D), a common herbicide. The novelty of this study lies in developing a general paper-based quantitative on-site method (PQOM) for colorimetric AuNBPs sensors. Firstly, a paper-based analytical device (PAD) consisting of a nylon membrane, absorbent cotton layers, and two acrylic plates was fabricated to deposit AuNBPs. We demonstrated the PAD could improve the stability of AuNBPs and the detection sensitivity of AuNBPs sensors. Then, a handheld colorimeter was first used to quantify the color change of AuNBPs on the PAD based on the CIELab color space. Finally, as proof of concept, the PQOM was successfully employed to quantify 2,4-D by combining with an alkaline phosphatase-mediated AuNBPs growth method. In this method, 2,4-D specifically inhibited alkaline phosphatase activity to suppress the generation of l-ascorbic acid, thereby mediating AuNBPs growth. The developed sensor exhibited seven 2,4-D concentration-related colors and detected as low as 50 ng mL-1 2,4-D by naked-eye observation and 18 ng mL-1 2,4-D by a colorimeter. It was applied to detect 2,4-D in the spiked rice and apple samples with good recovery rates (91.8-112.0%) and a relative standard deviation (n = 5) < 5%. The success of this study provides a sensing platform for quantifying 2,4-D on site.
Collapse
Affiliation(s)
- Xingyan Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liaoyuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, González-Tokman D. Contamination effects on sexual selection in wild dung beetles. J Evol Biol 2022; 35:905-918. [PMID: 35647730 DOI: 10.1111/jeb.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Sexual selection influences the expression of secondary sexual traits, which are costly to produce and maintain and are thus considered honest indicators of individual condition. Therefore, sexual selection could select for high-quality individuals able to respond to stressful conditions, with impacts on population-level fitness. We sampled dung beetles from 19 pastures and investigated if contamination by herbicides and veterinary drugs modifies male investment in sexually selected traits and has associated population-level effects. We measured horn size, condition dependence (i.e. size-corrected body mass) and allometry, besides abundance and sexual size dimorphism in three species: Copris incertus, Euoniticellus intermedius and Digitonthophagus gazella. In contrary to our expectations, horn size was independent of contamination and individual condition. However, strong positive allometric relationships were reduced by herbicide contamination for C. incertus and D. gazella and were increased by ivermectin for C. incertus, revealing differential investment in horn production according to body size in contaminated habitats. At the population level, large-horned C. incertus males were more abundant in contaminated pastures, potentially revealing a case of evolutionary rescue by sexual selection or a plastic response to higher population densities. Finally, chemical compounds affected the sexual size dimorphism of all three species, with potential effects on female fecundity or intrasexual selection. Together, our findings indicate that contamination interferes with sexual selection processes in the wild, opening new questions regarding the role of sexual selection in favouring species persistence in contaminated environments.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología A.C, Xalapa, Mexico.,CONACYT, Mexico City, Mexico
| |
Collapse
|
11
|
Glover FE, Del Giudice F, Belladelli F, Ryan PB, Chen T, Eisenberg ML, Caudle WM. The association between 2,4-D and serum testosterone levels: NHANES 2013-2014. J Endocrinol Invest 2022; 45:787-796. [PMID: 34837643 DOI: 10.1007/s40618-021-01709-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Previous studies have investigated associations between herbicides such as 2,4-Dichlorophenoxyacetic acid (2,4-D) and dyshormonogenesis, specifically low testosterone, in human, rodent, and cell models, but results have been conflicting and inconclusive. METHODS Using data from a cross-sectional study of 456 adult men in the 2013-2014 NHANES survey cycle, we examined the relationship between urinary concentrations of 2,4-D and serum testosterone levels. RESULTS Multivariable regression models adjusting for potential confounders revealed a significant, negative association between urinary 2,4-D and mean serum testosterone among U.S. adult males (β = - 11.4 ng/dL, p = 0.02). Multivariable logistic regression models using a cutoff defining abnormally low testosterone (i.e., serum testosterone < 300 ng/dL) revealed no significant associations between 2,4-D and the odds of low testosterone. CONCLUSION These findings expand on previous literature implicating a role for 2,4-D in the etiology of low testosterone and dyshormonogenesis. Future studies are warranted to corroborate these findings, determine clinical significance, and to investigate the proposed potential biological mechanisms underlying this association.
Collapse
Affiliation(s)
- F E Glover
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| | - F Del Giudice
- Department of Maternal-Infant and Urological Sciences, "Sapienza" Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - F Belladelli
- Department of Maternal-Infant and Urological Sciences, "Sapienza" Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - P B Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - T Chen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - M L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - W M Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
12
|
Freisthler MS, Robbins CR, Benbrook CM, Young HA, Haas DM, Winchester PD, Perry MJ. Association between increasing agricultural use of 2,4-D and population biomarkers of exposure: findings from the National Health and Nutrition Examination Survey, 2001-2014. Environ Health 2022; 21:23. [PMID: 35139875 PMCID: PMC8830015 DOI: 10.1186/s12940-021-00815-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/08/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND 2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most extensively used herbicides in the United States. In 2012, 2,4-D was the most widely used herbicide in non-agricultural settings and the fifth most heavily applied pesticide in the US agricultural sector. The objective of this study was to examine trends in 2,4-D urinary biomarker concentrations to determine whether increases in 2,4-D application in agriculture are associated with increases in biomonitoring levels of urine 2,4-D. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) with available urine 2,4-D biomarker measurements from survey cycles between 2001 and 2014 were utilized. Urine 2,4-D values were dichotomized using the highest limit of detection (LOD) across all cycles (0.40 μg/L or 0.4 ppb). Agricultural use of 2,4-D was estimated by compiling publicly available federal and private pesticide application data. Logistic regression models adjusted for confounders were fitted to evaluate the association between agricultural use of 2,4-D and urine 2,4-D level above the dichotomization threshold. RESULTS Of the 14,395 participants included in the study, 4681 (32.5%) had urine 2,4-D levels above the dichotomization threshold. The frequency of participants with high 2,4-D levels increased significantly (p < .0001), from a low of 17.1% in 2001-2002 to a high of 39.6% in 2011-2012. The adjusted odds of high urinary 2,4-D concentrations associated with 2,4-D agricultural use (per ten million pounds applied) was 2.268 (95% CI: 1.709, 3.009). Children ages 6-11 years (n = 2288) had 2.1 times higher odds of having high 2,4-D urinary concentrations compared to participants aged 20-59 years. Women of childbearing age (age 20-44 years) (n = 2172) had 1.85 times higher odds than men of the same age. CONCLUSIONS Agricultural use of 2,4-D has increased substantially from a low point in 2002 and it is predicted to increase further in the coming decade. Because increasing use is likely to increase population level exposures, the associations seen here between 2,4-D crop application and biomonitoring levels require focused biomonitoring and epidemiological evaluation to determine the extent to which rising use and exposures cause adverse health outcomes among vulnerable populations (particularly children and women of childbearing age) and highly exposed individuals (farmers, other herbicide applicators, and their families).
Collapse
Affiliation(s)
- Marlaina S Freisthler
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW Suite 400, Washington, DC, 20052, USA
| | - C Rebecca Robbins
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW Suite 400, Washington, DC, 20052, USA
| | | | - Heather A Young
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW Suite 400, Washington, DC, 20052, USA
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul D Winchester
- Neonatology, Indiana University School of Medicine/Riley Hospital, Indianapolis, Indiana, USA
| | - Melissa J Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW Suite 400, Washington, DC, 20052, USA.
| |
Collapse
|
13
|
Romero-Puertas MC, Peláez-Vico MÁ, Pazmiño DM, Rodríguez-Serrano M, Terrón-Camero L, Bautista R, Gómez-Cadenas A, Claros MG, León J, Sandalio LM. Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. PLANT, CELL & ENVIRONMENT 2022; 45:572-590. [PMID: 34800292 DOI: 10.1111/pce.14229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) functions as an agronomic weed control herbicide. High concentrations of 2,4-D induce plant growth defects, particularly leaf epinasty and stem curvature. Although the 2,4-D triggered reactive oxygen species (ROS) production, little is known about its signalling. In this study, by using a null mutant in peroxisomal acyl CoA oxidase 1 (acx1-2), we identified acyl-coenzyme A oxidase 1 (ACX1) as one of the main sources of ROS production and, in part, also causing the epinastic phenotype following 2,4-D application. Transcriptomic analyses of wild type (WT) plants after treatment with 2,4-D revealed a ROS-related peroxisomal footprint in early plant responses, while other organelles, such as mitochondria and chloroplasts, are involved in later responses. Interestingly, a group of 2,4-D-responsive ACX1-dependent transcripts previously associated with epinasty is related to auxin biosynthesis, metabolism, and signalling. We found that the auxin receptor auxin signalling F-box 3 (AFB3), a component of Skp, Cullin, F-box containing complex (SCF) (ASK-cullin-F-box) E3 ubiquitin ligase complexes, which mediates auxin/indole acetic acid (AUX/IAA) degradation by the 26S proteasome, acts downstream of ACX1 and is involved in the epinastic phenotype induced by 2,4-D. We also found that protein degradation associated with ubiquitin E3-RING and E3-SCF-FBOX in ACX1-dependent signalling in plant responses to 2,4-D is significantly regulated over longer treatment periods.
Collapse
Affiliation(s)
- María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | | | - Diana M Pazmiño
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | - María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | | | - Rocío Bautista
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
| | - Aurelio Gómez-Cadenas
- Department Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Ciencias, Univ. de Málaga, Málaga, Spain
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Univ. Valencia), CPI Edificio 8E, Valencia, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| |
Collapse
|
14
|
Zhou J, Li H, Wang F, Wang H, Chai R, Li J, Jia L, Wang K, Zhang P, Zhu L, Yang H. Effects of 2,4-dichlorophenoxyacetic acid on the expression of NLRP3 inflammasome and autophagy-related proteins as well as the protective effect of Lycium barbarum polysaccharide in neonatal rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2454-2466. [PMID: 34464015 DOI: 10.1002/tox.23358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) has neurotoxic effects, but its mechanism is not clear. In this study, a 2,4-D (75 mg/kg. b.w) exposure model was established in SD rats with colostrum. Lipopolysaccharide (1 mg/kg b.w) was used as the positive control, and Lycium barbarum polysaccharide (LBP, 50 mg/kg b.w) was used as an intervention factor to explore the neurotoxic effect of 2,4-D and the neuroprotective effect of LBP. Our research results show that 2,4-D causes a decrease in the number of hippocampal CA3 pyramidal cells and pyknosis in nuclei with a triangular or irregular shape and that rats show signs of anxiety or depression. In rat serum, superoxide dismutase, and glutathione peroxidase activity decreased, while malondialdehyde content increased. Protein and mRNA levels of TNFα, IL-6, IL-1β, IL-18, NLRP3, ASC, caspase-1, IL-1β, IL-18, and p62 increased, while those of LC3-II/LC3-I and Beclin-1 decreased in hippocampal tissues. In conclusion, 2,4-D increased the oxidative stress level, induced neuroinflammatory response, and decreased the autophagy level in experimental rats. LBP may have upregulated the autophagy level in the body by inhibiting the activation of the NLRP3 inflammasome, thus playing a neuroprotective role.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Honghui Li
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Faxuan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Hengquan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Ru Chai
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Jiangping Li
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Leina Jia
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Pengju Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Lingqin Zhu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Burns CJ, LaKind JS. Using the Matrix to bridge the epidemiology/risk assessment gap: a case study of 2,4-D. Crit Rev Toxicol 2021; 51:591-599. [PMID: 34796780 DOI: 10.1080/10408444.2021.1997911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The Matrix is designed to facilitate discussions between practitioners of risk assessment and epidemiology and, in so doing, to enhance the utility of epidemiology research for public health decision-making. The Matrix is comprised of nine fundamental "asks" of epidemiology studies, focusing on the types of information valuable to the risk assessment process. OBJECTIVE A 2,4-dichlorophenoxyacetic acid (2,4-D) case study highlights the extent to which existing epidemiology literature includes information generally needed for risk assessments and proffers suggestions that would assist in bridging the epidemiology/risk assessment gap. METHODS Thirty-one publications identified in the US Environmental Protection Agency 2,4-D epidemiology review were assessed. These studies focused on associations between 2,4-D exposure and non-Hodgkin lymphoma (NHL), respiratory effects, and birth outcomes. RESULTS Many of the papers met one or more specific elements of the Matrix. However, from this case study, it is clear that some aspects of risk assessment, such as evaluating source-to-intake pathways, are generally not considered in epidemiology research. Others are incorporated, but infrequently (e.g. dose-response information, harmonization of exposure categories). We indicated where additional analyses or modifications to future study design could serve to improve the translation. DISCUSSION Interaction with risk assessors during the study design phase and using the Matrix "asks" to guide the conversations could shape research and provide the basis for requests for funds to support these additional activities. The use of the Matrix as a foundation for communication and education across disciplines could produce more impactful and consequential epidemiology research for robust risk assessments and decision-making.
Collapse
Affiliation(s)
- Carol J Burns
- Burns Epidemiology Consulting, LLC, Sanford, MI, USA
| | - Judy S LaKind
- LaKind Associates, LLC, University of Maryland School of Medicine, Catonsville, MD, USA
| |
Collapse
|
16
|
Kaur G, Kumar BVS, Singh B, Sethi RS. Exposures to 2,4-Dichlorophenoxyacetic acid with or without endotoxin upregulate small cell lung cancer pathway. J Occup Med Toxicol 2021; 16:14. [PMID: 33865415 PMCID: PMC8052721 DOI: 10.1186/s12995-021-00304-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Pesticide residues in food and environment along with airborne contaminants such as endotoxins pose health risk. Although herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) has been associated with increased risk of lung cancers such as small cell lung cancer (SCLC) among agricultural workers, there are no data on the SCLC signaling pathway upon 2,4-D exposure without LPS or in combination with endotoxin. Methods We exposed Swiss albino mice (N = 48) orally to high (9.58 mg kg− 1) and low (5.12 mg kg− 1) dosages of 2,4-D dissolved in corn oil for 90 days followed by E. coli lipopolysaccharide (LPS) or normal saline solution (80 μl/animal). Lung samples and broncho-alveolar fluid (BALF) were subjected to Total histological score (THS) and total leucocyte count (TLC) and differential leucocytes count (DLC) analyses, respectively. We used microarray and bioinformatics tools for transcriptomic analyses and differentially expressed genes were analyzed to predict the top canonical pathways followed by validation of selected genes by qRT-PCR and immunohistochemistry. Results Total histological score (THS) along with BALF analyses showed lung inflammation following long term dietary exposure to high or low doses of 2,4-D individually or in combination with LPS. Microarray analysis revealed exposure to high dose of 2,4-D without or with LPS upregulated 2178 and 2142 and downregulated 1965 and 1719 genes, respectively (p < 0.05; minimum cut off 1.5 log fold change). The low dose without or with LPS upregulated 2133 and 2054 and downregulated 1838 and 1625 genes, respectively. Bioinformatics analysis showed SCLC as topmost dysregulated pathway along with differential expression of Itgb1, NF-κB1, p53, Cdk6 and Apaf1. Immunohistological and quantitative real time PCR (qRT-PCR) analyses also supported the transcriptomic data. Conclusions Taken together, the data show exposures to high and low dose of 2,4-D with/without LPS induced lung inflammation and altered pulmonary transcriptome profile with the involvement of the SCLC pathway. The data from the study provide the insights of the potential damage on lungs caused by 2,4-D and help to better understand the mechanism of this complex relation. Supplementary Information The online version contains supplementary material available at 10.1186/s12995-021-00304-4.
Collapse
Affiliation(s)
- Geetika Kaur
- Department of Animal Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - B V Sunil Kumar
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Baljit Singh
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada.
| | - R S Sethi
- Department of Animal Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
17
|
Shafeeq S, Mahboob T. 2,4-Dichlorophenoxyacetic acid induced hepatic and renal toxicological perturbations in rat model: Attenuation by selenium supplementation. Toxicol Ind Health 2021; 37:152-163. [PMID: 33689533 DOI: 10.1177/0748233720983167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a commercially used herbicide to manage broadleaf weeds that have various toxicological and ecological effects. In view of ever-escalating use of 2,4-D, risk assessment becomes mandatory to ensure the safety of both human health and the ecosystem. Oxidative injury has been expected as a possible mechanism implicated in 2,4-D toxicity. The present study was planned and conducted to explore the antioxidant potential of selenium (Se) supplementation to moderate the 2,4-D hepatic and renal toxicity in a rat model. The rats were randomly assigned to four equal groups and treated via oral gavage for a period of 4 weeks. Group I: received deionized water as a vehicle, group II: received 2,4-D (150 mg-1 kg-1 day-1), group III: received Se supplement (1 mg-1 kg-1 day-1), and group IV: received 2,4-D (150 mg-1 kg-1 day-1) and Se supplement (1 mg-1 kg-1 day-1) simultaneously. After 4 weeks of administration, 2,4-D induced toxicity was observed, as manifested by disrupted levels of plasma urea, creatinine, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Further, 2,4-D caused a considerable increase in tissue malondialdehyde (MDA) levels and decreased activity of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione reductase. Se supplementation exhibited its antioxidant properties by significantly improving urea, creatinine, ALP, AST, and ALT, and MDA levels and antioxidant enzyme activities. In conclusion, the results suggest that 2,4-D induced hepatic and renal toxicities were attenuated by Se supplementation probably owing to its antioxidant properties.
Collapse
Affiliation(s)
- Sehrish Shafeeq
- Department of Biochemistry, 63596University of Karachi, Karachi 75270, Pakistan
| | - Tabassum Mahboob
- Department of Biochemistry, 63596University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
18
|
Balakrishnan A, Gopalram K, Appunni S. Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO 2 modified catalyst: kinetics and operating cost analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12928-4. [PMID: 33641092 DOI: 10.1007/s11356-021-12928-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Effective pesticide remediation technology demands amendments in the advanced oxidation process for its continuous treatment and catalyst recovery. The evidence of 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide in water bodies, poses a major environmental threat to both humans and aquatic organisms. In the present study, a recirculation type photocatalytic reactor was developed to treat 2,4-dichlorophenoxyacetic acid using chitosan-TiO2 beads prepared via impregnation method under UV light. At optimized conditions, chitosan-TiO2 beads showed a maximum photocatalytic degradation of 86% than commercial TiO2 (65%) and followed pseudo first-order reaction. The 2,4-D degradation follows pseudo first-order kinetics under UV irradiation with a rate constant of 0.12 h-1, and the intermediates were identified using LCMS analysis. The total operational cost of the chitosan-TiO2 catalyst was found to be profitable (Rs. 1323 for 2 L) than that of TiO2 (Rs. 1679) at optimized conditions. The beads were reusable up to 4 consecutive cycles without loss in efficiency. This study briefs photocatalytic removal of 2,4-dichlorophenoxyacetic acid in a recirculation-type reactor for its reliability, low cost, efficiency, reusability, and commercialization.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Keerthiga Gopalram
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - Sowmya Appunni
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Kumar S, Mehta D, Chaudhary S, Chaudhary GR. Pr@Gd2O3 nanoparticles: An effective fluorescence sensor for herbicide 2,4-dichlorophenoxyacetic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Burns CJ, Juberg DR. Cancer and occupational exposure to pesticides: an umbrella review. Int Arch Occup Environ Health 2021; 94:945-957. [PMID: 33495906 PMCID: PMC8238729 DOI: 10.1007/s00420-020-01638-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
Purpose The aim was to identify the scope of the epidemiology literature reviewed regarding the risk of cancer as related to occupational exposure to pesticides and to compare regulatory toxicity results where feasible. Methods Review studies of breast, lung, prostate, non-Hodgkin lymphoma, and colorectal cancer were identified from the published literature from 2010 to 2020 using a priori inclusion and exclusion criteria. Epidemiology observations were first assessed and then compared against carcinogenicity profiles derived from regulatory toxicology studies. Results Several active ingredients were associated with specific cancer but overall, there was neither strong nor consistent epidemiologic data supportive of a positive association between pesticide exposure in occupational settings and cancer. Authors noted common themes related to the heterogeneity of exposure, study design, control for confounders, and the challenge to collect these data reliably and validly with an adequate sample size. Toxicology studies in laboratory animals that assessed carcinogenic potential did not reveal cancer outcomes that were concordant with reported epidemiologic findings. Conclusions Farming and pesticides represent diverse exposures that are difficult to quantify in epidemiologic studies. Going forward, investigators will need creative and novel approaches for exposure assessment. Integration of epidemiologic and toxicological studies with attention to biological plausibility, mode of toxicological action and relevance to humans will increase the ability to better assess associations between pesticides and cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s00420-020-01638-y.
Collapse
|
21
|
Li ZF, Dong JX, Vasylieva N, Cui YL, Wan DB, Hua XD, Huo JQ, Yang DC, Gee SJ, Hammock BD. Highly specific nanobody against herbicide 2,4-dichlorophenoxyacetic acid for monitoring of its contamination in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141950. [PMID: 32906044 PMCID: PMC7674261 DOI: 10.1016/j.scitotenv.2020.141950] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 05/27/2023]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, is a small organic chemical pollutant in the environment. To develop a nanobody-based immunoassay for monitoring trace levels of 2,4-D, a step-wise strategy for the generation of nanobodies highly specific against this small chemical was employed. Firstly, we synthesized three novel haptens mimicking 2,4-D and assessed their influence on the sensitivity and specificity of the existing antibody-based assay. Polyclonal antibodies (pAb) from rabbits showed good sensitivity and moderate specificity for 2,4-D, pAb from llama based on selected haptens showed similar performance when compared to those from rabbits. Secondly, nanobodies derived from llama were generated for 2,4-D by an effective procedure, including serum monitoring and one-step library construction. One nanobody, NB3-9, exhibited good sensitivity against 2,4-D (IC50 = 29.2 ng/mL) had better specificity than the rabbit pAb#1518, with no cross-reactivities against the 2,4-D analogs tested. Thirdly, one-step fluorescent enzyme immunoassay (FLEIA) for 2,4-D based on a nanobody-alkaline phosphatase (AP) fusion was developed with IC50 of 1.9 ng/mL and a linear range of 0.4-8.6 ng/mL. Environmental water samples were analyzed by FLEIA and LC-MS/MS for comparison, and the results were consistent between both methods. Therefore, the proposed step-wise strategy from hapten design to nanobody-AP fusion production was successfully conducted, and the resulting nanobody based FLEIA was demonstrated as a convenient tool to monitor 2,4-D residuals in the environment.
Collapse
Affiliation(s)
- Zhen-Feng Li
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States; Guangzhou Nabo Antibody Technology Co. Ltd, Guangzhou 510530, PR China
| | - Jie-Xian Dong
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States; Guangzhou Nabo Antibody Technology Co. Ltd, Guangzhou 510530, PR China
| | - Natalia Vasylieva
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yong-Liang Cui
- Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - De-Bin Wan
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiu-De Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jing-Qian Huo
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, PR China
| | - Dong-Chen Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, PR China
| | - Shirley J Gee
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States.
| |
Collapse
|
22
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
23
|
Photocatalytic Degradation of a Systemic Herbicide: Picloram from Aqueous Solution Using Titanium Oxide (TiO2) under Sunlight. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4040058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The photocatalytic degradation of picloram (4-amino-3,5,6-trichloro-2-pyridincarboxylic acid), which is one of popular acidic herbicide, was investigated with the existence of titanium oxide (TiO2) under sunlight. The total photocatalytic degradation of 20 ppm of picloram was occurred within 30 min irradiation with TiO2, while a negligible degradation was found without TiO2 under sunlight. The influence of various parameters, like TiO2 dosage, solution initial pH, intensity of light, reaction temperature and irradiation time, was found during the photocatalytic degradation of picloram. The mineralization of picloram was proved by the deterioration of total organic carbon (TOC) of the photocatalytic process. The pseudo–first order kinetics of photocatalytic degradation was obtained according to the Langmuir–Hinshelwood model, and the reaction rate constant was 17.6 × 10−2 min−1. Chloride ion, ammonium ion, nitrate ion and CO2 were erected as the final products after completing the photocatalytic degradation of picloram. The intermediate products could not be determined by the GC–MS during the degradation of picloram. Therefore, the degradation mechanism of the picloram was proposed based on the frontier electron density and the point charge at each atom of the picloram molecule. The photocatalytic degradation method, using sunlight, may develop into as a pragmatic technique to purify picloram contaminated wastewater.
Collapse
|
24
|
Han AA, Timchalk C, Carver ZA, Weber TJ, Tyrrell KJ, Sontag RL, Gibbins T, Chrisler WB, Weitz KK, Du D, Lin Y, Smith JN. Physiologically Based Pharmacokinetic Modeling of Salivary Concentrations for Noninvasive Biomonitoring of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Toxicol Sci 2020; 172:330-343. [PMID: 31550007 DOI: 10.1093/toxsci/kfz206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saliva has become a favorable sample matrix for biomonitoring due to its noninvasive attributes and overall flexibility in collection. To ensure measured salivary concentrations reflect the exposure, a solid understanding of the salivary transport mechanism and relationships between salivary concentrations and other monitored matrices (ie, blood, urine) is needed. Salivary transport of a commonly applied herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was observed in vitro and in vivo and a physiologically based pharmacokinetic (PBPK) model was developed to translate observations from the cell culture model to those in animal models and further evaluate 2,4-D kinetics in humans. Although apparent differences in experimental in vitro and in vivo saliva:plasma ratios (0.034 and 0.0079) were observed, simulations with the PBPK model demonstrated dynamic time and dose-dependent saliva:plasma ratios, elucidating key mechanisms affecting salivary transport. The model suggested that 2,4-D exhibited diffusion-limited transport to saliva and was additionally impacted by protein binding saturation and permeability across the salivary gland. Consideration of sampling times post-exposure and potential saturation of transport mechanisms are then critical aspects for interpreting salivary 2,4-D biomonitoring observations. This work utilized PBPK modeling in in vitro to in vivo translation to explore benefits and limitations of salivary analysis for occupational biomonitoring.
Collapse
Affiliation(s)
- Alice A Han
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Charles Timchalk
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Zana A Carver
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Thomas J Weber
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Kimberly J Tyrrell
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Ryan L Sontag
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Teresa Gibbins
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - William B Chrisler
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Karl K Weitz
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
| | - Jordan N Smith
- Chemical Biology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99354
| |
Collapse
|
25
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, Martínez-Morales I, González-Tokman D. Dung Beetle Body Condition: A Tool for Disturbance Evaluation in Contaminated Pastures. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2392-2404. [PMID: 31550063 DOI: 10.1002/etc.4548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The use of veterinary medical products and herbicides is a common practice in intensified livestock systems. These compounds affect nontarget organisms that perform important ecosystem functions, such as dung beetles. The assessment of body condition allows us to determine how individuals respond to changes in the environment. However, assessments of how contamination associated with cattle farming affects coprophagous insects such as dung beetles have not been conducted in natural systems. In the present study, we evaluated the effect of ivermectin (an antiparasitic drug) and herbicides on the body condition of 3 species of dung beetles collected in the field: Copris incertus, Euoniticellus intermedius, and Digitonthophagus gazella. We recorded 3 condition indicators (body size, lipid mass, and muscle mass) of beetles collected from 19 livestock ranches in northeastern Mexico. In general, the use of ivermectin had adverse effects on C. incertus and E. intermedius whereas the effects were positive for D. gazella. Conversely, the use of herbicides had adverse effects on D. gazella and positive effects on C. incertus. The different effects of ivermectin and herbicides found in males and females show that sex can be important in determining individual responses to environmental contamination. Importantly, we provide the first evidence under natural conditions that native and exotic species of dung beetles are highly sensitive to different types of livestock management, with veterinary medications and herbicides having the ability to alter body condition. Changes in dung beetle condition can reduce the ecosystem services that dung beetles provide in livestock systems. Environ Toxicol Chem 2019;38:2392-2404. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Federico Escobar
- Red de Ecoetología, Instituto de Ecología, El Haya, Xalapa, Veracruz, México
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología, El Haya, Xalapa, Veracruz, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de, México, México
| |
Collapse
|
26
|
Mahmoudinia S, Niapour A, Ghasemi Hamidabadi H, Mazani M. 2,4-D causes oxidative stress induction and apoptosis in human dental pulp stem cells (hDPSCs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26170-26183. [PMID: 31280441 DOI: 10.1007/s11356-019-05837-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
2,4-Dicholorophenoxy acetic acid (2,4-D) is a worldwide used hormone herbicide. Human dental pulp stem cells (hDPSCs) as a potential source of mesenchymal stem cells provide a confident model system for the assessments of chemicals in vitro. The main objective of this study was to examine the biological effects and damages attributed to 2,4-D on hDPSCs. hDPSCs were isolated from third molar pulp tissues and their mesenchymal identity were evaluated. Then, hDPSCs were treated with increasing concentrations of 2,4-D (0.1 μM-10 mM). Cell viability assay and cumulative cell counting were carried out to address 2,4-D effects on biological parameters of hDPSCs. Cell cycle distribution, ROS level and ALP activity were measured before and after treatment. AO/EB staining and caspase 3/7 activity were investigated to detect the possible mechanisms of cell death. Flow-cytometric immunophenotyping and differentiation data confirmed the mesenchymal identity of cultivated hDPSCs. 2,4-D treatment caused a hormetic response in the viability and growth rate of hDPSCs. G0/G1 cell cycle arrest, enhanced ROS level, and reduced ALP activity were detected in hDPSCs treated with EC50 dose of 2,4-D. AO/EB staining showed a higher percentage of alive cells in lower concentrations of the herbicide. The increment in 2,4-D dose and the number of early and late apoptotic cells were increased. DAPI staining and caspase 3/7 assay validated the induction of apoptosis. 2,4-D concentrations up to 100 μM did not affect hDPSCs viability and proliferation. The intense cellular oxidative stress and apoptosis were observed at higher concentration.
Collapse
Affiliation(s)
- Samira Mahmoudinia
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy and Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Mazani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
27
|
Humphrey KM, Pandey S, Martin J, Hagoel T, Grand'Maison A, Ohm JE. Establishing a role for environmental toxicant exposure induced epigenetic remodeling in malignant transformation. Semin Cancer Biol 2019; 57:86-94. [PMID: 30453042 PMCID: PMC6522338 DOI: 10.1016/j.semcancer.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023]
Abstract
Humans are exposed to a wide variety of environmental exposures throughout their lifespan. These include both naturally occurring toxins and chemical toxicants like pesticides, herbicides, and industrial chemicals, many of which have been implicated as possible contributors to human disease susceptibility [1-3]. We, and others, have hypothesized that environmental exposures may cause adaptive epigenetic changes in regenerative cell populations and developing organisms, leading to abnormal gene expression and increased disease susceptibility later in life [3]. Common epigenetic changes include changes in miRNA expression, covalent histone modifications, and methylation of DNA. Importantly, due to their heritable nature, abnormal epigenetic modifications which occur within stem cells may be particularly deleterious. Abnormal epigenetic changes in regenerative cell linages can be passed onto a large population of daughter cells and can persist for long periods of time. It is well established that an accumulation of epigenetic changes can lead to many human diseases including cancer [4-6]. Subsequently, it is imperative that we increase our understanding of how common environmental toxins and toxicants can induce epigenetic changes, particularly in stem cell populations. In this review, we will discuss how common environmental exposures in the United States and around the world may lead to epigenetic changes and discuss potential links to human disease, including cancer.
Collapse
Affiliation(s)
- Kristen M Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Sumali Pandey
- Minnesota State University Moorhead, Moorhead, MN, United States
| | - Jeffery Martin
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Tamara Hagoel
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Anne Grand'Maison
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
28
|
Silver MK, Shao J, Li M, Ji C, Chen M, Xia Y, Lozoff B, Meeker JD. Prenatal exposure to the herbicide 2,4-D is associated with deficits in auditory processing during infancy. ENVIRONMENTAL RESEARCH 2019; 172:486-494. [PMID: 30851698 PMCID: PMC6511332 DOI: 10.1016/j.envres.2019.02.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Despite widespread use, many herbicides and fungicides are not well studied for neurological effects. Fetal and infant brains are rapidly developing, yet the effects of early-life exposure to these classes of pesticides on visual and auditory function are unknown. Here we examined the effects of prenatal herbicide and fungicide exposure on infant grating visual acuity (VA) and auditory brainstem response (ABR). METHODS 9 herbicides and 13 fungicides were measured in umbilical cord blood plasma from a cohort of infants in Fuyang County, China (n = 232). Grating VA and ABR latencies for waves I, III, V were measured at 3 time points: 6 weeks, 9 months, and 18 months. Outcomes included VA score, ABR wave V latency and ABR central conduction time (CCT [wave V- wave I]). Pesticides were analyzed as 3-level ordinal (non-detect [ND]/medium/high), or dichotomous (ND/detect), depending on detection rates. Linear mixed models were used to evaluate relations between pesticides and VA and ABR outcomes. RESULTS 2,4-dichloroacetic acid (2,4-D), prometryn, simazine, and tetrahydrophthalamide (THPI, a metabolite of captan) were detected in 27%, 81%, 17%, and 16% of samples, respectively. Infants prenatally exposed to 2,4-D had slower auditory response times at 6 weeks. Infants with cord levels of 2,4-D > 1.17 ng/mL had wave V latencies that were 0.12 (95% CI: 0.03, 0.22) ms slower (p = 0.01) and overall CCTs that were 0.15 (95% CI:0.05, 0.25) ms slower (p = 0.003) than infants with non-detectable 2,4-D in their cord blood. No other statistically significant findings were observed for the other herbicides and fungicides or for the grating VA outcome. CONCLUSIONS Prenatal exposure to the herbicide 2,4-D was associated with slower auditory signal transmission in early infancy. ABR latencies reflect auditory pathway maturation and longer latencies may indicate delayed auditory development.
Collapse
Affiliation(s)
- Monica K Silver
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jie Shao
- Department of Child Health Care, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Mingyan Li
- Department of Child Health Care, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Chai Ji
- Department of Child Health Care, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Minjian Chen
- Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.
| | - Yankai Xia
- Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.
| | - Betsy Lozoff
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
29
|
Dargahi A, Ansari A, Nematollahi D, Asgari G, Shokoohi R, Samarghandi MR. Parameter optimization and degradation mechanism for electrocatalytic degradation of 2,4-diclorophenoxyacetic acid (2,4-D) herbicide by lead dioxide electrodes. RSC Adv 2019; 9:5064-5075. [PMID: 35514628 PMCID: PMC9060676 DOI: 10.1039/c8ra10105a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used herbicides in the world. In this work, the electro-catalytic degradation of 2,4-D herbicide from aqueous solutions was evaluated using three anode electrodes, i.e., lead dioxide coated on stainless steel 316 (SS316/β-PbO2), lead dioxide coated on a lead bed (Pb/β-PbO2), and lead dioxide coated on graphite (G/β-PbO2). The structure and morphology of the prepared electrodes were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The process of herbicide degradation was monitored during constant current electrolysis using cyclic voltammetry (CV). In this study, the experiments were designed based on the central composite design (CCD) and were analyzed and modeled by response surface methodology (RSM) to demonstrate the operational variables and the interactive effect of three independent variables on 3 responses. The effects of parameters including pH (3-11), current density (j = 1-5 mA cm-2) and electrolysis time (20-80 min) were studied. The results showed that, at j = 5 mA cm-2, by increasing the reaction time from 20 to 80 min and decreasing the pH from 11 to 3, the 2,4-D herbicide degradation efficiency using SS316/β-PbO2, Pb/β-PbO2 and G/β-PbO2 anode electrodes was observed to be 60.4, 75.9 and 89.8%, respectively. Moreover, the results showed that the highest COD and TOC removal efficiencies using the G/β-PbO2 electrode were 83.7 and 78.5%, under the conditions pH = 3, electrolysis time = 80 min and j = 5 mA cm-2, respectively. It was also found that G/β-PbO2 has lower energy consumption (EC) (5.67 kW h m-3) compared to the two other studied electrodes (SS316/β-PbO2 and Pb/β-PbO2). The results showed a good correlation between the experimental values and the predicted values of the quadratic model (P < 0.05). Results revealed that the electrochemical process using the G/β-PbO2 anode electrode has an acceptable efficiency in the degradation of 2,4-D herbicide and can be used as a proper pretreatment technique to treat wastewater containing resistant pollutants, e.g., phenoxy group herbicides (2,4-D).
Collapse
Affiliation(s)
- Abdollah Dargahi
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Amin Ansari
- Department of Chemistry, Faculty of Chemistry, Bu-Ali-Sina University Hamadan Iran
| | - Davood Nematollahi
- Department of Chemistry, Faculty of Chemistry, Bu-Ali-Sina University Hamadan Iran
| | - Ghorban Asgari
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Reza Shokoohi
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Mohammad Reza Samarghandi
- Department of Environmental Engineering School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
30
|
Tayyab S, Francis JA, Kabir MZ, Ghani H, Mohamad SB. Probing the interaction of 2,4-dichlorophenoxyacetic acid with human serum albumin as studied by experimental and computational approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:284-293. [PMID: 30267976 DOI: 10.1016/j.saa.2018.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
To characterize the binding of a widely used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) to the major transporter in human circulation, human serum albumin (HSA), multi-spectroscopic approaches such as fluorescence, absorption and circular dichroism along with computational methods were employed. Analysis of the fluorescence and absorption spectroscopic data confirmed the 2,4-D-HSA complex formation. A static quenching mechanism was evident from the inverse temperature dependence of the KSV values. The complex was stabilized by a weak binding affinity (Ka = 5.08 × 103 M-1 at 298 K). Quantitative analysis of thermodynamic data revealed participation of hydrophobic and van der Waals interactions as well as hydrogen bonds in the binding process. Circular dichroism and three-dimensional fluorescence spectral results showed structural (secondary and tertiary) changes in HSA as well as microenvironmental perturbation around protein fluorophores (Trp and Tyr residues) upon 2,4-D binding. Addition of 2,4-D to HSA was found to improve protein's thermal stability. Competitive displacement results as well as computational analyses suggested preferred location of the 2,4-D binding site as Sudlow's site I (subdomain IIA) in HSA.
Collapse
Affiliation(s)
- Saad Tayyab
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jaslene Anne Francis
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Md Zahirul Kabir
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamidah Ghani
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Xu Y, Kutsanedzie FYH, Hassan MM, Li H, Chen Q. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:405-412. [PMID: 30170175 DOI: 10.1016/j.saa.2018.08.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 05/25/2023]
Abstract
With increased concerns on milk safety issues, the development of a simple and sensitive method to detect 2,4-dichlorophenoxyacetic acid (2,4-D), a common contaminant in milk, becomes relevant in safeguarding human health threats that results from its consumption. Surface-enhanced Raman spectroscopy (SERS) shows excellent ability for various targets analysis but its usage for rapid and accurate determination of analyte via SERS presents challenges. This study attempted the quantification of 2,4-dichlorophenoxyacetic acid (2,4-D) residue in milk using a novel SERS active substrate- decorated silica films with Au nanoparticles (Au NPs@ silica) coupled to chemometric algorithms. Au NPs@ silica composite was synthesized as a SERS sensor through self-assembly. Thereafter, the SERS spectrum of 2,4-D extract from milk with different concentrations based on the developed SERS sensor was collected and the spectra were analyzed by partial least squares (PLS), and variable selection algorithms - genetic algorithm-PLS (GA-PLS), competitive-adaptive reweighted sampling-PLS (CARS-PLS) and ant colony optimization-PLS (ACO-PLS), to develop quantitative models for 2,4-D prediction. The results obtained showed that the CARS-PLS model gave the optimum result with LOD of 0.01 ng/mL realized and a determination coefficient in the prediction set of (RP) = 0.9836 within a linear range of 10-2 to 106 ng/mL was achieved. Au NPs@ silica SERS sensor combined with CARS-PLS may be employed for rapid quantification of 2,4-D extract from milk towards its quality and safety monitoring.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Felix Y H Kutsanedzie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
32
|
Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva. Toxicology 2018; 410:171-181. [PMID: 30118794 DOI: 10.1016/j.tox.2018.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 11/21/2022]
Abstract
The objective of this study was to evaluate the potential for non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva. Using an in vitro rat salivary gland epithelial cell (SGEC) system, a collection of experiments investigating chemical protein binding, temporal and directional transport, as well as competitive transport with para-aminohippuric acid (PAH), a substrate for renal organic anion transporters, was conducted to identify cellular transport parameters required to computationally model salivary transport of 2,4-D. Additionally, a physiological protein gradient was implemented to mimic physiologically relevant concentrations of protein in rat plasma and saliva, and under these conditions the transfer of 2,4-D was markedly slower, driven by increased protein binding (i.e. reduced free 2,4-D species available to cross salivary barrier). The rate of transfer was directly proportional to the amount of unbound 2,4-D and demonstrated no indication of active transport. An in vivo assessment of 2,4-D exposure in rats revealed non-linear protein binding in plasma, indicating saturated protein binding and increased levels of unbound 2,4-D species at higher doses. A strong correlation between 2,4-D concentrations in saliva and unbound 2,4-D in plasma was observed (Pearson correlation coefficient = 0.95). Saliva:plasma 2,4-D ratios measured in vivo (0.0079) were consistent within the linear protein binding range and expected 2,4-D levels from occupational exposures but were significantly different than ratios measured in vitro (physiological conditions) (0.034), possibly due to 2,4-D concentrations in saliva not being at equilibrium with 2,4-D concentrations in blood, as well as physiological features absent in in vitro settings (e.g. blood flow). We demonstrated that 2,4-D is consistently transported into saliva using both in vitro and in vivo models, making 2,4-D a potential candidate for human non-invasive salivary biomonitoring. Further work is needed to understand whether current sensor limits of detection are sufficient to measure occupationally relevant exposures.
Collapse
|
33
|
LaKind JS, Burns CJ, Naiman DQ, O'Mahony C, Vilone G, Burns AJ, Naiman JS. Critical and systematic evaluation of data for estimating human exposures to 2,4-dichlorophenoxyacetic acid (2,4-D) - quality and generalizability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:423-446. [PMID: 29157177 DOI: 10.1080/10937404.2017.1396704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been commercially available since the 1940's. Despite decades of data on 2,4-D in food, air, soil, and water, as well as in humans, the quality the quality of these data has not been comprehensively evaluated. Using selected elements of the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument (temporal variability, avoidance of sample contamination, analyte stability, and urinary methods of matrix adjustment), the quality of 156 publications of environmental- and biomonitoring-based 2,4-D data was examined. Few publications documented steps were taken to avoid sample contamination. Similarly, most studies did not demonstrate the stability of the analyte from sample collection to analysis. Less than half of the biomonitoring publications reported both creatinine-adjusted and unadjusted urine concentrations. The scope and detail of data needed to assess temporal variability and sources of 2,4-D varied widely across the reviewed studies. Exposures to short-lived chemicals such as 2,4-D are impacted by numerous and changing external factors including application practices and formulations. At a minimum, greater transparency in reporting of quality control measures is needed. Perhaps the greatest challenge for the exposure community is the ability to reach consensus on how to address problems specific to short-lived chemical exposures in observational epidemiology investigations. More extensive conversations are needed to advance our understanding of human exposures and enable interpretation of these data to catch up to analytical capabilities. The problems defined in this review remain exquisitely difficult to address for chemicals like 2,4-D, with short and variable environmental and physiological half-lives and with exposures impacted by numerous and changing external factors.
Collapse
Affiliation(s)
- Judy S LaKind
- f School of Arts and Sciences , University of Pennsylvania , Philadelphia , PA , USA
| | - Carol J Burns
- a LaKind Associates, LLC; Department of Epidemiology and Public Health , University of Maryland School of Medicine , Catonsville , MD , USA
| | | | - Cian O'Mahony
- c Department of Applied Mathematics & Statistics , Johns Hopkins University , Baltimore , MD , USA
| | - Giulia Vilone
- c Department of Applied Mathematics & Statistics , Johns Hopkins University , Baltimore , MD , USA
| | - Annette J Burns
- d Creme Global, Trinity Technology and Enterprise Campus , Grand Canal Quay , Dublin , Ireland
| | - Joshua S Naiman
- e Department of Anthropology , Alma College , Alma , MI , USA
| |
Collapse
|
34
|
Sheng L, Jin Y, He Y, Huang Y, Yan L, Zhao R. Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2,4-dichlorophenoxyacetic acid in real samples. Talanta 2017; 174:725-732. [DOI: 10.1016/j.talanta.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 11/26/2022]
|
35
|
Zhang D, Wu Y, Yuan Y, Liu W, Kuang H, Yang J, Yang B, Wu L, Zou W, Xu C. Exposure to 2,4-dichlorophenoxyacetic acid induces oxidative stress and apoptosis in mouse testis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 141:18-22. [PMID: 28911736 DOI: 10.1016/j.pestbp.2016.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/15/2016] [Accepted: 10/25/2016] [Indexed: 06/07/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used worldwide. It has been associated with a variety of toxicities in rodents. In this study, male mice were orally administered 2,4-D at 50, 100 or 200mg/kg/day to investigate testicular toxicity and the possible mechanisms of action. Exposure to 2,4-D at high concentrations (100 and 200mg/kg/day) for 14 consecutive days caused spermatogenic disruption and seminiferous epithelial destruction. Furthermore, 2,4-D administration (100 and 200mg/kg/day) increased the formation of the lipid peroxidation product malondialdehyde and decreased activities of the antioxidant enzymes superoxide dismutase and catalase in the testis. Moreover, 2,4-D exposure up-regulated the expression of p53 and Bax protein and down-regulated the expression of Bcl-2 protein in the testis. These results demonstrate that oxidative stress and apoptosis may be involved in testicular toxicity induced by high concentrations of 2,4-D in mice.
Collapse
Affiliation(s)
- Dalei Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Yaling Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Yangyang Yuan
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Wenwen Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Haibin Kuang
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Jianhua Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Bei Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Lei Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Weiying Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
36
|
Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples. Biosens Bioelectron 2017; 99:244-250. [PMID: 28772227 DOI: 10.1016/j.bios.2017.07.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022]
Abstract
Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phase-transfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world.
Collapse
|
37
|
Flasiński M, Święchowicz P. Phytohormone Behavior in the Model Environment of Plant and Human Lipid Membranes. J Phys Chem B 2017; 121:6175-6183. [PMID: 28582619 DOI: 10.1021/acs.jpcb.7b02607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interactions between three auxins (indole-3-acetic acid (IAA), 2-naphthoxyacetic acid (BNOA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) and model two-dimensional lipid systems mimicking plant and human cell membranes were investigated in monolayers formed at the air/water solution interface. The analysis was based on the recorded π-A isotherm characteristics complemented with Brewster angle microscopy. The influence of auxins on model membranes was discussed on the basis of condensation changes, modification of mutual lipid-lipid interactions in the mixed films, and morphological alteration of the surface domains on the microscopic scale. It was demonstrated that the lipid composition and mutual proportion of the artificial membranes together with sterol to main the phospholipid ratio play a crucial role in the context of auxin behavior in the membrane-mimicking environment. Apart from specific molecular interactions between studied phytohormones represented by auxins and lipids, the condensation of the investigated monolayers was found to be a regulative factor of model systems' susceptibility toward auxin action. Two effects were recognized: fluidizing of monolayers being in the liquid state (model membranes) and initialization of the three-dimensional structure formation in ordered sterol films at high surface pressure. The influence of auxin molecules on lipid interactions in the monolayer and diminishing of the film condensation was the largest for BNOA, due to the presence of the most bulky nonpolar, aromatic fragment in the molecule. It was also demonstrated that auxins interact with model plant membranes more selectively, stronger, and at markedly lower concentration than with the human membrane models.
Collapse
Affiliation(s)
- Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University , Gronostajowa 3, 30-387, Kraków, Poland
| | - Paulina Święchowicz
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University , Gronostajowa 3, 30-387, Kraków, Poland
| |
Collapse
|
38
|
Moretto JAS, Altarugio LM, Andrade PA, Fachin AL, Andreote FD, Stehling EG. Changes in bacterial community after application of three different herbicides. FEMS Microbiol Lett 2017; 364:3861255. [DOI: 10.1093/femsle/fnx113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/02/2017] [Indexed: 11/14/2022] Open
|
39
|
Lee SC, Lintang HO, Yuliati L. High photocatalytic activity of Fe 2O 3/TiO 2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:915-926. [PMID: 28546886 PMCID: PMC5433238 DOI: 10.3762/bjnano.8.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/28/2017] [Indexed: 05/23/2023]
Abstract
Two series of Fe2O3/TiO2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe2O3/TiO2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV light irradiation was examined. The Fe2O3/TiO2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO2, mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe2O3/TiO2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO2. Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe2O3(0.5)/TiO2. The improved activity of TiO2 after photodeposition of Fe2O3 was contributed to the formation of a heterojunction between the Fe2O3 and TiO2 nanoparticles that improved charge transfer and suppressed electron-hole recombination. A further investigation on the role of the active species on Fe2O3/TiO2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe2O3(0.5)/TiO2 sample also showed good stability and reusability, suggesting its potential for water purification applications.
Collapse
Affiliation(s)
- Shu Chin Lee
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Hendrik O Lintang
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, East Java, Indonesia
| | - Leny Yuliati
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, East Java, Indonesia
| |
Collapse
|
40
|
Neal BH, Bus J, Marty MS, Coady K, Williams A, Staveley J, Lamb JC. Weight-of-the-evidence evaluation of 2,4-D potential for interactions with the estrogen, androgen and thyroid pathways and steroidogenesis. Crit Rev Toxicol 2017; 47:345-401. [PMID: 28303741 DOI: 10.1080/10408444.2016.1272094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A comprehensive weight-of-the-evidence evaluation of 2,4-dichlorophenoxyacetic acid (2,4-D) was conducted for potential interactions with the estrogen, androgen and thyroid pathways and with steroidogenesis. This assessment was based on an extensive database of high quality in vitro, in vivo ecotoxicological and in vivo mammalian toxicological studies. Epidemiological studies were also considered. Toxicokinetic data provided the basis for determining rational cutoffs above which exposures were considered irrelevant to humans based on exceeding thresholds for saturation of renal clearance (TSRC); extensive human exposure and biomonitoring data support that these boundaries far exceed human exposures and provide ample margins of exposure. 2,4-D showed no evidence of interacting with the estrogen or androgen pathways. 2,4-D interacts with the thyroid axis in rats through displacement of thyroxine from plasma binding sites only at high doses exceeding the TSRC in mammals. 2,4-D effects on steroidogenesis parameters are likely related to high-dose specific systemic toxicity at doses exceeding the TSRC and are not likely to be endocrine mediated. No studies, including high quality studies in the published literature, predict significant endocrine-related toxicity or functional decrements in any species at environmentally relevant concentrations, or, in mammals, at doses below the TSRC that are relevant for human hazard and risk assessment. Overall, there is no basis for concern regarding potential interactions of 2,4-D with endocrine pathways or axes (estrogen, androgen, steroidogenesis or thyroid), and thus 2,4-D is unlikely to pose a threat from endocrine disruption to wildlife or humans under conditions of real-world exposures.
Collapse
Affiliation(s)
- B H Neal
- a Exponent® , Alexandria , VA , USA
| | - J Bus
- a Exponent® , Alexandria , VA , USA
| | - M S Marty
- b Toxicology & Environmental Research and Consulting, The Dow Chemical Company , Midland , MI , USA
| | - K Coady
- b Toxicology & Environmental Research and Consulting, The Dow Chemical Company , Midland , MI , USA
| | | | | | - J C Lamb
- a Exponent® , Alexandria , VA , USA
| |
Collapse
|
41
|
González-Tokman D, Martínez-Morales I, Farrera A, Del Rosario Ortiz-Zayas M, Lumaret JP. Effects of an herbicide on physiology, morphology, and fitness of the dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:96-102. [PMID: 27206992 DOI: 10.1002/etc.3498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 05/26/2023]
Abstract
Some agrochemical compounds threaten nontarget organisms and their functions in the ecosystem. The authors experimentally evaluated the effects of one of the most common herbicide mixtures used worldwide, containing 2,4-dichlorophenoxyacetic acid and picloram, on dung beetles, which play fundamental roles in the function of natural and managed ecosystems. The present study employed techniques of physiology and geometric morphometrics, besides including fitness measurements, to assess the effects of the herbicide in the introduced beetle Euoniticellus intermedius. Because herbicide components promote oxidative stress and affect survival in certain insects, the authors predicted negative effects on the beetles. Unexpectedly, no effect of herbicide concentration was found on clutch size, sex ratio, and fluctuating asymmetry, and it even increased physiological condition and body size in exposed beetles. Because the studied species presents 2 male morphs, the authors, for the first time, evaluated the effect of a pollutant on the ratio of these morphs. Contrary to the prediction, the herbicide mixture increased the proportion of major males. Thus, the herbicide does not threaten populations of the studied beetles. The present study discusses how both negative and positive effects of pollutants on wild animals modify natural and sexual selection processes occurring in nature, which ultimately impact population dynamics. The authors recommend the use of physiological and geometric morphometrics techniques to assess the impact of pollutants on nontarget animals. Environ Toxicol Chem 2017;36:96-102. © 2016 SETAC.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT, Instituto de Ecología, Xalapa, Veracruz, México
- Instituto de Ecología, El Haya, Xalapa, Veracruz, México
| | | | - Arodi Farrera
- Posgrado en Antropología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Distrito Federal, México
| | | | - Jean-Pierre Lumaret
- Laboratoire de Zoogéographie, Centre d'Ecologie Fontctionnelle et Evolutive, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier, Montpellier, France
| |
Collapse
|
42
|
Marouani N, Tebourbi O, Cherif D, Hallegue D, Yacoubi MT, Sakly M, Benkhalifa M, Ben Rhouma K. Effects of oral administration of 2,4-dichlorophenoxyacetic acid (2,4-D) on reproductive parameters in male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:519-526. [PMID: 27734311 DOI: 10.1007/s11356-016-7656-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 09/07/2016] [Indexed: 05/14/2023]
Abstract
The 2,4-dichlorophenoxyacetic acid (2,4-D) is used worldwide in agriculture as a selective herbicide. It has been shown to produce a wide range of adverse effects on the health of both animals and humans from embryotoxicity and teratogenicity to neurotoxicity. In the present study, we have examined the effect of 2,4-D on male reproductive function of rats. Male Wistar rats received daily by force-feeding 100 or 200 mg of 2,4-D/kg body weight for 30 consecutive days. Rats exposed to 100 and 200 mg of 2,4-D/kg showed a significant decrease in body weights only after 24 days of treatment and in relative weights of testis, seminal vesicles and prostate at killing day, when compared with controls. Moreover, a decrease in testosterone and an increase in FSH and LH serum levels were detected in treated rats. Besides, exposure to this herbicide induced pronounced testicular histological alterations with enlarged intracellular spaces, tissue loosening and dramatic loss of gametes in the lumen of the seminiferous tubules. In addition, a decreased motility and a number of epididymal spermatozoa with an increased sperm abnormality rate were found in treated rats in comparison with control. With the highest dose, histological observations of seminal vesicles indicated a considerable decrease of secretions in the lumen, a thinness of the muscle layer surrounding the epithelium with branched mucosal crypts and reduced luminal space. In prostate, the heights of the cells decreased while acinar lumen were enlarged and they lost the typical invaginations. Our results suggest that a subacute treatment of 2,4-D promotes reproductive system toxicity.
Collapse
Affiliation(s)
- Neila Marouani
- Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University, Bizerte, Jarzouna, Tunisia
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University, Bizerte, Jarzouna, Tunisia
| | - Donia Cherif
- Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University, Bizerte, Jarzouna, Tunisia
| | - Dorsaf Hallegue
- Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University, Bizerte, Jarzouna, Tunisia
| | - Mohamed Tahar Yacoubi
- Department of Anatomy and Pathological Cytology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University, Bizerte, Jarzouna, Tunisia
| | - Moncef Benkhalifa
- Reproductive Medicine and Medical Cytogenetics Department, University Hospital, Amiens, France
- School of Medicine, Picardie University Jules Verne, Amiens, France
| | - Khemais Ben Rhouma
- Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University, Bizerte, Jarzouna, Tunisia.
| |
Collapse
|
43
|
Ye M, Beach J, Martin JW, Senthilselvan A. Pesticide exposures and respiratory health in general populations. J Environ Sci (China) 2017; 51:361-370. [PMID: 28115149 DOI: 10.1016/j.jes.2016.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/10/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Human exposures to pesticides can occur in the workplace, in the household and through the ambient environment. While several articles have reviewed the impact of pesticide exposures on human respiratory health in occupational settings, to the best of our knowledge, this article is the first one to review published studies on the association between pesticide exposures and human respiratory health in the general populations. In this article, we critically reviewed evidences up to date studying the associations between non-occupational pesticide exposures and respiratory health in general populations. This article also highlighted questions arising from these studies, including our recent analyses using the data from the Canadian Health Measures Survey (CHMS), for future research. We found few studies have addressed the impact of environmental pesticide exposures on respiratory health, especially on lung function, in general populations. In the studies using the data from CHMS Cycle 1, exposures to OP insecticides, pyrethroid insecticides, and the organochlorine pesticide DDT were associated with impaired lung function in the Canadian general population, but no significant associations were observed for the herbicide 2,4-D. Future research should focus on the potential age-specific and pesticide-specific effect on respiratory health in the general population, and repeated longitudinal study design is critical for assessing the temporal variations in pesticide exposures. Research findings from current studies of non-occupational pesticide exposures and their health impact in general population will help to improve the role of regulatory policies in mitigating pesticide-related public health problems, and thereafter providing greater benefit to the general population.
Collapse
Affiliation(s)
- Ming Ye
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 1C9, Canada..
| | - Jeremy Beach
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 1C9, Canada.; Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2T4, Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | | |
Collapse
|
44
|
Dey N, Bhagat D, Cherukaraveedu D, Bhattacharya S. Utilization of Red-Light-Emitting CdTe Nanoparticles for the Trace-Level Detection of Harmful Herbicides in Adulterated Food and Agricultural Crops. Chem Asian J 2016; 12:76-85. [DOI: 10.1002/asia.201601302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
| | - Deepa Bhagat
- Indian Council of Agricultural Research; National Bureau of Agriculturally Insect Resources; Bangalore 560 024 India
| | - Durgadas Cherukaraveedu
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
- School of Chemistry; University of Edinburgh; David Brewster Road, Joseph Black Building EH9 3JF United Kingdom
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
- Indian Association of Cultivation of Science; Kolkata 700032 India
| |
Collapse
|
45
|
Zhang J, Li Y, Gupta AA, Nam K, Andersson PL. Identification and Molecular Interaction Studies of Thyroid Hormone Receptor Disruptors among Household Dust Contaminants. Chem Res Toxicol 2016; 29:1345-54. [DOI: 10.1021/acs.chemrestox.6b00171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jin Zhang
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Arun A. Gupta
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Kwangho Nam
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
46
|
Terry C, Hays S, McCoy AT, McFadden LG, Aggarwal M, Rasoulpour RJ, Juberg DR. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals. Regul Toxicol Pharmacol 2016; 75:89-104. [DOI: 10.1016/j.yrtph.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/25/2023]
|
47
|
Cardenas MAR, Ali I, Lai FY, Dawes L, Thier R, Rajapakse J. Removal of micropollutants through a biological wastewater treatment plant in a subtropical climate, Queensland-Australia. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2016; 14:14. [PMID: 27822379 PMCID: PMC5093989 DOI: 10.1186/s40201-016-0257-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/03/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Municipal wastewaters contain a multitude of organic compounds derived from domestic and industrial sources including active components of pharmaceutical and personal care products and compounds used in agriculture, such as pesticides, or food processing such as artificial sweeteners often referred to as micropollutants. Some of these compounds or their degradation products may have detrimental effects on the environment, wildlife and humans. Acesuflame is one of the most popular artificial sweeteners to date used in foodstuffs. The main objectives of this descriptive study were to evaluate the presence of micropollutants in both the influent and effluent of a large-scale conventional biological wastewater treatment plant (WWTP) in South-East Queensland receiving wastewater from households, hospitals and various industries. METHODS Based on USEPA Method 1694: Filtered samples were spiked with mass-labelled chemical standards and then analysed for the micropollutants using liquid chromatography coupled with tandem mass spectrometry. RESULTS The presence of thirty-eight compounds were detected in the wastewater influent to the treatment plant while nine of the compounds in the categories of analgesic, anti-inflammatory, alkaloid and lipid/cholesterol lowering drugs were undetectable (100 % removed) in the effluent. They were: Analgesic: Paracetamol, Salicylic acid, Oxycodone; Anti-inflammatory: Naproxen + ve, Atorvastatin, Indomethacin, Naproxen; Alkaloid: Caffeine; Lipid/cholesterol lowering: Gemfibrozol. CONCLUSIONS The study results revealed that the micropollutants removal through this biological treatment process was similar to previous research reported from other countries including Europe the Americas and Asia, except for acesulfame, a highly persistent artificial sweetener. Surprisingly, acesulfame was diminished to a much greater extent (>90 %) than previously reported research for this type of WWTPs (45-65 %) that only include physical removal of objects and solids and a biodegradation step.
Collapse
Affiliation(s)
| | - Imtiaj Ali
- Treatment Program, Logan City Council, Logan City DC, QLD 4114 Australia
| | - Foon Yin Lai
- National Research Centre for Environmental Toxicilogy (EnTox), The University of Queensland, Brisbane, QLD 4108 Australia
| | - Les Dawes
- Science and Engineering Faculty, School of Earth, Environment and Biological Sciences, Queensland University of Technology, QLD 4001 Brisbane, Australia
| | - Ricarda Thier
- Faculty of Health, Queensland University of Technology, QLD 4001 Brisbane, Australia
| | - Jay Rajapakse
- Science and Engineering Faculty, School of Earth, Environment and Biological Sciences, Queensland University of Technology, QLD 4001 Brisbane, Australia
| |
Collapse
|
48
|
Goodman JE, Loftus CT, Zu K. 2,4-Dichlorophenoxyacetic acid and non-Hodgkin's lymphoma, gastric cancer, and prostate cancer: meta-analyses of the published literature. Ann Epidemiol 2015; 25:626-636.e4. [PMID: 26066538 DOI: 10.1016/j.annepidem.2015.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE Despite evidence from experimental studies indicating that the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), is not carcinogenic, several epidemiology studies have evaluated links between 2,4-D and cancer. Some suggest that 2,4-D is associated with non-Hodgkin's lymphoma (NHL), gastric cancer, and prostate cancer, but results have been inconsistent. We conducted meta-analyses to evaluate the weight of epidemiology evidence for these cancers. METHODS We identified articles from PubMed, Scopus, and TOXLINE databases and reference lists of review articles. We evaluated study quality and calculated summary risk estimates using random effects models. We conducted subgroup and sensitivity analyses when possible. RESULTS We identified nine NHL, three gastric cancer, and two prostate cancer studies for inclusion in our meta-analyses. We found that 2,4-D was not associated with NHL (relative risk [RR] = 0.97, 95% confidence interval [CI] = 0.77-1.22, I(2) = 28.8%, Pheterogeneity = .19), and this result was generally robust to subgroup and sensitivity analyses. 2,4-D was not associated with gastric (RR = 1.14, 95% CI = 0.62-2.10, I(2) = 54.9%, Pheterogeneity = .11) or prostate cancer (RR = 1.32, 95% CI = 0.37-4.69, I(2) 87.0%, Pheterogeneity = .01). CONCLUSIONS The epidemiology evidence does not support an association between 2,4-D and NHL, gastric cancer, or prostate cancer risk.
Collapse
|
49
|
Khedr MA, Shehata TM, Mohamed ME. Repositioning of 2,4-Dichlorophenoxy acetic acid as a potential anti-inflammatory agent: In Silico and Pharmaceutical Formulation study. Eur J Pharm Sci 2014; 65:130-8. [DOI: 10.1016/j.ejps.2014.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/26/2014] [Accepted: 09/12/2014] [Indexed: 12/26/2022]
|
50
|
Abstract
Herbicides remain the most effective, efficient and economical way to control weeds; and its market continues to grow even with the plethora of generic products. With the development of herbicide-tolerant crops, use of herbicides is increasing around the world that has resulted in severe contamination of the environment. The strategies are now being developed to clean these substances in an economical and eco-friendly manner. In this review, an attempt has been made to pool all the available literature on the biodegradation of key herbicides, clodinafop propargyl, 2,4-dichlorophenoxyacetic acid, atrazine, metolachlor, diuron, glyphosate, imazapyr, pendimethalin and paraquat under the following objectives: (1) to highlight the general characteristic and mode of action, (2) to enlist toxicity in animals, (3) to pool microorganisms capable of degrading herbicides, (4) to discuss the assessment of herbicides degradation by efficient microbes, (5) to highlight biodegradation pathways, (6) to discuss the molecular basis of degradation, (7) to enlist the products of herbicides under degradation process, (8) to highlight the factors effecting biodegradation of herbicides and (9) to discuss the future aspects of herbicides degradation. This review may be useful in developing safer and economic microbiological methods for cleanup of soil and water contaminated with such compounds.
Collapse
Affiliation(s)
- Baljinder Singh
- a Department of Biotechnology , Panjab University , Chandigarh , Punjab , India
| | - Kashmir Singh
- a Department of Biotechnology , Panjab University , Chandigarh , Punjab , India
| |
Collapse
|